最新《统计学原理》常用公式汇总及计算题目分析
统计学原理公式
统计学原理公式第二章数据描述1、组距=上限―下限2、简单平均数: x=Σx/n3、加权平均数:x=Σxf/Σf4、全距: R=xmax-xmin5、方差和标准差:方差是将各个变量值和其均值离差平方的平均数。
其计算公式:22未分组的计算公式:σ=Σ(x-x)/n22分组的计算公式:σ=Σ(x-x)f/Σf 样本标准差则是方差的平方根:21/2未分组的计算公式:s=[Σ(x-x)/(n-1)]2 1/2分组的计算公式:s=[Σ(x-x)f/(Σf-1)]1/2σ=[Σ(x-x)/n] 6、离散系数:总体数据的离散系数:Vσ=σ/x 样本数据的离散系数:Vs=s/x 10、标准分数:标准分数也称标准化值或Z分数,它是变量值与其平均数的离差除以标准差后的值,用以测定某一个数据在该组数据的相对位置。
其计算公式为:Zi=(xi-x)/s标准分数的最大的用途是可以把两组数组中的两个不同均值、不同标准差的数据进行对比,以判断它们在各组中的位置。
第三章参数估计1、统计量的标准误差:(样本误差)(1)在重复抽样时;样本标准误差:σx=σ/n 或σx=s/n 样本的比例误差可表示为:1/21/2σp=[π(1-π)/n] 或σp=[p(1-p)/n] (2)不重复抽样时: 22σx=σ/n×(N-n/N-1) 2σp=p(1-p)/n×(N-n/N-1)2、估计总体均值时样本量的确定,在重复抽样的条件下:222n= Zσ/E3、估计总体比例时样本量的确定,在重复抽样的条件下:22n=Z×p(1-p)/E 4、(1)在大样本情况下,样本均值的抽样分布服从正态分布,因此采用正态分布的检验统计量,当总体方差已知时,总体均值检验统计量为:Z=(x-μ)/( σ/n)(2)当总体方差未知时,可以用样本方差来代替,此时总体均值检验的统计量为:Z=(x-μ)/( s/n) 5、小样本的检验:在小样本(n<30)情况下,检验时,首先假定总体均值服从正态分布。
统计学各章计算题公式及解题方法
统计学各章计算题公式及解题方法第四章数据的概括性度量1.组距式数值型数据众数的计算:确定众数组后代入公式计算:下限公式:;上限公式:,其中,L为众数所在组下限,U为众数所在组上限,为众数所在组次数与前一组次数之差,为众数所在组次数与后一组次数之差,d为众数所在组组距2.中位数位置的确定:未分组数据为;组距分组数据为3.未分组数据中位数计算公式:4.单变量数列的中位数:先计算各组的累积次数(或累积频率)—根据位置公式确定中位数所在的组-对照累积次数(或累积频率)确定中位数(该公式假定中位数组的频数在该组内均匀分布)5.组距式数列的中位数计算公式:下限公式:;上限公式:,其中,为中位数所在组的频数,为中位数所在组前一组的累积频数,为中位数所在组后一组的累积频数6.四分位数位置的确定:未分组数据:;组距分组数据:7.简单均值:8.加权均值:,其中,为各组组中值统计学各章计算题公式及解题方法9.几何均值(用于计算平均发展速度):10.四分位差(用于衡量中位数的代表性):11.异众比率(用于衡量众数的代表性):12.极差:未分组数据:;组距分组数据:13.平均差(离散程度):未分组数据:;组距分组数据:14.总体方差:未分组数据:;分组数据:15.总体标准差:未分组数据:;分组数据:16.样本方差:未分组数据:;分组数据:17.样本标准差:未分组数据:;分组数据:18.标准分数:19.离散系数:第七章参数估计1.的估计值:置信水平α90%0.1 0。
05 1.65495% 0。
05 0.025 1.9699% 0.01 0。
005 2。
58统计学各章计算题公式及解题方法2.不同情况下总体均值的区间估计:总体分布样本量σ已知σ未知大样本(n≥30)正态分布小样本(n<30)非正态分布大样本(n≥30)其中,查p448 ,查找时需查n—1的数值3.大样本总体比例的区间估计:4.总体方差在置信水平下的置信区间为:5.估计总体均值的样本量:,其中,E为估计误差6.重复抽样或无限总体抽样条件下的样本量:,其中π为总体比例第八章假设检验1.总体均值的检验(已知或未知的大样本)[总体服从正态分布,不服从正态分布的用正态分布近似]假设双侧检验左侧检验右侧检验假设形式已知统计量未知拒绝域值决策,拒绝2.总体均值检验(未知,小样本,总体正态分布)假设双侧检验左侧检验右侧检验统计学各章计算题公式及解题方法假设形式已知统计量未知拒绝域值决策,拒绝注:已知的拒绝域同大样本3.一个总体比例的检验(两类结果,总体服从二项分布,可用正态分布近似)(其中为假设的总体比例)假设双侧检验左侧检验右侧检验假设形式统计量拒绝域值决策,拒绝4.总体方差的检验(检验)假设双侧检验左侧检验右侧检验假设形式统计量拒绝域值决策,拒绝5.统计量的参考数值0.1 0。
统计学原理重要公式
一.加权算术平均数和加权调和平均数的计算加权算术平均数: ∑∑=fxf x 或 ∑∑=ffxx加权调和平均数: ∑∑∑∑==fxf x m m x频数也称次数。
在一组依大小顺序排列的测量值中,当按一定的组距将其分组时出现在各组内的测量值的数目,即落在各类别(分组)中的数据个数。
再如在3.14159265358979324中,…9‟出现的频数是3,出现的频率是3/18=16.7% 一般我们称落在不同小组中的数据个数为该组的频数,频数与总数的比为频率。
频数也称“次数”,对总数据按某种标准进行分组,统计出各个组内含个体的个数。
而频率则每个小组的频数与数据总数的比值。
在变量分配数列中,频数(频率)表明对应组标志值的作用程度。
频数(频率)数值越大表明该组标志值对于总体水平所起的作用也越大,反之,频数(频率)数值越小,表明该组标志值对于总体水平所起的作用越小。
掷硬币实验:在10次掷硬币中,有4次正面朝上,我们说这10次试验中…正面朝上‟的频数是4例题:我们经常掷硬币,在掷了一百次后,硬币有40次正面朝上,那么,硬币反面朝上的频数为____.解答,掷了硬币100次,40次朝上,则有100-40=60(次)反面朝上,所以硬币反面朝上的频数为60.一.加权算术平均数和加权调和平均数的计算加权算术平均数: ∑∑=fxf x 或 ∑∑=ffxxx 代表算术平均数;∑是总和符合;f 为标志值出现的次数。
加权算术平均数是具有不同比重的数据(或平均数)的算术平均数。
比重也称为权重,数据的权重反映了该变量在总体中的相对重要性,每种变量的权重的确定与一定的理论经验或变量在总体中的比重有关。
依据各个数据的重要性系数(即权重)进行相乘后再相加求和,就是加权和。
加权和与所有权重之和的比等于加权算术平均数。
