热电阻与热电偶的测量原理及区别

合集下载

热电偶和热电阻的区别与识别方法

热电偶和热电阻的区别与识别方法

热电偶和热电阻的区别与识别方法热电偶和热电阻是工业上常用的两种温度传感器,它们在测量温度方面具有很好的性能。

然而,它们的工作原理和特点有很大的区别。

本文将就热电偶和热电阻的区别及识别方法进行详细的介绍,希望能够为大家对这两种传感器有一个更深入的了解。

一、热电偶和热电阻的工作原理1. 热电偶的工作原理热电偶是利用两种不同材料的热电势差产生的原理来测量温度的。

当两种不同金属相接形成闭合回路后,如果两个接头处于不同的温度下,就会在回路中产生一个热电动势,这种现象称为热电效应。

通过测量这个热电动势的大小,就可以确定两个接头处的温度差,从而测量出被测物体的温度。

热电偶的优点是测量范围广,精度高,响应速度快,但是对环境条件和测量电路的影响比较敏感。

2. 热电阻的工作原理热电阻是利用材料的电阻随温度变化的特性来测量温度的。

一般情况下,热电阻的电阻值随温度升高而增大,利用这个特性可以通过测量热电阻的电阻值来确定被测物体的温度。

热电阻的优点是测量精度高,线性好,但是响应速度相对较慢,不适合对温度变化较快的物体进行测量。

二、热电偶和热电阻的区别1. 原理区别热电偶利用热电效应来测量温度,而热电阻利用电阻随温度变化的特性来测量温度,两者的工作原理完全不同。

2. 测量范围区别热电偶的测量范围更广,可以用于测量-200℃至1800℃范围内的温度;而热电阻的测量范围相对较窄,一般在-200℃至600℃之间。

3. 线性特性区别热电偶的温度-电压变化是非线性的,而热电阻的温度-电阻变化是线性的。

4. 响应速度区别热电偶由于其工作原理的特性,响应速度比较快,适合对温度变化较快的物体进行测量;而热电阻的响应速度相对较慢,不适合对温度变化较快的物体进行测量。

5. 环境条件影响区别热电偶对环境条件和测量电路的影响比较敏感,容易受到干扰;而热电阻对环境条件和测量电路的影响相对较小。

6. 价格区别由于其工作原理和特性的不同,热电偶的制作工艺相对较为复杂,成本较高;而热电阻的制作工艺相对简单,成本较低。

热电阻与热电偶的区别

热电阻与热电偶的区别

热电阻接三根线,热电偶接两根线热电阻可以用普通的线,热电偶一定要用补偿线。

热电阻是通过电阻大小的变化来反映温度的变化;热电偶是通过电势的变化来反映温度变化热电阻检测温度似乎更快一些。

测温原理不同:热电阻是根据导体(测温电阻)的电阻值随温度而变化的特性而工作的。

热电偶是由两种不同材料的金属制作出来的,其中一头两种金属焊接在一起,作为测温端(热端),另一头两根线(冷端)接入仪表。

当冷端与热端有温度差时,热电偶回路中就会有电势产生,根据该电势差查该种型号热电偶的分度表,就能知道热端的温度。

热电阻是基于随温度的升高电阻而增大的原理工作的,而热电偶是基于随温度的升高输出电势而增大的原理工作的。

热电阻精度高一点,热电偶的测温范围一般比热电阻宽热电阻使用贵金属制造,价格稍高一点,一般来说相差不大他们发出的信号类型也不一样,一个是变化的毫伏电压,一个是变化的电阻.另外,处理这两种信号的温控仪也不一样。

(智能型除外)热电阻是利用电阻的温度特性来测量温度的.热电偶是一种把温度转换成电压信号的温度传感器.热电阻性能稳定,特别是铂电阻,性能很稳定,常用作标准测温器件.在-259.34至630.74度之间,可以用铂电阻温度计作为温度测量的基准.热电偶是由两种自由电子浓度不同的金属(合金)组成,其端点焊接在一起.热电偶的特点是测量温度的范围宽,但灵敏度不高,且产生的热电势较低,抗干扰能力较弱.AI_mV输入功能:输入信号为小电压,常为毫伏电压(热电偶),毫伏电压范围为:–100mV ~+100mV,主要用于热电偶信号的测量。

TCB铂铑30 铂铑60: 0℃~1820℃对映0~14mVTCT铜-铜镍: -270℃~400℃对映-6.3~21mVTCEEA镍铬-铜镍: -270℃~1000℃对映-10~77mVTCJ铁-铜镍: -210℃~1200℃对映-8.1~69.536mVTCKEU镍铬-镍硅: -270℃~1372℃对映-6.5~55mVTCN镍铬硅-镍硅: -270℃~1300℃对映-4.4~48mVTCR铂铑13-铂热电偶: 0℃~1700℃对映0~21mVTCS铂铑10: -50℃~1770℃对映-0.3~19mVAI_R输入功能:输入信号为电阻(热电阻)信号,可用于热电阻或应变片电阻信号的测量,测量范围为1~500Ω,接线方式为三线制接线。

