配方法 ppt课件

合集下载

配方法_1-课件

配方法_1-课件
1.化1:把二次项系数化为1(方程两边都除以二次项系 数); 2.移项:把常数项移到方程的右边; 3.配方:方程两边都加上一次项系数绝对值一半的平方; 4.变形:方程左边分解因式,右边合并同类; 5.开方:根据平方根意义,方程两边开平方; 6.求解:解一元一次方程; 7.定解:写出原方程的解.
=
在下列横线上填上适当的数
3 3
x 4 5.
5.开方:根据平方根意义, 方程两边开平方;
33
x 4 5.
6.求解:解一元一次方程;
33
x1
1 3
,
x2 3.
7.定解:写出原方程的解.
概括总结
1.对于二次项系数不为1的一元二次方程, 用配方法求解时首先要怎样做 ?
首先要把二次项系数化为1
2.用配方法解一元二次方程的一般步骤:
填上适当的数或式,使下列各等式成立.
(1) x2 6x3 2 =( x+ 3)2 (2) x2 8x4 2 =( x4)2
观察(1)(2)看所填的 常数与一次项系数之
间有什么关系?
(3) x2 4x2 2 =( x2 )2
(1)(2)的结论 适合于(3)吗?
x (4) x2
共同点:
px(
p 2
)2=(

15、最具挑战性的挑战莫过于提升自 我。。2021年3月2021/3/52021/3/52021/3/53/5/2021

16、业余生活要有意义,不要越轨。2021/3/52021/3/5Marc h 5, 2021

17、一个人即使已登上顶峰,也仍要 自强不 息。2021/3/52021/3/52021/3/52021/3/5
谢谢观赏
You made my day!

一元二次方程(配方法)课件

一元二次方程(配方法)课件
一元二次方程(配方法)ppt 课件
一元二次方程(配方法)PPT课件大纲
一元二次方程的基础知识
定义
一元二次方程是形如ax²+bx+c=0的方程,其中 a、b、c是已知的常数,a≠0。
求解方法
可以通过配方法、公式法和因式分解法等方法 求解一元二次方程
什么是配方法
配方法是解决一元二次方程的一种常用方法,通过变形将方程转化为可简化 求解的形式。 它能够帮助我们更快地求解一元二次方程,提高问题解决的效率。
配方法计算基本分类
标准型
形如ax²+bx+c=0,其中a、b、c都是已知的数值。
非标准型
形如ax²+bx=0或ax²+c=0,其中a、b、c都是已知 的数值。
配方法计算基本技巧
• 注意二次项系数的正负符号对应方程的特点。 • 通过变形,将方程转化为可简化求解的形式(平方差或平方和)。 • 利用求解一元二次方程的公式法或因式分解法来完成求解。
配方法的优缺点分析
优点
能够求解一元二次方程的实数解,适用于各种类型的问题。
2 缺点
对于非标准型方程,计算过程可能比较复杂。
配方法的思路和步骤
1
思路
关键思路是要将一元二次方程转化为平方差或平方和的形式,以便简化计算。
2
步骤
1. 根据方程形式,确定合适的变形方式。
2. 利用变形方式,将方程转化为可简化求解的形式。
3. 根据简化后的方程,求解得到方程的解。
3
技巧
在选择变形方式时,要根据方程的特点和计算的便利性进行选择,灵活运用数学知识。
如何确定配方法的计算方式
考虑方程的特点和计算的便利性,选择合适的配方法计算方式。

2 配方法 公式法PPT课件(人教版)

2 配方法 公式法PPT课件(人教版)
+c=0(a≠0)的左边是(或可以写成)完全平方式, 则该方程有两个
相等的实数根; ②若方程中a, c异号或b≠0且c=0, 则该方程有
两个不相等的实数根.
21.2 解一元二次方程
题型三 利用方程根的情况确定系数中字母 的值或取值范围
例题3 若关于x的一元二次方程kx2-2x-1=0 有两个不相等的实数
即(x-5)2=1,
由此可得x-5=±1,
∴x1=6, x2=4.
21.2 解一元二次方程
(3)原方程可化为3x2-5x-2=0.
∵a=3, b=-5, c=-2,
∴b2-4ac=(-5)2-4×3×(-2)=25+24=49>0,
∴ =
−(−)±
×

