第二章 简单线性回归模型练习题

合集下载

线性模型练习题(含答案)

线性模型练习题(含答案)

线性模型练习题(含答案)练题一设有线性回归模型:$ y = \beta_0 + \beta_1x_1 + \beta_2x_2 + \beta_3x_3 $,其中 $x_1$、$x_2$ 和 $x_3$ 是自变量,$y$ 是因变量。

已知模型的参数估计值如下:$ \hat{\beta}_0 = 2.5 $$ \hat{\beta}_1 = 0.8 $$ \hat{\beta}_2 = -1.2 $$ \hat{\beta}_3 = 1.3 $请判断以下哪个自变量与因变量的关系最为显著:A. $x_1$B. $x_2$C. $x_3$D. 无法确定答案:B. $x_2$练题二下面是一个简单的线性回归模型:$ y = 3x_1 + 4x_2 + 2x_3 + 1 $已知模型的参数估计值如下:$ \hat{\beta}_1 = 2.1 $$ \hat{\beta}_2 = 1.8 $$ \hat{\beta}_3 = 0.9 $请根据模型参数估计值计算预测值 $ \hat{y} $,当 $x_1 = 2$,$x_2 = 3$,$x_3 = 1$ 时的结果。

答案:$ \hat{y} = 3(2) + 4(3) + 2(1) + 1 = 23 $练题三某研究人员运用线性回归模型分析了一个因变量 $y$ 和四个自变量 $x_1$、$x_2$、$x_3$ 和 $x_4$ 的关系,得到模型方程如下:$ y = 2.6x_1 + 1.9x_2 - 1.4x_3 + 0.5x_4 - 1 $已知 $x_1 = 3$,$x_2 = 2$,$x_3 = 4$,$x_4 = 1$,请计算对应的预测值 $ \hat{y} $。

答案:$ \hat{y} = 2.6(3) + 1.9(2) - 1.4(4) + 0.5(1) - 1 = 2.9 $练题四以下是一个多元线性回归模型的参数估计值摘录:$ \hat{\beta}_0 = 1.2 $$ \hat{\beta}_1 = -0.8 $$ \hat{\beta}_2 = 0.5 $$ \hat{\beta}_3 = 1.0 $$ \hat{\beta}_4 = 0.3 $$ \hat{\beta}_5 = -0.6 $请写出该线性回归模型的方程。

南财计量经济学答案第二章 一元线性回归模型

南财计量经济学答案第二章 一元线性回归模型

五、计算分析题 1.解:(1)收入、年龄、家庭状况、政府的相关政 策等也是影响生育率的重要的因素,在上述简单 回归模型中,它们被包含在了随机扰动项之中。 有些因素可能与受教育水平相关,如收入水平与 教育水平往往呈正相关、年龄大小与教育水平呈 负相关等。 (2)当归结在随机扰动项中的重要影响因素与模 型中的教育水平educ相关时,上述回归模型不能 够揭示教育对生育率在其他条件不变下的影响, 因为这时出现解释变量与随机扰动项相关的情形, 基本假设3不满足。
ˆ ei2 回归估计的标准误差:
(n 2) 58.3539 (12 2) 2.4157
(3) 对进行显著水平为5%的显著性检验
t
*
^
ˆ 2 2
^
ˆ) SE ( 2
ˆ

ˆ 2
ˆ) SE ( 2

^
~ t (n 2)
ˆ ) SE ( 2
4、解: (1)这是一个横截面序列回归。 (2)截距2.6911表示咖啡零售价为每磅0美元时, 每天每人平均消费量为2.6911杯,这个数字没有 经济意义;斜率-0.4795表示咖啡零售价与消费量 负相关,价格上升1美元/杯,则平均每天每人消 费量减少0.4795杯; (3)不能; (4)不能;在同一条需求曲线上不同点的价格弹性 不同,若要求出,须给出具体的值及与之对应的 值。
2 i

334229.09 0.7863 425053.73
ˆ Y ˆ X 549.8 0.7863 647.88 66.2872 1 2
ˆ 66.2872 0.7863 X 估计结果为: Y i i 说明该百货公司销售收入每增加1元,平均说来销售成本将增 加0.7863元。 (2)计算可决系数和回归估计的标准误差 2 ˆ x )2 ˆ 2 x2 ˆ y ( i 可决系数为:R 2 i 2 i 2

(完整版)第二章(简单线性回归模型)2-2答案

(完整版)第二章(简单线性回归模型)2-2答案

2.2 简单线性回归模型参数的估计一、判断题1.使用普通最小二乘法估计模型时,所选择的回归线使得所有观察值的残差和达到最小。

(F)2.随机扰动项和残差项是一回事。

(F )3.在任何情况下OLS 估计量都是待估参数的最优线性无偏估计。

(F )4.满足基本假设条件下,随机误差项i μ服从正态分布,但被解释变量Y 不一定服从正态分 布。

( F )5.如果观测值i X 近似相等,也不会影响回归系数的估计量。

( F )二、单项选择题1.设样本回归模型为i 01i i ˆˆY =X +e ββ+,则普通最小二乘法确定的iˆβ的公式中,错误的是( D )。

A .()()()i i 12i X X Y -Y ˆX X β--∑∑= B .()i i i i 122i i n X Y -X Y ˆn X -X β∑∑∑∑∑=C .i i 122iX Y -nXY ˆX -nX β∑∑= D .i i i i 12x n X Y -X Y ˆβσ∑∑∑= 2.以Y 表示实际观测值,ˆY 表示回归估计值,则普通最小二乘法估计参数的准则是使( D )。