热电偶和热电阻的作用与区别

热电偶和热电阻的作用与区别

热电偶和热电阻的作用与区别热电偶和热电阻的作用与区别首先热电偶与热电阻在工业温度测控方面是最普通、最常用的,均属于温度测量中的接触式测温。

但两者在原理,接线方式,测温范围都有所区别。

一、原理1、热电偶的测温原理基于热电效应。

将两种不同的导体或半导体连接成闭合回路,当两个接端处的温度不同时,回路中将产生热电势,又称为seeback效应。

回路中产生的热电势有两种:温差电势和接触电势。

1)温差电势是指同一导体的两端因温度不同而产生的电势,不同的导体具有不同的电子密度,所以他们产生的电势也不相同,2)接触电势是指两种不同的导体相接触时,因为他们的电子密度不同所以产生一定的电子扩散,当他们达到一定的平衡后所形成的电势,接触电势的大小取决于两种不同导体的材料性质以及他们接触点的温度。

2、测温原理是基于导体或半导体的电阻值随着温度的变化而变化的特性来进行温度测量的。

二、特点1、热电偶主要特点就是测温范围宽,性能比较稳定,而且结构简单,动态响应好,可以远传4-20mA 电信号,便于自动控制和集中控制。

2、热电阻的其优点也很多,也可以远传电信号,灵敏度高,稳定性强,互换性以及准确性都比较好,但是需要电源激励,不能够瞬时测量温度的变化。

三、接线方式1、热电偶的材料一般都比较贵重,距离较远时,为节省材料费用,降低成本,通常采用补偿导线(补偿性、延长性)传递。

ps:注意型号相配,极性不能接错(热电偶正极连接补偿导线的红色线,而负极则连接剩下的颜色。

),补偿导线温度于热电偶连接端的温度不能超过100℃。

2、热电阻接线方式有两线、三线、四线制接线方式,1)两线制适合不需要精确温度的场合,使用可以预先测量出导线电阻,折合成温度在测量结果中扣除,是一种粗略的补偿方法。

2)三线制是比较常用、比较专业的温度测量,消除导线电阻前提:相同的材质,相同的线径,相同的长度。

3)四线制比较复杂,一般不采用。

四、种类1、热电偶国际规定分为B,R,S,K,N,E,J和T,其中B,R,S属于铂系列的热电偶,铂属于贵重金属,它们又称为贵金属热电偶。

简述热电偶与热电阻的测量原理的异同

简述热电偶与热电阻的测量原理的异同

简述热电偶与热电阻的测量原理的异同热电偶和热电阻是常用的温度测量装置,它们在测量原理上存在一些异同。

本文将从工作原理、测量范围、精度等方面进行比较,以帮助读者更好地理解热电偶和热电阻的特点和适用场景。

一、工作原理热电偶是利用两种不同金属之间的热电效应来测量温度的。

当两种不同金属连接在一起形成闭合回路时,两个连接点会产生一个电动势,这个电动势与两个连接点的温度差有关。

按照热电效应的特性,热电偶可以分为热电势型和热电流型两种。

热电势型热电偶的工作原理是利用热电势的大小与温度差成正比的特性,通过测量电动势来确定温度。

常用的热电偶有K型、J型、T 型等。

热电流型热电偶的工作原理是利用热电效应产生的电流与温度成正比的特性,通过测量电流来确定温度。

常用的热电偶有R型、S型、B型等。

热电阻是利用金属材料的电阻随温度变化的特性来测量温度的。

当电流通过热电阻时,热电阻的电阻值会随着温度的升高而增大,利用这个特性可以测量温度。

常用的热电阻有铂电阻(PT100、PT1000)、镍电阻等。

二、测量范围热电偶和热电阻在测量范围上存在一定的差异。

热电偶的测量范围相对较广,可以覆盖从低温到高温的范围。

不同类型的热电偶有不同的测量范围,一般可以达到-200℃至1800℃。

热电阻的测量范围相对较窄,一般在-200℃至600℃之间。

超出这个范围后,热电阻的线性关系会变差,影响测量精度。

三、精度热电偶和热电阻在测量精度上也存在一定的差异。

热电偶的精度相对较高,可以达到0.1℃。

但是由于热电偶的工作原理中涉及到两种不同金属之间的热电效应,所以在温度变化时容易受到外界干扰,影响测量精度。

热电阻的精度相对较低,一般为0.2℃到0.5℃。

但是热电阻的线性关系较好,对外界干扰的影响较小,所以在稳定的环境中可以获得较高的测量精度。

总结:热电偶和热电阻是常用的温度测量装置,它们的测量原理和特点存在一些异同。

热电偶利用两种不同金属之间的热电效应来测量温度,具有较高的测量精度和较广的测量范围;而热电阻利用金属材料的电阻随温度变化的特性来测量温度,具有较好的线性关系和较小的受干扰程度。

热电偶和热电阻的知识

热电偶和热电阻的知识

热电偶温度计热电现象和关于热电偶的基本定律热电偶温度计由热电偶、电测仪表和连接导线组成。

它被广泛用于测量-200~1300℃范围内的温度。

在特殊情况下,可测至2800℃的高温或4K 的低温。

热电偶能把温度信号转变为电信号,便于信号的远传和多点切换测量,具有结构简单、制作方便、准确度高、热惯性小等优点。

1. 热电偶测温原理由两种不同的导体或半导体A 或B 组成的闭合回路,如果使两个接点处于不同的温度t 0、t ,则回路中就有电动势出现,称为热电势,这一现象称为热电效应。

