平方根和立方根知识点总结及练习

合集下载

(完整版)平方根、算术平方根、立方根重点例题讲解

(完整版)平方根、算术平方根、立方根重点例题讲解

6.1平方根、算术平方根、立方根例题讲解 第一部分:知识点讲解 1、学前准备【旧知回顾】2.平方根(1)平方根的定义:一般的,如果一个数的平方等于a ,那么这个数叫做a 的平方根,也叫做二次方根。

即若a x =2,)0(≥a ,则x 叫做a 的平方根。

即有a x ±=,(0≥a )。

(2)平方根的性质:(3)注意事项:a x ±=,a 称为被开方数,这里被开方数一定是一个非负数(0≥a )。

(4)求一个数平方根的方法:(5)开平方:求一个数平方根的运算叫做开平方。

它与平方互为逆运算。

3. 算术平方根(1)算术平方根的定义:若a x =2,)0(≥a ,则x 叫做a 的平方根。

即有a x ±=,(0≥a )。

其中a x =叫做a 的算术平方根。

(2)算术平方根的性质:(3)注意点:在以后的计算题中,像22-52)(++,其中,25分别指的是2和5的算术平方根。

4.几种重要的运算: ① b a ab •=()0,0>>b a , ab b a =•()0,0>>b a②b a b a =)0,0(>≥b a , b aba =)0,0(>≥b a ③ a a =2)()0(≥a , a a =2 , a a =2-)(★★★ 若0<+b a ,则()ba b a b a b a --=+-=+=+2)(5.立方根(1)立方根的定义:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根,也叫做三次方根。

即若a x =3,则x 叫做a 的立方根。

即有3a x =。

(2)立方根的性质:(3)开立方求一个数的立方根的运算叫做开立方,它与立方互为逆运算。

6.几个重要公式: ③ 333b a ab •=, 333ab b a =•333b a b a = )0(≠b , 333b a ba = )0(≠b④ a a =33)(可以为任何数)a (, a a =33 ,a a --33=)(第二部分:例题讲解题型1:求一个数的平方根、算术平方根、立方根。

中考数学《平方根和立方根》知识点及练习题

中考数学《平方根和立方根》知识点及练习题

平方根和立方根一.知识梳理:1.平方根定义1:一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(或二次方根)。

表示方法:正数a 的平方根记做“a ±”,读作“正、负根号a ”。

a 叫做被开方数。

性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

定义2:正数a 的正的平方根叫做a a ”, 性质1:正数和零的算术平方根都只有一个,零的算术平方根是零。

性质2:算术平方根a 的双重非负性:①a ≥0 ; ②0≥a定义3:求一个数a 的平方根的运算,叫做开平方。

2.立方根定义1:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根。

即如果x 3=a ,那么x 叫做a 3a x =。

性质1:正数有一个正的立方根;负数有一个负的立方根;零的立方根是零。

性质2:33a a -=-,三次根号内的负号可以移到根号外面。

定义2:求一个数的立方根的运算,叫做开立方3. 实数大小的比较(1)正数大于0,负数小于0,正数大于负数;两个负数比较大小,绝对值大的反而小。

(2)实数大小比较的几种常用方法①作差法:设a 、b 是实数,,0b a b a >⇔>- ,0b a b a =⇔=-b a b a <⇔<-0.②作商法:设a 、b 是两正实数,;1;1;1b a b a b a b a b a b a <⇔<=⇔=>⇔> ③平方法:设a 、b 是两负实数,则b a b a <⇔>22④近似值法:记住这些数值:236.25732.13414.12≈≈≈;;二.课后作业1.9的算术平方根是 ;4的平方根是 。

2.-8的立方根是 ;立方根是它本身的数是______3.25的算术平方根是_____,64的立方根是5.比较大小:-3.14 π-;23。

6. 22(3)0y z -+-=,则xyz 的立方根是________7.23-的相反数是 ,绝对值是 ,倒数是 。

平方根、算术平方根、立方根重点 例题讲解

平方根、算术平方根、立方根重点 例题讲解

For personal use only in study and research; not for commercial use6.1平方根、算术平方根、立方根例题讲解第一部分:知识点讲解1、学前准备【旧知回顾】2.平方根(1)平方根的定义:一般的,如果一个数的平方等于a ,那么这个数叫做a 的平方根,也叫做二次方根。

即若a x =2,)0(≥a ,则x 叫做a 的平方根。

即有a x ±=,(0≥a )。

(2)平方根的性质:(3)注意事项: a x ±=,a 称为被开方数,这里被开方数一定是一个非负数(0≥a )。

(4)求一个数平方根的方法:(5)开平方:求一个数平方根的运算叫做开平方。

它与平方互为逆运算。

3. 算术平方根(1)算术平方根的定义:若a x =2,)0(≥a ,则x 叫做a 的平方根。

即有a x ±=,(0≥a )。

其中a x =叫做a 的算术平方根。

(2)算术平方根的性质:(3)注意点:在以后的计算题中,像22-52)(++,其中,25分别指的是2和5的算术平方根。

4.几种重要的运算: ① b a ab ∙=()0,0>>b a , ab b a =∙()0,0>>b a② b a b a =)0,0(>≥b a , b a ba =)0,0(>≥b a ③ a a =2)()0(≥a , a a =2 , a a =2-)(★★★ 若0<+b a ,则()b a b a b a b a --=+-=+=+2)(5.立方根(1)立方根的定义:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根,也叫做三次方根。

即若a x =3,则x 叫做a 的立方根。

即有3a x =。

(2)立方根的性质:(3)开立方求一个数的立方根的运算叫做开立方,它与立方互为逆运算。

6.几个重要公式:③ 333b a ab ∙= , 333ab b a =∙ 333b a b a = )0(≠b , 333b a b a = )0(≠b ④ a a =33)(可以为任何数)a (, a a =33 ,a a --33=)( 第二部分:例题讲解题型1:求一个数的平方根、算术平方根、立方根。

