初一数学第1章有理数知识点总结
七年级数学上册各章知识点总结
[二]有理数减法法则: 减去一个数,等于 加上这个数的相反数 ,用字母表示为a-
b= a=+[-b] .
一.四有理数的乘除法
[一]有理数乘法法则:
一、两数相乘,同号 得正 ,异号 得负 ,并把 绝对值相
乘
.
二、几个不是0的数相乘,积的符号由负因数的个数决定,当负因
数有偶数个时,积为 正数 ,当负因数有奇数个时,积为 负数 ;
图1
从正面看
从左面看
从上面看
图2
三、立体图形的展开图有些立体图形是有一些平面图形围 成的,把它们的表面适当剪开后在平面上展开得到的平图形 称为立体图形的展开图. [一]圆柱和圆锥的侧面展开图 [二]棱柱和棱锥的展开图 [三]根据展开图判断立体图形的规律: A展开图全是长方形或正方形时------长方体或正方体; B展开图中含有三角形时-----棱锥或棱柱; 若展开图中含有二个三角形三个长方形-----三棱柱; 若展开图中全是三角形[四个]-----[三]棱锥. C展开图中含有圆和长方形-----圆柱; D展开图中含有扇形------圆锥.
-a
a
-5 -4 -3 -2 -1 0 1 2 3 4
有理数的分类
[四]、绝对值:数轴上表示数a的点与原点的距离叫做数a 的绝对4 -3 -2 -1 0 1 2 3 4
一个正数的绝对值是 是它本身 ,一个负数的绝对值是 它的相反数 ,
0的绝对值是
0
.
注意:一|a|≥0即对任意有理数a,它的绝对值是非负数 二绝对值最小数为0
当a<0时,无解.
五:方程的解与解方程:使方程两边相等的未 知数的值叫做方程的解,求方程解的过程叫 解方程.
六:关于移项:⑴移项实质是等式的基本性质一的 运用. ⑵移项时,一定记住要改变所移项的符号.
第一章 有理数知识点、考点、难点总结归纳
第一章有理数知识点、考点、难点总结归纳有理数是我们学习数学的基础,掌握有理数的知识是进行后续学习的关键。
本章将对有理数的知识点、考点和难点进行总结归纳,帮助我们更好地理解和掌握有理数。
一、有理数的定义有理数是可以表示为两个整数的比值,包括正整数、负整数和零。
有理数的表示形式为分数或整数。
二、有理数的基本运算1. 加法和减法:有理数的加法和减法运算都可以通过分数的相加相减来完成,要注意同分母的分数之间的加减法运算规则,并进行合并和化简。
2. 乘法和除法:有理数的乘法和除法运算也可以通过分数的乘法和除法来完成,要注意分数的乘法规则和除法规则,并进行化简。
三、有理数的大小比较比较两个有理数的大小,可以首先将它们转化为相同分母的分数形式,然后按照分数的大小关系进行比较。
四、有理数的相反数与绝对值1. 相反数:一个有理数的相反数是它的数值相反而符号不变。
2. 绝对值:一个有理数的绝对值是它去掉符号后的数值,即该数的非负值。
五、有理数的混合运算混合运算是指同时进行加减乘除等多种运算的情况。
在有理数的混合运算中,需要根据运算法则和优先级进行计算,并注意括号的运用。
六、有理数的分数表示和小数表示有理数可以用分数形式表示,也可以用小数形式表示。
分数形式适用于精确计算,而小数形式便于运算和比较大小。
七、有理数的化简有理数的化简是指将其写成最简形式,即分子与分母没有公约数的分数表示。
通过寻找最大公约数,可以将有理数化简为最简形式。
八、有理数的乘方运算乘方运算是指一个数自乘若干次的运算。
在有理数的乘方运算中,可以根据乘方运算法则简化计算过程,并注意负次幂的运算规律。
九、有理数与实际问题的应用有理数在实际问题中有广泛的应用,如温度计的读数、海拔高度的表示、财务账目的计算等。
通过将实际问题转化为有理数运算,可以得出准确的答案。
总结:有理数是我们日常生活和学习中经常遇到的数,掌握有理数的知识对于数学学习至关重要。
本章总结了有理数的定义,基本运算,大小比较,相反数与绝对值,混合运算,分数与小数表示,化简,乘方运算以及应用等知识点、考点和难点。
人教版七年级数学上册 第一至第四章全册知识点归纳
人教版初一数学上册知识点归纳七年级数学上册知识点第一章有理数1.1 正数与负数①正数:大于0的数叫正数。
(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。
与正数具有相反意义。
③0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。
2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
3、相反数:只有符号不同的两个数叫做互为相反数。
(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离。
(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
两个负数,绝对值大的反而小。
1.3 有理数的加减法①有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。
2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
3、一个数同0相加,仍得这个数。
加法的交换律和结合律②有理数减法法则:减去一个数,等于加这个数的相反数。
1.4 有理数的乘除法①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0;乘积是1的两个数互为倒数。
乘法交换律/结合律/分配律②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。
初一数学知识点(精选5篇)
初一数学知识点(精选5篇)第一章有理数1.整数。
(正整数、0、负整数)2.正数和负数。
3.有理数。
(整数和分数统称有理数)4.自然数。
(非负整数)5.相反数。
(只有符号不同的两个数互为相反数)6.绝对值。
(一个数的绝对值就是表示这个数的点与原点的距离)第二章代数式1.代数式。
(用运算符号把数或表示数的字母连接起来的式子)2.代数式的值。
(求代数式的值就是给代数式中的字母个代数式确定值)第三章实数1.平方根。
(如果一个数的平方等于a,那么这个数就叫做a 的平方根)2.算数平方根。
(一个非负数的正的平方根叫做算数平方根)3.立方根。
(如果一个数的立方等于a,那么这个数就叫做a 的立方根)4.实数。
(有理数和无理数)5.实数的性质。
(实数能进行减、乘、除、加、乘方运算)6.近似数。
(通过四舍五入得到的与精确数接近的数)第四章整式和分式1.整式。
(与有理数相对的数式叫整式)2.分式。
(整式的一部分)3.分式的值为零。
(分子为零且分母不等于零)4.分式的乘除。
(乘除法转化成乘法计算)5.分式的加减。
(异分母的分式加减转化成通分后求和)6.分式方程。
(分母里含有未知数的方程叫分式方程)初一数学知识点篇21.有理数:有理数包括正整数、0和负整数。
有理数可以用分数表示。
2.数轴:数轴是一条直线,它的上面写着从0开始连续不断的点。
数轴上的0是正负数的分界线。
3.相反数:如果两个数的和为0,那么这两个数是一对相反数。
相反数包括正数和负数。
4.绝对值:一个数的绝对值是它离0的距离。
正数的绝对值是它本身,负数的绝对值是它的相反数。
5.代数式:用代数式表示出数量关系和变化规律的式子。
包括等式、不等式、方程、不等式、函数等。
6.整式:整式包括单项式和多项式。
单项式是由数字和字母组成,多项式是由几个单项式组成。
7.分式:分式包括分子和分母。
分子是由数字和字母组成,分母是由分式和整式组成。
8.方程:用方程表示出两个量之间的关系,并且这个方程是一个等式。
初一上期数学第一章 有理数 知识归纳
第一章有理数1.1正数和负数1.正负数正数:大于0的数叫做正数.负数:小于0的数叫做负数.0:非正非负【注】①符号:一个数前面的“+”“-”号叫做它的符号.②正数前面的“+”号可以省略,负数前面的“-”号不可以省略.2.相反意义的量用正数和负数表示具有相反意义的量:如果正数表示某种意义,那么负数表示它的相反意义,反之亦然.【注】“相反意义的量”包括两个方面的含义:一是相反意义;二是要有量.3.“O”的特征(1)0既不是正数,也不是负数,是正数与负数的分界;(2)0是自然数;(3)0的意义:①有时表示没有,如文具盒中有0支铅笔,表示没有铅笔;②有时是一个数,如0度是一个确定的温度;③有时也作为基准,如零上3度.1.2有理数知识点一有理数1、有理数的定义:整数和分数统称为有理数(小数可以化为分数,所以看为为分数)2、有理数的分类:1):按定义⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎭⎬⎫⎪⎩⎪⎨⎧⎭⎬⎫数有限小数或无限循环小负分数正分数分数负整数自然数正整数整数有理数0 2):按正负分⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数04、四非正数和零统称为非负数;负数和零统称为非正数;正整数和零统称为非负整数(自然数);负整数和零统称为非正整数;【技巧】读的时候,在非正、非负后面加一个“的”知识点二 数轴1、数轴的定义:用一条直线上的点表示数,这条直线叫做数轴。