∴x1=2, x2=-.
±
实数根两种情况, 此时 b2-4ac≥0,切勿丢掉等号.
根据题意, 得Δ=b2-4ac=22+4(m-3)=4+4m-12=4m-8≥0, 解得m≥2. 故选C.
21.2 解一元二次方程
锦囊妙计
利用根的判别式确定系数中 字母的值或取值范围
(1)若一元二次方程有两个不等的实数根, 则Δ>0;若一元
二次方程有两个相等的实数根, 则Δ=0;若一元二次方程没有
∴方程总有两个实数根.
(2)∵
=
− ±
++−
∴x1=



=
+ ± ( − )


+−+
=1, x2=

= .

∵方程的两个实数根都是整数,

∴是整数, ∴m=±1或m=±2.
又∵m是正整数, ∴m=1或m=2.

配方法ppt课件

配方法ppt课件
(1) ;
[答案] ,
(2) .
[答案] ,
能力提升
10.已知 , ,求 的值.
[答案] 54
中考链接
11.(2022·雅安)若关于 的一元二次方程 配方后得到方程 ,则 的值为( ) .
C
A. B.0 C.3 D.9
12.(2020·浙江)比较 与 的大小.
人教版九年级数学上册课件
第二十一章 一元二次方程
21.2 解一元二次方程
21.2.1 配方法
自主学习
自主导学
1.配方法:通过配成完全平方形式来解一元二次方程的方法.即将一元二次方程化成一边是一个完全平方式,另一边是一个常数,得到_ ____________的形式,开平方即可得方程的解.
2.用配方法解一元二次方程 的一般步骤:
(1)尝试(用“ ”“ ”或“ ”填空)
①当 时, _ __ ;
②当 时, _ __ ;
③当 时, _ __ .
(2)归纳:若 取任意实数, 与 有怎样的大小关系?试说明理由.
[答案] .理由: ,
典例分享
例 解方程:
(1) ;
[答案] 解 由 ,得 ,即 ,所以 ,所以原方程的解为 , .
(2) .
[答案] 移项,得 .配方,得 ,即 因为实数的平方不会是负数,所以 取任何实数时, 都不成立,即原方程无解.
方法感悟配方时,方程的左右两边都加上一次项系数一半的平方,前提条件是二次项的系数为1,否则计算时容易出错.
轻松达标
1.将方程 的左边配成完全平方形式后,所得方程为( ) .
A
A. B. C. D.以上答案都不对
2.用配方法解一元二次方程 ,配方后的方程为( ) .

配方法PPT课件

配方法PPT课件

1)2 都是非负数,上式都不成立,即原方程无实数根.
感悟新知
总结
知2-讲
一般地,如果一个一元二次方程通过配方转化成 (x+n)2=p (Ⅱ) 的形式,那么就有:
(1)当p>0时,方程(Ⅱ)有两个不等的实数根
x1 n p,x2 n p;
(2)当p=0时,方程(Ⅱ)有两个相等的实数根x1=x2=-n; (3)当p<0时,因为对任意实数x,都有(x+n)2≥0,
所以方程(Ⅱ)无实数根.
课堂小结
一元二次方程
直开平方法
降次
配方法
转化
湘教版 九年级上
第2章
一元二次方程
2.2. 2
配方法解二次项系数为1的一元二次方程
认知基础练
(2)请写出此题正确的解答过程. 解:移项,得 x2-2x=1. 配方,得 x2-2x+1=2,即(x-1)2=2. 两边开平方,得 x-1=± 2, 所以 x1=1+ 2,x2=1- 2. 易错警示:用配方法解一元二次方程时,要先把 常数项移到方程的右边,移项时切记要变号.
C . 4 , 21
D.-8,69
习题链接
温馨提示:点击 进入讲评
1C 2D 3B 4A
5A 6A 7 8
答案呈现
9
方法技巧练
先阅读下面的内容,再解决问题.
8 例题:若m2+2mn+2n2-6n+9=0,求m和n的值.
解:∵m2+2mn+2n2-6n+9=0, ∴m2+2mn+n2+n2-6n+9=0. ∴(m+n)2+(n-3)2=0. ∴m+n=0,n-3=0. ∴m=-3,n=3. 问题:已知a,b,c为正整数且是△ABC的三边长,c是△ABC的 最短边长,a,b满足a2+b2=12a+8b-52,求c的值.