A .i i ˆY Y 0∑(-)=B .2i i ˆY Y 0∑(-)=C .i i ˆY Y ∑(-)=最小D .2i i ˆY Y ∑(-)=最小 3.设Y 表示实际观测值,ˆY 表示OLS 估计回归值,则下列哪项成立( D )。

A .ˆYY = B .ˆY Y = C .ˆY Y = D .ˆY Y = 4.用OLS 估计经典线性模型i 01i i Y X u ββ+=+,则样本回归直线通过点( D )。

A .X Y (,)B . ˆX Y (,)C .ˆX Y (,)D .X Y (,) 5.以Y 表示实际观测值,ˆY表示OLS 估计回归值,则用OLS 得到的样本回归直线i 01iˆˆˆY X ββ+=满足( A )。

A .i i ˆY Y 0∑(-)=B .2i i Y Y 0∑(-)= C . 2i i ˆY Y 0∑(-)= D .2i i ˆY Y 0∑(-)=6.按经典假设,线性回归模型中的解释变量应是非随机变量,且( A )。

(完整版)第二章(简单线性回归模型)2-4答案

(完整版)第二章(简单线性回归模型)2-4答案

2.4 回归系数的区间估计和假设检验一、判断题1.如果零假设H 0:B 2=0,在显著性水平5%下不被拒绝,则认为B 2一定是0。

(F )2.k β的置信度为()α-1的置信区间指真实参数落入该区间的概率是()α-1。

(F)3.假设检验为单侧检验还是双侧检验本质上取决于备择假设的形式。

(F )4.回归系数的显著性检验是用来检验解释变量对被解释变量有无显著解释能力的检验。

(T )二、单项选择题1.对回归模型i i 10i u X Y ++=ββ进行检验时,通常假定i u 服从( C )。

A .()2i 0N σ, B .()2n t - C .()20N σ, D .()n t2.用一组有30个观测值的样本估计模型i i 10i u X Y ++=ββ,在0.05的显著性水平下对1β的显著性作检验,则1β显著地不等于零的条件是其统计量大于( D )。

A .()30t 050. B .()30t 0250.) C .()28t 050. D .()28t 0250. 3.回归模型i i i u X Y ++=10ββ中,关于检验010=β:H 所用的统计量)ˆ(ˆ111βββVar -,下列说法正确的是( D )。

A .服从)(22-n χB .服从)(1-n tC .服从)(12-n χ D .服从)(2-n t 4.用一组有30个观测值的样本估计模型后,在0.05的显著性水平上对的显著性作检验,则显著地不等于零的条件是其统计量大于等于( C ) A. B. C. D. 三、简答题1.当α给定后,回归系数2β的置信区间是什么样的?答:总体方差2σ已知时,置信区间为⎥⎥⎦⎤⎢⎢⎣⎡+-∑∑2i 22i2x z xz σβσβˆ,ˆ;总体方差2σ未知则使用2n e 2i2-=∑σˆ估计2σ:①样本容量充分大时,统计量仍服从正态,则置信区间为t t 01122t t t t y b b x b x u =+++1b t 1b t )30(05.0t )28(025.0t )27(025.0t )28,1(025.0F⎥⎥⎦⎤⎢⎢⎣⎡+-∑∑2i 22i 2x z x z σβσβˆˆ,ˆˆ;②样本容量较小时,统计量服从t 分布,则置信区间为⎥⎥⎦⎤⎢⎢⎣⎡+-∑∑2i 222i22x t xt σβσβααˆˆ,ˆˆ 。

(完整版)第二章(简单线性回归模型)2-5答案

(完整版)第二章(简单线性回归模型)2-5答案

2.5 回归模型预测一、判断题1.fY ˆ是对个别值f Y 的点估计。

(F ) 2.预测区间的宽窄只与样本容量n 有关。

(F )3.fY ˆ对个别值f Y 的预测只受随机扰动项的影响。

(F ) 4.一般情况下,平均值的预测区间比个别值的预测区间宽。

(F )5.用回归模型进行预测时,预测普通情况和极端情况的精度是一样的。

(F )二、单项选择题1.某一特定的X 水平上,总体Y 分布的离散度越大,即2σ越大,则( A )。

A .预测区间越宽,精度越低B .预测区间越宽,预测误差越小C 预测区间越窄,精度越高D .预测区间越窄,预测误差越大2.在缩小参数估计量的置信区间时,我们通常不采用下面的那一项措施(D )。

A.增大样本容量nB. 预测普通情形而非极端情形C.提高模型的拟合优度D.提高样本观测值的分散度三、多项选择题1.计量经济预测的条件是(ABC )A .模型设定的关系式不变B .所估计的参数不变C.解释变量在预测期的取值已作出预测 D .没有对解释变量在预测期的取值进行过预测 E .无条件2.对被解释变量的预测可以分为(ABC )A.被解释变量平均值的点预测B.被解释变量平均值的区间预测C.被解释变量的个别值预测D.解释变量预测期取值的预测四、简答题1.为什么要对被解释变量的平均值以及个别值进行区间预测?答:由于抽样波动的存在,用样本估计出的被解释变量的平均值fY ˆ与总体真实平均值()f f X Y E 之间存在误差,并不总是相等。

