如何解数学题教程文件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如何解数学题

如何解数学题

如何解好数学题,提高解题效率,我认为应从以下几个方面入手,加强训练,不断总结,对解数学题就会游刃有余。

1、读题(二读)

通读。每道数学题都有条件部分和结论部分。阅读时先撇开与数学问题无关的文字,了解一下问题中所牵涉到的哪些数学知识:概念、定义、公式、法则,数学术语。既看条件又看结论,从头到尾仔细看完,明白已知条件是什么?具体有哪些数量:哪些已知,哪些未知,它们存在何种关系(相等,不等)何种图形:图形有何性质,图形间有何数量、位置关系?结论是要求什么?一边看一边想,头脑中形成初步印象:它属于哪一类型问题?难易的程度如何?它的要求是什么?本题主要要考查对何知识点的掌握?

精读。咬文嚼字。有些题目不是一看就明白的,对于关键性的字、词、句需特别留神,理解其意,如至少、至多;增加、增加到;交集,并集;解,解集;充分条件,必要条件;极值,最值;相切,外切等等,对于括号内必用的条件不能视而不见。已知条件是什么?如何往所要解决的问题转化呢?从题目提供的信息中还能挖掘出什么条件?逐步分清题目的条件和结论要求。理顺题目中的数量的关系;图形关系、特征。

2、审题(三想)

回想。把从问题中所获取的信息储存在大脑后,回想平时学习中所整理、归纳的每章的基础知识、基本方法和基本技能,以及平时上课所听、练

习、考试中所做过的,或者课本中学习定理、定义所解过的类似的题目,以便把问题转化。

联想。缺乏系统广泛的联想、类比,思维很容易受定势的影响,不利于解题思路的打开。概念、公理、定理、公式都是解题的依据,对解题有重要的指导作用。在寻找解题途径中,要广泛联想与这些条件和结论有关的概念、公式、法则和方法;联想到概念的内涵和外延;要注意哪些地方没有直接用语言表示出来;而隐含在题目中的其他形式条件,即注意隐含条件的挖掘。见到条件和结论里的数量,式子的特点,要联想想到有关的定理内容、各公式的特征等。联想过去是否有解过、见过与此相同或相近的题目。想想那时是怎样解的?如果能联想起有关的旧知识,即与此题相类似的规律、原理,法则、公式就会浮现在自己的脑海中,使解题的思路更加开阔。联想的越广,跨度就越大,得到的解题效果也越佳。有时因为题目较复杂,为了思考方便,也可以把审题的过程画成简图。运用学过的知识,把题目加工、改造。经过适当的加工后,解题思路可能就明显了,解题捷径就会出现。联想时要注意条件与结论中的数与形的、平面与空间、知识与方法之间的联系,要边读边思考边联想,特别是公式的变形的应用,图形的形状和位置的变换,解题方法的转换等,以获得较为宽广的解题思路,便于找到最优的方法。

猜想。初步构想本题的解题思路,确定解题方向。化归意识就显得特别的重要。由于事物处于运动变化之中,但在一定条件下它们可以互相转化,这就要求我们在处理问题中要用联系、发展、运动的变化的眼光观察事物、分析

问题、解决问题,化生为熟,化新为旧,化繁为简,化整为零,化空间为平面问题,这样许多的难以解决的问题都能顺利的获解。有时候可先从特殊的(数、函数、数列、点、位置、图形等)入手,进行大胆、合理的猜想,有时也可寻找到解题突破口。

3、定法(三路,八法)

寻找解题途径与方法。常见的思维方法有:“由因导果”,本法可以表述为:“已知→可知→可知……”,最后到达结论;“执果索因”,即结论←需知←需知←……”,这样一层一层的追下去,直到追到已知条件全部有了为止,把大问题分解成小的问题,各个解决;对于一些比较复杂的题目,就需要我们用前两种的综合办法,以尽量缩短条件与结论的距离,即一方面从已知条件推出一些可知的中间结果,另一方面根据题目的要求分析出一些需知的中间结果,需知与已知一旦统一,则可得到解题的途径。具体可以结合以下八法的灵活运用。

通过配方法把一个解析式利用恒等变形,把其中的某些项配成一个或几个多项式正整数次幂的和形式。它在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常要用到。

通过因式分解法把一个多项式化成几个整式乘积的形式,它是恒等变形的基础,是数学的一个有力工具、是一种在代数、几何、三角等的解题中起着重要作用的数学方法。不等式证明中的比较法,函数中的单调性。其具体有提

取公因式法、公式法、分组分解法、十字相乘法等外,另外还有利用拆项、添项、求根分解、换元、待定系数等。

通过换元法容易把在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,也便于问题的解决。

通过判别式法与韦达定理来判定根的性质,而且作为,在代数式变形,解方程(组),解不等式,证明不等式,研究函数乃至几何、三角运算,解对称方程组,以及解一些有关二次曲线的问题中都有非常广泛的应用。

在解数学问题时,若能先判断所求的结果具有某种确定的形式、模型,可以先引入某种相应的形式,只是其中含有某些待定的系数,根据题设条件可列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题时待定系数法就有它独到的作用。在解题时,通过对条件和结论的分析,构造辅助元素,比如:一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,这样就可以架起一座连接条件和结论的桥梁,从而使问题得以解决。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

反证法也不容忽视,它是一种间接证法,是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:反设、归谬、结论。反设是反证法的基础,为了正确

地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n 一1)个;至多有一个/至少有两个;唯一/至少有两个。归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。导出的矛盾有:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题,有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,是几何中的一种常用方法。用归纳法或分析法证明平面几何题,其困难在于添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。

在数学问题的研究中,运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些习题,可以借助几何变换法,化繁为简,化难为易。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形平移、旋转、对称有本质的认识。比较容易实现问题的真正转化。

相关文档
最新文档