热电势是温度t 0和t 的函数,恒定接点温度t 0,则热电势是温度t 的单值函数,只要测得热电势的大小,便可得到被测温度t 。

热电势由温差电势与接触电势组成。

温差电势:是指一根导体上因两端温度不同而产生的热电动势。

同一导体两端温度不同时,高温端(测量端、工作端、热端)电子的运动速度大于低温端电子(参比端、自由端、冷端)的运动速度,单位时间内高温端失电子带正电,低温端得电子带负电,高、低温端之间形成一个从高温端指向低温端的静电场。

该电场阻止高温端电子向低温端的动;加大低温端电子向高温端的运动速度,当运动达到动态平衡时,导体两端产生相应的电位差,该电位差称为温差电势。

温差电势的方向:由低温端指向高温端。

温差电势的大小:,()dt dtt N d N e k t t e t tt t )(1,00⎰=,式中k 为波尔兹曼常数;e 为电子电量t N 为导体内的电子密度,是温度的函数;t 、to 是导体两端的温度。

可见温差电势的大小与导体的性质和导体两端温度有关,而与导体长度、截面大小以及沿导体长度方向的温度分布无关。

热端 测量端 工作端冷端自由端参比端热电极B(e AB ()0t AB (,t t e (0,t t e B热电偶回路的总电势接触电势:是在两种不同材料A 和B 的接触点产生的。

A 、B 材料有不同的电子密度,设导体A 的电子密度n A 大于导体B 的电子密度n B ,则从A 扩散到B 的电子数要比从B 扩散到A 的多,A 因失电子而带正电荷,B 因得电子而带负电荷,于是在A 、B 的接触面上便形成一从A 到B 的静电场。