而用fY ˆ对个别值f Y 进行预测时,除了上述提到的误差,还受随机扰动项的影响,使得总体真实平均值()f f X Y E 并不等于个别值f Y 。

一般而言,个别值的预测区间比平均值的预测区间更宽。

2.分别写出()f f X Y E 和f Y 的置信度为α-1的预测区间。

答:()f f X Y E :()⎪⎪⎪⎭⎫ ⎝⎛-+±∑22f 2f i x X X n 1t Y σαˆˆ;f Y :()⎪⎪⎪⎭⎫ ⎝⎛-++±∑22f 2f i x X X n 11t Y σαˆˆ。

计量经济学第二章习题(龚志民)fixed

计量经济学第二章习题(龚志民)fixed

第二章 线性回归模型的基本思想与最小二乘法2.1 总体回归函数(PRF )与样本回归函数(SRF )有何区别?答:总体回归函数和样本回归函数的区别是:总体回归函数准确地描述了某种状态下或某个范围内变量之间客观存在的关系,但一般是未知的,而样本回归函数是对总体回归函数的近似,是利用样本数据计算得到的。

2.2 拟合优度的含义是什么?答:拟合优度是回归直线对观测值的拟合程度,它的直观含义是因变量的变动能被自变量解释的比例。

其定义是,21ESS RSS RTSS TSS==-。

2R 的值越接近1,说明回归直线对观测值的拟合程度越好,反之,2R 的值越接近0,说明回归直线对观测值的拟合程度越差。

2.3 误差与残差有何区别?答:残差指真实值与由样本回归函数所得的估计值的差,而误差是真实值与由总体回归函数所得的估计值的差。

2.4 以下是某城市10个市场苹果需求(Y )和价格(X )的数据:Y 99 91 70 79 60 55 70 101 81 67 X 22 24 23 26 27 24 25 2322 26(1)计算22, , y x xy ∑∑∑。

(2)假设12YX u ββ=++,计算系数的OLS 估计量12ˆˆ,ββ。

(3)做出散点图和样本回归线(利用统计软件)。

(4)估计苹果在本均值点(,)X Y 的需求弹性(Y X Y XY X X Y∆∆∆÷=⋅∆)。

答:(1)(2224232627242523+22+26)1024.2X =+++++++=(999170796055701018167)/1077.3Y =+++++++++=22iy ()470.89+187.69+53.29+2.89+299.29+497.29+53.29+561.69+13. 69+106.09=2246.1Y Y =-=∑∑22() 4.84+0.04+1.44+3.24+7.84+0.04+0.64+1.44+4.84+3.24=27.i x X X =-=∑∑()()47.74+2.74+8.76+3.06+48.44+4.46+5.84+28.44+8.14+18.54=176.16iixy X X Y Y =--=∑∑(2)22176.16ˆ==6.3827.6i i i x y x β=∑∑ 12ˆˆ=77.3 6.3824.2=77.096Y X ββ=--- (3)散点图和样本回归线如下图所示:50607080901001102122232425262728X Y(4)224.26.38 1.99777.3Y X Y X X Y X X Y Y β∆∆∆÷=⋅=-⨯=-⨯=-∆ 也就是说当价格变动1时,需求将反向变动1.997。

最新第二章(简单线性回归模型)2-1答案

最新第二章(简单线性回归模型)2-1答案

2.1回归分析与回归函数一、判断题1. 总体回归直线是解释变量取各给定值时被解释变量条件期望的轨迹。

(T )2. 线性回归是指解释变量和被解释变量之间呈现线性关系。

( F )3. 随机变量的条件期望与非条件期望是一回事。

(F )4、总体回归函数给出了对应于每一个自变量的因变量的值。

(F )二、单项选择题1.变量之间的关系可以分为两大类,它们是( A )。

A .函数关系与相关关系B .线性相关关系和非线性相关关系C .正相关关系和负相关关系D .简单相关关系和复杂相关关系2.相关关系是指( D )。

A .变量间的非独立关系B .变量间的因果关系C .变量间的函数关系D .变量间不确定性的依存关系3.进行相关分析时的两个变量( A )。

A .都是随机变量B .都不是随机变量C .一个是随机变量,一个不是随机变量D .随机的或非随机都可以4.回归分析中定义的( B )。

A.解释变量和被解释变量都是随机变量B.解释变量为非随机变量,被解释变量为随机变量C.解释变量和被解释变量都为非随机变量D.解释变量为随机变量,被解释变量为非随机变量5.表示x 和y 之间真实线性关系的总体回归模型是( C )。

A .01ˆˆˆt t Y X ββ=+B .01()t t E Y X ββ=+C .01t t t Y X u ββ=++D .01t t Y X ββ=+6.一元线性样本回归直线可以表示为( C )A .i i X Y u i 10++=ββ B. i 10X )(Y E i ββ+=C. i i e X Y ++=∧∧i 10ββ D. i 10X i Y ββ+=∧7.对于i 01i i ˆˆY =X +e ββ+,以ˆσ表示估计标准误差,r 表示相关系数,则有( D)。

A .ˆ0r=1σ=时,B .ˆ0r=-1σ=时,C .ˆ0r=0σ=时,D .ˆ0r=1r=-1σ=时,或8.相关系数r 的取值范围是( D )。

简单线性回归模型试题及答案

简单线性回归模型试题及答案

第二章 简单线性回归模型、单项选择题:1、回归分析中定义的(B )C 、解释变量和被解释变量都为非随机变量D 解释变量为随机变量,被解释变量为非随机变量 &下面哪一个必定是错误的( C )。

A Y?=30+0.2X i ,以丫 =0.8B 、= —75 + 1.5X i ,気=0.91 C 2.1X i , r XY =0.78 D 、 Y? = —12 —3.5X i , r XY = —0.969、 产量(X ,台)与单位产品成本(Y ,元/台)之间的回归方程为Y? = 356 -1.5X ,这说明(D 。