平方根立方根基础训练及答案

平方根立方根基础训练及答案

平方根立方根基础训练姓名: 速度: 一.判断正误(1) 5是25的算术平方根.( ) (2)4是2的算术平方根.( )(3)6.( ) (4)37是237⎛⎫- ⎪⎝⎭的算术平方根.( ) (5)56-是2536的一个平方根.( ) (6)81的平方根是9.( ) (7)9的平方根是3 ( ) (8)8的立方根是2 ( )(9)-0.027的立方根是-0.3( ) (10)31271±的立方根是 ( ) (11)-9的平方根是-3 ( ) (12)-3是9的平方根 ( )二.选择题1的值为 ( ).(A )6- (B )6 (C )8± (D )362.一个正数的平方根是a ,那么比这个数大1的数的平方根是( ).(A )2a 1- (B )(C (D )30.1311==,则x 等于( ).(A )0.0172 (B )0.172 (C )1.72 (D )0.0017242=,则()2m 2+的平方根是( ).(A )16 (B )16± (C )4± (D )2±5.立方根等于本身的数是 ( )A .±1 B.1,0 C .±1,0 D .以上都不对6.若一个数的算术平方根等于这个数的立方根,则这个数是( )A .±1 B.±1,0 C .0 D .0,17.下列说法正确的是( )A .1的立方根与平方根都是1B .233a a =C .38的平方根是2±D .252128183=+=+8.一个数的算术平方根是a ,则比这个数大2的数是( )A .2a +B 2C 2D .22a + 9.下列运算中,错误的是( )①1251144251=,②4)4(2±=-,③22222-=-=-,④2095141251161=+=+ A .1个 B .2个 C . 3个 D . 4个10.8的立方根是( )A .2B .2-C .±2D 11.下列运算正确的是 ( )A .3311--=-B .3333=-C .3311-=-D .3311-=-12 ).A ..13.如果a 是实数,则下列各式中一定有意义的是( ).A B14的大小估计正确的是( ).A .在4~5之间B .在5~6之间C .在6~7之间D .在7~8之间15.若a ,b为实数,且43b a =++,则a b +的值为( ). A .-1 B .1 C .1或7 D .716.实数a ,b||a b +的结果是( ). A .2a b + B .b C .b - D .2a b -+三.填空题1.若4-m 没有算术平方根,则m 的取值范围是_______.2.749±=±的意义是 .3.如果一个数的平方等于a ,这个数就叫做 .4.一个正数的平方根有 个,它们互为 .5. 0的平方根是 ,0的算术平方根是 .6.一个数的平方为719,这个数为 . 7.若x 的一个平方根,则这个数是 .8.比3的算术平方根小2的数是 .9.若a 9-的算术平方根等于6,则a= .10.已知2y x 3=-,且y 的算术平方根是4,则x= .11的平方根是 .12.已知1y 3=,则x= ,y= . 13. 64的平方根是 ,立方根是 ,算术平方根是 14. =31-,=3216125 ,15.若==m m 则,10 ,若的平方根是,则m m 43= 16.8的立方根与25的平方根之差是17.若==m m m 则,3182=_____________________. 19.已知一个正数的平方根是3x-2和5x+6,则这个数是 .20.若a 、b 互为相反数,c 、d互为负倒数,则______3=++cd b a ;21= .22.若13是的一个平方根,则m 的另一个平方根为 .23.比较大小π, 24.满足不等式x <<x 共有 个.25.若实数x 、y0=,则x 与y 的关系是 . 26.-64 .27.(1)3027.0-- =(2)3125216-= (3= (4+= 28.求下列各式中的x .(1) 364125x = (2) 31(23)18x -=b a 0平方根、立方根基础训练答案一.判断正误 (1) 5是25的算术平方根.( √ ) (2)4是2的算术平方根.( × )(3)6.( × ) (4)37是237⎛⎫- ⎪⎝⎭的算术平方根.( √ ) (5)56-是2536的一个平方根.( √ ) (6)81的平方根是9.( × ) (7)9的平方根是3 ( × ) (8)8的立方根是2 ( √ )(9)-0.027的立方根是-0.3( √ ) (10)31271±的立方根是 ( × ) (11)-9的平方根是-3 ( × ) (12)-3是9的平方根 ( √ )二.选择题1的值为 ( B ).(A )6- (B )6 (C )8± (D )362.一个正数的平方根是a ,那么比这个数大1的数的平方根是( D ).(A )2a 1- (B )(C (D )30.1311==,则x 等于( A ).(A )0.0172 (B )0.172 (C )1.72 (D )0.0017242=,则()2m 2+的平方根是( C ).(A )16 (B )16± (C )4± (D )2±5.立方根等于本身的数是 ( C )A .±1 B.1,0 C .±1,0 D .以上都不对6.若一个数的算术平方根等于这个数的立方根,则这个数是( D )A .±1 B.±1,0 C .0 D .0,17.下列说法正确的是( C )A .1的立方根与平方根都是1B .233a a =C .38的平方根是2±D .252128183=+=+8.一个数的算术平方根是a ,则比这个数大2的数是( D )A .2a +B 2C 2D .22a + 9.下列运算中,错误的是( D )①1251144251=,②4)4(2±=-,③22222-=-=-,④2095141251161=+=+ A .1个 B .2个 C . 3个 D . 4个10.8的立方根是( A )A .2B .2-C .±2D 11.下列运算正确的是 ( D )A .3311--=-B .3333=-C .3311-=-D .3311-=-12 C ).A ..13.如果a 是实数,则下列各式中一定有意义的是( D ).A B14的大小估计正确的是( D ).A .在4~5之间B .在5~6之间C .在6~7之间D .在7~8之间15.若a ,b为实数,且43b a =++,则a b +的值为( D ). A .-1 B .1 C .1或7 D .716.实数a ,b||a b +的结果是( A ). A .2a b + B .b C .b - D .2a b -+三.填空题1.若4-m 没有算术平方根,则m 的取值范围是4m <.2.749±=±的意义是 49的平方根是±7 .3.如果一个数的平方等于a ,这个数就叫做 a 的平方根 .4.一个正数的平方根有 两 个,它们互为 相反数 .5. 0的平方根是 0 ,0的算术平方根是 0 .6.一个数的平方为719,这个数为43± . 7.若x 的一个平方根,则这个数是 3 .8.比3的算术平方根小2的数是2 .9.若a 9-的算术平方根等于6,则a= 45 .10.已知2y x 3=-,且y 的算术平方根是4,则x= .11的平方根是12.已知1y 3=,则x=12,y= 13. 13. 64的平方根是 ±8 ,立方根是 4 ,算术平方根是 8 14. =31- -1,=3216125 56,3833= 32 15.若==m m 则,10 100 ,若的平方根是,则m m 43= ±8 16.8的立方根与25的平方根之差是 7或-317.若==m m m 则,3 ±1,0182=____6___________. 19.已知一个正数的平方根是3x-2和5x+6,则这个数是494. 20.若a 、b 互为相反数,c 、d1=-;213.22.若13是m 的一个平方根,则m的另一个平方根为 -13 .23.比较大小2π, 24.满足不等式x <<x 共有 3 个. 25.互为相反数26. -6或-2 .27.(1)3027.0-- = 0.3 (2)3125216-=65-(323=-(415= 28. (1) 54x = (2) 52x = b a 0。

《算术平方根、平方根、立方根》易错题训练

《算术平方根、平方根、立方根》易错题训练

《算术平方根、平方根、立方根》易错题训练算术平方根、平方根、立方根易错题训练1. 算术平方根的定义和计算方法在数学中,算术平方根指的是一个数的平方等于给定数的平方根。