人教版九年级上册数学《配方法》一元二次方程PPT教学课件

人教版九年级上册数学《配方法》一元二次方程PPT教学课件

将常数项移到右边,含未 2 2 -3=-1
知数的项移到左边
一移
移项
二化
二次项系数 左、右两边同时除以二次 2 - =
化为1
项系数
三配
配方
左、右两边同时加上一次
项系数一半的平方
利用平方根的意义直接开
平方
四开
开平方
五解
解两个一元 移项,合并
一次方程
2
3 1
即 x
4 16
★ 用配方法解方程
探究交流
怎样解方程x2+6x+4=0?
1.把方程变成(x+n)2=
x2+6x+4=0
移项
二次项系数为1的完全平方式:
x2+6x=-4
常数项等于一次项系数一半的平方.
两边都加上9
x2+6x+9=-4+9
配方
(x+3)2=5
2.用直接开平方法解方程(x+3)2=5
(x+3)2=5
开方
x x
1
2
例1 利用直接开平方法解下列方程:
(1) x2=25;
(1) x2=25,
解:
直接开平方,得 x 5,
x1 5 ,x2 5.
(2) x2-900=0.
(2)移项,得 x2=900.
直接开平方,得 x=±30,
∴x1=30, x2=-30.
★ 用直接开平方法解方程
对照例1中解方程的方法,你认为怎样解方程(x+2)2=25?
解:x2+2x-3=0,
(x+1)2=4.
x1=-3,x2=1.
5.如图,在R

配方法课件

配方法课件
2
2

在上面等式的左边,常数项和一次 项系数有什么关系?
问题
要使一块矩形场地的长比宽多6m,并且 2 面积为16 m , 场地的长和宽应各是多少?
解:设场地的宽xm,长(x+6)m,根据矩形面积 为16m 2 ,列方程
X(x+6)=16
即 x 6 x 16 0
怎样解?
2
x x6 x 16 0 0的流程怎样? 想一想解方程 x 6 16
如果方程能化成x p或 p的形式,Байду номын сангаас(mx n)
2 2
那么可得x p或m x n p .
化成两个一 元一次方程
填一填
2 2
1 ( x ___) 1 (1) x 2 x _____
2
2
2
2
4 ( x ___) (2) x 8 x _____ 4 5 5 2 2 ) ( y ___) (3) y 5 y ( _____ 2 2 2 2 1 1 1 ( ) ( y ___) (4) y y ____ 4 4 2

说一说
你能解下列方程吗? X2=9 (x+3)2=16 (3x-2)2=5 x2+6x+9=2
方程 x 6 x 9 2的左边是完全平方形式 ,
2
2
这个方程可以化成 (x 3) 2,进行降次,
x 3 _______, 2 得 __________
3 2 . 方程的根为x1 ______, 3 2 x2 __________
2
6 x 16
像上面那样,通过配成完全平方形式来解一 元二次方程的方法, 叫做配方法. 随堂练习:

《 配方法》PPT课件

《 配方法》PPT课件

课堂导练
【点拨】在 Rt△ABC 中,∠ACB=90°, BC=a2,AC=b,BD=a2,∴AB=AD+DB=AD+a2. 由勾股定理,得 AB2=AC2+BC2,即AD+a22=b2+a22. ∴AD2+2AD·a2+a42=b2+a42.∴AD是 AD 的长.
同学们下课啦
授课老师:xxx
此页为防盗标记页(下载后可删)
教师课堂用语在学科专业方面重在进行“引”与“导”,通过点拨、搭桥等方式让学生豁然开朗,得出结论,而不是和盘托 出,灌输告知。一般可分为:启发类、赏识类、表扬类、提醒类、劝诫类、鼓励类、反思类。
一、启发类
1. 集体力量是强大的,你们小组合作了吗?你能将这个原理应用于生活吗?你的探究目标制定好了吗? 2. 自学结束,请带着疑问与同伴交流。 3. 学习要善于观察,你从这道题中获取了哪些信息? 4. 请把你的想法与同伴交流一下,好吗? 5. 你说的办法很好,还有其他办法吗?看谁想出的解法多? 二、赏识类
此页为防盗标记页(下载后可删)
1、谢谢大家听得这么专心。 2、大家对这些内容这么感兴趣,真让我高兴。 3、你们专注听讲的表情,使我快乐,给我鼓励。 4、我从你们的姿态上感觉到,你们听明白了。 5、我不知道我这样说是否合适。 6、不知我说清了没有,说明白了没有。 7、我的解释不知是否令你们满意,课后让我们大家再去找有关的书来读读。 8、你们的眼神告诉我,你们还是没有明白,想不想让我再讲一遍? 9、会“听”也是会学习的表现。我希望大家认真听好我下面要说的一段话。 10、从听课的情况反映出,我们是一个素质良好的集体。 1、谢谢你,你说的很正确,很清楚。 2、虽然你说的不完全正确,但我还是要感谢你的勇气。 3、你很有创见,这非常可贵。请再响亮地说一遍。 4、××说得还不完全,请哪一位再补充。 5、老师知道你心里已经明白,但是嘴上说不出,我把你的意思转述出来,然后再请你学说一遍。 6、说,是用嘴来写,无论是一句话,还是一段话,首先要说清楚,想好了再说,把自己要说的话在心里整理一下就能说清楚。 7、对!说得很好,我很高兴你有这样的认识,很高兴你能说得这么好! 8、我们今天的讨论很热烈,参与的人数也多,说得很有质量,我为你们感到骄傲。 9、说话,是把自己心里的想法表达出来,与别人交流。说时要想想,别人听得明白吗? 10、说话,是与别人交流,所以要注意仪态,身要正,不扭动,眼要正视对方。对!就是这样!人在小时候容易纠正不良习惯,经常 注意哦。

人教版初中数学《配方法》(完整版)课件

人教版初中数学《配方法》(完整版)课件
人教版初中数学《配方法》教学实用 课件(P PT优秀 课件)
人教版初中数学《配方法》教学实用 课件(P PT优秀 课件)
3.应用配方法求最值. (1) 2x2 - 4x+5的最小值; (2) -3x2 + 5x +1的最大值.
解:(1) 2x2 - 4x +5 = 2(x - 1)2 +3 当x =1时有最小值3
2
一移常数项; 二配方[配上 (二次项系数)2 ];
2
三写成(x+n)2=p (p ≥0); 四直接开平方法解方程.
应用
求代数式的最值或证明
特别提醒:
在使用配方法解方程之前先把方程化为x2+px+q=0的形式.
人教版初中数学《配方法》教学实用 课件(P PT优秀 课件)
探究交流
问题2.填上适当的数或式,使下列各等式成立. (1)x2+4x+ 22 = ( x + 2 )2
(2)x2-6x+ 32 = ( x- 3 )2
(3)x2+8x+ 42 = ( x+ 4 )2
(4)x2- 4
3
x+
(
2 3
) 2 = ( x-
2 3
)2
你发现了什么规律?
人教版初中数学《配方法》教学实用 课件(P PT优秀 课件)
人教版初中数学《配方法》教学实用 课件(P PT优秀 课件)
人教版初中数学《配方法》教学实用 课件(P PT优秀 课件)
典例精析
例1 解下列方程:1 x28x10;
解:(1)移项,得 x2-8x=-1,
配方,得 x2-8x+42=-1+42 , 即 ( x-4)2=15
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x2x(1)22(1)2
2
2
(x 1)2 9
24
x1 3
22
x11,x22
南边
解方程
北边
(1)x2 10x90 (2)x2 x 7 0
4
(3)x2 4x92x11(4)x(x 4) 8x 12
用配方法解下列方程
二次项系数不为1
2x213x
3x26x40
可以将二次项的系数化为1
用配方法解下列方程
x35 ,x+ 3 = -5
填一填(根据 a22abb2(ab)2)
二次项系数都为1
(1 ) x 2 1 0 x _ 5_ _2 ( x _5_ ) 2
2•x•5
( 2 ) x 2 1 2 x _6_ _2 ( x _6_ ) 2
x ( x _ _ ) ( 3 )
2
2•x•6
5x _
1、配方法:像这样,把方程的左边配成含有 x的完全平方形式,右边是非负数,从而可以 用直接开平方法来解方程的方法就做配方法。
2、用配方法解一元二次方程的步骤:
①移项 ②化1 ③配方 ④降次 ⑤定解
完全平方式
1、完全平方和: a2+2ab+b2
2、完全平方差: a2-2ab+b2 3、首2 ± 2×首×尾 + 尾2
4、首平方,尾平方 ,首尾 2倍放中央。
(1)方程 (1)9x253的根是
(2)方程 x6290 的根

