一元线性回归分析实验报告
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
. . .
一元线性回归在公司加班制度中的应用
院(系):
专业班级:
学号姓名:
指导老师:
成绩:
完成时间:
一元线性回归在公司加班制度中的应用
一、实验目的
掌握一元线性回归分析的基本思想和操作,可以读懂分析结果,并写出回归方程,对回归方程进行方差分析、显著性检验等的各种统计检验
二、实验环境
SPSS21.0 windows10.0
三、实验题目
一家保险公司十分关心其总公司营业部加班的程度,决定认真调查一下现状。经10周时间,收集了每周加班数据和签发的新保单数目,x为每周签发的新保单数目,y为每周加班时间(小时),数据如表所示
2.x与y之间大致呈线性关系?
3.用最小二乘法估计求出回归方程。
4.求出回归标准误差σ∧。
5.给出0β∧与1β∧的置信度95%的区间估计。
6.计算x与y的决定系数。
7.对回归方程作方差分析。
8.作回归系数1β∧的显著性检验。
9.作回归系数的显著性检验。
10.对回归方程做残差图并作相应的分析。
x=,需要的加班时间是多少?
11.该公司预测下一周签发新保单01000
12.给出0y的置信度为95%的精确预测区间。
E y的置信度为95%的区间估计。
13.给出()0
四、实验过程及分析
1.画散点图
如图是以每周加班时间为纵坐标,每周签发的新保单为横坐标绘制的散点图,从图中可以看出,数据均匀分布在对角线的两侧,说明x和y之间线性关系良好。
2.最小二乘估计求回归方程
用SPSS 求得回归方程的系数01,ββ分别为0.118,0.004,故我们可以写出其回归方程如下:
0.1180.004y x =+
3.求回归标准误差σ∧
ANOVA a
模型 平方和 自由度
均方 F 显著性
1
回归 16.682 1 16.682 72.396
.000b
残差 1.843 8 .230
总计
18.525
9
a. 因变量:y
b. 预测变量:(常量), x
由方差分析表可以得到回归标准误差:SSE=1.843 故回归标准误差:
2=
2SSE
n σ∧-,2σ∧=0.48。
4.给出回归系数的置信度为95%的置信区间估计。
由回归系数显著性检验表可以看出,当置信度为95%时:
0β∧
的预测区间为[-0.701,0.937], 1β∧
的预测区间为[0.003,0.005].0β∧
的
置信区间包含0,表示0β∧
不拒绝为0的原假设。 6.计算x 与y 的决定系数。
由模型摘要表得到决定系数为0.9接近于1,说明模型的拟合度较高。
7.对回归方程做方差分析。
ANOVA a
模型 平方和 自由度
均方 F 显著性
1
回归 16.682 1 16.682 72.396
.000b
残差 1.843 8 .230
总计
18.525
9
a. 因变量:y
b. 预测变量:(常量), x
由方差分析表可知:F 值=72.396>5.32(当121,8n n ==时,查表得出对应值为5.32),显著性约为0,所以拒绝原假设,说明回归方程显著。
8.做相关系数的显著性检验。
模型摘要
模型
R
R 方
调整后 R 方
标准估算的误差
1 .949a.900 .888 .4800
a. 预测变量:(常量), x
由模型摘要可知相关系数达到0.949,说明与
x y显著线性相关。
9.对回归方程做残差图并做相应分析。
从残差图上看出残差是围绕e=0上下波动的,满足模型的基本假设。
x ,需要的加班时间是多少?
10.该公司预测下一周签发新保单01000
由预测可知公司预计下一周签发新保单
01000
x=时,
0.1180.00359*1000 3.7032
y=+=
五、实验总结
在统计学实验学习中,通过实验操作可使我们加深对理论知识的理解,学习和掌握统计学的基本方法,并能进一步熟悉和掌握spss 的操作方法,培养我们分析和解决实际问题的基本技能,提高我们的综合素质。