如果我们要计算16的算术平方根,我们需要找到一个数,使得这个数的平方等于16。

在这个例子中,16的算术平方根是4,因为4的平方等于16。

在实际计算中,我们可以使用开方符号√来表示算术平方根,即√16=4。

但在实际运用中,很多学生容易将算术平方根和平方根搞混,导致错题。

掌握算术平方根的定义和计算方法非常重要。

2. 平方根的概念和应用与算术平方根类似,平方根也是一个数的平方等于给定数的根。

但与算术平方根不同的是,平方根更常用于几何和物理问题中。

在计算一个矩形的对角线长度时,我们就需要使用平方根来计算。

平方根通常用来求解两边边长已知的等腰三角形的高、直角三角形斜边等问题。

然而,很多学生在高中数学学习中,由于对平方根的概念和应用理解不够深入,容易在相关题目中出错。

理解平方根的概念及其应用也是十分重要的。

3. 立方根的特点和求解方法立方根是一个数的立方等于给定数的根。

27的立方根是3,因为3的立方等于27。

立方根在几何和物理问题中同样有广泛的应用,如求解立方体的体积、长方体的对角线长度等。

虽然立方根的概念和求解方法比较直观,但在实际运用时,一些立方根的运算和问题求解可能会让学生感到困惑,容易出错。

熟练掌握立方根的特点和求解方法对于学生来说也是必不可少的。

4. 总结和回顾通过本篇文章的训练,我们可以得出结论:学生需要深入理解算术平方根、平方根、立方根的定义和计算方法,避免混淆和错题。

学生需要在实际问题中灵活应用平方根和立方根的知识,加深对概念和应用的理解。

学生可以通过练习题目加深对这些数学概念的掌握,并避免在考试中出现低级错误。

5. 个人观点和理解在我看来,数学中的算术平方根、平方根、立方根是非常基础但又非常重要的知识点。

它们不仅在数学中有着广泛的应用,而且还是建立数学思维和逻辑推理能力的重要基础。

平方根与立方根练习题及答案

平方根与立方根练习题及答案

平方根与立方根练习题及答案平方根与立方根练习题及答案数字是数学世界中最基本的元素,它们无处不在,无论是日常生活还是学术研究都离不开数字的存在。

其中,平方根和立方根是我们常见的数学概念之一。

平方根表示一个数的平方等于该数的正平方根,而立方根则表示一个数的立方等于该数的正立方根。

在这篇文章中,我们将介绍一些关于平方根和立方根的练习题,并提供相应的答案。

练习题一:求平方根1. 求下列数的平方根:a) 4b) 9c) 16d) 25e) 36答案:a) 2b) 3c) 4d) 5e) 6解析:对于一个数的平方根,我们需要找到一个数,使得这个数的平方等于给定的数。

例如,对于4来说,2的平方等于4,所以4的平方根为2。

同样地,9的平方根为3,16的平方根为4,25的平方根为5,36的平方根为6。

练习题二:求立方根2. 求下列数的立方根:a) 8b) 27c) 64d) 125e) 216答案:a) 2b) 3c) 4d) 5e) 6解析:与求平方根类似,对于一个数的立方根,我们需要找到一个数,使得这个数的立方等于给定的数。

例如,对于8来说,2的立方等于8,所以8的立方根为2。

同样地,27的立方根为3,64的立方根为4,125的立方根为5,216的立方根为6。

练习题三:混合练习3. 求下列数的平方根和立方根:a) 1b) 64c) 100d) 729e) 1000答案:a) 平方根为1,立方根为1b) 平方根为8,立方根为4c) 平方根为10,立方根为5d) 平方根为27,立方根为9e) 平方根为31.62(保留两位小数),立方根为10解析:有些数既有平方根又有立方根,我们可以通过前面的求解方法得到它们的值。

例如,对于1来说,1的平方根和立方根都为1;对于64来说,64的平方根为8,立方根为4;对于100来说,100的平方根为10,立方根为5;对于729来说,729的平方根为27,立方根为9;对于1000来说,1000的平方根为31.62(保留两位小数),立方根为10。

平方根和立方根知识点总结及练习

平方根和立方根知识点总结及练习

基础知识巩固一、平方根、算数平方根和立方根1、平方根1平方根的定义:如果一个数x 的平方等于a,那么这个数x 就叫做a 的平方根.即:如果a x =2,那么x 叫做a 的平方根.2开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义;3平方与开平方互为逆运算:±3的平方等于9,9的平方根是±3 4一个正数有两个平方根,即正数进行开平方运算有两个结果;一个负数没有平方根,即负数不能进行开平方运算 5符号:正数a 的正的平方根可用a 表示,a 也是a 的算术平方根;正数a 的负的平方根可用-a 表示.6a x =2 <—> a x ±=a 是x 的平方 x 的平方是a x 是a 的平方根 a 的平方根是x2、算术平方根1算术平方根的定义: 一般地,如果一个正数x 的平方等于a,即a x =2,那么这个正数x叫做a 的算术平方根.a 的算术平方根记为a ,读作“根号a”,a 叫做被开方数.规定:0的算术平方根是0.也就是,在等式a x =2 x≥0中,规定a x =;2a 的结果有两种情况:当a 是完全平方数时,a 是一个有限数;当a 不是一个完全平方数时,a 是一个无限不循环小数;3当被开方数扩大时,它的算术平方根也扩大;当被开方数缩小时与它的算术平方根也缩小;一般来说,被开放数扩大或缩小a 倍,算术平方根扩大或缩小a 倍,例如=5,=50;4夹值法及估计一个无理数的大小5a x =2x≥0 <—> a x =a 是x 的平方 x 的平方是ax 是a 的算术平方根 a 的算术平方根是x 6正数和零的算术平方根都只有一个,零的算术平方根是零; a a ≥00≥a==a a 2 ;注意a 的双重非负性:-a a <0 a ≥07平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数; 3、立方根1立方根的定义:如果一个数x 的立方等于a ,这个数叫做a 的立方根也叫做三次方根,即如果3x a =,那么x 叫做a 的立方根2一个数a 的立方根,记作3a ,读作:“三次根号a ”,其中a 叫被开方数,3叫根指数,不能省略,若省略表示平方; 3 一个正数有一个正的立方根;0有一个立方根,是它本身; 一个负数有一个负的立方根; 任何数都有唯一的立方根;4利用开立方和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反数,即()330a a a -=->;5a x =3 <—> 3a x =a 是x 的立方 x 的立方是a x 是a 的立方根 a 的立方根是x633a a -=-,这说明三次根号内的负号可以移到根号外面;典型例题分析知识点一:有关概念的识别 1、下列说法中正确的是 A 、的平方根是±3 B 、1的立方根是±1 C 、=±1 D 、是5的平方根的相反数2、下列语句中,正确的是A .一个实数的平方根有两个,它们互为相反数B .负数没有立方根C .一个实数的立方根不是正数就是负数D .立方根是这个数本身的数共有三个3、下列说法中:①3±都是27的立方根,②y y =33,③64的立方根是2,④()4832±=±;其中正确的有A 、1个B 、2个C 、3个D 、4个 4、()20.7-的平方根是A .0.7-B .0.7±C .0.7D .0.49 5、下列各组数中,互为相反数的组是A 、-2与2)2(- B 、-2和38- C 、-21与2 D 、︱-2︱和2知识点二:计算类题型1、25的算术平方根是_______;平方根是_____. -27立方根是_______.___________, ___________,___________.2、=-2)4( ; =-33)6( ; 2)196(= . 38-= .3、① 2+32—52 ② 771-7③ |23- | + |23-|- |12- | ④ 41)2(823--+4、1327-+2)3(--31- 233364631125.041027-++---3知识点三:利用平方根和立方根解方程1、12x-12-169=0; 212142=x 3125)2(3=+x知识点四:关于有意义的题a ,有非负性,a 0a a ≥0;要使1a有意义,必须满足a ≠0. 1、若a 的算术平方根有意义,则a 的取值范围是 A 、一切数 B 、正数 C 、非负数 D 、非零数 2、要使62-x 有意义,x 应满足的条件是3、当________x 时,式子21--x x 有意义;知识点五:有关平方根的解答题1、一个正数a 的平方根是3x ―4与2―x,则a 是多少2、若5a +1和a -19是数m 的平方根,求m 的值;3、已知x 、y 都是实数,且334y x x =--,求x y 的平方根;知识点六:非负性的应用1、已知实数x,y 满足 2x -+y+12=0,则x-y 等于解答:根据题意得,x-2=0,y+1=0,解得x=2,y=-1, 所以,x-y=2--1=2+1=3.2、已知a 、b 满足0382=-++b a ,解关于x 的方程()122-=++a b x a ;3、若0)13(12=-++-y x x ,求25y x +的值;4、若a 、b 、c 满足01)5(32=-+++-c b a ,求代数式acb -的值;5、已知a 31-和︱8b -3︱互为相反数,求ab -2-27 的值;重点知识巩固考点、平方根、算术平方根、立方根 1、概念、定义1如果一个正数x 的平方等于a,即,那么这个正数x 叫做a 的算术平方根;2如果一个数的平方等于a,那么这个数就叫做a 的平方根或二次方跟;如果,那么x 叫做a 的平方根;3如果一个数的立方等于a,那么这个数就叫做a 的立方根或a 的三次方根;如果,那么x叫做a的立方根;2、运算名称1求一个正数a的平方根的运算,叫做开平方;平方与开平方互为逆运算;2求一个数的立方根的运算,叫做开立方;开立方和立方互为逆运算;3、运算符号1正数a的算术平方根,记作“a”;2aa≥0的平方根的符号表达为;3一个数a的立方根,用表示,其中a是被开方数,3是根指数;4、运算公式4、开方规律小结,a的算术平方根a;正数的平方根有两个,它们互为相反1若a≥0,则a的平方根是a数,其中正的那个叫它的算术平方根;0的平方根和算术平方根都是0;负数没有平方根;实数都有立方根,一个数的立方根有且只有一个,并且它的符号与被开方数的符号相同;正数的立方根是正数,负数的立方根是负数,0的立方根是0;2若a<0,则a没有平方根和算术平方根;若a为任意实数,则a的立方根是;3正数的两个平方根互为相反数,两个互为相反数的实数的立方根也互为相反数;。