A 产量每增加一台,单位产品成本增加356元B 、产量每增加一台,单位产品成本减少1.5元C 、产量每增加一台,单位产品成本平均增加 356元D 、产量每增加一台,单位产品成本平均减少1.5元10、 回归模型Yi 八。

「X i , i = 1 ,…,25中,总体方差未知,检验H 。

: r =0时,所用的检验 统计量 —L 服从(D 。

S目A 2(n -2)B 、t (n-1)C 、2(n")D 、t (n-2)11、 对下列模型进行经济意义检验,哪一个模型通常被认为没有实际价值的( B )。

A 、Ci (消费)=500弋.8^ (收入)B 、Qdi (商品需求)=10・0.81[(收入)0.9Pi (价格)CQ si (商品供给)二20(价格)D Y (产出量)765K 役(资本)L :"(劳动)12、进行相关分析时,假定相关的两个变量(A )。

A 、解释变量和被解释变量都是随机变量2、 A 3最小二乘准则是指使( D n Z (Y t -Y ) B 下图中“{”所指的距离是( )达到最小值的原则确定样本回归方程。

nE Y -Y? C 、max Y r -Y Dt -1n、' (Y t -Y?)2t 丄 5、 6、 线性 B 、无偏性 C、有效性 D参数-的估计量?具备有效性是指(B )Var ( ?) =0 B 、Var ( ?)为最小 C 亠0反映由模型中解释变量所解释的那部分离差大小的是 总体平方和 B 、回归平方和 C 、残差平方和7、 (B )。

第二章 简单线性回归模型练习题

第二章  简单线性回归模型练习题

第二章 简单线性回归模型练习题一、术语解释 1 解释变量 2 被解释变量 3 线性回归模型 4 最小二乘法 5 方差分析 6 参数估计 7 控制 8 预测 二、填空1 在经济计量模型中引入反映( )因素影响的随机扰动项t ξ,目的在于使模型更符合( )活动。

2 在经济计量模型中引入随机扰动项的理由可以归纳为如下几条:(1)因为人的行为的( )、社会环境与自然环境的( )决定了经济变量本身的( );(2)建立模型时其他被省略的经济因素的影响都归入了( )中;(3)在模型估计时,( )与归并误差也归入随机扰动项中;(4)由于我们认识的不足,错误的设定了( )与( )之间的数学形式,例如将非线性的函数形式设定为线性的函数形式,由此产生的误差也包含在随机扰动项中了。

3 ( )是因变量离差平方和,它度量因变量的总变动。

就因变量总变动的变异来源看,它由两部分因素所组成。

一个是自变量,另一个是除自变量以外的其他因素。

( )是拟合值的离散程度的度量。

它是由自变量的变化引起的因变量的变化,或称自变量对因变量变化的贡献。

( )是度量实际值与拟合值之间的差异,它是由自变量以外的其他因素所致,它又叫残差或剩余。

4 回归方程中的回归系数是自变量对因变量的( )。

某自变量回归系数β的意义,指的是该自变量变化一个单位引起因变量平均变化( )个单位。

5 模型线性的含义,就变量而言,指的是回归模型中变量的( );就参数而言,指的是回归模型中的参数的( );通常线性回归模型的线性含义是就( )而言的。

6 样本观察值与回归方程理论值之间的偏差,称为( ),我们用残差估计线性模型中的( )。

三、简答题1 在线性回归方程中,“线性”二字如何理解?2 用最小二乘法求线性回归方程系数的意义是什么?3 一元线性回归方程的基本假设条件是什么?4 方差分析方法把数据总的平方和分解成为两部分的意义是什么?5 试叙述t 检验法与相关系数检验法之间的联系。

第二章(简单线性回归模型)2-5答案

第二章(简单线性回归模型)2-5答案

2.5 回归模型预测一、判断题1.fY ˆ是对个别值f Y 的点估计。

(F ) 2.预测区间的宽窄只与样本容量n 有关。

(F )3.fY ˆ对个别值f Y 的预测只受随机扰动项的影响。

(F ) 4.一般情况下,平均值的预测区间比个别值的预测区间宽。

(F )5.用回归模型进行预测时,预测普通情况和极端情况的精度是一样的。

(F )二、单项选择题1.某一特定的X 水平上,总体Y 分布的离散度越大,即2σ越大,则( A )。

A .预测区间越宽,精度越低B .预测区间越宽,预测误差越小C 预测区间越窄,精度越高D .预测区间越窄,预测误差越大2.在缩小参数估计量的置信区间时,我们通常不采用下面的那一项措施(D )。

A.增大样本容量nB. 预测普通情形而非极端情形C.提高模型的拟合优度D.提高样本观测值的分散度三、多项选择题1.计量经济预测的条件是(ABC )A .模型设定的关系式不变B .所估计的参数不变C.解释变量在预测期的取值已作出预测 D .没有对解释变量在预测期的取值进行过预测 E .无条件2.对被解释变量的预测可以分为(ABC )A.被解释变量平均值的点预测B.被解释变量平均值的区间预测C.被解释变量的个别值预测D.解释变量预测期取值的预测四、简答题1.为什么要对被解释变量的平均值以及个别值进行区间预测?答:由于抽样波动的存在,用样本估计出的被解释变量的平均值fY ˆ与总体真实平均值()f f X Y E 之间存在误差,并不总是相等。