加权平均数 = 各组(变量值 × 次数)之和 / 各组次数之和 = ∑xf / ∑f加权调和平均数: ∑∑∑∑==fxf xm m x加权算术平均数以各组单位数f 为权数,加权调和平均数以各组标志总量m 为权数但计算内容和结果都是相同的。
统计学常用公式汇总
《统计学原理》常用公式汇总组距=上限-下限组中值=(上限+下限)÷2 缺下限开口组组中值=上限-1/2邻组组距缺上限开口组组中值=下限+1/2邻组组距111平均指标 1.简单算术平均数:2.加权算术平均数或iii.变异指标1.全距=最大标志值-最小标志值2.标准差: 简单σ=;加权σ= 3.标准差系数:第五章抽样估计1.平均误差:重复抽样:不重复抽样:2.抽样极限误差3.重复抽样条件下:平均数抽样时必要的样本数目成数抽样时必要的样本数目4.不重复抽样条件下:平均数抽样时必要的样本数目第七章相关分析 1.相关系数2.配合回归方程y=a+bx3.估计标准误:第八章指数分数一、综合指数的计算与分析(1)数量指标指数此公式的计算结果说明复杂现象总体数量指标综合变动的方向和程度。
(-)此差额说明由于数量指标的变动对价值量指标影响的绝对额。
(2)质量指标指数此公式的计算结果说明复杂现象总体质量指标综合变动的方向和程度。
(-)此差额说明由于质量指标的变动对价值量指标影响的绝对额。
加权算术平均数指数=加权调和平均数指数=(3)复杂现象总体总量指标变动的因素分析相对数变动分析:=×绝对值变动分析:-= (-)×(-)第九章动态数列分析一、平均发展水平的计算方法:(1)由总量指标动态数列计算序时平均数①由时期数列计算②由时点数列计算在间断时点数列的条件下计算:a.若间断的间隔相等,则采用“首末折半法”计算。
公式为:b.若间断的间隔不等,则应以间隔数为权数进行加权平均计算。
公式为:(2)由相对指标或平均指标动态数列计算序时平均数基本公式为:式中:代表相对指标或平均指标动态数列的序时平均数;代表分子数列的序时平均数;代表分母数列的序时平均数;逐期增长量之和累积增长量二. 平均增长量=─────────=─────────逐期增长量的个数逐期增长量的个数(1)计算平均发展速度的公式为:(2)平均增长速度的计算平均增长速度=平均发展速度-1(100%)。
统计学原理重要公式
•加权算术平均数和加权调和平均数的计算加权算术平均数:-工灯十牙= —或加权调和平均数:y— X/厶X频数也称次数。
在•组依人小顺序扌II冽的测量值中,当按•定的组距将其分组时出现在各组的测量值的数目.即落在各类别(分组)中的数据个数。
再如在3•⑷59265358979324中,9出现的频数是3,出现的频率是3/18=16.7%•般我们称落在不同小组中的数据个数为该组的频数,频数与总数的比为频率。
频数也称''次数",对总数据按某种标准进行分组,统计出各个组含个体的个数。
而频率则每个小组的频数与数据总数的比值。
在变量分配数列中,频数(频率)农明对应组标志值的作用程度。
频数(频率)数值越人农明该组标志值对于总体水平所起的作用也越人,反之,频数(频率)数值越小,农明该组标志值对于总体水平所起的作用越小。
掷硬币实验:在10次掷硕币中,有4次正而切上,我们说这10次试验中,正血呦上,的频数是4例题:我们经常掷硬币,在掷了•百次后,硬币有40次正而朝上.那么•硬币反面朝上的频数为—・解答,掷了硬币100次,40次朝上,则有10040=60 (次)反血呦上,所以硬币反而初上的频数为60.一. 加权算术平均数和加权调和平均数的计算加权算术平均数:x=^~L或x=Yx~!—】代衣算术平均数;工是总和符合:f为标志值出现的次数。
ij口权算术平均数是具有不同比重的数据(或平均数)的算术平均数。
比重也称为权重,数据的权重反映了该变量在总体中的和对重耍性,每种变量的权重的确定与•定的理论经验或变量在总体中的比重有关。
依据各个数据的重要性系数(即权重)进行和乘后再相加求和,就是加权和。
加权和与所有权重之和的比等于加权算术平均数。
加权平均数=各组(变量值x次数)之和/各组次数之和二》Xf /加权调和平均数:加权算术平均数以各组单位数f为权数,加权调和蛋均数以各组标志总量m 为权药亘计號容和结果都是相同的。
统计学原理
1加权算术平均数公式 2简单几何平均数(对数平均数)3算术平均数,中位数,众数之间的关系4标志变异指标全距计算优点:计算简便;缺点:易受极端值的影响 5平均差(A.D )6简单标准差 7增长量;增长量=报告期水平增长—基期水平 8逐期增长量=报告期水平-前一期水平;累计增长量=报告期水平-最初水平 9发展速度;发展速度=报告期水平/基期水平10环比发展速度=报告期水平-基期水平 定基发展速度=报告期水平/最初水平 11增长速度;增长速度=增长量/基期水平;增长速度=发展速度-112增长1%的绝对值;增长1%的绝对值=增长量/增长速度*1%=基期水平/100 13平均增长量=逐期增长量之和/逐期增长量个数=(an-a0)/n14平均发展水平(绝对数)根据间隔不等 的间断性时点数列计算的平均发展水平 15间隔不等的间断性时点数列平均发展水平的计算公式 16(相对数)ab 是两个时期数列 17ab 分别是时期时点数列18平均速度;平均增长速度=平均发展速度-1;19平均发展速度 右手边20平均增长速度=平均发展速度-1;21动态趋势分析,模式,乘法模式;加法模式,右手 21第五章统计指数,个体指数,(产量,价格,单位成本)总体指数数量/质量指标 22可变构成指数;反应平均指标变动程度;反应平均指标变动绝对额 23固定构成指数;反映由于各组平均水平变动 使平均指标变动的绝对额;反映由于各组平均水 平变动使平均指标变动的程度; 24结构影响指数;反映由于结构变动使平均指标变动 112233n nxfx f x f x f x fx f f +++⋅⋅⋅+==∑∑∑112233n n xfx f x f x f x f x f f +++⋅⋅⋅+==∑∑∑max min R X X =-L 56+60++89+90x ==7225∑x -xA.D =n56-72+60-72++89-72+90-72=25=7.76L nx x ∑-=2)(σL ∑2(x -x)σ=n2222(56-72)+(60-72)++(89-72)+(90-72)25=9.30231121212222211n n nn a a a a a a a a a a a n n --++++++++++==--L L 23112121222n n n a a a a a a f f f a f --++++++=∑L a a a n c b b b n ===∑∑∑∑121221mm a a nc b b b b b m -==++++-∑L L 120110n n nn n a a a a x a a a a -=⨯⨯⨯=L 