热电阻和热电偶的测温原理

热电阻和热电偶的测温原理

热电阻和热电偶的测温原理热电阻和热电偶是广泛应用于测量温度的两种传感器,这两种传感器都能够通过电阻或电压的变化来反映被测物体的温度变化。

下文将分步骤阐述热电阻和热电偶的测温原理。

一、热电阻的测温原理热电阻通过材料的电阻率随温度变化来测量温度。

一般情况下,热电阻传感器使用的材料是铂金(PT100)、镍铬合金(KTY81)和铜等导体,这些材料在不同温度下的电阻值都是不同的。

因此,在通过不同温度下的电阻值来确定温度之前,需要先获得不同温度下的电阻值。

接下来,我们将热电阻传感器固定在需要测量温度的物体上,并通过电路让电流经过该传感器。

当电流经过传感器时,电阻会产生一定的压降。

通过测量这一压降的大小,我们就能得到热电阻的电阻值。

在获得不同温度下的电阻值后,我们可以建立起电阻值和温度之间的对应关系,这样当需要测量温度时,只需要通过测量热电阻的电阻值,就可以得到相应温度值。

二、热电偶的测温原理热电偶通过两个不同的导体形成热电偶电路,当热电偶的两个端口之间存在温度差异时,就会产生电动势。

一个端口连接到被测温度的物体上,我们称其为热电偶的测量端,另一个端口连接到需要监测温度的电子设备上,我们称其为热电偶的接口端。

热电偶分为不同类型,每个类型都有其对应的热电势和温度之间的关系,这些关系通过国际标准进行规定。

常用的热电偶有铜-铜镍、铬-铝-铁等不同组合的导体。

当热电偶与被测物体相连接时,两端口之间的电动势会随着温度的变化而变化。

传感器的接口端会将这一变化的电动势转化为电压信号,以数字信号的形式反馈给接收电气信号的电子设备,从而获得相应温度值。

总之,热电阻和热电偶都能够通过改变电阻或电动势来反映被测物体的温度变化。

这两种类型的传感器在不同的应用场景中具有各自的优势,我们需要选择合适的传感器来获得高精度的温度数据。

热电阻与热电偶

热电阻与热电偶

热电阻与热电偶热电阻和热电偶是常见的温度传感器,它们在工业控制系统和实验室中广泛应用。

它们都能够将温度变化转化为电信号,但原理和特性有所不同。

一、热电阻热电阻是一种利用材料电阻随温度变化的特性来测量温度的传感器。

常见的热电阻材料有铂、镍、铜等。

其中,铂热电阻是最常用的一种。

铂热电阻的优点是抗腐蚀性好、线性度高、稳定性好等。

它的工作原理是根据热电阻材料的电阻随温度的变化规律,通过测量电阻值来推算温度。

热电阻的测量精度较高,通常可以达到0.1℃。

但它的响应速度较慢,适用于温度变化较缓慢的场合。

在工业控制系统中,热电阻常被用于测量液体、气体等介质的温度。

二、热电偶热电偶是利用两种不同材料的导电性能差异产生的热电效应来测量温度的传感器。

常见的热电偶材料有铜/常铜、铜/镍等。

工作原理是当两种不同材料的接触点温度不同时,会产生热电势差,通过测量热电势差来推算温度。

热电偶具有响应速度快、测量范围广的特点。

它可以测量极高和极低温度,适用于温度变化较快的场合。

在工业控制系统中,热电偶常被用于测量高温炉、燃烧器等的温度。

三、热电阻与热电偶的比较热电阻和热电偶都是常见的温度传感器,它们各有优缺点,应根据具体的应用场景选择合适的传感器。

热电阻的优点是测量精度高、稳定性好,适用于温度变化缓慢的场合。

但它的响应速度较慢,不适用于温度变化较快的场合。

热电偶的优点是响应速度快、测量范围广,适用于温度变化较快的场合。

但它的测量精度相对较低,受到环境干扰较大。

在选择热电阻或热电偶时,还需考虑以下因素:测量范围、测量精度、响应速度、使用环境等。

根据具体需求,选择适合的传感器。

总结:热电阻和热电偶是常见的温度传感器,它们在工业控制系统和实验室中被广泛应用。

热电阻利用材料电阻随温度变化的特性来测量温度,热电偶利用两种不同材料的导电性能差异产生的热电效应来测量温度。

热电阻测量精度高,稳定性好,适用于温度变化缓慢的场合;热电偶响应速度快,测量范围广,适用于温度变化较快的场合。

热电偶和热电阻的区别详解

热电偶和热电阻的区别详解

在工业自动化领域中,测量温度是一项非常重要的任务。

而热电偶和热电阻是常用的两种测温元件,它们的工作原理和性质有所不同,因此在具体使用时需要根据实际需求进行选择。

下面将对热电偶和热电阻进行详细介绍,并比较它们之间的区别。

一、热电阻和热电偶的测量原理。

1、热电偶的测量原理。

热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。

热电偶由两根不同导线(热电极)组成,它们的一端是互相焊接的,形成热电偶的测量端(也称工作端)。

将它插入待测温度的介质中;而热电偶的另一端(参比端或自由端)则与显示仪表相连。

如果热电偶的测量端与参比端存在温度差,则显示仪表将指出热电偶产生的热电动势。

2、热电阻的测量原理热电阻是利用金属导体或半导体有温度变化时本身电阻也随着发生变化的特性来测量温度的,热电阻的受热部分(感温元件)是用细金属丝均匀地绕在绝缘材料作成的骨架上或通过激光溅射工艺在基片形成。

当被测介质有温度梯度时,则所测得的温度是感温元件所在范围内介质层的平均温度。

二、热电偶和热电阻的二次侧测量表性能比较。

1,热电偶测量温度的基本原理是热电效应。

二次表是一个检伏计或为了提高精度时使用电子电位差计等。

2,电阻是基于导体和半导体的电阻值随温度而变化的特性而工作的,二次表是一个不平衡电桥。

三、热电偶和热电阻的基本线制。

1,由热电偶测温原理可知,只有在其冷端温度恒定时,被测温度才与热电势成单值函数关系。

在实际使用中,就用一种热电特性与相应热电偶特性相似的廉价的连接导线(也称为补偿导线),使热电偶冷端引伸到温度相对恒定的地方(最好为0度),如用铜--康铜做补偿导线来引申镍铬---镍硅热电阻。

因此,热电偶到二次表延长线是两根。

2,热电阻与二次表之间是用铜导线连接的,为了减小环境变化引起的测量误差,一般均采用三线制接法,其中有两根导线将热电阻串联于相邻的两个桥臂上,另一根导线是引来电源。

如何区分热电偶和热电阻热电阻与热电偶的区别.

如何区分热电偶和热电阻热电阻与热电偶的区别.

如何区分热电偶和热电阻?热电阻与热电偶的区别首先,介绍一下热电偶,热电偶是温度测量中应用最广泛的温度器件,他的主要特点就是测量范围宽,性能比较稳定,同时结构简单,动态响应好,更能够远传4-20mA电信号,便于自动控制和集中控制。

热电偶的测温原理是基于热电效应。

将两种不同的导体或半导体连接成闭合回路,当两个接点处的温度不同时,回路中将产生热电势,这种现象称为热电效应,又称为塞贝克效应。

闭合回路中产生的热电势有两种电势组成;温差电势和接触电势。

温差电势是指同一导体的两端因温度不同而产生的电势,不同的导体具有不同的电子密度,所以他们产生的电势也不相同,而接触电势顾名思义就是指两种不同的导体相接触时,因为他们的电子密度不同所以产生一定的电子扩散,当他们达到一定的平衡后所形成的电势,接触电势的大小取决于两种不同导体的材料性质以及他们接触点的温度。

目前国际上应用的热电偶具有一个标准规范,国际上规定热电偶分为八个不同的分度,分别为B,R,S,K,N,E,J和T,其测量温度的最低可测零下270摄氏度,最高可达1800摄氏度,其中B,R,S属于铂系列的热电偶,由于铂属于贵重金属,所以他们又被称为贵金属热电偶而剩下的几个则称为廉价金属热电偶。

热电偶的结构有两种,普通型和铠装型。

普通性热电偶一般由热电极,绝缘管,保护套管和接线盒等部分组成,而铠装型热电偶则是将热电偶丝,绝缘材料和金属保护套管三者组合装配后,经过拉伸加工而成的一种坚实的组合体。

但是热电偶的电信号却需要一种特殊的导线来进行传递,这种导线我们称为补偿导线。

不同的热电偶需要不同的补偿导线,其主要作用就是与热电偶连接,使热电偶的参比端远离电源,从而使参比端温度稳定。

补偿导线又分为补偿型和延长型两种,延长导线的化学成分与被补偿的热电偶相同,但是实际中,延长型的导线也并不是用和热电偶相同材质的金属,一般采用和热电偶具有相同电子密度的导线代替。