而用fY ˆ对个别值f Y 进行预测时,除了上述提到的误差,还受随机扰动项的影响,使得总体真实平均值()f f X Y E 并不等于个别值f Y 。

一般而言,个别值的预测区间比平均值的预测区间更宽。

2.分别写出()f f X Y E 和f Y 的置信度为α-1的预测区间。

答:()ff X Y E :()⎪⎪⎪⎭⎫ ⎝⎛-+±∑22f 2f i x X X n 1t Y σαˆˆ;f Y :()⎪⎪⎪⎭⎫ ⎝⎛-++±∑22f 2f i x X X n 11t Y σαˆˆ。

(完整版)第二章(简单线性回归模型)2-3答案

(完整版)第二章(简单线性回归模型)2-3答案

2.3拟合优度的度量一、判断题1.当()∑-2i y y 确定时,()∑-2iy y ˆ越小,表明模型的拟合优度越好。

(F ) 2.可以证明,可决系数高意味着每个回归系数都是可信任的。

(F ) 3.可决系数的大小不受到回归模型中所包含的解释变量个数的影响。

(F ) 4.任何两个计量经济模型的都是可以比较的。

(F )5.拟合优度的值越大,说明样本回归模型对数据的拟合程度越高。

( T )6.结构分析是高就足够了,作预测分析时仅要求可决系数高还不够。

( F )7.通过的高低可以进行显著性判断。

(F )8.是非随机变量。

(F )二、单项选择题1.已知某一直线回归方程的可决系数为0.64,则解释变量与被解释变量间的线性相关系数为( B )。

A .±0.64B .±0.8C .±0.4D .±0.32 2.可决系数的取值范围是( C )。

A .≤-1B .≥1C .0≤≤1D .-1≤≤1 3.下列说法中正确的是:( D )A 如果模型的2R 很高,我们可以认为此模型的质量较好B 如果模型的2R 较低,我们可以认为此模型的质量较差C 如果某一参数不能通过显著性检验,我们应该剔除该解释变量D 如果某一参数不能通过显著性检验,我们不应该随便剔除该解释变量三、多项选择题1.反映回归直线拟合优度的指标有( ACDE )。

A .相关系数B .回归系数C .样本可决系数D .回归方程的标准差E .剩余变差(或残差平方和)2.对于样本回归直线i 01i ˆˆˆY X ββ+=,回归变差可以表示为( ABCDE )。

A .22i i i i ˆY Y -Y Y ∑∑ (-) (-) B .221ii ˆX X β∑(-) C .22iiRY Y ∑(-) D .2iiˆY Y ∑(-) E .1iiiiˆX X Y Y β∑(-()-) 3.对于样本回归直线i 01iˆˆˆY X ββ+=,ˆσ为估计标准差,下列可决系数的算式中,正确的有( ABCDE )。

教材第2章习题

教材第2章习题

第二章 经典单方程计量经济学模型:多元线性回归模型1、下列表达式中,哪些是正确的,哪些是错误的,为什么?⑴ n t X Y tt ,,2,1 =+=βα ⑵ n t X Y tt t ,,2,1 =++=μβα ⑶ n t X Y tt t ,,2,1ˆˆ =++=μβα ⑷ n t X Y tt t ,,2,1ˆˆˆ =++=μβα ⑸ n t X Y tt ,,2,1ˆˆ =+=βα ⑹ n t X Y tt ,,2,1ˆˆˆ =+=βα ⑺ n t X Y t tt ,,2,1ˆˆˆ =++=μβα ⑻ n t X Y t t t ,,2,1ˆˆˆˆ =++=μβα2、一元线性回归模型的基本假设主要有哪些?违背基本假设的计量经济学模型是进行普通最小二乘估计吗?3、线性回归模型n i X Y ii i ,,2,1 =++=μβα 的零均值假设是否可以表示为011=∑=ni i n μ?为什么?4、假设已经得到关系式X Y 10ββ+=的最小二乘估计,试回答:(1)假设决定把变量X 的单位扩大10倍,这样做对回归模型的斜率和截距的估计会有什么样的影响?如果把变量Y 的单位扩大10倍,结果又会怎样?(2)假定给X 的每个观测值都增加2,对原回归的斜率和截距会有什么样的影响?如果给Y 的每个观测值都增加2,又会怎样?5、假使在回归模型i i i X Y μββ++=10中,用不为零的常数δ去乘每一X 值,这会不会改变Y 的拟合值及残差?如果对每个X 都加大一个非零常数δ,又会怎样?6、假设有人做了如下的回归i i i x y μββ++=10其中,i i x y ,分别为i i X Y ,关于各自均值的离差。

求1β和0β的普通最小二乘估计?7、令YX βˆ和XYβˆ分别为Y 对X 回归和X 对Y 回归中的斜率(假设X 与Y 之间互为因果关系),证明2ˆˆr XYYX =ββ,其中r 为X 与Y 之相的样本相关系数。