2、数轴三要素原点、正方向、单位长度称为数轴的三要素,三者缺一不可.【注】单位长度:指所取度量单位的名称,是一条人为规定的代表"1"的线段,这条线段可长可短,按实际情况来规定,同一数轴上的单位长度一旦确定,不能再改变.3、数轴画法首先:画一条水平的直线;其次:在直线上选取一点为原点;再次:确定向右为正方向,用箭头表示出来;最后:根据实际情况,选取适当的长度作为单位长度.4、与有理数的关系(1)有理数和无理数都可以用数轴上的点表示出来.(2)正有理数表示的点位于原点的右边,负有理数表示的点位于原点的左边5、利用数轴比较大小数轴可以用来比较大小,左<右﹔负数<0<正数.知识点三相反数1、定义只有符号不同的两个数叫做互为相反数.【注】①一般地,a和a-互为相反数,a表示任意一个数,可以是正数、负数,也可以是0.②0的相反数是0③“只有符号不同”应与“只要符号不同”区分开﹒④相反数必须成对出现,不能单独存在.2、几何意义一对相反数表示的点在数轴上应分别位于原点两侧;到原点的距离相等;这两点是关于原点对称的.3、求法求任意一个数的相反数,只要在这个数的前面添上“—”号即可.4、相反数的性质(1)若a与b互为相反数,则0=a,则a与b互为相反数.+b=+ba;反之,若0(2)任何一个数都有相反数,而且只有一个.正数的相反数是负数;负数的相反数是正数; 0的相反数仍是0.五、多重符号化简一个正数前面不管有多少个“+”号,都可以全部去掉;一个正数前面有偶数个“―”号,也可以把“―”号全部去掉;一个正数前面有奇数个"―"号,则化简后只保留一个"―"号,即“奇负偶正”(其中“奇偶”是指正数前面的“―"号的个数的奇偶数,“负正"是指化简的最后结果的符号).知识点四 绝对值1、绝对值的定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记做a (a 可以是正数、负数和0)2、绝对值性质:()()()⎪⎩⎪⎨⎧<-=>=0000a a a a a a3、绝对值具有非负性(1)若有几个非负数的和为0,则这几个非负数均为0。
初一数学知识点总结大全
初一数学知识点总结大全第一章有理数1.1正数和负数以前学过的0以外的数前面加上负号“-”的书叫做负数.以前学过的0以外的数叫做正数.数0既不是正数也不是负数,0是正数与负数的分界.在同一个问题中,分别用正数和负数表示的量具有相反的意义1.2有理数1.2.1有理数正整数、0、负整数统称整数,正分数和负分数统称分数.整数和分数统称有理数.1.2.2数轴规定了原点、正方向、单位长度的直线叫做数轴.数轴的作用:所有的有理数都可以用数轴上的点来表达.考前须知:⑴数轴的原点、正方向、单位长度三要素,缺一不可.⑵同一根数轴,单位长度不能改变.一般地,设是一个正数,那么数轴上表示a的点在原点的右边,与原点的间隔是a个单位长度;表示数-a的点在原点的左边,与原点的间隔是a个单位长度.1.2.3相反数只有符号不同的两个数叫做互为相反数.数轴上表示相反数的两个点关于原点对称.在任意一个数前面添上“-”号,新的数就表示原数的相反数.1.2.4绝对值一般地,数轴上表示数a的点与原点的间隔叫做数a的绝对值.一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0.在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数.比拟有理数的大小:⑴正数大于0,0大于负数,正数大于负数.⑵两个负数,绝对值大的反而小.1.3有理数的加减法1.3.1有理数的加法有理数的加法法那么:⑴同号两数相加,取一样的符号,并把绝对值相加.⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.⑶一个数同0相加,仍得这个数.两个数相加,交换加数的位置,和不变.加法交换律:a+b=b+a三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变.加法结合律:(a+b)+c=a+(b+c)1.3.2有理数的减法有理数的减法可以转化为加法来进展.有理数减法法那么:减去一个数,等于加这个数的相反数.a-b=a+(-b)1.4有理数的乘除法1.4.1有理数的乘法有理数乘法法那么:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.乘积是1的两个数互为倒数.几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.两个数相乘,交换因数的位置,积相等.ab=ba三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.(ab)c=a(bc)一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.a(b+c)=ab+ac数字与字母相乘的书写标准:⑴数字与字母相乘,乘号要省略,或用“”⑵数字与字母相乘,当系数是1或-1时,1要省略不写.⑶带分数与字母相乘,带分数应当化成假分数.用字母x表示任意一个有理数,2与x的乘积记为2x,3与x的乘积记为3x,那么式子2x+3x是2x与3x的和,2x与3x叫做这个式子的项,2和3分别是着两项的系数.一般地,合并含有一样字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即ax+bx=(a+b)x上式中x是字母因数,a与b分别是ax与bx这两项的系数.去括号法那么:括号前是“+”,把括号和括号前的“+”去掉,括号里各项都不改变符号.括号前是“-”,把括号和括号前的“-”去掉,括号里各项都改变符号.括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号一样;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反.1.4.2有理数的除法有理数除法法那么:除以一个不等于0的数,等于乘这个数的倒数.a÷b=a• (b≠0)两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算.乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果.1.5有理数的乘方1.5.1乘方求n个一样因数的积的运算,叫做乘方,乘方的结果叫做幂.在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂.负数的奇次幂是负数,负数的偶次幂是正数.正数的任何次幂都是正数,0的任何正整数次幂都是0.有理数混合运算的运算顺序:⑴先乘方,再乘除,最后加减;⑵同级运算,从左到右进展;⑶如有括号,先做括号内的运算,按小括号、中括号、大括号依次进展1.5.2科学记数法把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法.用科学记数法表示一个n位整数,其中10的指数是n-1.1.5.3近似数和有效数字接近实际数目,但与实际数目还有差异的数叫做近似数.准确度:一个近似数四舍五入到哪一位,就说准确到哪一位.从一个数的左边第一个非0 数字起,到末位数字止,所有数字都是这个数的有效数字.对于用科学记数法表示的数a×10n,规定它的有效数字就是a中的有效数字.第二章一元一次方程2.1从算式到方程2.1.1一元一次方程含有未知数的等式叫做方程.只含有一个未知数(元),未知数的指数都是1(次),这样的方程叫做一元一次方程.分析^p 实际问题中的数量关系,利用其中的相等关系列出方程,是数学解决实际问题的一种方法.解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解.2.1.2等式的性质等式的性质1 等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.2从古老的代数书说起——一元一次方程的讨论⑴把等式一边的某项变号后移到另一边,叫做移项.2.3从“买布问题”说起——一元一次方程的讨论⑵方程中有带括号的式子时,去括号的方法与有理数运算中括号类似.