一元一次方程及其运用

合集下载

一元一次方程在实际生活中的应用举例及解题技巧分享?

一元一次方程在实际生活中的应用举例及解题技巧分享?

一元一次方程在实际生活中的应用举例及解题技巧分享?2023年了,科技发展日新月异,计算机和的发展,的确使人们生活变得更为便利、智能化。

但是,拥有一定数学基础、能够熟练掌握一元一次方程的解法,也是不可或缺的。

一元一次方程在实际生活中的应用广泛,比如在统计学、经济学、物理学、生物学等领域中都有着不同的应用,本文就来探讨一下这方面的知识点。

一、一元一次方程的定义及解题方法一元一次方程的定义是指带有一次幂的方程,其中未知数只出现在一个式子(即未知量系数不为零),这个式子是由常数项和未知量乘以系数所构成的。

它的一般形式为ax+b=0(a,b是常数,a≠0,x是未知数)。

当a=b=0时,方程没有意义。

对于这类方程,比较简单的求解办法就是将未知数的系数和常数移项,进行变形,最终求得未知数的值。

举个例子,比如有如下的一元一次方程:3x-7=2x+5这个方程中,未知数是x,系数分别是3、2,常数项分别是-7和5。

我们可以将这个方程变形为:3x-2x=5+7x=12从而得出未知数x=12的解。

以上就是一元一次方程解题的基本流程,比较简单易懂,后面我们就通过实际案例来探讨一下这个解题方法是如何应用到实际生活中的。

二、一元一次方程在实际生活中的应用举例在统计学中,一元一次方程经常用于解决线性回归的问题。

举个例子,比如我们现在要统计一群公务员的年龄和薪水的关系,得到如下的数据:年龄 25 27 28 30 32薪水 5000 5500 6000 6500 7000根据这个数据,我们就可以画出一个散点图,然后获得一条直线,用y=kx+b来表示,其中k表示斜率,b表示截距。

这个过程其实就是一元一次方程的解题过程。

接下来,我们就来将这个过程进行具体步骤的演示。

1.首先,我们需要在Excel中进行数据输入,然后绘制散点图,得到如下的图形:2.绘制好散点图之后,我们根据线性回归的原理,得到y=kx+b的一元一次方程式:y=5450+150x。

一元一次方程的应用(题型归纳)

一元一次方程的应用(题型归纳)
进出问题
将进出数值表示为未知数设x,列出方程解x。
工作效率
将某项工作的效率与时间表示为未知数设x,列 出方程解x。
混合物含量
将每种物质的量表示为未知数设x,列出方程解x。
简单的平移和旋转问题
横坐标加减常数 纵坐标加减常数 关于坐标轴翻转 关于x轴翻转 关于y轴翻转
x±a y±b (x,y)→(y,x) (x,y)→(x,-y) (x,y)→(-x,y)
展开思路
举一反三,尝试从其他角度思考 问题的解决方法。
多种解法对比
尝试多种不同的解题方法进行校 验和验证,选择最优解。
关于人口增长、下降和变化的问题
1
人口增长问题
根据增长率设定未知数,并根据相关数
人口下降问题
2
据列出方程求解。
根据下降率设定未知数,并根据相关数 据列出方程求解。
运动员试训问题的解题思路
代数式/代数式组中的一元一次方程
系数为未知数
将系数表示为未知数x,列出方程求解。
系数为常数
将常数表示为未知数x,列出方程解未知数。
单价和总价问题的解题思路
单价计算 总价计算
总价除以数量 单价乘以数量
根据题目条件将总价或单价设为未知数x,列出方程求解。
单利和复利问题的解题思路
单利
根据单利的计算公式将未知数设为x,列出方程求 解。
3
消元系数
将未知数系数化为1,得到类似x=d的解。
文字题型解题思路
阅读题干
认真读题,理解题意,将问题转 化为一元一次方程。
设定未知数
设定符合题意的未知数,表示题 目中的未知量。
列出方程
根据题意列出方程,运用前几步 解方程求解。
数字应用题型解题思路

用一元一次方程解决问题

用一元一次方程解决问题

用一元一次方程解决问题一元一次方程,也称为一次方程,是指只有一个未知数的一次方程,其一般形式为ax + b = 0,其中a和b为已知常数,x为未知数。

一元一次方程是数学中最简单的方程之一,解决问题时常常用到它。

本文将以实际问题为例,详细介绍如何运用一元一次方程解决问题。

1. 商场促销问题假设某商场进行了一次促销活动,某商品原价为x元,根据促销活动的规定,打折后的价格为原价的80%,并且还额外返还20元的现金。

我们要求找出该商品的原价。

解题步骤:设原价为x元,则打折后的价格为0.8x元,根据题意可知:0.8x + 20 = x通过移项和合并同类项,得到:0.8x - x = -20-0.2x = -20将方程两边同时除以-0.2,得到:x = 100因此,该商品的原价为100元。

2. 速度问题假设小明骑自行车从家出发去公司,全程10公里,骑行时速为x km/h。

如果小明增加速度2 km/h,那么他将提前20分钟到达公司。

我们要求求解小明的骑行时速。

解题步骤:设小明的骑行时速为x km/h,则他骑行的时间为10/x小时。

根据题意可知:10/(x+2) = 10/x - 20/60通过通分和移项,得到:10x = (x+2)(10 - 20/60)10x = (x+2)(9)通过分配律展开右侧,得到:10x = 9x + 18将方程两边同时减去9x,得到:x = 18因此,小明的骑行时速为18 km/h。

3. 年龄问题假设小明今年的年龄为x岁,他的父亲今年年龄是他两倍,母亲今年年龄是他的1.5倍。

如果小明再过10年,他的年龄将是父亲年龄的一半,我们要求求解小明的年龄。

解题步骤:设小明今年的年龄为x岁,则父亲今年的年龄为2x岁,母亲今年的年龄为1.5x岁。

根据题意可知:x + 10 = 1/2 * (2x + 10)通过移项和合并同类项,得到:x + 10 = x + 5将方程左侧的x和右侧的x同时消去,得到:10 = 5由于等式无解,说明题目中存在矛盾条件,该问题无解。

中考数学一轮复习专题解析—一元一次方程及其应用

中考数学一轮复习专题解析—一元一次方程及其应用

中考数学一轮复习专题解析—一元一次方程及其应用复习目标1.了解方程、一元一次方程的概念,会解一元一次方程;2.能够根据具体问题中的数量关系,列出一元一次方程解决实际问题,能根据具体问题的实际意义,检验结果是否合理。