(完整版)第二章(简单线性回归模型)2-3答案

(完整版)第二章(简单线性回归模型)2-3答案

、判断题2 21. 当y y确定时,? y越小,表明模型的拟合优度越好。

(F)2. 可以证明,可决系数R2高意味着每个回归系数都是可信任的。

(F)3. 可决系数R2的大小不受到回归模型中所包含的解释变量个数的影响。

(F)4. 任何两个计量经济模型的R2都是可以比较的。

(F)5. 拟合优度R2的值越大,说明样本回归模型对数据的拟合程度越高。

(T)6. 结构分析是R2高就足够了,作预测分析时仅要求可决系数高还不够。

(F )7.通过R2的高低可以进行显著性判断。

(F)8.R2是非随机变量。

(F)二、单项选择题1. 已知某一直线回归方程的可决系数为0.64 , 则解释变量与被解释变量间的线性相关系数为(B )。

A.± 0.64B.± 0.8C.± 0.4D. ± 0.322. 可决系数R2的取值范围是(C)。

A.R2< -1B. R2> 1C.0< R2< 1D.—1 < R2< 13.下列说法中正确的是:(D )A如果模型的R2很高,我们可以认为此模型的质量较好B如果模型的R2较低,我们可以认为此模型的质量较差C如果某一参数不能通过显著性检验,我们应该剔除该解释变量D如果某一参数不能通过显著性检验,我们不应该随便剔除该解释变量三、多项选择题1. 反映回归直线拟合优度的指标有(ACDE )。

A. 相关系数 B .回归系数 C.样本可决系数D.回归方程的标准差E.剩余变差(或残差平方和)2•对于样本回归直线Y?= ?)?X j ,回归变差可以表示为(ABCDE )。

A. (丫厂Y i)2 - (Y i- Y?)2B . ?2(X i - X)2C. R2(Y i-Y i)2 D . (Y?i-Y)2E.? (X i-X(Y i—Y i)2.3拟合优度的度量3•对于样本回归直线丫j=乙F列可决系数的算式中,正确的有(ABCDE )。

第二章(简单线性回归模型)2-2答案

第二章(简单线性回归模型)2-2答案

2.2 简单线性回归模型参数的估计一、判断题1.使用普通最小二乘法估计模型时,所选择的回归线使得所有观察值的残差和达到最小。

(F)2.随机扰动项和残差项是一回事。

(F )3.在任何情况下OLS 估计量都是待估参数的最优线性无偏估计。

(F )4.满足基本假设条件下,随机误差项i μ服从正态分布,但被解释变量Y 不一定服从正态分 布。

( F )5.如果观测值i X 近似相等,也不会影响回归系数的估计量。

( F )二、单项选择题1.设样本回归模型为i 01i i ˆˆY =X +e ββ+,则普通最小二乘法确定的iˆβ的公式中,错误的是( D )。

A .()()()i i 12i X X Y -Y ˆX X β--∑∑= B .()i i i i 122i i n X Y -X Y ˆn X -X β∑∑∑∑∑=C .i i 122i X Y -nXY ˆX -nX β∑∑=D .i i i i 12xn X Y -X Y ˆβσ∑∑∑= 2.以Y 表示实际观测值,ˆY 表示回归估计值,则普通最小二乘法估计参数的准则是使( D )。

A .i i ˆY Y 0∑(-)=B .2i i ˆY Y 0∑(-)=C .i i ˆY Y ∑(-)=最小D .2i i ˆY Y ∑(-)=最小 3.设Y 表示实际观测值,ˆY 表示OLS 估计回归值,则下列哪项成立( D )。

A .ˆYY = B .ˆY Y = C .ˆY Y = D .ˆY Y = 4.用OLS 估计经典线性模型i 01i i Y X u ββ+=+,则样本回归直线通过点( D )。

A .X Y (,)B . ˆX Y (,)C .ˆX Y (,)D .X Y (,) 5.以Y 表示实际观测值,ˆY表示OLS 估计回归值,则用OLS 得到的样本回归直线i 01iˆˆˆY X ββ+=满足( A )。

A .i i ˆY Y 0∑(-)=B .2i i Y Y 0∑(-)= C . 2i i ˆY Y 0∑(-)= D .2i i ˆY Y 0∑(-)=6.按经典假设,线性回归模型中的解释变量应是非随机变量,且( A )。

第二章 简单线性回归模型练习题

第二章  简单线性回归模型练习题

第二章简单线性回归模型练习题一、术语解释1 解释变量2 被解释变量3 线性回归模型4 最小二乘法5 方差分析6 参数估计7 控制8 预测二、填空1于使模型更符合()活动。

2 在经济计量模型中引入随机扰动项的理由可以归纳为如下几条:(1)因为人的行为的()、社会环境与自然环境的()决定了经济变量本身的();(2)建立模型时其他被省略的经济因素的影响都归入了()中;(3)在模型估计时,()与归并误差也归入随机扰动项中;(4)由于我们认识的不足,错误的设定了()与()之间的数学形式,例如将非线性的函数形式设定为线性的函数形式,由此产生的误差也包含在随机扰动项中了。

3 ()是因变量离差平方和,它度量因变量的总变动。

就因变量总变动的变异来源看,它由两部分因素所组成。

一个是自变量,另一个是除自变量以外的其他因素。

()是拟合值的离散程度的度量。

它是由自变量的变化引起的因变量的变化,或称自变量对因变量变化的贡献。

()是度量实际值与拟合值之间的差异,它是由自变量以外的其他因素所致,它又叫残差或剩余。

4 回归方程中的回归系数是自变量对因变量的()。

某自变量回归系个单位。

5 模型线性的含义,就变量而言,指的是回归模型中变量的();就参数而言,指的是回归模型中的参数的();通常线性回归模型的线性含义是就()而言的。

6 样本观察值与回归方程理论值之间的偏差,称为(),我们用残差估计线性模型中的()。

三、简答题1 在线性回归方程中,“线性”二字如何理解?2 用最小二乘法求线性回归方程系数的意义是什么?3 一元线性回归方程的基本假设条件是什么?4 方差分析方法把数据总的平方和分解成为两部分的意义是什么?5 试叙述t检验法与相关系数检验法之间的联系。