123n n x x x x x =L n x R=ˆ()y T yS C I =⨯⨯⨯ˆ()y T yS C I =+++01q q k q =01p p k p =01z z k z =q I p I z I 111111100x f f x f f x I fx f x x ff===∑∑∑∑∑∑∑∑可变111x f x f f f-∑∑∑∑111111101011x f f x f f I x f x f f ==∑∑∑∑∑∑∑∑固定110111x f x f f f -∑∑∑∑0111100x f f x f f I f x f x ff==∑∑∑∑∑∑∑∑结构01001x f x f ff-∑∑∑∑的程度;反映由于结构变动使平均指标变动的绝对额数量指标公式质量指数公式加权算术平均式指数计算公式加权调和平均式指数计算公式25(1)两因素综合指数体系;总成本指数=产量指数×单位成本指数 (2)多因素综合指数体系26平均指标对比指数体系 27综合指数和平均指标对比指数相结合的指数体系 总成本指数=产量指数×单位成本指数=产量指数×单位成本的固定构成指数 ×单位成本的结构影响指数 28第六章;抽样平均误差计算29抽样极限误差;样本指标围绕总体指标左右两侧波动形成的一定范围——允许(极限)误差。
统计学公式汇总
统计学原理常用公式汇总第三章统计整理a) 组距=上限—下限b) 组中值=(上限+下限)十2c) 缺下限开口组组中值=上限-1/2邻组组距d) 缺上限开口组组中值=下限+1/2邻组组距第四章综合指标i. 相对指标1. 结构相对指标=各组(或部分)总量/总体总量2. 比例相对指标=总体中某一部分数值/总体中另一部分数值3. 比较相对指标=甲单位某指标值/乙单位同类指标值4. 强度相对指标=某种现象总量指标/另一个有联系而性质不同的现象总量指标5. 计划完成程度相对指标=实际数/计划数=实际完成程度(%)/计划规定的完成程度(%)ii. 平均指标1.简单算术平均数:;H1.全距=最大标志值-最小标志值2.标准差:简单(T =3.标准差系数2.加权算术平均数''iii. 变异指标或第五章 抽样推断1.抽样平均误差:宀(1 P)2P重复抽样: P(1 p)x ’ P : n不重复抽样: x J —(1 N Y n N2.抽样极限误差 x x3.重复抽样条件下: 平均数抽样时必要的样本数目t 2 不重复抽样条件下:平均数抽样时必要的样本数目2 2 Nt 2 2 2 2 2 N 2x t 2 2 成数抽样时必要的样本数目第七章相关分析1. 相关系数n xy x yn x2 ( x)2 n y2 ( y)2 2. 配合回归方程y = a + bxn xy x yb 2 2-n x2( x)a y bx| y2a y b xy3. 估计标准误:s’,n 2第八章指数分数一、综合指数的计算与分析(1)数量指标指数q i P oq o P o此公式的计算结果说明复杂现象总体数量指标综合变动的方向和程度。
( q i P o - q o P o )此差额说明由于数量指标的变动对价值量指标影响的绝对额。
(2)质量指标指数q i P iq i P o此公式的计算结果说明复杂现象总体质量指标综合变动的方向和程度。
统计学常用公式汇总
《统计学原理》常用公式汇总第三章统计整理+下限)÷21/2邻组组距+1/2邻组组距i. 相对指标/总体总量/总体中另一部分数值/乙单位同类指标值/另一个有联系而性质不同的现象总量指标/计划数=实际完成程度(%)/计划规定的完成程度(%)-实际完成月数)+超额完成计划数/(达标月产量-上年同月产量)X=nx∑调和平均数:Mh=∑xn1X=∑∑fxf=∑∑xmm= ;=M0=L+∆∆∆+211*d (=∆1众数组次数与前一组之差,另一个是与后一组的差,L是众数组的下限,d是众数组的组距)=M e L+fSmmf12--∑*d(L是下限,Sm-1是中位数组前各组之和,fm是中位数组次数,d是组距)(1)由总量指标动态数列计算序时平均数a.若间断的间隔相等,则采用“首末折半法”计算。
公式为:b.则应以间隔数为权数进行加权平均计算。
公式为:报告期水平/基期水平定基发展速度:......,21aaaa环比发展速度:.....,121aaaa定基发展速度-1环比发展速度-1/累积增长量=逐期增长量的个数/逐期增长量的个数=n n aa 0平均增长速度=平均发展速度-1(100%)一、综合指数的计算与分析此公式的计算结果说明复杂现象总体数量指标综合变动的方向和程度。
(- )此差额说明由于数量指标的变动对价值量指标影响的绝对额。
此公式的计算结果说明复杂现象总体质量指标综合变动的方向和程度。
(- )此差额说明由于质量指标的变动对价值量指标影响的绝对额。
(3)复杂现象总体总量指标变动的因素分析=×-=(-)×(-)平均数抽样时必要的样本数目 成数抽样时必要的样本数目要的样本数目y=a+bx。
统计学原理重要公式
一.加权算术平均数和加权调和平均数的计算加权算术平均数: ∑∑=f xf x 或 ∑∑=f fx x加权调和平均数:频数也称次数;在一组依大小顺序排列的测量值中,当按一定的将其时出现在各组内的测量值的,即落在各类别分组中的数据个数;一般我们称落在不同小组中的数据个数为该组的频数,频数与的为;频数也称“次数”,对总数据按某种标准进行分组,统计出各个组内含个体的个数;而频率则每个小组的频数与数据总数的比值;在变量分配数列中,频数频率表明对应组标志值的作用程度;频数频率数值越大表明该组标志值对于总体水平所起的作用也越大,反之,频数频率数值越小,表明该组标志值对于总体水平所起的作用越小;掷硬币实验:在10次掷硬币中,有4次正面朝上,我们说这10次试验中‘正面朝上’的频数是4例题:我们经常掷硬币,在掷了一百次后,硬币有40次正面朝上,那么,硬币反面朝上的频数为____.解答,掷了硬币100次,40次朝上,则有100-40=60次反面朝上,所以硬币反面朝上的频数为60.一.加权算术平均数和加权调和平均数的计算加权算术平均数: ∑∑=fxf x 或 ∑∑=f f x x x 代表算术平均数;∑是总和符合;f 为标志值出现的次数;加权算术平均数是具有不同比重的数据或平均数的算术平均数;比重也称为权重,数据的权重反映了该变量在总体中的相对重要性,每种变量的权重的确定与一定的理论经验或变量在总体中的比重有关;依据各个数据的重要性系数即权重进行相乘后再相加求和,就是加权和;加权和与所有权重之和的比等于加权算术平均数;加权平均数 = 各组变量值 × 次数之和 / 各组次数之和 = ∑xf / ∑f加权调和平均数:加权算术平均数以各组单位数f 为权数,加权调和平均数以各组标志总量m 为权数但计算内容和结果都是相同的;二.