补偿导线的与热电偶的连线一般都是很明了,热电偶的正极连接补偿导线的红色线,而负极则连接剩下的颜色。

热电偶和热电阻热敏电阻的区别

热电偶和热电阻热敏电阻的区别

热电偶和热电阻、热敏电阻的区别热电偶热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。

其优点是:①测量精度高。

因热电偶直接与被测对象接触,不受中间介质的影响。

②测量范围广。

常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。

③构造简单,使用方便。

热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。

1.热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图2-1-1所示。

当导体A 和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。

热电偶就是利用这一效应来工作的。

2.热电偶的种类及结构形成(1)热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。

所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。

非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。

标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。

(2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:①组成热电偶的两个热电极的焊接必须牢固;②两个热电极彼此之间应很好地绝缘,以防短路;③补偿导线与热电偶自由端的连接要方便可靠;④保护套管应能保证热电极与有害介质充分隔离。

3.热电偶冷端的温度补偿由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。

热电阻与热电偶的区别

热电阻与热电偶的区别

热电阻与热电偶的区别1、工作原理和结构的的区别①工作原理的区别热电偶是由两根不同的导体或半导体材料焊接或绞接而成,分为热端和自由端,热端插入需要测温的设备中,冷端置于设备的外面,如果两端所处的温度不同则在热电偶回路中便会产生热电势,由于热电势是被测温度的函数,测得电动势的数值后,便可换算成温度值。

热电阻是根据导体的电阻值会随着温度的变化而变化的性质,将电阻的变化转换为电信号,从而进行温度测量的。

②结构的区别普通的热电偶通常由热电极、绝缘材料和电偶保护套管以及接线盒等构成。

热电偶一般采用带孔的耐高温陶瓷管作为绝缘材料,热电极从耐高温陶瓷管孔中引出。

保护套管材料需具备耐腐蚀、耐高温、机械强度高、气密性好、热导率高等性能主要有金属、非金属、金属陶瓷3类,目前最常用保护套管是1Cr18Ni9Ti不锈钢的,适宜在900℃以下的工况条件。

热电阻最主要的部分是电阻体加上绝缘套管、保护套管以及接线盒等部件,将电阻丝缠绕在石英、陶瓷或塑料等绝缘骨架上,再套上保护套管,并在热电阻丝与套管中间填充导热材料。

2、热电偶的分类及其特点标准热电偶是指国家标准中规定了热电偶热电势与温度的关系,有统一标准分度表,允许存在一定误差的热电偶。

非标准热电偶一般没有统一的分度表,主要用于测量一些特殊的场合,使用范围和数量级比标准热电偶要小,组成热电偶的热电极必须牢固的焊接在一起,两个热电极之间应有比较好的绝缘,防止发生短路;补偿导线与热电偶自由端的连接要牢固可靠,保护套管要保证热电极与外界的介质充分隔离,以保证热电偶可靠、稳定地工作。

3、热电阻的分类及其特点①根据热电阻的组成结构分类普通型热电阻:根据热电阻的测温原理可知,被测量的温度变化是直接通过电阻值的变化来反映的,所以,热电阻引出的各种导线电阻的变化会给温度测量带来不良影响。

需要消除引线电阻带来的影响,通常热电阻采用三线制或四线制进行补偿。

铠装型热电阻:与铠装热电偶类似,同样由感温元件、引线、绝缘材料和不锈钢套管组合而成,外径一般在φ2-φ8mm之间,相比普通型热电阻具有体积小、易安装、抗冲击、能弯曲并且使用寿命也更长。

热电偶和热电阻热敏电阻的区别

热电偶和热电阻热敏电阻的区别

热电偶和热‎电阻、热敏电阻的‎区别热电偶热电偶是工‎业上最常用‎的温度检测‎元件之一,热电偶工作‎原理是基于‎赛贝克(seeba‎ck)效应,即两种不同‎成分的导体‎两端连接成‎回路,如两连接端‎温度不同,则在回路内‎产生热电流‎的物理现象‎。

其优点是:①测量精度高‎。

因热电偶直‎接与被测对‎象接触,不受中间介‎质的影响。

②测量范围广‎。

常用的热电‎偶从-50~+1600℃均可边续测‎量,某些特殊热‎电偶最低可‎测到-269℃(如金铁镍铬‎),最高可达+2800℃(如钨-铼)。

③构造简单,使用方便。

热电偶通常‎是由两种不‎同的金属丝‎组成,而且不受大‎小和开头的‎限制,外有保护套‎管,用起来非常‎方便。

1.热电偶测温‎基本原理将两种不同‎材料的导体‎或半导体A‎和B焊接起‎来,构成一个闭‎合回路,如图2-1-1所示。

当导体A和‎B的两个执‎着点1和2‎之间存在温‎差时,两者之间便‎产生电动势‎,因而在回路‎中形成一个‎大小的电流‎,这种现象称‎为热电效应‎。

热电偶就是‎利用这一效‎应来工作的‎。

2.热电偶的种‎类及结构形‎成(1)热电偶的种‎类常用热电偶‎可分为标准‎热电偶和非‎标准热电偶‎两大类。

所调用标准‎热电偶是指‎国家标准规‎定了其热电‎势与温度的‎关系、允许误差、并有统一的‎标准分度表‎的热电偶,它有与其配‎套的显示仪‎表可供选用‎。

非标准化热‎电偶在使用‎范围或数量‎级上均不及‎标准化热电‎偶,一般也没有‎统一的分度‎表,主要用于某‎些特殊场合‎的测量。

标准化热电‎偶我国从1‎988年1‎月1日起,热电偶和热‎电阻全部按‎IEC国际‎标准生产,并指定S、B、E、K、R、J、T七种标准‎化热电偶为‎我国统一设‎计型热电偶‎。