解方程就是要求出其中的未知数(例如x),通过去分母、去括号、移项、合并、系数化为1等步骤,就可以使一元一次方程逐步向着x=a的形式转化,这个过程主要根据等式的性质和运算律等.去分母:⑴详细做法:方程两边都乘各分母的最小公倍数⑵根据:等式性质2⑶考前须知:①分子打上括号②不含分母的项也要乘2.4再探实际问题与一元一次方程第三章图形认识初步3.1多姿多彩的图形现实生活中的物体我们只管它的形状、大小、位置而得到的图形,叫做几何图形.3.1.1立体图形与平面图形长方体、正方体、球、圆柱、圆锥等都是立体图形.此外棱柱、棱锥也是常见的立体图形.长方形、正方形、三角形、圆等都是平面图形.许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形.3.1.2点、线、面、体几何体也简称体.长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体.包围着体的是面.面有平的面和曲的面两种.面和面相交的地方形成线.线和线相交的地方是点.几何图形都是由点、线、面、体组成的,点是构成图形的根本元素.3.2直线、射线、线段经过两点有一条直线,并且只有一条直线.两点确定一条直线.点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点.类似的还有线段的三等分点、四等分点等.直线桑一点和它一旁的局部叫做射线.两点的所有连线中,线段最短.简单说成:两点之间,线段最短.3.3角的度量角也是一种根本的几何图形.度、分、秒是常用的角的度量单位.把一个周角360等分,每一份就是一度的角,记作1;把1度的角60等分,每份叫做1分的角,记作1;把1分的角60等分,每份叫做1秒的角,记作1.3.4角的比拟与运算3.4.1角的比拟从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.类似的,还有叫的三等分线.3.4.2余角和补角假如两个角的和等于90(直角),就说这两个角互为余角.假如两个角的和等于180(平角),就说这两个角互为补角.等角的补角相等.等角的余角相等.本章知识构造图第四章数据的搜集与整理搜集、整理、描绘和分析^p 数据是数据处理的根本过程.4.1喜欢哪种动物的同学最多——全面调查举例用划记法记录数据,“正”字的每一划(笔画)代表一个数据.考察全体对象的调查属于全面调查.4.2调查中小学生的视力情况——抽样调查举例抽样调查是从总体中抽取样本进展调查,根据样本来估计总体的一种调查.统计调查是搜集数据常用的方法,一般有全面调查和抽样调查两种,实际中常常采用抽样调查的方式.调查时,可用不同的方法获得数据.除问卷调查、访问调查等外,查阅文献资料和实验也是获得数据的有效方法.利用表格整理数据,可以帮助我们找到数据的分布规律.利用统计图表示经过整理的数据,能更直观地反映数据规律.4.3课题学习调查“你怎样处理废电池?”调查活动主要包括以下五项步骤:一、\x09设计调查问卷⑴设计调查问卷的步骤①确定调查目的;②选择调查对象;③设计调查问题⑵设计调查问卷时要注意:①提问不能涉及提问者的个人观点;②不要提问人们不愿意答复的问题;③提供的选择答案要尽可能全面;④问题应简明;⑤问卷应简短.二、施行调查将调查问卷复制足够的份数,发给被调查对象.施行调查时要注意:⑴向被调查者讲明哪些人是被调查的对象,以及他为什么成为被调查者;⑵告诉被调查者你搜集数据的目的.三、处理数据根据收回的调查问卷,整理、描绘和分析^p 搜集到的数据.四、交流根据调查结果,讨论你们小组有哪些发现和建议?五、写一份简单的调查报告第二册第五章相交线与平行线5.1相交线5.1.1相交线有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角.两条直线相交有4对邻补角.有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角.两条直线相交,有2对对顶角.对顶角相等.5.1.2两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直.其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.注意:⑴垂线是一条直线.⑵具有垂直关系的两条直线所成的4个角都是90.⑶垂直是相交的特殊情况.⑷垂直的记法:a⊥b,AB⊥CD.画直线的垂线有无数条.过一点有且只有一条直线与直线垂直.连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.直线外一点到这条直线的垂线段的长度,叫做点到直线的间隔 .5.2平行线5.2.1平行线在同一平面内,两条直线没有交点,那么这两条直线互相平行,记作:a∥b.在同一平面内两条直线的关系只有两种:相交或平行.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.假如两条直线都与第三条直线平行,那么这两条直线也互相平行.5.2.2直线平行的条件两条直线被第三条直线所截,在两条被截线的同一方,截线的同一旁,这样的两个角叫做同位角.两条直线被第三条直线所截,在两条被截线之间,截线的两侧,这样的两个角叫做内错角.两条直线被第三条直线所截,在两条被截线之间,截线的同一旁,这样的两个角叫做同旁内角.断定两条直线平行的方法:方法1 两条直线被第三条直线所截,假如同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.方法2 两条直线被第三条直线所截,假如内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.方法3 两条直线被第三条直线所截,假如同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.5.3平行线的性质平行线具有性质:性质1 两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.性质2 两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.性质3 两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的间隔 .判断一件事情的语句叫做命题.5.4平移⑴把一个图形整体沿某一方向挪动,会得到一个新的图形,新图形与原图形的形状和大小完全一样.⑵新图形中的每一点,都是由原图形中的某一点挪动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等.图形的这种挪动,叫做平移变换,简称平移.第六章平面直角坐标系6.1平面直角坐标系6.1.1有序数对有顺序的两个数a与b组成的数对,叫做有序数对.6.1.2平面直角坐标系平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系.程度的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴取2向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点.平面上的任意一点都可以用一个有序数对来表示.建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个局部,分别叫做第一象限、第二象限、第三象限和第四象限.坐标轴上的点不属于任何象限.6.2坐标方法的简单应用6.2.1用坐标表示地理位置利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:⑴建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;⑵根据详细问题确定适当的比例尺,在坐标轴上标出单位长度;⑶在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.6.2.2用坐标表示平移在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).在平面直角坐标系内,假如把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;假如把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.