实数知识点总结及练习题

实数知识点总结及练习题

复习:实数知识点总结一、平方根:如果a x =2,那么x 叫做a 的平方根(或二次方根)。

记作a x ±=性质:(1)平方根号里的数是非负数,即0≥a(2)正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根。

例 1、36的平方根是 ;16的算术平方根是 .2、如果102=x ,则x 是一个 数,x 的整数部分是 .3、=22 ,()23-= ,213= ,()=-225 ,20= , 综上所述,=2a .4、()=29 ,()=236 ,()=⎪⎭⎫ ⎝⎛-227 ,()=20 , 综上所述,()=2a .二、立方根:如果a x =3,那么x 叫做a 的立方根(或三次方根)。

记作3a x =性质:(1)立方根号里的数是任意实数(2)任意实数的立方根只有一个,且符号相同例 1、8的立方根是 ;327-= .2、=-3343 ,=-3343 ,则33433a3、37-的相反数是 .4、=33a ,()=33a .三、实数分类⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧ 0无限不循环小数负无理数正无理数无理数无限不循环小数有限小数或负分数正分数分数负整数正整数整数有理数实数说明:(1)实数与数轴上的点一一对应。

(2)相反数:a ,b 是实数且互为相反数b a b a -==+⇔,0(3)绝对值:设a 表示一个实数,则⎪⎩⎪⎨⎧<-=>=时当时当时当0 000 a a a a a a例 1、把下列各数分别填入相应的集合里:()2,2,3.0,1010010001.0,125,722,0,123-----•π 有理数集合:{ };无理数集合:{ };负实数集合:{ };2、2-的绝对值是,11-的绝对值是 .3+的相反数是,-的相反数的绝对值是 .4、计算:22322+-测试题:一、选择题:1、实数38 2π 34 310 25 其中无理数有()A 、 1个B 、 2个C 、 3个D 、 4个2、如果162=x ,则的值是()A 、 4B 、 -4C 、 4±D 、 2±3、下列说法正确的是()A 、 25的平方根是5B 、22-的算术平方根是2C 、 8.0的立方根是2.0D 、65是3625的一个平方根 4、下列说法其中错误的有( )个⑴无限小数都是无理数 ⑵无理数都是无限小数 ⑶带根号的数都是无理数⑷两个无理数的和还是无理数 (5)两个无理数的积还是无理数A 、 3B 、 1C 、 4D 、 25、如果x x -=2成立的条件是()A 、0≥xB 、0≤xC 、0>xD 、0<x6、下列说法错误的是()A 、2a 与2)(a -相等 B 、a 与a -互为相反数C 、3a 与3a -是互为相反数D 、a 与a -相等 7、b a ,的位置如图所示,则下列各式中有意义的是( ).A 、b a +B 、b a -C 、abD 、a b - 8、16的平方根是( ) A. 4 B. -4 C. 4± D. 2±9、下列说法:① 任意一个数都有两个平方根; ② 3的平方根是3的算术平方根 ; ③ -125的立方根是5±; ④23是一个分数; ⑤ 32-无意义。

平方根和立方根专题(比较难)

平方根和立方根专题(比较难)

平方根和立方根专题(比较难) 平方根和立方根知识归纳】1.平方根:1)若$x=a$($a>0$),那么$a$叫做$x$的算术平方根,记为$\sqrt{x}$。

规定,$\sqrt{1}=1$。

2)一个正数的平方根有2个,它们互为相反数;只有1个平方根,它是本身;负数没有实数平方根。

3)两个公式:a)$(a+b)^2=a^2+2ab+b^2$;b)$(a-b)^2=a^2-2ab+b^2$。

2.立方根:1)若$x=a$($a>0$),那么$a$叫做$x$的算术立方根,记为$\sqrt[3]{x}$。

2)一个正数的立方根有1个,负数有1个立方根。

3)立方根的性质:a)$\sqrt[3]{a^2}=a^{\frac{2}{3}}$;b)$a^3=(\sqrt[3]{a})^3$。

4.已知某数有两个平方根分别是$a+3$与$2a-15$,求这个数。

设这个数为$x$,则有$(a+3)^2=x$,$2a-15$也是$x$的平方根,因此$(2a-15)^2=x$。

解得$a=7$,$x=64$。

5.已知:$2m+2$的平方根是$\pm4$,$3m+n+1$的平方根是$\pm5$,求$m+2n$的值。

由题意可列出方程组:begin{cases}sqrt{2m+2}=4\\sqrt{3m+n+1}=5end{cases}$解得$m=6$,$n=13$,因此$m+2n=32$。