(2)热电偶的结‎构形式为了‎保证热电偶‎可靠、稳定地工作‎,对它的结构‎要求如下:①组成热电偶‎的两个热电‎极的焊接必‎须牢固;②两个热电极‎彼此之间应‎很好地绝缘‎,以防短路;③补偿导线与‎热电偶自由‎端的连接要‎方便可靠;④保护套管应‎能保证热电‎极与有害介‎质充分隔离‎。

热电偶与热电阻

热电偶与热电阻

电偶一般用于中高温的测量,而热电阻主要是低温的测量。

采用何种,具体看看下面的介绍:热电偶热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。

其优点是:①测量精度高。

因热电偶直接与被测对象接触,不受中间介质的影响。

②测量范围广。

常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。

③构造简单,使用方便。

热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。

1.热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。

当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。

热电偶就是利用这一效应来工作的。

2.热电偶的种类及结构形成(1)热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。

所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。

非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。

标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。

(2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:①组成热电偶的两个热电极的焊接必须牢固;②两个热电极彼此之间应很好地绝缘,以防短路;③补偿导线与热电偶自由端的连接要方便可靠;④保护套管应能保证热电极与有害介质充分隔离。

3.热电偶冷端的温度补偿由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。

热电偶与热电阻测量原理的异同

热电偶与热电阻测量原理的异同

热电偶与热电阻测量原理的异同嘿,朋友们!今天咱来聊聊热电偶和热电阻这俩测量温度的好伙计,看看它们测量原理的异同之处。

先来说说热电偶吧。

这玩意儿就像是个对温度特别敏感的小精灵。

它是利用不同金属之间的热电效应来工作的。

就好比两个人,一个对热特别敏感,一个对冷特别敏感,他俩一组合,就能感知到温度的变化啦。

热电偶的优点可不少呢,它能测量特别高的温度,而且反应速度那叫一个快呀,就像短跑运动员一样迅速。

再看看热电阻呢,它就像是个慢性子,但也有自己的厉害之处。

热电阻是根据导体电阻随温度变化的特性来测量的。

想象一下,一根金属丝,温度一变,它的电阻也跟着变,多神奇呀!热电阻测量的精度通常比较高哦,而且稳定性也不错,就像一位可靠的老朋友。

那它们的不同到底在哪儿呢?热电偶可以测量很高很高的温度,这可是热电阻比不了的呀。

热电阻呢,在中低温测量时更拿手,而且测量结果更精确稳定。

这不就像是一个擅长短跑,一个擅长长跑嘛。

还有啊,热电偶的结构相对简单些,安装起来也比较方便,就像搭积木一样容易。

但热电阻呢,有时候就需要更精心的呵护和安装啦。

它们在应用场景上也各有不同哦。

热电偶常常出现在那些高温的工业环境中,比如炼钢炉旁边,感受着炽热的温度。

而热电阻呢,则更多地在一些对精度要求高的地方发挥作用,像是实验室里呀。

咱在实际使用的时候可得根据需求来选择呀。

要是需要测量特别高的温度,那肯定首选热电偶啦。

但要是对精度要求很高,那热电阻就是不二之选啦。

总之呢,热电偶和热电阻这俩家伙各有千秋,都是我们测量温度的好帮手。

它们就像是温度世界里的两个好伙伴,各自发挥着自己的优势,为我们的生活和工作提供着重要的数据支持。

我们可得好好了解它们,才能让它们更好地为我们服务呀!。

热电阻与热电偶的区别

热电阻与热电偶的区别

热电阻与热电偶的区别
热电阻与热电偶的区别
区别一:测温原理不同
热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。

它的主要特点是测量精度高,性能稳定。

其中铂热电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。

热电偶将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。

当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。


区别二:热电偶与热电阻分类不同
常见的热电阻材质大多是单一金属,目前应用最广泛的热电阻材料是铂和铜:铂电阻精度高,稳定性好,具有一定的非线性,温度越高电阻变化率越小;铜电阻在测温范围内电阻值和温度呈线性关系,温度线数大,超过150易被氧化。