第七章三角形7.1与三角形有关的线段7.1.1三角形的边由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.相邻两边组成的角,叫做三角形的内角,简称三角形的角.顶点是A、B、C的三角形,记作“△ABC”,读作“三角形ABC”.三角形两边的和大于第三边.7.1.2三角形的高、中线和角平分线7.1.3三角形的稳定性三角形具有稳定性.7.2与三角形有关的角7.2.1三角形的内角三角形的内角和等于180.7.2.2三角形的外角三角形的一边与另一边的延长线组成的角,叫做三角形的外角.三角形的一个外角等于与它不相邻的两个内角的和.三角形的一个外角大于与它不相邻的任何一个内角.7.3多边形及其内角和7.3.1多边形在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.n边形的对角线公式:各个角都相等,各条边都相等的多边形叫做正多边形.7.3.2多边形的内角和n边形的内角和公式:180(n-2)多边形的外角和等于360.7.4课题学习镶嵌第八章二元一次方程组8.1二元一次方程组含有两个未知数,并且未知数的指数都是1的方程叫做二元一次方程把具有一样未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.使二元一次方程两边的值相等两个未知数的值,叫做二元一次方程的解二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.8.2消元由二元一次方程组中的一个方程,将一个未知数用含有另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程.这种方法叫做加减消元法,简称加减法.8.3再探实际问题与二元一次方程组第九章不等式与不等式组9.1不等式9.1.1不等式及其解集用“”号表示大小关系的式子叫做不等式.使不等式成立的未知数的值叫做不等式的解.能使不等式成立的未知数的取值范围,叫做不等式解的集合,简称解集.含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式.9.1.2不等式的性质不等式有以下性质:不等式的性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式的性质2 不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式的性质3 不等式两边乘(或除以)同一个负数,不等号的方向改变.9.2实际问题与一元一次不等式解一元一次方程,要根据等式的性质,将方程逐步化为x=a 的形式;而解一元一次不等式,那么要根据不等式的性质,将不等式逐步化为xa)的形式.9.3一元一次不等式组把两个不等式合起来,就组成了一个一元一次不等式组.几个不等式的解集的公共局部,叫做由它们所组成的不等式的解集.解不等式就是求它的解集.对于具有多种不等关系的问题,可通过不等式组解决.解一元一次不等式组时.一般先求出其中各不等式的解集,再求出这些解集的公共局部,利用数轴可以直观地表示不等式组的解集.9.4课题学习利用不等关系分析^p 比赛第 21 页共 21 页。
初一数学知识点总结归纳(5篇)
初一数学知识点总结归纳第一章有理数1、大于0的数是正数。
2、有理数分类:正有理数、0、负有理数。
3、有理数分类:整数(正整数、0、负整数)、分数(正分数、负分数)4、规定了原点,单位长度,正方向的直线称为数轴。
5、数的大小比较:①正数大于0,0大于负数,正数大于负数。
②两个负数比较,绝对值大的反而小。
6、只有符号不同的两个数称互为相反数。
7、若a+b=0,则a,b互为相反数8、表示数a的点到原点的距离称为数a的绝对值9、绝对值的三句:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
10、有理数的计算:先算符号、再算数值。
11、加减:①正+正②大-小③小-大=-(大-小)④-☆-О=-(☆+О)12、乘除:同号得正,异号的负13、乘方:表示n个相同因数的乘积。
14、负数的奇次幂是负数,负数的偶次幂是正数。
15、混合运算:先乘方,再乘除,后加减,同级运算从左到右,有括号的先算括号。
16、科学计数法:用ax10n表示一个数。
(其中a是整数数位只有一位的数)17、左边第一个非零的数字起,所有的数字都是有效数字。
【知识梳理】1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
3.倒数:若两个数的积等于1,则这两个数互为倒数。
4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.5.科学记数法:,其中。
6.实数大小的比较:利用法则比较大小;利用数轴比较大小。
7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。
实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。
初一数学第一章
第一章有理数(一)第一部分【知识点归纳】一、有理数1.正负数,数理,相反数,有理数1)正数:①大于0的叫正数②在正数前面加上“—”的数,叫做负数③0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数2)正整数、0、负整数统称为整数,正分数和负分数统称为有分数,整数和分数统称为有理数3)非负数就是正数和0,非负整数就是正整数和02.有理数的两种分类:整数和分数3.有理数的本质定义,能表成m4.性质:①顺序性(可比较大小)②四则运算的封闭性(0不作除数)③稠密性:任意两个有理数都存在无数个有理数5、绝对值的意义与性质:|a|①非负性②非负数的性质:1)非负数的和仍为非负数2)几个非负数的和为0,则它们都为06、绝对值的几何意义①|a|表示数a对应的点到原点的距离②|a-b|表示数a、b对应两点间的距离7、利用绝对值的代数、几何意义化简绝对值①正数的绝对值是它本身,负数的绝对值是它的相反数。
0的绝对值是0②|a|>=0,绝对值等于一个正数的值有两个(两个互为相反数)③两个负数,绝对值大的反而小二、相关运算加法的交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法交换律:a×b=b×a 结合律:a×(b×c)=(a×b)×c分配律:a×(b+c)=a×b+a×c1、运算的分级与运算顺序2、有理数的加、减、乘、除及乘方的法则①加法法则:同号相加取同号,并把绝对值相加;异号相加取绝对值较大的符号,并用较大绝对值减较少绝对值;一个数同零相加得原数②减法法则:减去一个数等于加上这个数的相反数③乘法法则:几个有理数相乘,奇负得负,偶负得正,并把绝对值相乘两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同0相乘都得0,乘积为1的两个数互为倒数④除法法则:除以一个数,等于乘以这个数的倒数两数相除,同号得正,异号得负,并把绝对值相除0除以任何一个不为0的数为03、准确运用各种法则及运算顺序解题,养成良好思维习惯及解题习惯4、巧算的一般性技巧:①凑整(凑0)②巧用分配率③去、添括号法则④裂项法5、综合运用有理数的知识解有关问题三、有理数的乘方1、乘方:求n个相同的因数的积的运算。
七年级人教版上册数学第一单元有理数知识点整理
第一单元知识点总结(有理数)知识点一:有理数的分类1、正数和负数:大于0的数叫做正数,小于0的数叫做负数,0既不是正数也不是负数。
例如 正数:54、+89、1.57、43 负数:-54、43-、-1.2(带负号) 注:正数和负数集合都不能选0;因为0既不是正数也不是负数。
2、整数:像-2 ,-1, 0, 1, 2这个的数称整数,分为正整数,0,负整数。
例如 整数:0,56,-23(要记得选0和负整数)3、分数: 例如:43,23-,0.25,-0.52, 注:有限小数、循环小数可以化为分数,所以也属于分数4、非负整数:即正整数和05、非负数:即正数和06、有理数的分类:⎩⎨⎧分数整数按定义分 ⎝⎛负有理数正有理数按符号分0 (有关分类的文字题常常要考虑“0”是否满足)知识点二:正数和负数1、正数和负数表示具有相反意义的量,例如规定向东为正,向东走m 5,记为m 5+,如果向西走m 5,记为m 5-。