6.已知$a<0$,$b<0$,求$4a^2+12ab+9b^2$的算术平方根。

4a^2+12ab+9b^2=(2a+3b)^2$,因此算术平方根为$|2a+3b|$。

7.甲乙二人计算$a+1-2a+a^2$的值,当$a=3$的时候,得到下面不同的答案:甲的解答:$a+1-2a+a^2=a+(1-a)^2=a+1-a=1$。

乙的解答:$a+1-2a+a^2=a+(a-1)^2=a+a-1=2a-1=5$。

哪一个解答是正确的?错误的解答错在哪里?为什么?乙的解答是正确的。

专题03 平方根与立方根章节6种题型梳理

专题03 平方根与立方根章节6种题型梳理

专题03 平方根与立方根6种题型梳理基础知识点知识点1-1 算术平方根的概念1)算术平方根概念:一个正数的平方等于a ,即x 2=a ,那么这个正数x 叫作a 的算术平方根。

其中,a 叫作被开方数,规定0的算术平方根为0。

记作√a =x 。

注:①“”表示的是算术平方根(与后面的平方根注意区分)②a ≥0,x ≥0。

负数没有算术平方根(因为x 2≥0) 2)常见算术平方根表:知识点1-2 平方根1)平方根的概念:如果一个数的平方等于a ,那么这个数叫作a 的平方根或者二次方根。

求一个数a 的平方根的运算,叫作开平方。

注:①“”表示算数平方根的意思,平方根表示为“±”②正数的平方根有两个,它们互为相反数。

且正数根即为算术平方根; ③0的平方根和算术平方根都为0;④负数没有平方根和算术平方根。

重难点题型题型1 运用平方根和算术平方根的概念解题 解题技巧:平方根与算术平方根的区别于联系:A3 B .12-是14的平方根 C .带根号的数不一定是无理数 D .a 2的算术平方根是a 【答案】D【解析】±3,故A 正确;211()24-=,则12-是14的平方根,故B 正确;2=是有理数,则带根号的数不一定是无理数,故C 正确;∵a 2的算术平方根是|a|,∴当a≥0,算术平方根为a ,当a <0时,算术平方是﹣a , 故a 2的算术平方根是a 不正确.故D 不一定正确;故选:D .2.(2019·河南洛宁初二期中)算术平方根和立方根都等于本身的数有_________.【解析】1的算术平方根是1,立方根是1,0的算术平方根和立方根都是0,所以算术平方根和立方根都等于本身的数有0和1.3.(2019·全国初二课时练习)填空:(1)1的平方根为____,立方根为_____,算术平方根为_____;(2) 27的立方根是____;(3)___;(4)____.【解析】解:(1)1的平方根为1=±1=,算术平方根为1=,故答案为:±1,1,1;(2)273=,故答案为:3;(3)8=-2=-,故答案为:2-;(44==的平方根为2=±,故答案为:±2. 4.(2019·全国初二课时练习)下列说法中,正确的个数是( )①512的立方根是8,记做8=;②49的平方根是-7;③8是16的算术平方根;④ ±2;⑤如果一个数有立方根,那么它一定有平方根. A .1B .2C .3D .4【解析】解:①512的立方根是8,记做35128=,正确;②不正确,49的平方根是±7;③不正确,16的算术平方根是4±2,正确;⑤不正确,如-8的立方根,是-2,但-8没有平方根.综上所述,正确的有①④.故选:B .A ±6B ±2C .|﹣8|的立方根是﹣2D 4【解析】解:A 6=,6的平方根是,故该选项错误;B 4=,4的平方根是±2,故该选项正确;C 、|−8|=8,8的立方根2,故该选项错误;D 4=,4的算术平方根是2,故该选项错误,故选:B .6.(2020·河南省初二期中)按如图所示的程序计算:若开始输入的值为64,输出的值是_______.【解析】82,2.题型2利用平方根和立方根解方程解题技巧:(1)先将方程化简为(x +a )2=ℎ的形式,移项将系数化为1;然后直接开方即可。

平方根和立方根复习

平方根和立方根复习

平方根和立方根复习知识点一:平方根(1)如果一个数的平方等于a ,这个数就叫做a 的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作。

(2)一个正数a 的正的平方根,叫做a 的算术平方根。

0的算术平方根是0。

a(a≥0)的算术平方根记作。

巩固练习一:基础题知识点1 算术平方根1.(呼伦贝尔中考)25的算术平方根是( )A .5B .-5C .±5D . 52.(杭州中考)化简:9=( )A .2B .3C .4D .5 3.14的算术平方根是( ) A .12 B .-12 C .116 D .±124.(南充中考)0.49的算术平方根的相反数是( )A .0.7B .-0.7C .±0.7D .05.(-2)2的算术平方根是( ) A .2 B .±2 C .-2 D . 26.(宜昌中考)下列式子没有意义的是( )A .-3B .0C . 2D .(-1)27.下列说法正确的是( )A .因为52=25,所以5是25的算术平方根B .因为(-5)2=25,所以-5是25的算术平方根C .因为(±5)2=25,所以5和-5都是25的算术平方根D .以上说法都不对8.求下列各数的算术平方根:(1)144; (2)1; (3)1625; (4)0.a a9.求下列各式的值:(1)64;(2)121225; (3)108;(4)(-3)2.知识点2 估计算术平方根10.一个正方形的面积为50平方厘米,则正方形的边长约为() A.5厘米B.6厘米C.7厘米D.8厘米11.(安徽中考)设n为正整数,且n<65<n+1,则n的值为() A.5 B.6 C.7 D.812.(泉州中考)比较大小:用“>”或“<”号填空).中档题16.设a-3是一个数的算术平方根,那么()A.a≥0 B.a>0 C.a>3 D.a≥3 17.(台州中考)下列整数中,与30最接近的是(B)A.4 B.5 C.6 D.7 18.(东营中考)16的算术平方根是()A.±4 B.4 C.±2 D.219.若一个数的算术平方根等于它本身,则这个数是()A.1 B.-1 C.0 D.0或120.下列说法中:①一个数的算术平方根一定是正数;②100的算术平方根是10,记为±100=10;③(-6)2的算术平方根是6;④a2的算术平方根是a.正确的有()A.1个B.2个C.3个D.4个21.(天津中考)已知一个表面积为12 dm2的正方体,则这个正方体的棱长为() A.1 dm B. 2 dm C. 6 dm D.3 dm22.若一个数的算术平方根是11,则这个数是.23.若x-3的算术平方根是3,则x=.24.(青海中考)若数m,n满足(m-1)2+n+2=0,则(m+n)5=.25.计算下列各式:(1)179; (2)0.81-0.04; (3)412-402.26.比较下列各组数的大小:(1)12与14;(2)-5与-7;(3)5与24;(4)24-12与1.5.27.求下列各式中的正数x的值:(1)x2=(-3)2;(2)x2+122=132.28.兴华的书房面积为10.8 m2,她数了一下地面所铺的正方形地砖正好是120块,请问每块地砖的边长是多少?综合题30.国际比赛的足球场长在100 m到110 m之间,宽在64 m到75 m之间,为了迎接某次奥运会,某地建设了一个长方形的足球场,其长是宽的1.5倍,面积是7 560 m2,请你判断这个足球场能用作国际比赛吗?并说明理由.巩固练习二:基础题知识点1 平方根1.(黄冈中考)9的平方根是()A.±3 B.±13C.3 D.-32.(绵阳中考)±2是4的()A.平方根B.相反数C.绝对值D.算术平方根3.下面说法中不正确的是()A.6是36的平方根B.-6是36的平方根C.36的平方根是±6 D.36的平方根是64.下列说法正确的是()A.任何非负数都有两个平方根B.一个正数的平方根仍然是正数C.只有正数才有平方根D.负数没有平方根5.(怀化中考)(-2)2的平方根是()A.2 B.-2 C.±2 D. 2 6.下列各数是否有平方根?若有,求出它的平方根;若没有,请说明理由.(1)(-3)2;(2)-42;(3)-(a2+1).知识点2 平方根与算术平方根的关系7.下列说法不正确的是()A.21的平方根是±21 B.49的平方根是23C.0.01的算术平方根是0.1 D.-5是25的一个平方根8.(武汉校级月考)下列式子中,计算正确的是()A.- 3.6=-0.6 B.(-13)2=-13C.36=±6 D.-9=-3 9.求下列各数的平方根与算术平方根:(1)(-5)2;(2)0;(3)-2;(4)16.10.求下列各式的值:(1)225; (2)-3649; (3)±144121.11.下列说法正确的是()A.-8是64的平方根,即64=-8B.8是(-8)2的算术平方根,即(-8)2=8C.±5是25的平方根,即±25=5D.±5是25的平方根,即25=±512.(东营中考)81的平方根是()A.±3 B.3C.±9 D.913.(郾城区期中)若x2=16,则5-x的算术平方根是()A.±1 B.±4C.1或9 D.1或314.如果某数的一个平方根是-6,那么这个数的另一个平方根是6,这个数是.15.若x+2=3,求2x+5的平方根.16.已知25x2-144=0,且x是正数,求25x+13的值.17.求下列各式中的x:(1)9x2-25=0;(2)4(2x-1)2=36.21.已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b的平方根.22.(1)一个非负数的平方根是2a -1和a -5,这个非负数是多少?(2)已知a -1和5-2a 都是m 的平方根,求a 与m 的值.知识点二:立方根如果x 3=a ,那么x 叫做a 的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.a 的立方根记作3a 。