考点梳理1.等式及其性质:⑴ 等式:用等号“=”来表示相等关系的式子叫等式.⑵ 性质:① 如果b a =,那么=±c a c b ±;② 如果b a =,那么=ac bc ;如果b a =()0≠c ,那么=c a cb . 2.方程、一元一次方程的概念:⑴ 方程:含有未知数的等式叫做方程;使方程左右两边值相等的未知数,叫做方程的解;求方程解的 叫做解方程. 方程的解与解方程不同.⑵ 一元一次方程:在整式方程中,只含有1个未知数,并且未知数的次数是1,系数不等于0的方程叫做一元一次方程;它的一般形式为b ax =()0≠a .3.解一元一次方程的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.4.一元一次方程的应用:列方程解应用题的步骤:审→设→列→解→验→答即:(1)审题:弄清题意和题目中的数量关系;(2)设未知数:用字母表示题目中的一个未知数,可直接设也可间接地设;(3)列方程:找出适当的数量关系,列出方程;(4)解:选择适当的方法解方程;(5)检验:检验解是否符合实际意义;(6)答。

综合训练1.(2022·湖南株洲·中考真题)方程122x-=的解是( )A .2x =B .3x =C .5x =D .6x =【答案】D【分析】通过移项、合并同类项、系数化为1三个步骤即可完成求解.【详解】 解:122x-=,32x=,6x =;故选:D .2.(2022·无锡市天一实验学校九年级月考)方程2132x x -=-的解为( ) A .1x = B .1x =- C .3x = D .3x =-【答案】A【分析】按照解一元一次方程的步骤求解即可.【详解】解:移项可得:2321x x -=-+,合并同类项得:1-=-x系数化为1得:1x=故选:A.3.(2022·四川绵阳·中考真题)近年来,网购的蓬勃发展方便了人们的生活.某快递分派站现有包裹若干件需快递员派送,若每个快递员派送10件,还剩6件;若每个快递员派送12件,还差6件,那么该分派站现有包裹()A.60件B.66件C.68件D.72件【答案】B【分析】设该分派站有x个快递员,根据“若每个快递员派送10件,还剩6件;若每个快递员派送12件,还差6件”,即可得出关于x的一元一次方程,解之即可得出x 的值,再将其代入(10x+6)中即可求出该分派站现有包裹数.【详解】解:设该分派站有x个快递员,依题意得:10x+6=12x−6,解得:x=6,∴10x+6=10×6+6=66,即该分派站现有包裹66件.故选:B.4.(2022·黑龙江牡丹江·中考真题)已知某商店有两件进价不同的运动衫都卖了160元,其中一件盈利60%,另一件亏损20%,在这次买卖中这家商店()A.不盈不亏B.盈利20元C.盈利10元D.亏损20元【分析】设分别设两件运动衫的进价分别是a元,b元,根据售价=成本±利润,列方程求得两件运动衫的进价,再计算亏盈.【详解】解:设盈利60%的运动衫的进价是a元,亏本20%的运动衫的进价是b元.则有(1)a(1+60%)=160,a=100;(2)b(1-20%)=160,b=200.总售价是160+160=320(元),总进价是100+200=300(元),320-300=20(元),所以这次买卖中商家赚了20元.故选:B.5.(2022·浙江九年级二模)学校组织植树活动,已知在甲处植树的有48人,在乙处植树的有42人,由于甲处植树任务较重,需调配部分乙处的人员去甲处支援,使在甲处植树的人数是乙处植树人数的2倍,设从乙处调配x人去甲处,则()A.48=2(42﹣x)B.48+x=2×42C.48﹣x=2(42+x)D.48+x=2(42﹣x)【答案】D设从乙处调配x 人去甲处,根据”调配部分乙处的人员去甲处支援,使在甲处植树的人数是乙处植树人数的2倍“列方程即可得到结论.【详解】解:设从乙处调配x 人去甲处,根据题意得,48+x =2(42-x ),故选:D .6.(2022·浙江)某商铺促销,单价80元的衬衫按照8折销售仍可获利10元,若这款衬衫的成本价为x 元/件,则( )A .800.810x ⨯-=B .()800.810x x --=C .800.810x ⨯=-D .()800.810x x -⨯=-【答案】A【分析】利用利润=标价⨯折扣率-成本价,即可得出关于x 的一元一次方程.【详解】解:依题意得:800.810x ⨯-=,故选:A .7.(2022·山东九年级二模)已知x =3是关于x 的方程23mx nx =-的解,则24n m -的值是( )A .2B .-2C .1D .﹣1 【答案】A【分析】把x =3代入方程23mx nx =-,可得n -2m =1,进而即可求解.【详解】解:∵x =3是关于x 的方程23mx nx =-的解,∴6m =3n -3,即:n -2m =1,∴24n m -=2,故选A .8.(2022·浙江)《孙子算经》是中国古代重要的数学著作,书中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,则可列方程为( ) A .()33100100x x +-=B .()3100100x x +-=C .()131001003x x +-=D .()3100100x x +-= 【答案】C【分析】根据“大马拉瓦+小马拉瓦=100”可以列出方程 .【详解】解:设大马有 x 匹,则由题意可得:()131001003x x +-=, 故选C .9.(2022·广西梧州·中考真题)运用方程或方程组解决实际问题:若干学生分若干支铅笔,如果每人5支,那么多余3支;如果每人7支,那么缺5支.试问有多少名学生?共有多少支铅笔?【答案】学生有4人,铅笔23支设学生有x人,则铅笔数表示为5x+3或7x−5,由此利用铅笔数相等联立方程求得答案即可.【详解】解:设学生有x人,由题意得5x+3=7x−5,解得:x=4,经检验,符合题意则6x+3=23.答:学生有4人,铅笔23支.10.(2022·广西桂林·中考真题)解一元一次方程:4x﹣1=2x+5.【答案】x =3.【分析】先把方程化移项,合并同类项,系数化1法即可.【详解】解:4 x﹣1=2x+5,移项得:4 x﹣2x=5+1合并同类项得:2 x=6,∴系数化1得:x =3.11.(2022·全国九年级专题练习)解下列方程:(1)36156x x-=--(2)1.5 1.51 0.62x x--=【答案】(1)1x=-;(2)7 =12 x(1)根据解方程步骤,移项,合并同类项,把x 系数化为1,即可求出解; (1)根据解方程步骤,方程去分母,去括号,移项,合并同类项,把x 系数化为1,即可求出解.【详解】解:(1)移项得:36156x x +=-+,合并同类项得:99x =-,解得:1x =-;(2)去分母得:2?1.50.6(1.5) 1.2x x --=,去括号得:30.90.6 1.2x x -+=,移项得:30.6 1.20.9x x +=+,合并同类项得:3.6 2.1x =, 解得:7=12x . 12.(2022·陕西西北工业大学附属中学九年级模拟预测)解方程:1123xx ++=. 【答案】45【分析】 按照去分母、去括号、移项、合并同类项、系数化为1的步骤解答即可.【详解】 解:1123xx ++= 去分母得:3x +2(x +1)=6,去括号得:3x +2x +2=6,移项合并得:5x=4,系数化为1得:x=45.。