2、 向东前进30m 表示的意义:向东前进30m 向东行进-30m 表示的意义:向西前进30m 知识点三:数轴 数轴需要三要素,即原点,正方向和单位长度知识点四:相反数1、相反数:只有符号不同的两个数叫作互为相反数注:正数的相反数是负数,负数的相反数是正数,0的相反数是02、相反数的性质:如果b a 和互为相反数,则0=+b a ;1-=ba 3、字母的相反数:a 的相反数是a -;b a -的相反数是b a +-; a bc +-的相反数是a b c -+-;知识点五:绝对值 1、在数轴上表示数a 的点与原点的距离叫做a 的绝对值,记作a ,例如:2的绝对值记作:22= ; -3的绝对值记作:33=-注:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数;0的绝对值是0因为负数的绝对值是正数,所以一个数的绝对值为0和正数,绝对值表示的是到原点的距离,所以不会为负数。
(3)去绝对值符号情况如下:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a ⎪⎩⎪⎨⎧<-+-=->--=-)0()0(0)0(b a b a b a b a b a b a 若若若知识点六:有理数的加减法1、先去括号;去括号法则()()⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧-=-+-=+-⎩⎨⎧=--=++22222222异号得负:)()(同号得正: 2、同号叠加;取相同的符号;异号抵消,取数字较大的符号:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧=+--=+-⎩⎨⎧-=--=++231213321321异号抵消:同号叠加:知识点七:有理数的乘除法1、两数相乘,同号得正,异号得负,并把绝对值相乘(即数相乘)2、任何数和0相乘,都得03、乘积是1的两个数互为倒数;如果如果b a 和互为倒数,那么:1=ab乘法交换律:ba ab =,乘法结合律:)(bc a abc = ,分配律:ac ab c b a +=+)(知识点八:有理数的乘方1、一般地,a n 个相同的因数相乘,即na a a a a a ⨯⨯⨯⨯⨯⨯...,记作n a ,读作a 的n 次方. 2、对于n a ,其中a 是底数,n 是指数,n a 是幂,例如:()41-,底数是-1,指数是4,幂是4)1(-即1,读作-1的4次方或者-1的4次幂。
初一上册数学第一章《有理数》知识点总结
初一上册数学第一章《有理数》知识点总结?一、正数与负数1.在实际中表示意义相反的量上升5米记为5米; -8米则表示下降8米。
2.正数:大于0的数。
3.负数:在正数的前面加上“-”。
4.0的含义:①既不是正数也不是负数;②0在计数时表示没有,比如0元;③0表示某种量的基准,比如0℃表示温度的基准5.有理数的分类②分数概念(1)小学学的分数,百分数,有限小数,无限循环小数都能够转化为分数,现统称分数;(2)无限不循环小数不属于有理数,如:π=3.141592... 2.010010001...③、“非”的概念非负数:正数和0 非正分数:负分数非正数:负数和0 非负分数:正分数非负整数:正整数和0非正整数:负整数和0二、数轴1.三要素:原点、正方向、单位长度。
通常原点用“O”表示,向右的方向为正方向,单位长度为1.2.如何画数轴①画直线(一样画成水平的),定原点,标出原点“O”;②取原点向右的方向为正方向,并标出箭头;③选适当的长度为单位长度,并标出-3,-2,-1,1,2,3……各点。
3.数轴上的点与有理数:(1)数轴上的点与有理数一一对应(2)左边的数0>负数;2.两个负数比较①右边的点表示的数比左边的点表示的数大。
②绝对值大的反而小。
六、有理数的运算1.有理数的加法:加法一样步骤:①确定符号:同号取相同的符号。
异号取绝对值大的加数的符号。
②确定绝对值:同号将绝对值相加。
异号用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
一个数与0相加,仍得那个数。
用字母表示加法的交换律a+b=b+a;加法结合律a+b+c=(a+b)+c=a+(b+ c)。
三个或三个以上有理数相加,能够写成这些数的连加式,关于连加式,依照加法交换律和加法结合律,能够任意交换加数的位置,也可先把其中的某几个数相加。
依照算式的特点,恰当地运用运算律,能够使运算简便:①符号相同的数先相加--同号结合法②互为相反数的先相加--相反数结合法③分母相同的数先相加--同分母结合法④正数与正数,小数与小数相加--同形结合法2.有理数的减法:减法法则:减去一个数,等于加上那个数的相反数。
初一数学上册第一单元有理数知识点归纳
初一数学上册第一单元有理数知识点归纳在初中数学的学习中,有理数是一个非常重要的概念。
有理数包括整数和分数,它们在日常生活中的应用非常广泛。
初一数学上册的第一单元就是关于有理数的学习,本文将对该单元的知识点进行归纳总结。
一、有理数的定义有理数是整数和分数的统称,其中整数包括正整数、0和负整数,分数则包括正分数和负分数。
有理数可以用分数、小数和带分数形式表示。
二、有理数的比较1. 对于两个有理数a和b,如果a-b>0,那么a>b;如果a-b<0,那么a<b;如果a-b=0,那么a=b。
2. 当两个有理数的绝对值相等时,它们之间的大小关系由它们的符号决定,正数大于负数,0与任何数比较都相等。
三、有理数的四则运算1. 加法运算:有理数相加,符号相同则相加,结果的符号与原来的符号相同;符号不同则相减,结果的符号取绝对值较大的数的符号。
2. 减法运算:有理数相减,取相减数的相反数,转换为加法运算。
3. 乘法运算:有理数相乘,两数的符号相同则结果为正,符号不同则结果为负。
4. 除法运算:有理数相除,先求分子和分母的绝对值相除,商的符号由正负数决定。
四、有理数的绝对值1. 正数的绝对值等于它本身。
2. 负数的绝对值等于去掉负号。
3. 0的绝对值等于0。
五、有理数的倍数和约数1. a是b的倍数,表示为a | b,当且仅当存在整数k使得b = ak。
2. a是b的约数,表示为a ∣ b,当且仅当存在整数k使得a = bk。
3. 如果a和b不全为0,且a | b,b | a,那么a和b互为倍数,即a 和b的绝对值相等。
六、有理数的绝对值大小比较在比较有理数的绝对值大小时,可以将它们转化为除法形式,即绝对值较大的数作为被除数,绝对值较小的数作为除数,然后比较商的大小。
七、有理数的平方1. 正数的平方是正数。
2. 负数的平方是正数。
3. 0的平方是0。
综上所述,初一数学上册第一单元主要介绍了有理数的概念和相关知识点。
初一数学上册知识点归纳总结(精华版)
1. 有理数:⑴ 凡能写成q (p,q 为整数且p 0)形式的数,都是有理数,整数和分数统称有理数 .P注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;不是有理数;(3) 注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的 数分成四个区域,这四个区域的数也有自己的特性; ⑷自然数 0和正整数;a >0 a 是正数;a v 0 a 是负数; a >0 a 是正数或0 a 是非负数; a < 0 a 是负数或0 a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素) 的一条直线•3 •相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;⑵注意:a-b+c 的相反数是-(a-b+c)= -a+b-c ; a-b 的相反数是b-a ; a+b 的相反数是-a-b ; ⑶相反数的和为0 a+b=0 a 、b 互为相反数.⑷相反数的商为-1. ⑸相反数的绝对值相等 4. 绝对值: (1) 正数的绝对值等于它本身,0的绝对值是0,负数的绝对值 等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;a (a⑵绝对值可表示为:a 0 (aa (a(3) — 1 a 0 ;—1 aaa⑷|a|是重要的非负数,即|a| >0,非负性;5. 有理数比大小:(1) 正数永远比0大,负数永远比0小; (2) 正数大于一切负数;(3) 两个负数比较,绝对值大的反而小;(4) 数轴上的两个数,右边的数总比左边的数大;(5) -1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准第一章有理数(2)有理数的分类:正有理数①有理数零负有理数正整数 正分数正整数整数零②有理数负整数 负整数 负分数正分数 负分数0)0) 0)a (a 0) a (a 0);6. 倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若ab=1 a、b互为倒数;若ab=-1 a、b互为负倒数.等于本身的数汇总:相反数等于本身的数:0倒数等于本身的数:1, -1绝对值等于本身的数:正数和0平方等于本身的数:0,1立方等于本身的数:0,1,-1.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;(3)—个数与0相加,仍得这个数•8•有理数加法的运算律:(1)加法的交换律:a+b=b+a ; (2)加法的结合律:(a+b) +c=a+ (b+c).9. 有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+ (-b).10. 有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数与零相乘都得零;(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。