标准差和标准差系数的计算方法标准差:σ=()∑∑-ffxx2或公式标准差也被称为,或者实验标准差,公式如图;简单来说,标准差是一组数据分散程度的一种度量;一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值;例如,两组数的集合 {0, 5, 9, 14} 和 {5, 6, 8, 9} 其平均值都是 7 ,但第二个集合具有较小的标准差;标准差可以当作不确定性的一种测量;例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度;当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远同时与标准差数值做比较,则认为测量值与预测值互相矛盾;这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确;标准差应用于投资上,可作为量度回报稳定性的指标;标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高;相反,标准差数值越细,代表回报较为稳定,风险亦较小;例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67;这两组的平均数都是70,但A组的标准差为分,B 组的标准差为分此数据时在R统计软件中运行获得,说明A组学生之间的差距要比B组学生之间的差距大得多;如是总体,标准差公式根号内除以n如是样本,标准差公式根号内除以n-1因为我们大量接触的是样本,所以普遍使用根号内除以n-1公式意义所有数减去其平均值的平方和,所得结果除以该组数之个数或个数减一,再把所得值开根号,所得之数就是这组数据的标准差;标准差的意义标准差越高,表示实验数据越离散,也就是说越不精确反之,标准差越低,代表实验的数据越精确离散度标准差是反应一组数据离散程度最常用的一种量化形式,是表示精密确的最要指标;说起标准差首先得搞清楚它出现的目的;我们使用方法去检测它,但检测方法总是有的,所以检测值并不是其真实值;检测值与真实值之间的差距就是评价检测方法最有决定性的指标;但是真实值是多少,不得而知;因此怎样量化检测方法的准确性就成了难题;这也是临床工作质控的目的:保证每批实验结果的准确可靠;虽然样本的真实值是不可能知道的,但是每个样本总是会有一个真实值的,不管它究竟是多少;可以想象,一个好的检测方法,基检测值应该很紧密的分散在真实值周围;如何不紧密,那距真实值的就会大,准确性当然也就不好了,不可能想象离散度大的方法,会测出准确的结果;因此,离散度是评价方法的好坏的最重要也是最基本的指标;标准差系数:标准差系数又均方差系数;反映标志变动程度的相对指标;式中:Vσ为标准差系数;σ为标准差;x为平均数;当以样本标准差系数称/离散系数估计总体标准差系数时,VS= 式中:VS为变异系数;S为样本标准差;对于不同水平的总体不宜直接用标准差指标进行对比,标准差系数能更好的反映不同水平总体的标志变动度;标准差变动系数为标志变异系数的一种;标志变异系数指用标志变异指标与其相应的平均指标对比,来反应总体各单位标志值之间离散程度的相对指标,一般用v表示;标志变异指标有全距、平均差和标准差,相对应的,便有全距系数、平均差系数和标准差系数3种;计算方法为:标志变异系数=标志变异值/相对应的平均值三.总体平均数和总体成数的区间估计;抽样平均误差的计算公式:1.总体平均数:重复抽样:n x σμ=重复抽样又称放回式抽样;每次从总体中抽取的样本单位,经检验之后又重新放回总体,参加下次,这种抽样的特点是总体中每个单位被抽中的是相等的;不重复抽样: )1(2Nn n x -=σμ 不重复抽样亦称不放回式抽样;每次从总体中抽取的样本单位,经检验之后不再放回总体,在下次时不会再次抽到前面已抽中过的样品单位;总体每经一次抽样,其样品单位数就减少一个,因此每个单位在各次抽样中被抽中的是不同的;2.总体成数:重复抽样: n p p p )1(-=μ 不重复抽样: )1()1(Nn n p p p --=μ 抽样极限误差:抽样极限误差又称“置信区间和抽样允许误差范围”,是指在一定的把握程度P 下保证样本指标与总体指标之间的抽样误差不超过某一给定的最大可能范围,记作△;抽样极限误差是指用绝对值形式表示的 样本指标与总体指标偏差的可允许的最大范围;它表明被估计的总体指标有希望落在一个以样本指标为基础的可能范围;它是由抽样指标变动可允许的上限或下限与总体指标之差的绝对值求得的;由于总体平均数和总体成数是未知的,它要靠实测的抽样平均数成数来估计;因而抽样极限误差的实际意义是希望总体平均数落在抽样平均数的范围内,总体成数落在抽样成数的范围内;基于理论上的要求,抽样极限误差需要用抽样平均误差μχ或μρ为标准单位来衡量;即把极限误差△x 或△p 相应除以μχ或μρ,得出相对的误差程度t 倍,t 称为抽样误差的概率度;于是有:1. 总体平均数: x x t μ=∆定义:总体中所有个体的平均数叫做总体平均数;原理:考察的对象中的每一个考察对象的平均数叫做总体平均数;2. 总体成数: △p =tμp总体成数;它是指总体中具有某一相同标志表现的单位数占全部总体单位数的比重,一般用P 表示;总体中具有相同标志表现的单位数用N1表示;总体平均数和总体成数的区间估计:1.总体平均数:x - tux ≤ X ≤ x + tux2.总体成数:p - tup ≤ p ≤ p + tup样本单位数的确定:1.总体平均数:重复抽样: n = t2σ2/Δ2x不重复抽样:n = t2σ2N / NΔ2x + t2σ22.总体成数:重复抽样: n = t2p1-p/Δ2p不重复抽样:n = t2p1-p N / NΔ2p+ t2p1-p 四.相关系数的计算、回归方程的建立和应用相关系数的计算:简单线性回归方程的建立:Y = a + bx其中: ∑∑∑∑∑--=22)(x x n yx xy n b五.统计指数的编制和两因素分析1. 综合指数的计算1数量指标指数:0001p q pq ∑∑ 01p q ∑ -00p q ∑2质量指标指数: ∑∑0111p q pq 11p q ∑-01p q ∑2.平均指数的计算算术平均数指数:00p q ∑.K q / 00p q ∑ 00p q ∑.K q - 00p q ∑调和平均数指数:11p q ∑ / 11p q ∑/K p 11p q ∑ - 11p q ∑/K p3.复杂现象总体总量指标变动的因素分析相对数变动分析: 0011p q pq ∑∑= 0001p q p q ∑∑× ∑∑0111p q p q绝对值变动分析:11p q ∑-00p q ∑= 01p q ∑ -00p q ∑×11p q ∑-01p q ∑六.平均发展水平的计算1.由总量指标动态数列计算序时平均数1由时期数列计算序时平均数: 2由间隔相等的时点数列计算序时平均数:3由间隔不相等的时点数列计算序时平均数:2.由相对指标或平均指标动态数列计算序时平均数:七.现象发展的速度指标的计算1.环比发展速度的连乘积等于定基发展速度;公式表示为:2.逐期增长量之和等于累积增长量逐期增长量之和 累积增长量平均增长量=────────=────────逐期增长量的个数逐期增长量的个数3.增长速度 = 发展速度 - 14.平均发展速度的计算5.平均增长速度的计算平均增长速度=平均发展速度-1100%。