直接开平方法的书写步骤
(1)9x253 2 x6 290
解:移项 9x2 8, 解 : 移 项 得 x629
方程两边 同x2 8 x_ 4_ _ 2 1_ 4_ 2_
(x4)2 15
x4 15
x 11 5 4 ,x 2 1 5 4
用配方法解下列方程
(x 1 ) (x 2 ) 2 x 4 解:化为一般形式为 x2x20
方程两边 同时加上(
b
)2
2
移项,得
x2 x2
配方,得
完全平方公式:
a2 2abb2 (ab)2;
a2 2abb2 (ab)2.
问 题 2 要 使 一 块 矩 形 场 地 的 长 比 宽 多 6 m , 并 且 面 积 为 1 6 m 2 ,场 地 的 长 和 宽 应 各 是 多 少 ?
解 : 设 场 地 宽 为 x m , 则 长 为 ( x + 6 ) m ,
x26x16 (x 3)2=25
像这样,把方程的左边配成含有x的完全平 方形式,右边是非负数,从而可以用直接开 平方法来解方程的方法就叫做配方法。
用配方法解下列方程
二次项系数为1
x28x10
(x 1 )(x 2 ) 2 x 4
用配方法解下列方程
( 1 ) x28x10
解:移项,得 x2 8x 1
_(
5
2_
)_2
x ( x _ _ ) ( 4 )
2•x• 5
2
2•
2 x3•
2
1x
_(
1
_3
)_2
5
2
2
1
2
3
(5) x 2
3
bx
_(
b2_)
2
_
(x
_b2 _ ) 2
2• x• b
2
配方时, 等式两 边同时加上的 是一次项系数 一半的平方。
解法中,为什么 在方程两边加
x26x16
9?加其他数行
移项
x26x16

x 3 2,x 3 2 方程的两根为
两边同时加上9
x 2 6 x 9 1 6 9 变 成 ( m x n ) 2 p ( P 0 ) 形 式
x1 2 3, x2 2 3
( m x n ) 2p (P 0 )
(x3)2 25
左边降次
右边开方
x35
得到两个一元一次方程
2x2 13x
解:移项,得
2x23x1
3x26x40
解:移项,得
3x26x4
化二次项的系数为1,得
x2 3 x 1
配方,得
2
2
化二次项的系数为1,得
x2 2x
4
3
配方,得
x23x(3)21(3)2 2 4 24 (x 3)2 1 4 16
x3 1
x22x12 412 3
(x 1)2 1 3
根 据 长 方 形 面 积 为 1 6 m 2 , 列 方 程 得
x(x6)16
化为一般形式,得
x2 6x160
怎样解这个 方程?能不 能用直接开
平方法?
请解这个 方程
解 方 程 x 2 6 x 9 2 解 方 程 x 2 6 x 1 6 0
解 :( x 3 ) 2 2 x3 2
分析:
Q(x1)20
44
x1
1, x2
1 2
方程无解
解下列方程
3x2 6x 2 0 4x2 6x 0
用配方法解一元二次方程的步骤:
移项:把常数项移到方程的右边; 化1:将二次项系数化为1; 配方:方程两边都加上一次项系数一半的平方; 开方:左边降次,右边开平方; 求解:解两个一元一次方程;(或者方程无解) 定解:写出原方程的解.
1.若 x26x是m一2个完全平方式,则m的值是 () C
A.3 B.-3 C.±3 D.以上都不对
2.把方程 x2 3 配方4,x得( ) A
A.( x2) 21 B.(x2) 228
C.(x 2) 2 7 D.( x2) 221
3、用配方法说明:不论k取何实数,多项式 k2-3k+5的值必定大于零.
得 x2 8, 9

xx
2
82 33
,
方程的两根为:
x1
22 3
22 x2 3 .
x63
即 : x63,x6 3
∴方程的两根为:
x1=-3, x2=-9
x2 p( p 0)
直接开平方法 (m x n ) 2 p
x p
左边降次, 右边开平方
mxn p
注意:当p<0时,方程没有实数根。
相关文档
最新文档