(完整版)平方根与立方根典型题

(完整版)平方根与立方根典型题

(完整版)平方根与立方根典型题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN平方根算术平方根立方根三说一、平方根、算术平方根、立方根知识点概要1. 平方根、算术平方根的概念与性质2=),那么这个数x就叫做a的平方根(或二如果一个数x的平方等于a(即x a=±,这里a是x的平方数,故a必是一个非负数即a≥0;例次方根),记作:x a如16的平方根是±4,从定义还可得出:一个正数有两个平方根,它们互为相反数;负数没有平方根;0的平方根只有一个0,即为它本身。

正数a的正的平方根叫做a的算术平方根,表示为()a a≥0,例如16的算术平方=,从定义中容易发现:算术平方根具有双重非负性:①a≥0;②根是164a≥0。

2. 平方根、算术平方根的区别与联系区别:①定义不同;②个数不同;③表示方法不同;④取值范围不同:平方根可以是正数、负数、零,而算术平方根只能取零及正数,即非负数。

联系:①它们之间具有包含关系;②它们赖以生存的条件相同,即均为非负数;③0的平方根以及算术平方根均为0。

3. 立方根的定义与性质3=),那么这个数x就叫做a的立方根(或三次如果一个数x的立方等于a(即x a=3。

方根),记作:x a立方根的性质:正数的立方根是正数,0的立方根是0,负数的立方根是负数。

二、解题中常见的错误剖析例1.求()-32的平方根。

2错解:()-=39()∴-32的平方根是-32是一个正数,故它的剖析:一个正数有两个平方根,它们互为相反数,而()-=39平方根应有两个即±3。

例2. 求9的算术平方根。

2=错解: 39∴9的算术平方根是3剖析:本题是没有搞清题目表达的意义,错误的认为是求9的算术平方根,因而导致误解,事实上本题9就是表示的9的算术平方根,而整个题目的意义是让求9的算术平方根的算术平方根。

93=,而3的算术平方根为3,故9的算术平方根应为3。

七年级下册数学期末考复习专题01平方根及立方根(知识点串讲)【含答案】

七年级下册数学期末考复习专题01平方根及立方根(知识点串讲)【含答案】

专题01 平方根及立方根知识框架重难突破一. 平方根1.平方根(1)平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.备注:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.(2)求一个数a的平方根的运算,叫做开平方.一个正数a的正的平方根表示为“”,负的平方根表示为“-”.(3)平方根的性质:正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2. 算术平方根(1)算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.(2)非负数a的算术平方根有双重非负性:①被开方数a是非负数;②算术平方根本身是非负数.a≥0,a≥0.备注:20 ||00a aa a aa a >⎧⎪===⎨⎪-<⎩(3)利用算术平方根的非负性求值的问题,主要是根据被开方数是非负数,开方的结果也是非负数列出不等式求解.非负数之和等于0时,各项都等于0,利用此性质列方程解决求值问题.例1.(·安徽初一期中)下列说法正确的是( )A.-5是25的平方根B.25的平方根是5C.-5是(-5)2的算术平方根D.±5是(-5)2的算术平方根练习1.(安徽四十二中中铁国际城校区初一期中)计算16的平方根为()A.4±B.2±C.4 D.2±练习2.(·辽宁初二期中)9的平方根是( )A.3B.81C.3±D.81±例2.(2017·阜阳市第九中学初一期中)14的算术平方根是( )A.12±B.12-C.12D.116练习1.(六安市裕安中学初一期中)16的算术平方根是_____.练习2.(·北京初二期中)16的算术平方根是。