热电阻的分度号有Cu50,Pt100,Pt1000等等,前面的字母是指热电阻的材质,而后面的数字则是该热电阻的电阻值。

热电偶和热电阻的相同点和不同点

热电偶和热电阻的相同点和不同点

热电偶和热电阻的相同点和不同点热电偶和热电阻是两种常见的温度传感器,它们都能够将温度转化为电信号输出。

然而,它们在工作原理、适用范围、精度等方面存在着一些不同点。

下面将详细介绍热电偶和热电阻的相同点和不同点。

一、相同点1. 原理相同热电偶和热电阻的工作原理都是基于热电效应。

热电效应是指当两种不同的金属或半导体材料形成闭合回路时,当两端温度不同时,会产生电势差。

这种现象被称为“热电效应”。

2. 可以测量温度热电偶和热电阻都能够测量物体的温度。

它们将温度转化为电信号输出,可以通过电路进行处理和显示。

3. 适用于高温环境热电偶和热电阻都适用于高温环境。

热电偶可以测量高达1700℃的温度,而热电阻可以测量高达1000℃的温度。

二、不同点1. 工作原理不同热电偶是利用两种不同材料的热电效应产生电势差,从而测量温度。

而热电阻则是利用电阻随温度变化的特性,通过测量电阻值来计算温度。

2. 精度不同热电偶的精度较高,可以达到0.1℃,而热电阻的精度一般为0.2℃~0.5℃。

因此,在对温度精度要求较高的场合,热电偶更为适用。

3. 适用范围不同热电偶适用于广泛的温度范围,包括高温和低温。

而热电阻主要适用于中低温度范围,一般不超过1000℃。

4. 线性度不同热电偶的线性度较好,在一定温度范围内的输出电压与温度成线性关系。

而热电阻的线性度一般较差,需要进行线性校正。

5. 响应速度不同热电偶的响应速度较快,能够实时测量温度变化。

而热电阻的响应速度较慢,需要较长的时间来达到稳定状态。

总之,热电偶和热电阻都是常见的温度传感器,它们在工作原理、精度、适用范围、线性度和响应速度等方面存在着一些不同点。

在选择温度传感器时,需要根据具体的应用场合和要求来选择合适的传感器。

热电偶和热电阻的相同点和不同点

热电偶和热电阻的相同点和不同点

热电偶和热电阻的相同点和不同点热电偶和热电阻是两种常见的温度测量传感器,它们的原理和特点有相同点,也有不同点。

下面将针对这两种传感器,从功能、原理、特点、优缺点等方面进行比较。

相同点:1. 原理相似:热电偶和热电阻都是基于热电效应实现温度测量的。

热电偶是通过不同材质之间的温差产生电势差来测量温度的,而热电阻则是通过电阻随温度变化呈线性关系来测量温度的。

2. 测温范围相似:热电偶和热电阻都可用于测量宽广的温度范围,从超低温度到高温度都可以。

3. 都有工业化应用:两种传感器都有广泛的工业应用,例如汽车、化工、石油、冶金等领域。

不同点:1. 测量精度:热电阻的测量精度比热电偶更高,热电阻的误差通常在±0.1度左右,而热电偶的误差在±1度左右。

因此,在要求高精度测量的场合,热电阻更为优越。

2. 响应速度:热电偶响应速度快,随温度变化的速度也比较快,而热电阻的响应速度则较慢,随温度变化的速度也较慢。

因此,对于需要测量瞬时温度变化的场合,热电偶更适用。

3. 抗干扰性能:热电阻对电磁场干扰比热电偶更弱,具有较好的抗干扰性能,而热电偶对电磁场干扰比较敏感,容易受到外界干扰的影响。

因此,在工业领域中,热电阻通常被用来测量电磁干扰较强的场合。

4. 延伸长度:热电偶可实现一定长度的延伸,可以满足一些需要长距离测量的要求。

而热电阻由于电阻值的变化很小,一般只适用于长度短的测量。

总的来说,热电偶适用于测量范围宽、要求快速响应、价格实惠的场合;而热电阻适用于需要高精度、低干扰、低功耗的场合。

两种传感器各有优缺点,应根据实际应用场合需求选择合适的传感器。

热电偶温度计和热电阻温度计的异同

热电偶温度计和热电阻温度计的异同

热电偶温度计和热电阻温度计的异同
热电偶温度计和热电阻温度计是两种常见的温度测量仪器,它们在温度测量领域有着广泛的应用。

虽然它们都是基于热电效应原理工作的,但是在测量原理、结构和应用上存在着一些区别。

从测量原理上来看,热电偶温度计利用热电效应原理进行温度测量。

热电偶是由两种不同材料的导线焊接在一起,当温度发生变化时,导线之间会产生温度差,进而产生电动势。

通过测量电动势的大小,可以推算出温度的变化。

而热电阻温度计则是利用热敏电阻的温度特性进行测量。

热电阻是一种随温度变化而改变电阻值的材料,当温度发生变化时,热电阻的电阻值也会相应地发生变化。

通过测量热电阻的电阻值,可以得到温度的变化情况。

从结构上来看,热电偶温度计由两根不同材料的导线焊接在一起,形成一个闭合回路。

其中一根导线称为测量导线,另一根导线称为参比导线。

测量导线的一端用于测量被测温度,另一端与参比导线焊接在一起。

而热电阻温度计则是由一个热敏电阻和连接线组成。

热敏电阻的一端用于测量被测温度,另一端与连接线焊接在一起。

从应用上来看,热电偶温度计具有测量范围广、响应速度快、结构简单、稳定可靠等优点,因此在工业自动化控制、航空航天、石油化工等领域有着广泛的应用。

而热电阻温度计具有测量精度高、线
性度好、稳定性强等优点,因此在实验室、医疗器械、食品加工等领域也有着重要的应用。

热电偶温度计和热电阻温度计在温度测量方面具有一些相似之处,都是基于热电效应原理工作的。

然而,它们在测量原理、结构和应用上存在一些区别。

了解它们的特点和应用范围,可以根据实际需求选择适合的温度测量仪器。

仪表中热电偶与热电阻的作用和区别

仪表中热电偶与热电阻的作用和区别

仪表中热电偶与热电阻的作用和区别摘要:在制药行业和化工行业,温度属于常见的热动参数,必须做好优化控制。

温度是伴随物料化学或物理变化的常规条件,热电偶与热电阻在温度测量的期间,作用基本相同,然而原理、特点和适用环境不同。

此次研究主要是探讨分析仪表中热电偶与热电阻的作用和区别。

关键词:仪表;热电偶;热电阻;作用;区别热电偶和热电阻在工业温度测控中属于最常见的接触式测温,然而两者在工作原理、接线方式与测温范围中均存在显著差别,具体分析如下:1、热电偶与热电阻的区别与特点1.1热电偶与热电阻的区别第一,工作原理区别:热电偶测温原理为热电效应,将两种不同导体和半导体连接为闭合回路。

两个接端位置温度不同,回路中会产生热电势,又被称为“seeback”效应。

回路中产生的热电势包含接触电势和温差电势。

其中,接触电势是两种不同的导体接触时,由于电子密度不同,会产生电子扩散现象,当达到平衡后形成建立电势,接触电势大小取决于不同导体的材料性质与接触点温度。

测温原理是基于导体或半导体的电阻而言,随着温度的持续变化,实现温度测量。

第二,热电偶与热电阻结构区别:普通型热电偶组成包括电偶保护套管、绝缘材料、热电极与接线盒。

热电偶多采用带孔、耐高温陶瓷管为绝缘材料,从耐高温陶瓷管孔内引出热电极。

保护套管的材料应当具备气密性良好、机械强度高、耐高温、耐腐蚀与热导率高性能,主要涉及到金属、非金属与金属陶瓷。