统计学原理重要公式
一.加权算术平均数与加权调与平均数得计算加权算术平均数:或加权调与平均数:频数也称次数。
在一组依大小顺序排列得测量值中,当按一定得组距将其分组时出现在各组内得测量值得数目,即落在各类别(分组)中得数据个数。
再如在3.149324中,‘9’出现得频数就是3,出现得频率就是3/18=16。
7%一般我们称落在不同小组中得数据个数为该组得频数,频数与总数得比为频率、频数也称“次数”,对总数据按某种标准进行分组,统计出各个组内含个体得个数、而频率则每个小组得频数与数据总数得比值。
在变量分配数列中,频数(频率)表明对应组标志值得作用程度。
频数(频率)数值越大表明该组标志值对于总体水平所起得作用也越大,反之,频数(频率)数值越小,表明该组标志值对于总体水平所起得作用越小。
掷硬币实验:在10次掷硬币中,有4次正面朝上,我们说这10次试验中‘正面朝上’得频数就是4例题:我们经常掷硬币,在掷了一百次后,硬币有40次正面朝上,那么,硬币反面朝上得频数为____、解答,掷了硬币100次,40次朝上,则有100-40=60(次)反面朝上,所以硬币反面朝上得频数为60。
一。
加权算术平均数与加权调与平均数得计算加权算术平均数:或代表算术平均数;∑就是总与符合;f为标志值出现得次数。
加权算术平均数就是具有不同比重得数据(或平均数)得算术平均数。
比重也称为权重,数据得权重反映了该变量在总体中得相对重要性,每种变量得权重得确定与一定得理论经验或变量在总体中得比重有关。
依据各个数据得重要性系数(即权重)进行相乘后再相加求与,就就是加权与、加权与与所有权重之与得比等于加权算术平均数。
加权平均数=各组(变量值 ×次数)之与 / 各组次数之与=∑xf /∑f加权调与平均数:加权算术平均数以各组单位数f为权数,加权调与平均数以各组标志总量m为权数但计算内容与结果都就是相同得。
二.标准差与标准差系数得计算方法标准差:σ=公式标准差也被称为标准偏差,或者实验标准差,公式如图、简单来说,标准差就是一组数据平均值分散程度得一种度量。
统计学原理-计算公式
统计学原理-计算公式位值平均数计算公式1、众数:是一组数据中出现次数最多的变量值组距式分组下限公式:002110m m d L M ??+??+= 0m L :代表众数组下限; 1100--=?m m f f :代表众数组频数—众数组前一组频数0m d :代表组距;1200+-=?m m f f :代表众数组频数—众数组后一组频数2、中位数:是一组数据按顺序排序后,处于中间位置上的变量值。
中位数位置21+=n 分组向上累计公式:e e e e m m m m e d f S f L M ?-∑+=-12 e m L 代表中位数组下限; 1-e m S :代表中位数所在组之前各组的累计频数;e mf 代表中位数组频数; e m d 代表组距3、四分位数:也称四分位点,它是通过三个点将全部数据等分为四部分,其中每部分包含25%,处在25%和75%分位点上的数值就是四分位数。
其公式为:411+=n Q 212+=n Q (中位数) 4)1(33+=n Q 实例数据总量: 7, 15, 36, 39, 40, 41一共6项Q1 的位置=(6+1)/4=1.75 Q2 的位置=(6+1)/2=3.5 Q3的位置=3(6+1)/4=5.25 Q1 = 7+(15-7)×(1.75-1)=13,Q2 = 36+(39-36)×(3.5-3)=37.5,Q3 = 40+(41-40)×(5.25-5)=40.25数值平均数计算公式1、简单算术平均数:是将总体单位的某一数量标志值之和除以总体单位。
其公式为:n x n x x x X n ∑=??++=212、加权算术平均数:受各组组中值及各组变量值出现的频数(即权数f )大小的影响,其公式为:fxf f f f f x f x f x X i i i ∑∑=??++??++=2122113、加权算术平均数的频率:其公式为:f f X f f X f f X f f X X n ∑?∑=∑∑??+∑+∑=22114、调和平均数:由于只掌握每组某个标志的数值总和(M )而缺少总体单位数(f )的资料,不能直接采用加权算术平均数法计算平均数,则应采用加权调和平均数。
统计学原理常用公式汇总及计算题目分析
精品文档《统计学原理》常用公式汇总及计算题目分析第一部分常用公式第三章统计整理a)组距=上限-下限b)组中值=(上限+下限)÷2c)缺下限开口组组中值=上限-1/2邻组组距d)缺上限开口组组中值=下限+1/2邻组组距第四章综合指标i.相对指标1.结构相对指标=各组(或部分)总量/总体总量2.比例相对指标=总体中某一部分数值/总体中另一部分数值3.比较相对指标=甲单位某指标值/乙单位同类指标值4.强度相对指标=某种现象总量指标/另一个有联系而性质不同的现象总量指标5.计划完成程度相对指标=实际数/计划数=实际完成程度(%)/计划规定的完成程度(%)ii.平均指标精品文档.精品文档简单算术平均数:1.2.加权算术平均数或iii.变异指标1.全距=最大标志值-最小标志值 = : 简单σ加权= ;σ2.标准差 :3.标准差系数抽样估计第五章1.平均误差:重复抽样:不重复抽样:抽样极限误差2.3.重复抽样条件下:平均数抽样时必要的样本数目精品文档.精品文档成数抽样时必要的样本数目4.不重复抽样条件下:平均数抽样时必要的样本数目第七章相关分析相关系数1.y=a+bx配合回归方程2.3.估计标准误:第八章指数分数一、综合指数的计算与分析数量指标指数(1)精品文档.精品文档此公式的计算结果说明复杂现象总体数量指标综合变动的方向和程度。
)(-此差额说明由于数量指标的变动对价值量指标影响的绝对额。
质量指标指数(2)此公式的计算结果说明复杂现象总体质量指标综合变动的方向和程度。
-()此差额说明由于质量指标的变动对价值量指标影响的绝对额。