例3.(·安徽初一期中)81的平方根是_________;364的算术平方根是_________.练习1.(·安徽初一月考)若2a-1和5-a是一个正数m的两个平方根,则m=_______练习2.(郑州市初二期中)已知2m+2的平方根是±4,3m+n+1的平方根是±5,求m+2n的值.二. 立方根1.立方根的定义:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果3x a=,那么x叫做a的立方根.记作:.2.立方根的性质:正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根.3.求一个数a的立方根的运算叫开立方,其中a叫做被开方数.备注:①符号中的根指数“3”不能省略;②对于立方根,被开方数没有限制,正数、零、负数都有唯一一个立方根.例1.(·安徽初一期中)64的立方根是()A .4B .±4C .8D .±8练习1.(·淮南初一期中)下列说法中,不正确的是( ) A .8的立方根是2 B .﹣8的立方根是﹣2 C .0的立方根是0D .64的立方根是±4练习2.(·北京市昌平区阳坊中学初二期中)8-的立方根是__________.例2.(合肥市第四十五中学初一期中)已知a +3和2a ﹣15是某正数的两个平方根,b 的立方根是﹣2,c 算术平方根是其本身,求2a +b ﹣3c 的值.练习1.(·淮南初一期中)已知5a 2+的立方根是3,3a b 1+-的算术平方根是4,c (1) 求a ,b ,c 的值;(2)求3a b c -+的平方根.练习2.(郑州市初二期中)已知2m+2的平方根是±4,3m+n+1的平方根是±5,求m+2n 的值.例3.(安徽初一期中)求下列各式中x 的值:(1)2x 2=4; (2)64x 3 + 27=0专题01 平方根及立方根知识框架重难突破一. 平方根1.平方根(1)平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.备注:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.(2)求一个数a的平方根的运算,叫做开平方.一个正数a的正的平方根表示为“”,负的平方根表示为“-”.(3)平方根的性质:正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2. 算术平方根(1)算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.(2)非负数a的算术平方根有双重非负性:①被开方数a是非负数;②算术平方根本身是非负数.a≥0,a≥0.备注:||00a aa aa a>⎧⎪===⎨⎪-<⎩(3)利用算术平方根的非负性求值的问题,主要是根据被开方数是非负数,开方的结果也是非负数列出不等式求解.非负数之和等于0时,各项都等于0,利用此性质列方程解决求值问题.例1.(·安徽初一期中)下列说法正确的是( )A.-5是25的平方根B.25的平方根是5C.-5是(-5)2的算术平方根D.±5是(-5)2的算术平方根A试题分析:A、B、C、D都可以根据平方根和算术平方根的定义判断即可.解:A、﹣5是25的平方根,故选项正确;B、25的平方根是±5,故选项错误;C、5是(﹣5)2的算术平方根,﹣5是(﹣5)2的平方根,故选项错误;D、5是(﹣5)2的算术平方根,﹣5是(﹣5)2的平方根,故选项错误.故选A.练习1的平方根为()A.4±B.2±C.4 D.B,又∵(±2)2=4,∴4的平方根是±2±2,故选B.练习2.(·辽宁初二期中)9的平方根是( )A.3B.81C.3±D.81±C解:9的平方根是3±.故选:C.例2.(2017·阜阳市第九中学初一期中)14的算术平方根是( )A .12± B .12-C .12D .116C本题解析: ∵211()24=, ∴14的算术平方根为12+,故选C.练习1 _____. 2,4的算术平方根是2,2.练习2.(·北京初二期中)16的算术平方根是 。

平方根和立方根(习题及答案)

平方根和立方根(习题及答案)

平方根和立方根(习题)1. 下列说法错误的是( )A1=B1=- C .2的平方根是D .-81的平方根是9± 2. 下列说法正确的是( ) A .-0.064的立方根是0.4B .-9的平方根是3±C .16D .0.01的立方根是0.000 001 3. 下列说法正确的是( ) A .7是497±B .7是(-7)27=C .7±是49的平方根,即7=D .7±是497=±4. 若22(3)x =-,则x =_________.5.=_______=_______=_________________;=_______=______;2=_______.6. 若一个数的平方根是8±,则这个数的立方根是_________.7. 若某个数的平方根是a +2与3a -6,则a 的值为________.8. 已知一个正数的平方根是a +1与-2a +1,求这个正数.9._______;210-的算术平方根是_________;的平方根是_____________;_______的立方根是________.10.3=,则5a +2的立方根是________.11.,则a =_________.12. 若一个正数的算术平方根是m ,则比这个正数大2的数的算术平方根是_________.13. 若2m +2的平方根是±2,n +1的平方根是±3,则m +2n 的立方根是________.复习巩固14. 一个正方体木块的体积为1 000 cm 3,现要把它锯成8块同样大小的正方体小木块,小木块的棱长是________.15. 若一个正方形的面积变为原来的4倍,则它的边长变为原来的______倍;若面积变为原来的9倍,则它的边长变为原来的______倍;若面积变为原来的100倍,则它的边长变为原来的______倍;若面积变为原来的n 倍,则它的边长变为原来的______倍.1. 平方根与算术平方根的比较2. 对于任意数a a 吗?2一定等于a 吗?①当a ≥0;当a <0,a .(“一定等于”或“不一定等于”)②对于2,a 作为被开方数,所以a ______0,因为平方和开平方互为_________,所以2_______a .(“一定等于”或“不一定等于”)思考小结1.D 2.C 3.B 4. ±3 5. 0.3;0.3;34;54;4;-6;196 6. 47. 18. 这个正数为99. ±3;110;±32;3 10. 311. 412.13.14. 5 cm15. 2,3,101.2. ①a ,a -,不一定等于 ②≥,逆运算,一定等于复习巩固思考小结。

平方根和立方根知识点总结和练习

平方根和立方根知识点总结和练习

平方根和立方根知识点总结和练习Prepared on 22 November 2020【基础知识巩固】一、平方根、算数平方根和立方根1、平方根(1)平方根的定义:如果一个数x 的平方等于a ,那么这个数x 就叫做a 的平方根.即:如果a x =2,那么x 叫做a 的平方根.(2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。

(3)平方与开平方互为逆运算:±3的平方等于9,9的平方根是±3(4)一个正数有两个平方根,即正数进行开平方运算有两个结果;一个负数没有平方根,即负数不能进行开平方运算(5)符号:正数a 的正的平方根可用a 表示,a 也是a 的算术平方根;正数a 的负的平方根可用-a 表示.(6)a x =2 <—> a x ±=a 是x 的平方 x 的平方是ax 是a 的平方根 a 的平方根是x 2、算术平方根(1)算术平方根的定义: 一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为a ,读作“根号a”,a 叫做被开方数.规定:0的算术平方根是0.也就是,在等式a x =2 (x≥0)中,规定a x =。

(2)a 的结果有两种情况:当a 是完全平方数时,a 是一个有限数;当a 不是一个完全平方数时,a 是一个无限不循环小数。

(3)当被开方数扩大时,它的算术平方根也扩大;当被开方数缩小时与它的算术平方根也缩小。

一般来说,被开放数扩大(或缩小)a 倍,算术平方根扩大(或缩小)a 倍,例如=5,=50。

(4)夹值法及估计一个(无理)数的大小(5)a x =2 (x≥0) <—> a x = a 是x 的平方 x 的平方是ax 是a 的算术平方根 a 的算术平方根是x(6)正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥0(7)平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。