初一数学第1章有理数知识点总结
初⼀数学第1章有理数知识点总结 初⼀数学课本上的第1章就是有理数的知识,关于有理数的知识点总结有哪些呢?下⾯是店铺收集整理的初⼀数学第1章有理数知识点的总结以供⼤家学习。
初⼀数学第1章有理数知识点:正数和负数 ⒈正数和负数的概念 负数:⽐0⼩的数正数:⽐0⼤的数 0既不是正数,也不是负数 注意:①字⺟a可以表⽰任意数,当a表⽰正数时,-a是负数;当a表⽰负数时,-a是正数;当a表⽰0时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断) ②正数有时也可以在前⾯加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量 若正数表⽰某种意义的量,则负数可以表⽰具有与该正数相反意义的量,⽐如:零上8℃表⽰为:+8℃;零下8℃表⽰为:-8℃ 3.0表⽰的意义 ⑴0表⽰“ 没有”,如教室⾥有0个⼈,就是说教室⾥没有⼈; ⑵0是正数和负数的分界线,0既不是正数,也不是负数。
初⼀数学第1章有理数知识点:有理数 1.有理数的概念 ⑴正整数、0、负整数统称为整数(0和正整数统称为⾃然数) ⑵正分数和负分数统称为分数 ⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是⽆限不循环⼩数,不能写成分数形式,不是有理数。
②有限⼩数和⽆限循环⼩数都可化成分数,都是有理数。
注意:引⼊负数以后,奇数和偶数的范围也扩⼤了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2.有理数的分类 ⑴按有理数的意义分类⑵按正、负来分正整数 整数正有理数正分数 有理数有理数(0不能忽视) 负整数 分数负有理数负分数 总结:①正整数、0统称为⾮负整数(也叫⾃然数) ②负整数、0统称为⾮正整数 ③正有理数、0统称为⾮负有理数 ④负有理数、0统称为⾮正有理数 初⼀数学第1章有理数知识点:数轴 ⒈数轴的概念 规定了原点,正⽅向,单位⻓度的直线叫做数轴。
初一数学上册知识点第一章有理数
相反数
第一章 有理数
3. 互为相反数的两个数分别位于原点的两侧;
4. 互为相反数的两个数到原点的距离相等.
5. 一般地,设a是一个正数,数轴上与原点的距 离是a的点有两个,它们分别在原点的左右,表 示a和–a,我们说这两点关于原点对称.
几何意义
知识点 3
相反数
第一章 有理数
6. 在一个数前面加上“–”号表示求这个数 的相反数。
7. 若a与b互为相反数,则a+b=0(或a=-b);反之, 若a+b=0(或a=-b),则a与b互为相反数。 8. 若a与b互为相反数,则|a|=|b|。
知识点 4 绝对值
定义
第一章 有理数
一般地,数轴上表示数a的点与原 点的距离叫做数a的绝对值.
性质
绝对值的性质 (1) |a|≥0;
a (2) | a | a
知识点 11
乘法 交换律
乘法
乘法
运算律 结合律
乘法 分配律
第一章 有理数
两个数相乘,交换两个因数的位置,积不
变.
ab=ba
三个数相乘,先把前两个数相乘,或先把后两 个数相乘,积不变. (ab)c = a(bc)
一个数同两个数的和相乘,等于把这个数分 别同这两个数相乘,再把积相加.
a(b+c)=ab+ac
0
(a 0) (a 0) . (a 0)
知识点 5
方法1
有理 数大 小的 比较
方法2
第一章 有理数
数轴上表示的两个数,右边的总 比左边的大.
正数大于0,0大于负数,正数大于负 数;两个负数,绝对值大的反而小.
知识点 6
第一章 有理数
有理数加法法则
初一数学第一章有理数知识点总结
有理数加法运算 加法法则①同号两数相加,取相同的符号,并把绝对值相加. ②绝对值不相等的异号数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值. ③一个数同0相加,仍得这个数.步骤运算律有理数减法运算运算步骤有理数的乘法乘法运算律 乘法法则的推广运算技巧『知识梳理』① 确定和的符号;②求和的绝对值,即确定是两个加数的绝对值的和或差.①两个加数相加,交换加数的位置,和不变.a b b a +=+(加法交换律) ②三个数相加,先把前两个数相加,或者先把后两个数相加,和不变. ()()a b c a b c ++=++(加法结合律)① 分数与小数均有时,应先化为统一形式. ②带分数可分为整数与分数两部分参与运算.③多个加数相加时,若有互为相反数的两个数,可先结合相加得零. ④若有可以凑整的数,即相加得整数时,可先结合相加. ⑤若有同分母的分数或易通分的分数,应先结合在一起. ⑥符号相同的数可以先结合在一起.减法法则:减去一个数,等于加这个数的相反数.()a b a b -=+-①把减号变为加号(改变运算符号)②把减数变为它的相反数(改变性质符号)③把减法转化为加法,按照加法运算的步骤进行运算.有理数加减混合运算的步骤:①把算式中的减法转化为加法; ②省略加号与括号; ③利用运算律及技巧简便计算,求出结果.注意:根据有理数减法法则,减去一个数等于加上它的相反数,因此加减混合运算可以依据上述法则转变为只有加法的运算,即为求几个正数,负数和0的和,这个和称为代数和.为了书写简便,可以把加号与每个加数外的括号均省略,写成省略加 号和的形式.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.①两个数相乘,交换因数的位置,积相等. ab ba =(乘法交换律)②三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积 相等. ()abc a bc =(乘法结合律) ③一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加. ()a b c ab ac +=+(乘法分配律) ①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数. ②几个数相乘,如果有一个因数为0,则积为0. ③在进行乘法运算时,若有带分数,应先化为假分数,便于约分;若有小数及分数,一般先将小数化为分数,或凑整计算;利用乘法分配律及其逆用,也可简化计算.在进行有理数运算时,先确定符号,再计算绝对值,有括号的先算括号里的数. 有理数的运算理数的有理数除法运算有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.1a b a b÷=⋅,(0b ≠)两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0.有理数除法的运算步骤:首先确定商的符号,然后再求出商的绝对值.求n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂,在n a 中,a 叫做底数,n 叫做指数,读作a 的n 次幂。
人教版数学七年级上册第一章知识点总结
人教版数学七年级上册第一章知识点总结第一章有理数知识点总结正数:大于的数叫做正数。
01.概念负数:在正数前面加上负号“—”的数叫做负数。
注:0既不是正数也不是负数,是正数和负数的分界线,是整数,一、正数和负数自然数,有理数。
(不是带“—”号的数都是负数,而是在正数前加“—”的数。
)2.意义:在同一个问题上,用正数和负数表示具有相反意义的量。
有理数:整数和分数统称有理数。