=加权算术平均数指数加权调和平均数指数=复杂现象总体总量指标变动的因素分析(3) 相对数变动分析:×= 绝对值变动分析:精品文档.精品文档)×(-)= (--第九章动态数列分析一、平均发展水平的计算方法:由总量指标动态数列计算序时平均数(1)①由时期数列计算②由时点数列计算在间断时点数列的条件下计算: a.若间断的间隔相等,则采用“首末折半法”计算。
统计学原理计算题复习资料
《统计学原理》复习资料(计算部分)一、 算术平均数和调和平均数的计算 加权算术平均数公式 xfx f=∑∑(常用) fx x f=⋅∑∑(x 代表各组标志值,f 代表各组单位数,ff∑代表各组的比重)加权调和平均数公式 m x m x=∑∑ (x 代表各组标志值,m 代表各组标志总量)分析: m x mx=总产量工人平均劳动生产率(结合题目)总工人人数从公式可以看出,“生产班组"这列资料不参与计算,是多余条件,将其删去.其余两列资料,根据问题“求平均××"可知“劳动生产率”为标志值x ,而剩余一列资料“实际产量”在公式中做分子,因此用调和平均数公式计算,并将该资料记作m .=÷每一组工人数每一组实际产量劳动生产率,即mx。
同上例,资料是组距式分组,应以各组的组中值来代替各组的标志值.解:825065005250255047502730068.25825065005250255047504005565758595m x m x ++++====++++∑∑(件/人)2. 若把上题改成:(作业11P 3)计算该企业的工人平均劳动生产率。
分析: xfx f=总产量工人平均劳动生产率(结合题目)总工人人数从公式可以看出,“生产班组"这列资料不参与计算,是多余条件,将其删去.其余两列资料,根据问题“求平均××”可知“劳动生产率”为标志值x ,而剩余一列资料“生产工人数”在公式中做分母,因此用算术平均数公式计算,并将该资料记作f 。
=⨯每一组实际产量劳动生产率组工人数,即xf 。
同上例,资料是组距式分组,应以各组的组中值来代替各组的标志值.解:5515065100757085309550400xfx f⨯+⨯+⨯+⨯+⨯==∑∑=68.25(件/人)试计算该企业98年、99年的平均单位成本。
分析:mx f=总成本平均单位成本总产量计算98年平均单位成本,“单位成本"这列资料为标志值x ,剩余一列资料“98年产量"在实际公式中做分母,因此用算术平均数公式计算,并将该资料记作f ;计算99年平均单位成本,“单位成本”依然为标志值x ,剩余一列资料“99年成本总额”在实际公式中做分子,因此用调和平均数公式,并将该资料记作m 。
统计学原理重要公式大全
一.加权算术平均数和加权调和平均数的计算加权算术平均数:∑∑=fxf x 或 ∑∑=f f x x加权调和平均数: ∑∑∑∑==f xf xm m x频数也称次数。
在一组依大小顺序排列的测量值中,当按一定的组距将其分组时出现在各组内的测量值的数目,即落在各类别(分组)中的数据个数。
再如在3.14159265358979324中,…9‟出现的频数是3,出现的频率是3/18=16.7% 一般我们称落在不同小组中的数据个数为该组的频数,频数与总数的比为频率。
频数也称“次数”,对总数据按某种标准进行分组,统计出各个组内含个体的个数。
而频率则每个小组的频数与数据总数的比值。
在变量分配数列中,频数(频率)表明对应组标志值的作用程度。
频数(频率)数值越大表明该组标志值对于总体水平所起的作用也越大,反之,频数(频率)数值越小,表明该组标志值对于总体水平所起的作用越小。
掷硬币实验:在10次掷硬币中,有4次正面朝上,我们说这10次试验中…正面朝上‟的频数是4例题:我们经常掷硬币,在掷了一百次后,硬币有40次正面朝上,那么,硬币反面朝上的频数为____.解答,掷了硬币100次,40次朝上,则有100-40=60(次)反面朝上,所以硬币反面朝上的频数为60.一.加权算术平均数和加权调和平均数的计算加权算术平均数:∑∑=f xf x 或 ∑∑=f f x xx 代表算术平均数;∑是总和符合;f 为标志值出现的次数。
加权算术平均数是具有不同比重的数据(或平均数)的算术平均数。
比重也称为权重,数据的权重反映了该变量在总体中的相对重要性,每种变量的权重的确定与一定的理论经验或变量在总体中的比重有关。
依据各个数据的重要性系数(即权重)进行相乘后再相加求和,就是加权和。
加权和与所有权重之和的比等于加权算术平均数。
加权平均数 = 各组(变量值 × 次数)之和 / 各组次数之和 = ∑xf / ∑f加权调和平均数: ∑∑∑∑==fxf xmm x加权算术平均数以各组单位数f 为权数,加权调和平均数以各组标志总量m 为权数但计算内容和结果都是相同的。
《统计学原理》公式
《统计学原理》公式大全一、统计整理1.组距=上限 - 下限 2.组中值(1)闭口组2下限上限组中值+= (2)开口组组中值①2相邻组组距上限值缺下限的开口组的组中-= ②2相邻组组距下限值缺上限的开口组的组中+= 二、综合指标1.计划完成相对数 =计划任务数实际完成数2.计划执行进度 =计划期计划任务累计数数一时间的实际完成累计自计划执行之日起至某3.结构相对数 =总体总量总体中某部分数值4.总体中另一部分数值总体中某部分数值比例相对数=5.值另一总体的同类指标数某总体的某指标数值比较相对数=6.的总量指标数值另一性质不同但有联系某一总量指标数值强度相对数=7.基期指标数值报告期指标数值动态相对数=8.总体单位总量总体标志总量算术平均数=9.简单算术平均数 x —=nxn x x x n ∑=+++ 21 10.加权算术平均数 x —=∑∑=∑+++f xf f f x f x f x n n 2211 11.简单调和平均数 ∑=-xN x H 112.加权调和平均数 ∑∑=-mxmx H 113.极差(R )= 最大标志值 — 最小标志值14.简单平均差 D A ⋅=nx x∑-—15.加权平均差 D A ⋅=∑-fx x —16.简单标准差 nx x ∑-=)(—2σ17.加权标准差 ∑∑-=ffx x )(—2σ三、抽样推断1.重复抽样条件下的抽样平均数的抽样平均误差 nx σμ2=2.重复抽样条件下的抽样成数的抽样平均误差 nP P p )1(-=μ 3.不重复抽样条件下的抽样平均数的抽样平均误差 )1(2N nn x -=σμ4.抽样成数的抽样平均误差 )1()1(Nnn P P p --=μ 5.抽样平均数的抽样极限误差 =∆xμ-⋅x t 6.抽样成数的抽样极限误差=∆pμp t ⋅7.概率度 t =μxx ∆ t = μpp ∆8.总体均值的区间估计 x __±∆x9.总体比例的区间估计 p ±∆P四、统计指数1.个体价格指数 p pk p 01=2.个体产量指数 q q k q 01=3.个体成本指数 z z k z 01=4.数量指标综合指数 ∑∑=p q p q k q 00015.