一元一次方程的解的应用拓展

一元一次方程的解的应用拓展

一元一次方程的解的应用拓展一元一次方程是数学中最基本的方程形式之一,它解决了许多实际问题。

本文将探讨一元一次方程解的应用拓展,旨在帮助读者更好地理解和运用这种方程。

一元一次方程的一般形式为:ax + b = 0,其中a和b是已知系数,x是未知数。

解这个方程即是找到x的值,使得等式成立。

在实际问题中,一元一次方程的解可以用来解决各种应用题。

1. 市场销售问题假设一个公司在某一时期内售卖一种产品,每个单位的售价是p元,销售量是x单位。

该公司的总收入可以表示为R = px。

如果我们知道单位售价和总收入,可以利用一元一次方程来计算销售量。

例如,如果总收入为5000元,售价为5元,我们可以设立方程5x = 5000来求解销售量x。

2. 财务收支问题一元一次方程也可以应用于财务收支的问题。

例如,某个人月工资是s元,每个月的开销是k元。

假设该人存储m个月,可以通过方程ms - mk = d来计算存款d的金额。

在这个方程中,左侧表示总收入,右侧则表示总开销,通过解方程可以得到存款金额。

3. 速度和时间问题速度与时间的关系可以通过一元一次方程来解决。

假设一个人以v km/h的速度驾驶,行驶了t小时后到达目的地。

可以通过方程vt = d来计算距离d。

在这个方程中,左侧表示速度乘以时间的乘积,右侧则表示距离。

通过解方程可以求出距离的数值。

4. 比例问题一元一次方程还可以应用于比例问题。

例如,某个图书馆有m本书和n个读者,已知每个读者平均可以借阅b本书。

为了使每个读者都能借到平均数目的书籍,我们可以设立方程mb = n来计算需要的书籍总数。

通过解方程可以得到所需的书籍总数。

5. 几何问题在几何学中,一元一次方程也有广泛的应用。

例如,在一幅平面直角坐标系中,假如一条直线过点(x1, y1)和(x2, y2),我们可以根据这两个点的坐标得到直线的方程式。

对于直线的方程,我们可以通过解一元一次方程来计算与坐标轴的交点等相关信息。

一元一次方程的解法及应用

一元一次方程的解法及应用

一元一次方程的解法及应用一元一次方程是初中数学中最基础的一种方程形式,它的形式可以表示为ax+b=0,其中a和b为实数,且a不等于0。

解一元一次方程可以通过运用一些基本的解法和技巧来实现。

在本文中,将介绍一些常见的解一元一次方程的方法,并探讨一些实际应用场景。

一、解法一:移项法移项法是解一元一次方程最常用的方法之一。

其基本思想是将方程中的未知数项移至一边,常数项移至另一边,使方程变为形如x=c的简单形式。

例如,解方程2x+3=7:首先,我们将方程中的常数项3移至右边:2x+3-3=7-3化简后得到:2x=4最后,将方程两边同除以2,得到解:x=2二、解法二:消元法消元法是解一元一次方程的另一种常见方法。

其基本思想是通过相互抵消未知数项或常数项,从而使方程变为形如x=c的简单形式。

例如,解方程3x+2=2x+5:首先,我们将方程中的常数项2移至左边,将未知数项3x移至右边:3x-2x=5-2化简后得到:x=3最终得到解x=3。

三、解法三:代入法代入法通常用于解决一元一次方程组,它的基本思想是将一个方程的某个变量用另一个方程中的变量表示,然后代入到另一个方程中,进而求解未知数的值。

例如,解方程组:2x+y=7x-y=3首先,根据第二个方程可得x=y+3将x的表达式代入第一个方程中:2(y+3)+y=7化简后得到:3y+6=7继续化简可得:3y=1最终得到解y=1/3,代回x的表达式可得x=10/3。

应用:一元一次方程在实际生活中有广泛的应用。

以下是一些常见的应用场景:1. 价格计算:在商业活动中,一元一次方程常用于求解价格。

例如,在打折优惠时,我们可以通过一元一次方程求解最终价格。

2. 时间计算:一元一次方程也可用于时间计算。

例如,在计算速度、时间和距离之间的关系时,我们可以建立一元一次方程来求解未知数。

3. 购物优惠:商场常常会进行满减优惠活动,我们可以通过一元一次方程求解购买满足条件所需的最低金额。

一元一次方程的解法及其应用(含答案)初中数学

一元一次方程的解法及其应用(含答案)初中数学

一元一次方程的解法及其应用[教学目标]1. 经历从具体问题中的数量相等关系,列出方程的过程,体会并认识到方程是刻画现实世界的一个有效的数学模型。

2. 了解方程、一元一次方程以及方程的解等基本概念,了解方程的基本变形及其在解方程中的作用。

3. 会解一元一次方程,并经历和体会解方程中“转化”的过程和思想,了解一元一次方程解法的一般步骤,并能正确、灵活运用。

4. 会根据具体问题中的数量关系列出一元一次方程并求解,能根据问题的实际意义检验所得结果是否合理。

5. 通过实践与探索过程,体会数学建模思想,提高分析和解决实际问题的能力。

【典型例题】例1. 已知()||m x m +=-320032是关于x 的一元一次方程,求m 的值。

解:由一元一次方程的定义可知: ||m m -=+2130,且≠由||||m m m -===2133,得,则± 又由m m +-303≠,得≠ ∴m =3小结:方程ax b a a b +=00()≠,且、为已知数是关于x 的一元一次方程,这里包含有(1)未知数只有一个,且未知数的最高次数是“1”。

(2)未知数的系数合并后不能为零。

(3)它必须是等式。

例2. 已知x =23是一元一次方程334325()m x x m-+=的解,则m 的值是多少? 解:因为x =23是方程334325()m x x m-+=的解,所以3342332235()m m -+=××即33215m m -+=解得m =-14小结:方程的解是指满足方程两边相等的未知数的值,x =23是原方程的解,则把原方程中的x 换成23后等式仍然成立。

从而可以得到另一个关于m 的方程求解。

例3. 解下列方程:(1)5263x x +=-(2)0408613...x x -=- (3)30%70%(440%x x x ++=-)(4)32234122[()]xx ---= (5)97352775x x +=-(6)21431233436()()()x x x -+-=-+ (7)x x +--=-40230516...解:(1)5263x x +=-移项得: 2365+=-x x 合并同类项得:5=x ∴x =5(2)由方程0408613...x x -=-两边同时乘以10得: 486013x x -=-413608x x +=+ 1768x = x =4(3)30%70%(440%x x x ++=-) 方程两边都乘以100得: 3070440x x x ++=-()3744x x x ++=-() 372840x x x +++= 1428x =- x =-2(4)32234122[()]xx ---=去中括号得:()xx 4132---=xx 4132---= x x --=1648 -=324x x =-8 (5)97352775x x +=-97273575x x -=--x =-2(6)21431233436()()()x x x -+-=-+ 21431233436()()()x x x -----=()()x ---=321412346436()x -=4126x -= 418x =x =92(7)x x +--=-40230516...545022320516().()..x x +--=-××5202616x x +-+=-. 3276x =-. x =-92.例 4. 如果关于x 的方程23523331432x x n x n n -=--=+-与()的解相同,求()n -3582的值。