6 应用线性回归方程控制和预测的思想。

7 线性回归方程无效的原因是什么?8别?9 判断如下模型,哪些是线性模型,哪些不是。

以及它们经过怎样的变化能够变成线性模型?模型描述性名称10 如下模型是线性回归模型吗?并说出原因。

第二章(简单线性回归模型)2-1答案

第二章(简单线性回归模型)2-1答案

2.1回归分析与回归函数一、判断题1. 总体回归直线是解释变量取各给定值时被解释变量条件期望的轨迹。

(T )2. 线性回归是指解释变量和被解释变量之间呈现线性关系。

( F )3. 随机变量的条件期望与非条件期望是一回事。

(F )4、总体回归函数给出了对应于每一个自变量的因变量的值。

(F )二、单项选择题1.变量之间的关系可以分为两大类,它们是( A )。

A .函数关系与相关关系B .线性相关关系和非线性相关关系C .正相关关系和负相关关系D .简单相关关系和复杂相关关系2.相关关系是指( D )。

A .变量间的非独立关系B .变量间的因果关系C .变量间的函数关系D .变量间不确定性的依存关系3.进行相关分析时的两个变量( A )。

A .都是随机变量B .都不是随机变量C .一个是随机变量,一个不是随机变量D .随机的或非随机都可以4.回归分析中定义的( B )。

A.解释变量和被解释变量都是随机变量B.解释变量为非随机变量,被解释变量为随机变量C.解释变量和被解释变量都为非随机变量D.解释变量为随机变量,被解释变量为非随机变量5.表示x 和y 之间真实线性关系的总体回归模型是( C )。

A .01ˆˆˆt t Y X ββ=+B .01()t t E Y X ββ=+C .01t t t Y X u ββ=++D .01t t Y X ββ=+6.一元线性样本回归直线可以表示为( C )A .i i X Y u i 10++=ββ B. i 10X )(Y E i ββ+=C. i i e X Y ++=∧∧i 10ββ D. i 10X i Y ββ+=∧7.对于i 01i i ˆˆY =X +e ββ+,以ˆσ表示估计标准误差,r 表示相关系数,则有( D)。

A .ˆ0r=1σ=时,B .ˆ0r=-1σ=时,C .ˆ0r=0σ=时,D .ˆ0r=1r=-1σ=时,或8.相关系数r 的取值范围是( D )。

(完整版)第二章(简单线性回归模型)2-2答案

(完整版)第二章(简单线性回归模型)2-2答案

2.2简单线性回归模型参数的估计 、判断题1. 使用普通最小二乘法估计模型时,(F )2. 随机扰动项u i 和残差项e i 是一回事。

(F ) 3.在任何情况下OLS 估计量都是待估参数的最优线性无偏估计。

(F )布。

5.如果观测值X i 近似相等,也不会影响回归系数的估计量】、单项选择题1.设样本回归模型为Y i =" ?X i+eiD )。

A.?=■1X i X X i XY i -Y? X i Y i -nXYc.-X i 2-nX 22 ?以 丫表示实际观测值 ,Y?表示回归估计值,则普通最小二乘法确定的?的公式中, 错误的是?n X i Y i -X i Y i in X i 2-X i 2?_n X i Y i -X iY ii12 x则普通最小二乘法估计参数的准则是使(D )A. (丫— Y i )=oc.(Y — £ )=最小「? 一 YA . (X, 丫 ) 5.以丫表示实际观测值, 丫?表示OLS 估计回归值,则用 OLS 得到的样本回归直线 丫 ?一 ?)4•满足基本假设条件下,随机误差项i 服从正态分布,但被解释变量 Y 不一定服从正态分所选择的回归线使得所有观察值的残差和达到最3.丫表示实际观测值丫?表示OLS 估计回归值,则下列哪项成立( DA.4.用OLS 估计经典线性模型Y i— 0iX i + u i ,则样本回归直线通过点(.(X, Y?)满足(A)。

A.(Y i—丫i)一0 B . (Y i —Y)2 - 0C.(Y—丫)2-0 D .(丫Y)-06.按经典假设,线性回归模型中的解释变量应是非随机变量,且(7. 参数的估计量 ?具备有效性是指( B )A. Var ? 0 B . Var ? 为最小C. ? 0 D . ? 为最小三、多项选择题(Y i - Yj ) =oE. cov (X i ,e i )=0 52.用OLS 法估计模型丫尸0 l X i + u i 的参数,要使参数估计量为最佳线性无偏估计量,则要求( ABCE )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章简单线性回归模型练习题
一、术语解释
1 解释变量
2 被解释变量
3 线性回归模型
4 最小二乘法
5 方差分析
6 参数估计
7 控制
8 预测
二、填空
ξ,目的在于使模型更1 在经济计量模型中引入反映()因素影响的随机扰动项
t
符合()活动。

2 在经济计量模型中引入随机扰动项的理由可以归纳为如下几条:(1)因为人的行为的()、社会环境与自然环境的()决定了经济变量本身的();(2)建立模型时其他被省略的经济因素的影响都归入了()中;(3)在模型估计时,()与归并误差也归入随机扰动项中;(4)由于我们认识的不足,错误的设定了()与()之间的数学形式,例如将非线性的函数形式设定为线性的函数形式,由此产生的误差也包含在随机扰动项中了。