质量指标综合指数 ∑∑=p q p q k p 01116.加权算术平均数指数 ∑∑⋅=p q p q k k q q 0007.加权调和平均数指数 ∑⋅∑=p q k p q k pp 111118.可变构成指数 ∑∑∑∑⋅⋅==)()(00011101_________f x f f x x x k 可变9.固定构成指数 ∑∑∑∑⋅⋅=)()(110111___f f x f x k 固定10.结构影响指数 ∑∑∑∑⋅⋅=)()(00110___f x f f x k 结构11.指数体系相对数形式 k k k p q qp ⨯= 即∑∑⨯∑∑=∑∑p q p q p q p q p q p q 011100010011 绝对数形式:)()(011100010011∑∑-+∑∑-∑∑=-p q p q p q p q p q p q五、动态数列1.根据时期数列计算平均发展水平 n a na a a a n ∑=+++=21—2.根据间隔相等的连续时点数列计算平均发展水平n a na a a a n ∑=+++=21—3.根据间隔不等的连续时点数列计算平均发展水平∑∑=ffa a —4.根据间隔相等的间断时点数列计算平均发展水平1221222132113221—-++++=-++++++=--n n a a a a a a a a a a a a nn nn5.根据间隔不等的间断时点数列计算平均发展水平f f f f aa f a a f a a a n n n n 12111232121—222---+++++++++= 6.根据相对数动态数列或平均数动态数列计算平均发展水平ba c ———=7.增长量 = 报告期水平 一 基期水平 8.逐期增长量=报告期水平一前一期水平,用符号表示为:a a ,,a a ,a a ,a a n n 1231201----- 9.累计增长量 = 报告期水平一某一固定基期水平用符号表示为:a a ,,a a ,a a ,a a n 0030201---- 10.各期的逐期增长量之和等于最后一个时期的累计增长量,用公式表示为: a a a a a a a a a a n n n 01231201)()()()(-=-++-+-+--11.相邻两个时期的累计增长量之差等于相应时期的逐期增长量,用公式表示为: a a a a a a n n n n 1010)()(---=---12.年距增长量 = 本期发展水平 - 去年同期发展水平 13.1-==时间数列的项数累计增长量逐期增长量的个数逐期增长量之和平均增长量14.基期水平报告期水平发展速度=15.前一期水平报告期水平环比发展速度=用符号表示为:a a a a a a a a n n 1231201,,,,- 16.某一固定基期水平报告期水平定基发展速度=用符号表示为:a a a a a a a a no o 03201,,,,17.定基发展速度等于相应时期内的各环比发展速度的连乘积,用符号可表示为:a a a a a a a a n n 1231201-⨯⨯⨯⨯ =aa n 018.相邻两个定基发展速度之比等于相应时期的环比发展速度,用符号可表示为:a a a a a a n nn n 1010--=÷19.去年同期发展水平本期发展水平年距发展速度=20.11-=-=-==发展速度基期水平报告期水平基期水平基期水平报告期水平基期水平报告期增长量增长速度21.1-=-==环比发展速度前一期水平前一期水平报告期水平前一期水平逐期增长量环比增长速度 22.1-=-==定基发展速度某一固定基期水平某一固定基期水平报告期水平某一固定基期水平累计增长量定基增长速度23.()1-==年距发展速度月或季去年同期发展水平年距增长量年距增长速度24.平均发展速度的计算公式为:ninnx x x x x x ∏=⋅⋅⋅⋅= 321—由于环比发展速度的连乘积等于相应定基发展速度,因此平均发展速度的公式可写成:non a a x =—25.平均增长速度 = 平均发展速度 一1 26.100100100%1前一期水平前一期水平期增长量逐期增长量环比增长速度逐期增长量的绝对值增长=⨯=⨯=。
统计学常用公式汇总
《统计学原理》常用公式汇总第三章统计整理a) 组距=上限-下限b) 组中值=(上限+下限)÷2c) 缺下限开口组组中值=上限-1/2邻组组距d) 缺上限开口组组中值=下限+1/2邻组组距第四章综合指标i. 相对指标1.结构相对指标=各组(或部分)总量/总体总量2.比例相对指标=总体中某一部分数值/总体中另一部分数值3.比较相对指标=甲单位某指标值/乙单位同类指标值4.强度相对指标=某种现象总量指标/另一个有联系而性质不同的现象总量指标5.计划完成程度相对指标=实际数/计划数=实际完成程度(%)/计划规定的完成程度(%)ii.平均指标1.简单算术平均数:2.加权算术平均数或3、调和平均数 m H m x=∑∑ iii.变异指标1.全距=最大标志值-最小标志值2.标准差: 简单σ=; 加权 σ=3.标准差系数:第五章 抽样估计 成数:1N P N=1.抽样平均误差:重复抽样:不重复抽样:(1)(1)p p p nn Nμ-=- 2.抽样极限误差p p t μ∆=置信区间:下限:x x -∆ 上限:x x +∆p μ-∆ p μ+∆3.重复抽样条件下:平均数抽样时必要的样本数目成数抽样时必要的样本数目4.不重复抽样条件下:平均数抽样时必要的样本数目第七章 相关分析1.相关系数2.配合回归方程 y=a+bx第八章指数分数一、综合指数的计算与分析(1)数量指标指数此公式的计算结果说明复杂现象总体数量指标综合变动的方向和程度。
( - )此差额说明由于数量指标的变动对价值量指标影响的绝对额。
(2)质量指标指数此公式的计算结果说明复杂现象总体质量指标综合变动的方向和程度。
( -)此差额说明由于质量指标的变动对价值量指标影响的绝对额。
加权算术平均数指数=加权调和平均数指数=(3)复杂现象总体总量指标变动的因素分析相对数变动分析:= ×绝对值变动分析:- = ( - )×( -)第九章动态数列分析一、平均发展水平的计算方法:(1)由总量指标动态数列计算序时平均数①由时期数列计算②由时点数列计算间隔相等的连续时点求序时平均计算间隔不等的连续时点求序时平均数af af =∑∑间断时点计算序时平均数:af af =∑∑a.间隔相等的间断时点序时平均数,则采用“首末折半法”计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《统计学原理》常用公式汇总及计算题目分析
第一部分常用公式
第三章统计整理
a)组距=上限-下限
b)组中值=(上限+下限)÷2
c)缺下限开口组组中值=上限-1/2邻组组距
d)缺上限开口组组中值=下限+1/2邻组组距