一元一次方程的实际问题应用

一元一次方程的实际问题应用

一元一次方程的实际问题应用一元一次方程是初中数学中的基本知识之一,它在解决实际问题中起着重要的作用。

本文将从几个典型的实际问题入手,展示一元一次方程的应用。

问题一:购买水果小明去市场购买了苹果和橙子,苹果每斤3元,橙子每斤2元,他总共购买了7斤水果,并支付了15元。

求小明购买的苹果和橙子的重量。

解析:设小明购买的苹果重量为x斤,橙子重量为y斤。

根据题意,我们可以得到以下两个方程:x + y = 7 (式1)3x + 2y = 15 (式2)通过解方程组(式1)和(式2),可以求得x和y的值。

可以通过倍加消元法解这个方程组,具体步骤如下:首先将(式1)的两边乘以2,得到2x + 2y = 14。

然后将上述方程和(式2)相减,得到3x - 2x = 15 - 14,即x = 1。

将求得的x值代入(式1),可得1 + y = 7,解得y = 6。

所以小明购买的苹果重量为1斤,橙子重量为6斤。

问题二:汽车行驶一辆汽车以每小时60千米的速度行驶,行驶了t小时后行程达到了120千米。

求汽车行驶了多少时间。

解析:设汽车行驶的时间为t小时。

根据题意,我们可以得到以下方程:60t = 120解这个方程,可以求得t的值。

将方程两边除以60,得到t = 2。

所以汽车行驶了2小时。

问题三:人口增长某城市的人口每年以2%的速度增长,现有人口为100万人,求n 年后该城市的人口。

解析:设n年后该城市的人口为P万人。

根据题意,我们可以得到以下方程:P = 100 × (1 + 0.02)^n解这个方程,可以求得n的值。

假设n=10,则可以计算得到P ≈ 121.9。

所以10年后该城市的人口约为121.9万人。

通过以上三个实际问题的例子,我们可以看到一元一次方程在解决实际问题中的应用。

它能够帮助我们建立数学模型,根据已知条件推导出未知量的值。

在生活中,我们常常会遇到类似的实际问题,通过运用一元一次方程的解法,我们能够更好地解决这些问题,提高问题解决能力。

一元一次方程应用题8种类型

一元一次方程应用题8种类型

一元一次方程应用题8种类型引言一元一次方程是初中数学中最基础、最常见的方程类型之一。

在实际生活中,我们可以经常遇到一些问题需要用到一元一次方程来求解。

本文将介绍一元一次方程应用题的8种类型,并通过具体例子进行解析。

通过学习这些例题,我们可以更好地理解一元一次方程的应用。

类型一:简单乘除法在这类问题中,我们可以利用一元一次方程来解决乘除法的运算问题。

举例如下:例题一:小明买了三个相同价格的苹果,花了50元。

那么每个苹果的价格是多少?解析:设每个苹果的价格为x元,则有3x = 50。

解这个方程,得到每个苹果的价格为50/3 = 16.67元。

类型二:加减法在这类问题中,我们可以利用一元一次方程来解决加减法的运算问题。

举例如下:例题二:在一张长方形的图纸上,长所占的比例是宽的2倍。

如果长为8厘米,那么宽是多少?解析:设宽为x厘米,则有8 = 2x。

解这个方程,得到宽为4厘米。

类型三:平均数在这类问题中,我们可以利用一元一次方程来解决平均数的问题。

举例如下:例题三:小明连续三天每天跑步,第一天跑了3公里,第三天跑了7公里,三天的平均距离是5公里。

那么第二天跑了多少公里?解析:设第二天跑了x公里,则有(3 + x + 7)/3 = 5。

解这个方程,得到第二天跑了5公里。

类型四:速度在这类问题中,我们可以利用一元一次方程来解决速度问题。

举例如下:例题四:小红骑自行车去学校的路上,遇到了红绿灯,等了30秒后才能继续骑行,这时她发现她在等红绿灯的时候又走了200米。

如果她骑自行车的速度是10米/秒,那么她离开红绿灯时与红绿灯的距离是多少?解析:设她离开红绿灯时与红绿灯的距离为x米,则有10 * 30 = x + 200。

解这个方程,得到她离开红绿灯时与红绿灯的距离是500米。

类型五:价格打折在这类问题中,我们可以利用一元一次方程来解决打折问题。

举例如下:例题五:商场举办打折活动,凡购买两件以上商品的顾客可以享受8折优惠。

一元一次方程与应用

一元一次方程与应用

一元一次方程与应用
一、一元一次方程的概念
例如,小明去商场购买一台手机,原价为1500元,商场正在举办打折活动,折扣为30%。

假设小明最终花费的金额为x元,我们可以建立如下一元一次方程:
1500×0.7=x
二、一元一次方程的解法
解一元一次方程的基本步骤是移项和合并同类项。

我们以上面的例子来解释解一元一次方程的过程。

1500×0.7=x
合并左边的项,得:
1050=x
所以小明最终花费的金额为1050元。

三、一元一次方程的应用
例1:小明参加运动会,他参加了100米与200米短跑两个项目,假设小明100米短跑的成绩比200米短跑慢1秒,小明100米短跑的时间为x秒,我们可以建立如下一元一次方程:
x+1=2x
解这个方程得到:
1=x
所以小明100米短跑的时间为1秒。

例2:小明购买水果,苹果的价格是每斤5元,小明购买了x斤苹果,总共花费了20元,我们可以建立如下一元一次方程:
5x=20
合并同类项,得:
x=4
所以小明购买了4斤苹果。

通过以上两个例子,我们可以看到一元一次方程在解决实际问题中的
应用。

它可以帮助我们计算出一些未知的数值,从而解决我们的实际困扰。

在日常生活中,我们经常会遇到一些和等式有关的问题,我们可以通过建
立一元一次方程来解决这些问题。

总之,学习了一元一次方程的概念、解法和应用,我们可以更好地理
解和运用数学知识,解决一些实际问题。

通过这些例子,我们可以发现一
元一次方程在购物、旅行、运动等方面有着广泛的应用,对于我们的生活
有着很大的帮助。

一元一次方程应用题及答案

一元一次方程应用题及答案

一元一次方程应用题及答案一元一次方程是初中数学中非常重要的一部分,它是一个形如ax+b=0的方程,其中a和b是已知数,x是未知数。

在解一元一次方程的过程中,我们需要运用到数学思维和解题技巧。

本文将介绍几个常见的一元一次方程应用题,并提供相应的答案。

一、题目一:一个团队的团费总计1600元,每人交费100元,问这个团队有多少人?解答:设团队人数为x人,根据题意可得方程:100x=1600。

两边同时除以100得到x=16,所以这个团队有16人。

二、题目二:一个数的三分之一减去这个数的四分之一等于12,求这个数。

解答:设这个数为x,根据题意可得方程:(1/3)x - (1/4)x = 12。

化简方程可得:(4/12)x - (3/12)x = 12,也就是(1/12)x = 12。

两边同时乘以12得到x = 12 * 12,所以这个数为144。

三、题目三:一群人去看电影,门票价值总计1200元,其中成人票每张80元,学生票每张50元,现场售票20张,且总销售额为5500元,问这群人有多少个人?解答:设成人票数为x,学生票数为y。