1.概念整数:正整数、0、负整数统称为整数。
分数:正分数、负分数统称分数。
(有限小数与无限循环小数都是有理数。
)注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
π是正数但不是有理数!2.分类:两种二、有理数⑴按正、负性质分类:⑵按整数、分数分类:正有理数正整数正整数有理数正分数整数0零有理数负整数负有理数负整数分数正分数负分数负分数3.数集内容了解1.概念:规定了原点、正方向、单位长度的直线叫做数轴。
三要素:原点、正方向、单位长度2.对应关系:数轴上的点和有理数是一一对应的。
三、数轴比较大小:在数轴上,右边的数总比左边的数大。
3.应用求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。
“—”号)(注意不带“+”代数:只有符号不同的两个数叫做相反数。
1.概念(0的相反数是0)几何:在数轴上,离原点的距离相等的两个点所表示的数叫做相反数。
2.性质:若a与b互为相反数,则a+b=0,即a=-b;反之,若a+b=0,则a与b互为相反数。
四、相反数两个符号:符号相同是正数,符号不同是负数。
3.多重符号的化简多个符号:三个或三个以上的符号的化简,看负号的个数,当“—”号的个数是偶数个时,结果取正号当“—”号的个数是奇数个时,结果取负号1.概念:乘积为1的两个数互为倒数。
(倒数是它本身的数是±1;0没有倒数)五、倒数2.性质若a与b互为倒数,则a·b=1;反之,若a·b=1,则a与b 互为倒数。
七年级上册数学知识点总结
七年级上册数学知识点总结七年级上册数学知识点总结篇一第1章有理数及其运算复习目标:1.能灵活运用数轴上的点来表示有理数,理解相反数、定值,并能用数轴比较有理数的大小。
2.能熟练运用有理数的运算法则进行有理数的加、减、乘、除、乘方计算,并能用运算律简化计算。
3.学会用科学记数法来表示较大的数,会根据精确度取近似数,能判断一个近似数是精确到哪一位。
4.能运用有理数及其运算解决实际问题。
基础知识:1.大于0的数叫做正数,在正数的前面加上一个“-”号就变成负数(负数小于0),0既不是正数,也不是负数。
正数和负数表示的意义相反:例如上升/下降,增加/减少,收入/支出,盈利/亏损,零上/零下,东/西,顺时针/逆时针2.整数和分数统称为有理数。
整数又分为正整数,0,负整数;分数分为正分数和负分数。
3.规定了原点、正方向、单位长度的直线叫做数轴。
任何一个有理数都能在数轴上找到先进的点来表示(注意:并不是数轴上的每一个点都表示有理数,有一些点表示的是无理数例如π)4.数轴上两个点表示的数,右边的数的总比左边的数大;正数都大于0,负数都小于0,正数总是大于负数。
5.只有符号不同的两个数互为相反数。
一般地,a和-a是一对互为相反数;特殊地,0的相反数是0。
互为相反数的两个数定值相等(定值为a的数有两个:a和-a)。
6.在数轴上表示一个数的点与原点之间的距离叫做这个数的定值;正数的定值是它本身;负数的定值是它的相反数,0的定值是0;(定值是一个非负数)。
两个负数比较大小,定值大的反而小。
7.有理数加法法则:(1)同号两数相加,取加数的符号,并把定值相加;(2)异号两数相加:定值相等时和为0;定值不等时,取定值较大的加数的符号,并用大定值减去小定值;(3)任何一个数同0相加仍得这个数。
8.有理数的减法法则:减去一个数,等于加上这个数的相反数;(减法其实就是加法。
)9.加减混合运算统一看成是几个数的和的形式(省略加号和括号),根据加法的交换律和结合律进行运算。
第一章 有理数知识点、考点、难点总结归纳
第一章有理数知识点、考点、难点总结归纳有理数是初中数学中的重要概念,它是进一步学习数学的基础。
下面我们来详细总结归纳一下有理数的知识点、考点和难点。
一、有理数的定义有理数是整数(正整数、0、负整数)和分数的统称。
整数可以看作是分母为 1 的分数。
分数则是两个整数的比值,形式为\(\frac{m}{n}\)(其中\(n\neq 0\))。
二、有理数的分类1、按定义分类整数:正整数、0、负整数。
分数:正分数、负分数。
2、按性质分类正有理数:正整数、正分数。
负有理数:负整数、负分数。
三、数轴数轴是规定了原点、正方向和单位长度的直线。
数轴的作用:1、可以直观地表示有理数,任何一个有理数都可以用数轴上的一个点来表示。
2、可以比较有理数的大小,数轴上右边的数总比左边的数大。
四、相反数只有符号不同的两个数叫做互为相反数。
例如,\(5\)的相反数是\(-5\),\(-3\)的相反数是\(3\),\(0\)的相反数是\(0\)。
相反数的性质:1、互为相反数的两个数之和为\(0\),即\(a +(a) = 0\)。
2、数轴上表示相反数的两个点位于原点两侧,且到原点的距离相等。
五、绝对值数轴上表示数\(a\)的点与原点的距离叫做数\(a\)的绝对值,记作\(\vert a\vert\)。
绝对值的性质:1、正数的绝对值是它本身,即当\(a > 0\)时,\(\vert a\vert = a\)。
2、 0 的绝对值是 0,即\(\vert 0\vert = 0\)。
3、负数的绝对值是它的相反数,即当\(a < 0\)时,\(\vert a\vert = a\)。
绝对值的计算:例如,\(\vert -5\vert = 5\),\(\vert 3\vert = 3\)。
六、有理数的大小比较1、正数大于 0,0 大于负数,正数大于负数。
2、两个负数比较大小,绝对值大的反而小。
例如,比较\(-3\)和\(-5\)的大小,因为\(\vert -3\vert =3\),\(\vert -5\vert = 5\),\(3 < 5\),所以\(-3 >-5\)。
初一数学第1章有理数知识点总结
20XX年初一数学第1章有理数知识点总结初一数学课本上的第1章就是有理数的知识,关于有理数的知识点总结有哪些呢?下面小编收集整理的初一数学第1章有理数知识点的总结以供大家学习。
初一数学第1章有理数知识点:正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
初一数学第1章有理数知识点:有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数整数正有理数正分数有理数有理数(0不能忽视) 负整数分数负有理数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数初一数学第1章有理数知识点:数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
人教版初一数学上册知识点归纳总结(精华版)
第一章有理数1.有理数: (1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数. 2.数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线. 3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-(a-b+c)= -a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. (4)相反数的商为-1. (5)相反数的绝对值相等 4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ; (3)0a 1aa >⇔= ;0a 1aa <⇔-=;(4) |a|是重要的非负数,即|a|≥0,非负性; 5.有理数比大小:(1)正数永远比0大,负数永远比0小; (2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学第1章有理数知识点总结⒈正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
1.有理数的概念⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数整数正有理数正分数有理数有理数(0不能忽视)负整数分数负有理数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
2.数轴上的点与有理数的关系⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。
⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。