(完整版)平方根立方根知识点归纳及常见题型

(完整版)平方根立方根知识点归纳及常见题型

“平方根”与“立方根”知识点小结一、知识要点1、平方根:⑴、定义:如果x 2=a ,则x 叫做a 的平方根,记作“(a 称为被开方数)。

⑵、性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

⑶、算术平方根:正数a 的正的平方根叫做a ”。

2、立方根:⑴、定义:如果x 3=a ,则x 叫做a ”(a 称为被开方数)。

⑵、性质:正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。

3、开平方(开立方):求一个数的平方根(立方根)的运算叫开平方(开立方)。

二、规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。

2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。

30a ≥0。

4、公式:⑴2=a (a ≥0)(a 取任何数)。

5、非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0例1 求下列各数的平方根和算术平方根(1)64;(2)2)3(-; (3)49151; ⑷ 21(3)- 例2 求下列各式的值(1)81±; (2)16-; (3)259; (4)2)4(-.(5)44.1,(6)36-,(7)4925±(8)2)25(-例3、求下列各数的立方根:⑴ 343; ⑵10227-; ⑶ 0.729二、巧用被开方数的非负性求值.当a ≥0时,a 的平方根是±a ,即a 是非负数. 例4、若,622=----y x x 求y x 的立方根.练习:已知,21221+-+-=x x y 求y x 的值.三、巧用正数的两平方根是互为相反数求值.当a ≥0时,a 的平方根是±a ,而.0)()(=-++a a例5、已知:一个正数的平方根是2a-1与2-a ,求a 的平方的相反数的立方根.练习:若32+a 和12-a 是数m 的平方根,求m 的值.四、巧解方程例6、解方程(1)(x+1)2=36 (2)27(x+1)3=64五、巧用算术平方根的最小值求值. 0≥a ,即a=0时其值最小,换句话说a 的最小值是零.例4、已知:y=)1(32++-b a ,当a 、b 取不同的值时,y 也有不同的值.当y 最小时,求b a 的非算术平方根.23(2)0y z -++=,求xyz 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【基础知识巩固】
一、平方根、算数平方根和立方根
1、平方根
(1)平方根的定义:如果一个数x 的平方等于a ,那么这个数x 就叫做a 的平方根.即:
如果a x =2,那么x 叫做a 的平方根.
(2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。

(3)平方与开平方互为逆运算:±3的平方等于9,9的平方根是±3
(4)一个正数有两个平方根,即正数进行开平方运算有两个结果;
一个负数没有平方根,即负数不能进行开平方运算
(5)符号:正数a 的正的平方根可用a 表示,a 也是a 的算术平方根;
正数a 的负的平方根可用-a 表示.
(6)a x =2 <—> a x ±=
a 是x 的平方 x 的平方是a
x 是a 的平方根 a 的平方根是x
2、算术平方根
(1)算术平方根的定义: 一般地,如果一个正数x 的平方等于a ,2
个正数x 叫做a 的算术平方根.a “根号
a”,a 叫做被开方数.
规定:0的算术平方根是0.
也就是,在等式a x =2 (x≥0)中,规定a x =。

(2)a 的结果有两种情况:当a 是完全平方数时,a 是一个有限数;
当a 不是一个完全平方数时,a 是一个无限不循环小数。

(3)当被开方数扩大时,它的算术平方根也扩大;
当被开方数缩小时与它的算术平方根也缩小。

一般来说,被开放数扩大(或缩小)a 倍,算术平方根扩大(或缩小)a 倍,例如错误!未找到引用源。

=5,错误!未找到引用源。

=50。

(4)夹值法及估计一个(无理)数的大小 (5)a x =2 (x≥0) <—> a x =
a 是x 的平方 x 的平方是a
x 是a 的算术平方根 a 的算术平方根是x
(6)正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0) 0≥a
==a a 2 ;注意a 的双重非负性:
-a (a <0) a ≥0
(7)平方根和算术平方根两者既有区别又有联系:
区别在于正数的平方根有两个,而它的算术平方根只有一个;
联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。

3、立方根
(1)立方根的定义:如果一个数x 的立方等于a ,这个数叫做a 的立方根(也叫做三
次方根),即如果3x a =,那么x 叫做a 的立方根
(2)一个数a 的立方根,记作3a ,读作:“三次根号a ”,
其中a 叫被开方数,3叫根指数,不能省略,若省略表示平方。

(3) 一个正数有一个正的立方根;
0有一个立方根,是它本身;
一个负数有一个负的立方根;
任何数都有唯一的立方根。

(4)利用开立方和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,
求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反数,即()330a a a -=->。

(5)a x =3 <—> 3a x =
a 是x 的立方 x 的立方是a
x 是a 的立方根 a 的立方根是x
(6)33a a -=-,这说明三次根号内的负号可以移到根号外面。

【典型例题分析】
知识点一:有关概念的识别
1、下列说法中正确的是( )
A 、的平方根是±3
B 、1的立方根是±1
C 、=±1
D 、是5的平方根的相反数
2、下列语句中,正确的是( )
A .一个实数的平方根有两个,它们互为相反数
B .负数没有立方根
C .一个实数的立方根不是正数就是负数
D .立方根是这个数本身的数共有三个
3、下列说法中:①3±都是27的立方根,②y y =33,③64的立方根是2,④()4832±=±。

其中正确的有 ( )
A 、1个
B 、2个
C 、3个
D 、4个
4、()2
0.7-的平方根是( ) A .0.7- B .0.7± C .0.7 D .0.49
5、下列各组数中,互为相反数的组是( )
A 、-2与2)2(-
B 、-2和38-
C 、-2
1与2 D 、︱-2︱和2
知识点二:计算类题型
1、25的算术平方根是_______;平方根是_____. -27立方根是_______.
___________, ___________,___________. 2、=-2)4( ; =-33)6( ; 2)196(= . 38-= .
3、① 2+32—52 ② 7(
71-7)
③ |23- | + |23-|- |12- | ④ 41)2(823--+
4、(1)
327-+2)3(--31- (2)33364
631125.041027-++---
知识点六:非负性的应用
1、已知实数x ,y 满足 2x -+(y+1)2=0,则x-y 等于 解答:根据题意得,x-2=0,y+1=0,
解得x=2,y=-1,
所以,x-y=2-(-1)=2+1=3.
2、已知a 、b 满足0382=-++b a ,解关于x 的方程()122-=++a b x a 。

3、若
0)13(12=-++-y x x ,求25y x +的值。

4、若a 、b 、c 满足01)5(32=-+++-c b a ,求代数式
a
c b -的值。

5、已知a 31-和︱8b -3︱互为相反数,求(ab )-2-27 的值。

【重点知识巩固】
考点、平方根、算术平方根、立方根
1、概念、定义
(1)如果一个正数x 的平方等于a ,即,那么这个正数x 叫做a 的算术平方根。

(2)如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。

如果

那么x叫做a的平方根。

(3)如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。

如果,那么x叫做a的立方根。

2、运算名称
(1)求一个正数a的平方根的运算,叫做开平方。

平方与开平方互为逆运算。

(2)求一个数的立方根的运算,叫做开立方。

开立方和立方互为逆运算。

3、运算符号
(1)正数a的算术平方根,记作“a”。

(2)a(a≥0)的平方根的符号表达为。

(3)一个数a的立方根,用表示,其中a是被开方数,3是根指数。

4、运算公式
4、开方规律小结
,a的算术平方根a;正数的平方根有两个,它们互(1)若a≥0,则a的平方根是a
为相反数,其中正的那个叫它的算术平方根;0的平方根和算术平方根都是0;负数没有平方根。

实数都有立方根,一个数的立方根有且只有一个,并且它的符号与被开方数的符号相同。

正数的立方根是正数,负数的立方根是负数,0的立方根是0。

(2)若a<0,则a没有平方根和算术平方根;若a为任意实数,则a的立方根是。

(3)正数的两个平方根互为相反数,两个互为相反数的实数的立方根也互为相反数。

相关文档
最新文档