根据题意可得方程组:80x + 50y = 1200 (1)80x + 50y + 20*(80+50) = 5500 (2)方程(2)表示总销售额等于售票额加上现场售票的额外收入。

将方程(2)减去方程(1),可得:20 * (80 + 50) = 5500 - 12001300 = 4300显然上述等式不成立,所以这道题目存在错误。

综上所述,一元一次方程是解决数学问题的重要工具。

通过对一元一次方程应用题的解答,我们能够巩固和运用所学的知识。

希望本文所提供的例题和解答能够帮助读者更好地理解一元一次方程的应用。

一元一次方程的解法及应用拓展

一元一次方程的解法及应用拓展

一元一次方程的解法及应用拓展一、一元一次方程的概念1.1 定义:含有一个未知数,未知数的最高次数为1,且两边都为整式的等式称为一元一次方程。

1.2 形式:ax + b = 0(a, b为常数,a≠0)二、一元一次方程的解法2.1 公式法:将方程ax + b = 0两边同时除以a,得到x = -b/a。

2.2 移项法:将方程中的常数项移到等式的一边,未知数项移到等式的另一边。

2.3 因式分解法:将方程进行因式分解,使其成为两个一次因式的乘积等于0的形式,然后根据零因子定律求解。

三、一元一次方程的应用3.1 实际问题:将实际问题转化为一元一次方程,求解未知数。

3.2 线性方程组:由多个一元一次方程组成的方程组,可用代入法、消元法等方法求解。

3.3 函数图像:一元一次方程的图像为直线,可通过解析式分析直线与坐标轴的交点、斜率等性质。

四、一元一次方程的拓展4.1 比例方程:含有一元一次方程的等比例关系,可通过交叉相乘、解一元一次方程求解。

4.2 分式方程:含有一元一次方程的分式,可通过去分母、解一元一次方程求解。

4.3 绝对值方程:含有一元一次方程的绝对值,可分为两种情况讨论,求解未知数。

五、一元一次方程的练习题5.1 选择题:判断下列方程是否为一元一次方程,并选择正确的解法。

5.2 填空题:根据题目给出的条件,填空求解一元一次方程。

5.3 解答题:解答实际问题,将问题转化为一元一次方程,求解未知数。

六、一元一次方程的考试重点6.1 掌握一元一次方程的定义、形式及解法。

6.2 能够将实际问题转化为一元一次方程,求解未知数。

6.3 熟练运用一元一次方程解决线性方程组、函数图像等问题。

6.4 理解一元一次方程的拓展知识,如比例方程、分式方程、绝对值方程等。

七、一元一次方程的学习建议7.1 多做练习题:通过大量的练习题,熟练掌握一元一次方程的解法及应用。

7.2 深入理解实际问题:学会将实际问题转化为一元一次方程,提高解决问题的能力。

一元一次方程的实例分析

一元一次方程的实例分析

一元一次方程的实例分析一元一次方程是代数学中最基本的方程之一,也是我们在日常生活中广泛应用的数学概念。

它在解决各类实际问题时起着重要的作用。

本文将通过几个实例来分析一元一次方程的运用,展示其在实践中的价值。

例一:购买苹果小明去超市购买苹果,经过称重得知他购买的苹果的总重量是x千克。

超市每千克苹果的价格是y元。

已知小明购买苹果的总价为20元,我们可以通过一元一次方程求解每千克苹果的价格。

假设苹果的总重量是x千克,每千克的价格是y元,则根据题意,我们可以得到以下方程:x * y = 20这是一个一元一次方程,通过调整变量的位置,我们可以解得:y = 20 / x这个方程告诉我们,每千克苹果的价格与苹果的总重量成反比。

当苹果总重量增加时,单位价格会减少。

例二:行程问题小张开车驶向目的地,已知他以恒定的速度行驶,行驶时间为t小时。

已知小张行驶的总路程是s公里,我们可以通过一元一次方程求解出他的行驶速度。

假设小张以v公里/小时的速度行驶,则根据题意,我们可以得到以下方程:v * t = s这是一个一元一次方程,通过调整变量的位置,我们可以解得:v = s / t这个方程告诉我们,行驶速度与行驶路程成正比,与行驶时间成反比。

例三:成绩评定某次考试中,小红共完成了n道题目,并获得了总分p。

已知每道题目的分值是x分,我们可以通过一元一次方程求解小红的平均得分。

假设小红的平均得分是y分,则根据题意,我们可以得到以下方程:n * y = p这是一个一元一次方程,通过调整变量的位置,我们可以解得:y = p / n这个方程告诉我们,平均得分与总分成正比,与题目数量成反比。

当总分增加或者题目数量减少时,平均得分会增加。

通过以上三个实例的分析,我们可以看到一元一次方程在解决实际问题中的巨大潜力。

它能够帮助我们解决购买、行程、评定等各类问题,并提供具体的数学解决方案。

在日常生活中,我们可以通过运用一元一次方程,更好地理解和解决各类实际问题。

一元一次方程应用题解题方法和技巧

一元一次方程应用题解题方法和技巧

一元一次方程应用题解题方法和技巧一元一次方程是数学中常见的问题求解方式之一,经常在日常生活和工作中被广泛应用。

解决一元一次方程需要熟练掌握基本的解题方法和技巧,下面将介绍一些常见的解题方法和技巧,以便读者更好地理解和应用一元一次方程。

一、一元一次方程的基本形式一元一次方程的一般形式为:ax + b = c,其中a、b、c为已知常数,x为未知数。

在解一元一次方程时,需要通过适当的运算使方程变成x的形式,从而得到未知数的解。

二、一元一次方程的解题步骤解一元一次方程的基本步骤如下:1. 删除常数项首先,通过适当的运算,将常数项移至方程的右侧,使得方程变为ax = c - b。

2. 化简方程将方程中出现的系数移到一侧,使得方程变为x = (c - b) / a。

3. 检验解的有效性最后,将得到的解代入原方程中,检验解的有效性。

如果等号成立,则说明解是正确的,否则需要重新检查计算过程。

三、一元一次方程的应用题解题方法和技巧解一元一次方程的应用题时,需要根据题目特点灵活运用各种解题方法和技巧。

以下是一些常见的应用题解题方法和技巧:1. 列方程在解应用题时,首先要根据题目要求建立方程。

通常可以通过设定未知数来列出方程,然后根据题目信息进行求解。

2. 分析问题在解应用题时,要仔细分析题目内容,理清思路,找到关键信息,避免遗漏或误解题意。

不要急于求解,先梳理清楚问题,再有条不紊地进行计算。

3. 转化单位在解应用题时,要注意统一单位,将所有量的单位转化为相同的单位,方便计算和比较。

根据问题需要,可以通过换算,将单位转化为适合计算的单位。

4. 化简问题在解应用题时,可以将复杂的问题分解为简单的小问题进行求解,然后逐步合并结果,得到最终答案。

通过分步化简,可以避免计算错误,提高解题效率。

5. 实际问题在解应用题时,要注意将抽象的数学概念与实际问题联系起来,理解问题背后的实际意义,从而更好地解决问题。

通过实际问题的练习和思考,可以提高解题能力和思维水平。

一元一次方程的实际应用题(含详细答案)