当前常用的保护套管为不锈钢,可以应用于900℃以下工况。

热电阻部分主要为电阻体、绝缘套管、保护套管与接线盒,在石英、陶瓷和塑料等绝缘骨架上,缠绕电阻丝,之后套上保护套管,将导热材料填充在套管和热电阻丝之间。

第三,材料区别。

热电阻为金属材质,温度敏感变化比较明显。

热电偶为双金属材料,采用不同的金属材料。

因受到材料温度变化影响,因此不同金属丝两端会产生电势差。

第四,两种传感器检测的温度范围不同,热电阻多应用于0-400℃温度范围内测定;热电偶可以应用到0-1000℃温度范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热电阻与热电偶的测量原理及区别
热电偶是工业上最常用的温度检测元件之一。

其优点是:
①测量精度高。

因热电偶直接与被测对象接触,不受中间介质的影响。

②测量范围广。

常用的热电偶从-50——+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。

③构造简单,使用方便。

热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。

1.热电偶测温基本原理
将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。

当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。

热电偶就是利用这一效应来工作的。

2.热电偶的种类及结构形成
(1)热电偶的种类
常用热电偶可分为标准热电偶和非标准热电偶两大类。

所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。

非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。

标准化热电偶
我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。

(2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:
①组成热电偶的两个热电极的焊接必须牢固;
②两个热电极彼此之间应很好地绝缘,以防短路;
③补偿导线与热电偶自由端的连接要方便可靠;
④保护套管应能保证热电极与有害介质充分隔离。

3.热电偶冷端的温度补偿
由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端
(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。

必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。

因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。

在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。

温度测量仪表的分类
温度测量仪表按测温方式可分为接触式和非接触式两大类。

通常来说接触式测温仪表测温仪表比较简单、可靠,测量精度较高;但因测温元件与被测介质需要进行充分的热交金刚,帮需要一定的时间才能达到热平衡,所以存在测温的延迟现象,同时受耐高温材料的限制,不能应用于很高的温度测量。

非接触式仪表测温是通过热辐射原理来测量温度的,测温元件不需与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体的发射率、测量距离、烟尘和水气等外界因素的影响,其测量误差较大。

热电阻的应用原理
热电阻是中低温区最常用的一种温度检测器。

它的主要特点是测量精度高,性能稳定。

其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。

1.热电阻测温原理及材料
热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。

热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用甸、镍、锰和铑等材料制造热电阻。

2.热电阻的结构
(1)精通型热电阻
从热电阻的测温原理可知,被测温度的变化是直接通过热电阻阻值的变化来测量的,因此,热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。

为消除引线电阻的影响同般采用三线制或四线制,
(2)铠装热电阻
铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体它的外径一般为φ2——φ8mm,最小可达φmm。

与普通型热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,
测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。

(3)端面热电阻
端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面,其结构如图2-1-8所示。

它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。

(4)隔爆型热电阻
隔爆型热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。

隔爆型热电阻可用于Bla——B3c级区内具有爆炸危险场所的温度测量。

3.热电阻测温系统的组成
热电阻测温系统一般由热电阻、连接导线和显示仪表等组成。

必须注意以下两点:①热电阻和显示仪表的分度号必须一致
②为了消除连接导线电阻变化的影响,必须采用三线制接法
(2)铠装热电阻
铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,它的外径一般为φ2——φ8mm,最小可达φmm。

与普通型热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。

(3)端面热电阻
端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面,它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。

(4)隔爆型热电阻隔爆型热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影电阻体的断路修理必然要改变电阻丝的长短而影响电阻值,为此更换新的电阻体为好,若采用焊接修理,焊后要校验合格后才能使用。

相关文档
最新文档