(如,数轴上的点π不是有理数)3.利用数轴表示两数大小⑴在数轴上数的大小比较,右边的数总比左边的数大;⑵正数都大于0,负数都小于0,正数大于负数;⑶两个负数比较,距离原点远的数比距离原点近的数小。
4.数轴上特殊的最大(小)数⑴最小的自然数是0,无最大的自然数;⑵最小的正整数是1,无最大的正整数;⑶最大的负整数是-1,无最小的负整数5.a可以表示什么数⑴a>0表示a是正数;反之,a是正数,则a>0;⑵a<0表示a是负数;反之,a是负数,则a<0⑶a=0表示a是0;反之,a是0,,则a=06.数轴上点的移动规律根据点的移动,向左移动几个单位长度则减去几,向右移动几个单位长度则加上几,从而得到所需的点的位置。
⒈相反数只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。
注意:⑴相反数是成对出现的;⑵相反数只有符号不同,若一个为正,则另一个为负;⑶0的相反数是它本身;相反数为本身的数是0。
2.相反数的性质与判定⑴任何数都有相反数,且只有一个;⑵0的相反数是0;⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b 互为相反数,则a+b=03.相反数的几何意义在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。
0的相反数对应原点;原点表示0的相反数。
说明:在数轴上,表示互为相反数的两个点关于原点对称。
4.相反数的求法⑴求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5);⑵求多个数的和或差的相反数是,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b)。
化简得-5a-b);⑶求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是-(-5),化简得5)5.相反数的表示方法⑴一般地,数a的相反数是-a,其中a是任意有理数,可以是正数、负数或0。
当a>0时,-a<0(正数的相反数是负数)当a<0时,-a>0(负数的相反数是正数)当a=0时,-a=0,(0的相反数是0)6.多重符号的化简⒈绝对值的几何定义一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。
2.绝对值的代数定义⑴一个正数的绝对值是它本身;⑵一个负数的绝对值是它的相反数;⑶0的绝对值是0.可用字母表示为:①如果a>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0。
可归纳为①:a≥0,<═>|a|=a(非负数的绝对值等于本身;绝对值等于本身的数是非负数。
)②a≤0,<═>|a|=-a(非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。
)3.绝对值的性质任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。
所以,a取任何有理数,都有|a|≥0。
即⑴0的绝对值是0;绝对值是0的数是0.即:a=0<═>|a|=0;⑵一个数的绝对值是非负数,绝对值最小的数是0.即:|a|≥0;⑶任何数的绝对值都不小于原数。
即:|a|≥a;⑷绝对值是相同正数的数有两个,它们互为相反数。
即:若|x|=a(a>0),则x=±a;⑸互为相反数的两数的绝对值相等。
即:|-a|=|a|或若a+b=0,则|a|=|b|;⑹绝对值相等的两数相等或互为相反数。
即:|a|=|b|,则a=b 或a=-b;⑺若几个数的绝对值的和等于0,则这几个数就同时为0。
即|a|+|b|=0,则a=0且b=0。
(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)4.有理数大小的比较⑴利用数轴比较两个数的大小:数轴上的两个数相比较,左边的总比右边的小;⑵利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;异号两数比较大小,正数大于负数。
5.绝对值的化简①当a≥0时,|a|=a;②当a≤0时,|a|=-a6.已知一个数的绝对值,求这个数一个数a的绝对值就是数轴上表示数a的点到原点的距离,一般地,绝对值为同一个正数的有理数有两个,它们互为相反数,绝对值为0的数是0,没有绝对值为负数的数。
1.有理数的加法法则⑴同号两数相加,取相同的符号,并把绝对值相加;⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;⑶互为相反数的两数相加,和为零;⑷一个数与零相加,仍得这个数。
2.有理数加法的运算律⑴加法交换律:a+b=b+a⑵加法结合律:(a+b)+c=a+(b+c)在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律:①互为相反数的两个数先相加——“相反数结合法”;②符号相同的两个数先相加——“同号结合法”;③分母相同的数先相加——“同分母结合法”;④几个数相加得到整数,先相加——“凑整法”;⑤整数与整数、小数与小数相加——“同形结合法”。
3.加法性质一个数加正数后的和比原数大;加负数后的和比原数小;加0后的和等于原数。
即:⑴当b>0时,a+b>a⑵当b<0时,a+b4.有理数减法法则减去一个数,等于加上这个数的相反数。
用字母表示为:a-b=a+(-b)。
5.有理数加减法统一成加法的意义在有理数加减法混合运算中,根据有理数减法法则,可以将减法转化成加法后,再按照加法法则进行计算。
在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。
如:(-8)+(-7)+(-6)+(+5)=-8-7-6+5.和式的读法:①按这个式子表示的意义读作“负8、负7、负6、正5的和”②按运算意义读作“负8减7减6加5”1.有理数的乘法法则法则一:两数相乘,同号得正,异号得负,并把绝对值相乘;(“同号得正,异号得负”专指“两数相乘”的情况,如果因数超过两个,就必须运用法则三)法则二:任何数同0相乘,都得0;法则三:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数;法则四:几个数相乘,如果其中有因数为0,则积等于0.2.倒数乘积是1的两个数互为倒数,其中一个数叫做另一个数的倒数,用式子表示为a·说a和1=1(a≠0),就是a111互为倒数,即a是的倒数,是a的倒数。
aaa注意:①0没有倒数;②求假分数或真分数的倒数,只要把这个分数的分子、分母点颠倒位置即可;求带分数的倒数时,先把带分数化为假分数,再把分子、分母颠倒位置;③正数的倒数是正数,负数的倒数是负数。
(求一个数的倒数,不改变这个数的性质);④倒数等于它本身的数是1或-1,不包括0。
3.有理数的乘法运算律⑴乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。
即ab=ba⑵乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
即(ab)c=a(bc).⑶乘法分配律:一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,在把积相加。
即a(b+c)=ab+ac4.有理数的除法法则(1)除以一个不等0的数,等于乘以这个数的倒数。
(2)两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得05.有理数的乘除混合运算(1)乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。
(2)有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照‘先乘除,后加减’的顺序进行。
1.乘方的概念求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在an中,a叫做底数,n叫做指数。
2.乘方的性质(1)负数的奇次幂是负数,负数的偶次幂的正数。
(2)正数的任何次幂都是正数,0的任何正整数次幂都是0。
有理数的混合运算做有理数的混合运算时,应注意以下运算顺序:1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。
科学记数法:n把一个大于10的数表示成a10的形式(其中1a10,n是正整数),这种记数法是科学记数法。