一元一次方程的实际应用题(含详细答案)

一元一次方程的实际应用题题型一:利率问题利率问题利息=本金×利率×期数本利和=本金十利息=本金×(1+利率×期数)利息税=利息×税率税后利息=利息一利息税=利息×(1-税率)税后本利和=本金+税后利息【总结】若利率是年利率,期数以“年”为单位计数,若是月利率,则期数以“月”为单位计数,解题时要注意.【例1】某人把若干元按三年期的定期储蓄存入银行,假设年利率为3. 69%,到期支取时扣除所得税实得利息2 103.3元,求存入银行的本金.(利息税为5%)【答案】设存入银行的本金为x元,根据题意,得()()%%3 3.69152103.3x⨯⨯⨯-=x⨯=0.1051652103.3x=,20000因此,存入银行的本金是20000元.【总结】利息=本金×利率×期数×利息税题型二:折扣问题利润额=成本价×利润率售价=成本价+利润额新售价=原售价×折扣【例2】小丽和小明相约去书城买书,请你根据他们的对话内容(如图),求出小明上次所买书籍的原价.--图641【分析】设小明上次购买书籍的原价是x元,由题意,得0.82012+=-,x xx=.解得160因此,小明上次所买书籍的原价是160元,【答案】160元.1:一件衣服按标价的八折出售,获得利润18元,占标价的10%,问该衣服的买入价?分析:本金:标价利率:-20%利息:成交价-标价=买入价+利润-标价解:设该衣服的买入价为x元x+18-18/10%=18/10%×(80%-1)当然,这道题这样解是一种方法,还可以按照我们常规的算术方法解来,倒也简单,因此,列方程解应用题是针对过程清楚的问题比较简单方便。

2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?[分析]探究题目中隐含的条件是关键,可直接设出成本为X元进价折扣率标价优惠价利润X元8折(1+40%)X元80%(1+40%)X 15元等量关系:(利润=折扣后价格—进价)折扣后价格-进价=15解:设进价为X元,80%X(1+40%)—X=15,X=125答:进价是125元。

一元一次方程的实际生活应用与举例讲解

一元一次方程的实际生活应用与举例讲解

一元一次方程的实际生活应用与举例讲解一元一次方程是初中数学中常见的代数方程,它的解法简单明了,应用广泛。

在实际生活中,我们可以通过一元一次方程来解决各种问题,并且通过具体的例子来进行讲解。

本文将通过几个实际应用场景,并结合相应的数学表达式,来深入探讨一元一次方程的实际生活应用。

(段落1:引言)我们身边常常会遇到需要用到一元一次方程来解决的问题,例如购物打折、汽车的油耗计算、年龄的推断等。

一元一次方程将数学与实际问题相结合,帮助我们更好地理解和解决现实生活中的各种情况。

(段落2:购物打折)在购物中,商家常常会以打折的形式促销商品。

假设某商家对一件原价为x元的商品进行n%的折扣,我们可以通过一元一次方程来计算折后价格。

设折后价格为y元,根据题意,可以得到以下方程:y = x - nx/100例如,一件原价为200元的商品打7折,我们可以通过一元一次方程求解折后价:y = 200 - 200*7/100= 200 - 14= 186因此,该商品打完折后的价钱为186元。

(段落3:汽车的油耗计算)在日常生活中,我们常常需要计算汽车的油耗。

假设一辆汽车每行驶100公里消耗x升汽油,而每升汽油的价格为p元,我们通过一元一次方程可以计算行驶d公里需要的汽油费用。

设汽油费用为y元,可以得到以下方程:y = x * p * d/100举个例子,假设一辆汽车每行驶100公里消耗5升汽油,而每升汽油的价格为6元,我们可以通过一元一次方程求解行驶200公里所需的汽油费用:y = 5 * 6 * 200/100= 60因此,行驶200公里所需的汽油费用为60元。

(段落4:年龄的推断)通过一元一次方程,我们还可以推断出某人的年龄。

假设现在一个人的年龄是x岁,而几年前他的年龄是y岁,我们可以通过一元一次方程求解出这个人的年龄。

设这个人的当前年龄为a岁,可以得到以下方程:a = x - (x-y)举个例子,假设一个人目前的年龄是25岁,而5年前他的年龄是20岁,我们可以通过一元一次方程求解出这个人的当前年龄:a = 25 - (25-20)= 20因此,这个人目前的年龄是20岁。

一元一次方程的运用

一元一次方程的运用

依据:等式的性质四、合并同类项做法:把方程化成ax=b(a≠0)的形式;依据:乘法分配律(逆用乘法分配律)五、系数化为1做法:在方程两边都除以未知数的系数a,得到方程的解x=b/a。

依据:等式的性质2.解方程口诀去分母,去括号,移项时,要变号,同类项,合并好,再把系数来除掉。

同解方程如果两个方程的解相同,那么这两个方程叫做同解方程。

同解原理(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。

(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。

求根公式由于一元一次方程是基本方程,故教科书上的解法只有上述的方法。

但对于标准形式下的一元一次方程:ax+b=0 (a≠0)。

可得出求根公式。

函数解法由于一元一次函数都可以转化为ax+b=0(a,b为常量,a≠0)的形式,所以解一元一次方程就可以转化为:当某一个函数值为0时,求相应的自变量的值。

从图像上看,这就相当于求直线y=kx+b(k,b为常量,k≠0)与x轴交点的横坐标的值。

4解法举例例(1)题目:已知ax=b是关于x的方程(a、b为常数),求x的值。

分析:要牢牢抓住一元一次方程的定义,进行分类讨论。

解:当a≠0时,。

当a=0,b=0时,方程有无数个解(注意:这种情况不属于一元一次方程,而属于恒等方程)当a=0,b≠0时,方程无解(注意:此种情况也不属于一元一次方程)例(2)题目:解方程分析:按照一元一次方程的解法顺序一步步进行,计算要细心。

解:去分母,得去括号,得移项,得合并同类项,得系数化为1,得检验:把代入原方程左边=右边=左边=右边∴是原方程的解等式性质若a=b,则a+c=b+c,a-c=b-c(等式的性质1)。