第四章综合指标
i.相对指标
1.结构相对指标=各组(或部分)总量/总体总量
2.比例相对指标=总体中某一部分数值/总体中另一部分数值
3.比较相对指标=甲单位某指标值/乙单位同类指标值
4.强度相对指标=某种现象总量指标/另一个有联系而性质不同的现
象总量指标
5.计划完成程度相对指标=实际数/计划数
=实际完成程度(%)/计划规定的完成程度(%)
ii.平均指标
1.简单算术平均数:
2.加权算术平均数或
iii.变异指标
1.全距=最大标志值-最小标志值
2.标准差: 简单σ= ;加权σ=
3.标准差系数:
第五章抽样估计
1.平均误差:
重复抽样:
不重复抽样:
2.抽样极限误差
3.重复抽样条件下:
平均数抽样时必要的样本数目
成数抽样时必要的样本数目
4.不重复抽样条件下:
平均数抽样时必要的样本数目
第七章相关分析
1.相关系数
2.配合回归方程y=a+bx
3.估计标准误:
第八章指数分数
一、综合指数的计算与分析
(1)数量指标指数
此公式的计算结果说明复杂现象总体数量指标综合变动的方向和程度。
(
-
)
此差额说明由于数量指标的变动对价值量指标影响的绝对额。
(2)质量指标指数
此公式的计算结果说明复杂现象总体质量指标综合变动的方向和程度。
(
-
)
此差额说明由于质量指标的变动对价值量指标影响的绝对额。
加权算术平均数指数=
加权调和平均数指数=
(3)复杂现象总体总量指标变动的因素分析
相对数变动分析:
= ×
绝对值变动分析:
-= (-)×(-)第九章动态数列分析
一、平均发展水平的计算方法:
(1)由总量指标动态数列计算序时平均数
①由时期数列计算
②由时点数列计算
在间断时点数列的条件下计算:
a.若间断的间隔相等,则采用“首末折半法”计算。
公式为:
b.若间断的间隔不等,则应以间隔数为权数进行加权平均计算。
公式为:
(2)由相对指标或平均指标动态数列计算序时平均数
基本公式为:
式中:代表相对指标或平均指标动态数列的序时平均数;
代表分子数列的序时平均数;
代表分母数列的序时平均数;
逐期增长量之和累积增长量
二. 平均增长量=─────────=─────────
逐期增长量的个数逐期增长量的个数
(1)计算平均发展速度的公式为:
(2)平均增长速度的计算
平均增长速度=平均发展速度-1(100%)
第二部分计算题分析
要求写出公式和计算过程,结果保留两位小数。
计算参考作业及期末复习指导。
1、根据所给资料分组并计算出各组的频数和频率,编制次数分布表;根据整理表计算、算术平均数.
例:某单位40名职工业务考核成绩分别为:
68 89 88 84 86 87 75 73 72 68
75 82 97 58 81 54 79 76 95 76
71 60 90 65 76 72 76 85 89 92
64 57 83 81 78 77 72 61 70 81
单位规定:60分以下为不及格,60─70分为及格,70─80分为中,80─90 分为良,90─100分为优。
要求:
1.将参加考试的职工按考核成绩分组并编制一张考核成绩次数分配表;
2.指出分组标志及类型及采用的分组方法;
3.根据整理表计算职工业务考核平均成绩;
4.分析本单位职工业务考核情况。
解:(1)
(2) 分组标志为"成绩",其类型为"数
量标志";分组方法为:变量分组中的开放组距式分组,组限表示方法是重叠组限;
(3)平均成绩:
(分)
2、根据资料计算算术平均数指标、计算变异指标比较平均指标的代表性。
例:某车间有甲、乙两个生产组,甲组平均每个工人的日产量为36件,
标准差为9.6件;乙组工人日产量资料如下:
要求:⑴计算乙组平均每个工人的日产量和标准差;
⑵比较甲、乙两生产小组哪个组的日产量更有代表性?
解:(
1)
(件)
(件)
(2)利用标准差系数进行判断:
因为0.305 >0.267
故甲组工人的平均日产量更有代表性
3、采用简单重复抽样的方法计算平均数(成数)的抽样平均误差;根据要求进行平均数(成数)的区间估计。
例: 采用简单随机重复抽样的方法,在2000件产品中抽查200件,其中合格
品190件.
要求: (1)计算合格品率及其抽样平均误差
(2)以95.45%的概率保证程度(t=2)对合格品率和合格品数量进行区间估计。
(3)如果极限误差为2.31%,则其概率保证程度是多少?
解:(1)样本合格率
p = n1/n = 190/200 = 95% Array
抽样平均误差:
(2)抽样极限误差Δp= t·μp = 2×1.54% = 3.08%
下限: △p=95%-3.08% = 91.92%
上限: △p=95%+3.08% = 98.08%
则:总体合格品率区间:(91.92% 98.08%)
总体合格品数量区间(91.92%×2000=1838件 98.08%×2000=1962件)
(3)当极限误差为2.31%时,则概率保证程度为86.64% (t=Δ/μ)
4、计算相关系数;建立直线回归方程并指出回归系数的含义;利用建立的方程预测因变量的估计值。
例:
从某行业随机抽取6家企业进行调查,所得有关数据如上:
(y)对产品销售额
(x)的回归直线,并
说明回归系数的实际
意义。
(2)当销售额为100万元时,销售利润为多少?
解:(1)配合回归方程
y=a+bx
=
=
回归方程为:y=-4.1343+0.3950x
回归系数b=0.3950,表示产品销售额每增加1万元,销售利润平均增加0.3950
万元。
(2)当销售额为100万元时,即x=100,代入回归方程:y=-4.1343+0.3950×100=35.37(万元)
5、计算总指数、数量指数及质量指数并同时指出变动绝对值、计算平均数指数。
例:某商店两种商品的销售资料如下:
要求: (1)计算两种商品销售额指数及销售额变动的绝对额;
(2)计算两种商品销售量总指数及由于销售量变动影响销售额的绝对
额;
(3)计算两种商品销售价格总指数及由于价格变动影响销售额的绝对
额。
解:(1)商品销售额指数=
销售额变动的绝对额:
元
(2)两种商品销售量总指数=
销售量变动影响销售额的绝对额 元
(3)商品销售价格总指数=
价格变动影响销售额的绝对额:
元
6、根据资料计算各种发展速度(环比、定基)及平均增长量指标;根据资料利用平均发展速度指标公式计算期末水平。
例:有某地区粮食产量如下:
要求:(1)计算2001年-2005年该地区粮食产量的环比发展速度、年平均增长量和年平均发展速度;
(2)如果从2005年以后该地区的粮食产量按8%的增长速度发展,2010年该地区的粮食产量将达到什么水平? 解:(1)
年平均增长量 =
=16.73(万吨)
(或年平均增长量 )
年平均发展速度=
(2)
=431.44(万斤)。