3 ()是因变量离差平方和,它度量因变量的总变动。

就因变量总变动的变异来源看,它由两部分因素所组成。

一个是自变量,另一个是除自变量以外的其他因素。

()是拟合值的离散程度的度量。

它是由自变量的变化引起的因变量的变化,或称自变量对因变量变化的贡献。

()是度量实际值与拟合值之间的差异,它是由自变量以外的其他因素所致,它又叫残差或剩余。

4 回归方程中的回归系数是自变量对因变量的()。

某自变量回归系数β的意义,指
的是该自变量变化一个单位引起因变量平均变化( )个单位。

5 模型线性的含义,就变量而言,指的是回归模型中变量的( );就参数而言,指的是回归模型中的参数的( );通常线性回归模型的线性含义是就( )而言的。

6 样本观察值与回归方程理论值之间的偏差,称为( ),我们用残差估计线性模型中的( )。

三、简答题
1 在线性回归方程中,“线性”二字如何理解
2 用最小二乘法求线性回归方程系数的意义是什么
3 一元线性回归方程的基本假设条件是什么
4 方差分析方法把数据总的平方和分解成为两部分的意义是什么
5 试叙述t 检验法与相关系数检验法之间的联系。

6 应用线性回归方程控制和预测的思想。

7 线性回归方程无效的原因是什么
8 回归分析中的随机误差项i ε有什么作用它与残差项t e 有何区别
9 判断如下模型,哪些是线性模型,哪些不是。

以及它们经过怎样的变化能够变成线性模型 模型 描述性名称
121
.i i i a Y X ββε⎛⎫
=++
⎪⎝⎭
倒数 12.ln i i i b Y X ββε=++ 半对数 12.ln i i i c Y X ββε=++ 反半对数 12.
ln ln ln i i i c Y X ββε=++ 对数或双对数
121
.
ln i i i c Y X ββε⎛⎫
=-+
⎪⎝⎭
对数倒数 10 如下模型是线性回归模型吗并说出原因。

12.i i X i a Y e ββε++=
121.1i i
i X b Y e
ββε++=
+
121
.ln i i i c Y X ββε⎛⎫=++
⎪⎝⎭
()
2211.(0.5)i X i i d Y e
βββε--=+-+
312.i i i e Y X ββε=++
四 计算题
1 给定如下表第一列的假设,说明第二列中的假定是与之等效的。

关于经典模型的假设
2 下表给出了美国30所知名学校的MBA 学生1994年基本年薪(ASP )、GPA 分数(1-4共四个等级)、GMAT 分数以及每年学费的数据。

a. 用双变量回归模型分析GPA 是否对ASP 有影响 b.用合适的回归模型分析GMAT 分数是否与ASP 有关系
c.每年的学费与ASP 有关吗你是如何知道的如果两变量之间正相关,是否意味着进到最高费用的商业学校是有利的。

d.你同意高学费的商业学校意味着高质量的MBA 成绩吗为什么 1994年MBA 毕业生平均初职薪水
3 你的朋友将不同年度的债券价格作为该年利率(在相等的风险水平下)的函数,估计出的简单方程如下:
ˆ101.40 4.78i i
Y X =- 其中:ˆi
Y =第i 年美国政府债券价格(每100美元债券) i X =第i 年联邦资金利率(按百分比) 请回答以下问题:
(1) 解释两个所估系数的意义。

所估的符号与你所期望的符号一样吗
(2) 为何方程左边的变量是ˆi
Y 而不是Y (3) 你朋友在估计的方程中是否遗漏了随机误差项
(4) 此方程的经济意义是什么对此模型你有何评论(提示:联邦资金利率是一种适
用于银行间隔夜持有款项的利率)
4 对于家庭收入X 影响家庭消费支出Y 的问题,如果通过调查得到一组数据,如下表所示。

(1)试建立Y 与X 之间的样本回归方程。

(2)预测收入为6000元这类家庭的平均消费支出(显著性水平0.05α=) (3)以95%的概率预测某个收入为6000元的家庭的消费支出。

5 中国的人均GDP (元/人,用Y 表示)与人均钢产量(千克/人,用X 表示)如下表所示:
资料来源:《中国统计年鉴2003》,北京,中国统计出版社,2003。

(1) 试建立样本回归方程,并在5%的水平下进行显著性检验。

(2) 求简单相关系数。

(3) 如果0X =200千克,以90%的概率对()0E Y 和0Y 进行预测。

6 下表给出了1977-1991年期间美国的黄金价格、消费者指数和纽约股票交易所指数数据。

NYSE 指数包括在NYSE 上市的大多数股票,约有1500多种。

a. 在同一散布图中描绘黄金价格,CPI 和NYSE 指数。

b. 一种投资,如果它的价格和(或)回报率至少赶得上通货膨胀,就被认为是(对通
货膨胀)保值(能抵御通货膨胀)的。

为检验这一假设:投资是保值的,假定a 中的散点图表明拟合以下模型是最适宜的:
1212t i i t i i
CPI NYSE CPI ββεββε=++=++黄金价格指数
7 下表给出了,1959-1997年间美国国内总产值数据
a. 将当年美元和不变(即1992年)美元数据对时间描图。

b. 用Y 表示GDP ,X 表示时间(按年历从1代表1959,2代表1960开始,直至39代表1997)。

看以下模型是否适合GDP 数据:12t t t Y X ββε=++ 试用当年美元和不变美元两种数据分别估计此模型。

c. 你会怎样解释2β
d. 如果用当年美元估计2β和不变美元GDP 估计的有所不同,你会怎样解释这个差距
e. 从你计算的结果,你能对样本时期美国通货膨胀的性质得出什么评论。

相关文档
最新文档