若a=b,则ac=bc,a÷c=b÷c (c≠0)(等式的性质2)[2]5解应用题做一元一次方程应用题的重要方法:(1)认真审题(审题)(2)分析已知和未知量(3)找一个合适的等量关系(4)设一个恰当的未知数(5)列出合理的方程(列式)(6)解出方程(解题)(7)检验(8)写出答案(作答)6学习实践在小学会学习较浅的一元一次方程,到了初中开始深入的了解一元一次方程的解法和利用一元一次方程解较难的应用题。

复习教案 一元一次方程及应用

复习教案  一元一次方程及应用

第九课时 一元一次方程及应用一、复习目标:1、理解等式的基本性质、方程、方程的解、一元一次方程的概念;2、能利用等式的基本性质进行方程的变形,能熟练地解一元一次方程;3、能用一元一次方程来解决简单的实际问题.二、复习重点难点:(一)复习重点:解一元一次方程和二元一次方程组的一般步骤与方法.(二)复习难点:能用一元一次方程来解决简单的实际问题.三、复习过程:(一)知识梳理:1、等式性质:(1)如果a=b,那么c b c a ±=±; (2)如果a=b,那么)0(,≠==c cb c a bc ac ; 2、方程的有关概念:(1)方程:含有未知数的的等式叫方程。

(2)方程的解:使方程左右两边相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。

(3)解方程:求方程的解或判断方程无解的过程叫做解方程。

3、一元一次方程:(1)一元一次方程的一般形式:ax+b=0(其中x 是未知数,a 、b 是已知数,a ≠0);(2)一元一次方程的最简形式:ax=b (其中x 是未知数,a 、b 是已知数,a ≠0);(3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。

4、列方程解应用题的一般步骤:(1)审题:(2)设未知数;(3)找出相等关系,列方程;(4)解方程(组);(5)检验,作答;5、列方程(组)解应用题常见类型题及其等量关系;(1)工程问题①基本工作量的关系:工作量=工作效率×工作时间②常见的等量关系:甲的工作量+乙的工作量=甲、乙合作的工作总量③注意:工程问题常把总工程看作“1”,水池注水问题属于工程问题(2)行程问题①基本量之间的关系:路程=速度×时间②常见等量关系:相遇问题:甲走的路程+乙走的路程=全路程追及问题(设甲速度快):同时不同地:甲的时间=乙的时间;甲走的路程–乙走的路程=原来甲、乙相距路程 同地不同时:甲的时间=乙的时间–时间差;甲的路程=乙的路程(3)水中航行问题:顺流速度=船在静水中的速度+水流速度;逆流速度=船在静水中的速度–水流速度(二)典例精析:例1、(1)已知x =-2是关于x 的方程()x m x m -=-284的解,则m 的值= ;.(2)若关于x 的方程03)1(22=+-x x a 式一元一次方程,则a= ;【方法总结】:1、第1题是已知方程的解,要求方程中待确定的字母系数,可以像解数字系数的方程一样,先求出方程的解,再进行比较;也可以根据方程的解的定义:能使方程两边代数式的值相等的未知数的取值叫做方程的解,将2x =-代入原方程,转化为关于m 的方程求解.2、在运用一元一次方程定义时,要注意两点:一是未知数的次数为1,二是未知数系数不能为0;例2、解方程:12733)1(2-=-++x x x ; 【方法总结】:解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1,需要注意去分母时不要漏乘不含分母的项,去括号时,括号前是负号要注意括号内各项均要改变符号,移项要变号,系数化为1要注意方程两边要未知数的系数;例3、某会议厅主席台上方有一个长12.8m 的长条形(矩形)会议横标框,铺红色衬底.开会前将会议名称用白色厚纸或不干胶纸刻出来贴于其上.但会议名称不同,字数一般每次都多少不等,为了制作及贴字时方便美观,会议厅工作人员对有关数据作了如下规定:边空:字宽:字距=9:6:2,如图所示.根据这个规定,求会议名称的字数为18时,边空、字宽、字距各是多少?【方法总结】:1、有比时,应根据比值设未知数;2、应找好等量关系:横标两边的边空+18个字的字宽+18个字之间的字距=12.8cm ;然后根据所设未知数和等量关系就可列出方程;例4、剃须刀由刀片和刀架组成,某时期,甲乙两厂家分别生成老式剃须刀(刀片不可更换)和新式剃须刀(刀片可更换),有关销售策略与售价等信息如下表所示:某段时间内,甲厂家销售了8400把剃须刀,乙厂家销售的刀片数量是刀架数量的50倍,乙厂家获利的利润是甲厂家的两倍,问这段时间内乙厂家销售了多少刀架和刀片?【方法总结】:等量关系是:1、刀架数×50=刀片数;2 、甲厂家利润×2=乙厂家的利润例5、某省公布的居民用电阶梯电价听证方案如下:例:若某户月用电量400度,则需交电费为210×0.52+(350﹣210)×(0.52+0.05)+(400﹣350)×(0.52+0.30)=230(元)(1)如果按此方案计算,小华家5月份的电费为138.84元,请你求小华家5月份的用电量;(2)以此方案请你回答:若小华家某月的电费为a元,则小华家该月用电量属于第几档?分析:(1)分别计算出用电量为210度,350度时需要交纳的电费,然后可得出小华家5月份的电量在哪一档上,从而列示计算即可;(2)根据(1)求得的结果,讨论a的值,得出不同的结论.解:(1)用电量为210度时,需要交纳210×0.52=109.2元,用电量为350度时,需要交纳210×0.52+(350﹣210)×(0.52+0.05)=189元,故得小华家5月份的用电量在第二档;设小华家5月份的用电量为x,则210×0.52+(x﹣210)×(0.52+0.05)=138.84解得:x=262,即小华家5月份的用电量为262度.(2)由(1)得,当a≤109.2时,小华家的用电量在第一档;当109.2<a≤189时,小华家的用电量在第二档;当a>189时,华家的用电量在第三档;【方法总结】:解答此类题目要先计算出分界点处需要交的电费,这样有助我我们判断。

一元一次方程在实际问题中的应用有哪些?

一元一次方程在实际问题中的应用有哪些?

一元一次方程在实际问题中的应用有哪些?
一元一次方程是数学中的基础概念,广泛应用于现实世界的各
个领域。

以下是一些一元一次方程在实际问题中的应用例子:
1.财务管理:一元一次方程可以用来解决财务管理中的各种问题。

例如,可以使用一元一次方程来计算公司的总收入,总成本或
每个单位的成本。

2.回路电路:在电路中,电流的分布可以通过解决一元一次方
程组来计算。

这对于设计和分析电路以及解决电路问题非常有用。

3.商业应用:一元一次方程可以帮助解决商业中的许多问题。

例如,可以使用一元一次方程来计算利润率,销售量或价格。

4.比例问题:比例问题可以通过建立和解决一元一次方程来解决。

这包括了许多实际生活中的问题,如比较价格,规模相似性和
相关变量之间的关系。

5.运动问题:一元一次方程也可以用来解决运动问题。

例如,可以通过一元一次方程来计算物体的速度,加速度或位移。

一元一次方程在实际问题中的应用非常广泛。

通过了解如何运用一元一次方程解决问题,我们可以更好地理解数学的实际应用意义,并应用到我们生活和学习的各个领域中。

试析一元一次方程在实际问题解决的运用

试析一元一次方程在实际问题解决的运用

试析一元一次方程在实际问题解决的运用在初一数学教材第三章第四节中有个内容是一元一次方程在解决实际问题的应用。

对于这类问题,我做了几种分类并总结了解一元一次方程的基本过程,而且对此进行了相应的分析,总结了运用一元一次方程解决实际问题的要点。

归纳并总结了书上以及别的文献上的相关内容,最后提出了自己的见解和观点。

一元一次方程主要是下面这种类型:未知数的个数为一个的一元一次方程。

例如:当未知数为x时、一元一次方程为ax+b=c,其中a不能为零,bc为任意的有理数。

同样当未知数分别为y、z、m,n等其中任意一个未知数时,方程为ay+b=c、az+b=c、am+b=c,an+b=c,其中a不能为零,bc为任意的有理数。

解一元一次方程的基本过程为:设未知数;根据等量关系列方程;解方程,未知数的系数化为1。

如果运用一元一次方程解决实际问题,其基本过程为:根据实际问题设未知数;根据等量关系列方程;解方程;未知数的系数化为1,检验方程的根是否为方程的解。

运用一元一次方程解决实际问题主要分为以下几种类型:(1)解决增长率问题;(2)利用一元一次方程解决选择储蓄方式;(3)利用一元一次方程解决个人所得税计算问题;(4)利用一元一次方程计算水费;(5)利用一元一次方程计算路程。

在运用一元一次方程解决实际问题时有以下要点:(1)当方程中左右两边有同类项时,要移项,移项时所移的项要变号;(2)当方程中左右两边有括号要去括号,运用去括号的两条法则;(3)当方程中左右两边未知数的系数为分数时,要去分母,两边同时乘以未知数的系数分母的最小公倍数;(4)当方程的同旁有同类项时,要合并同类项;(5)未知数的系数一定要化为1。

下面就举出实例来一一论证。

实例1:利用一元一次方程计算水费。

例1,我国有很多城市的水资源很缺乏,为了减少水资源的浪费,加强居民节水意识,很多城市制定了用水收费标准一城市规定了每户每月的标准用水量,不超过标准用水量按每立方米2.8元收费,超过标准用水量按每立方米4元收费。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲 一元一次方程
一、知识点拨
1、 称为方程。

2、只含有一个未知数,并且未知数的最高次数是1,系数不等于0的方程称为 。

3、绝对值符号内含有未知数的方程称为 。

4、依据方程中未知数的个数,方程可分为:一元方程、二元方程、三元方程;依据方程中未知数的最高次数,方程又可分为:一次方程、二次方程、三次方程等。

5、一元一次方程是最简单的方程,也是最基本的方程,解方程最终都化归为解一元一次方程。

6、使方程左边和右边相等的未知数的值称为 ,求方程的解的过程称为 。

7、解一元一次方程的一般步骤是:
(1)去分母;(2)去括号;(3)移项;(4)合并同类项,化为最简形式ax=b ;
(5)方程两边同除以未知数的系数。

解一元一次方程没有固定的步骤,去分母与去括号是因题而异,灵活掌握。

但是,不管采取什么顺序,都要保证正确地运用各种运算法则,以及同解原理,使得到的方程与原方程同解。

8、一元一次方程ax=b 的解由a 、b 的值来确定:
(1)当 时,方程无解;
(2)当 时,方程的解可为任意的有理数;
(3)当 时,方程有唯一解
; 基础训练
例1:当m 为何值时,关于x 的方程
是一元一次方程?
例2:下列解一元一次方程的变形对不对?如果不对,找出错在哪里,并改正。

(1)由得到;
(2)由,得到;
例3:解下列方程
(1) (2))11(76)20(34y y y y --=-- a b
x =273)(22323-+=+--x x x x m m 283=-x 823-=x 63-=x x 63=-x x 2103-=+x x
(3) 436521x x -=--
(4)
拓展训练 例4:解方程:.18]6)4233(43[3221=⎭
⎬⎫⎩⎨⎧--+-x
例5:解关于x 的方程.22x m mn n mnx -=-
例6:关于x 的方程18511234)]3(2[3=--+=--x a x x a x x 和
有相同的解,求a 。

例7: 关于x 的方程
2236
kx a x bk +-=+中,,a b 为定值,无论k 为何值,方程的根总是1,求,a b 的值
例8:已知p 、q 都是质数,并且以x 为未知数的一元一次方程975=+q px 的解是1,求代数式q p -2的值。

1242321-=+--x x x
第二讲一元一次方程的应用
一、知识点拨
1、列方程解应用题是代数中的重要内容之一,列出一元一次方程解应用题是数学联系实际解决实际问题迈出的重要一步。

列出一元一次方程解应用题的一般步骤是:(1)弄清题意和题目中的已知数、未知数及数量关系,用字母(如x)表示题目中的个未知数。

(2)找出能够表示应用题全部含义的一个相等关系。

(3)根据这个相等关系列出需要的代数式,从而列出方程。

(4)解这个方程,求出未知数的值。

(5)检验、写出答案(包括单位名称)。

2、几类应用题常用策略
(1)和、差、倍、分问题:抓住关键词列方程。

(2)形积变化问题:利用各种几何图形的面积、体积公式,列出相等关系。

(3)行程问题。

①相遇(相向)问题:双方所走路程之和=全部路程。

②追及(同向)问题:如甲从相同出发点追及乙,则相等关系一般是:甲所走路程=乙
所走路程。

③航行问题:注意航行速度与水(风)速的关系:
顺水速度=船在静水中的速度+水流速度;
逆水速度=船在静水中的速度-水流速度;
船在静水中的速度=顺流速度+逆流速度
2

水流速度=顺流速度-逆流速度
2
行程中的基本关系是s=vt,
其中s表示距离,v表示速度,t表示时间。

通常用行程示意图帮助分析题意。

(4)调配问题:其等量关系反映在调动前后的数量关系上。

抓住“相等”、“几倍”、“多”、“少”等词语常可找出相等关系。

可辅之表格帮助分析数量关系。

(5)按比例分配问题:若已知两个量之比是m:n,则可设其中一份为x,两量分别为mx,nx。

(6)工程问题:基本数量关系是:工作量=工作效率×工作时间,若工作量未给出具体数量,则常设为“1”。

(7)数字问题:注意区分“数”与“数字”两个概念。

多用间接设元的方式,设某一位上的数字为x,其他数位上的数用它的代数式表示。

在数的表示式中,注意各数位上的数为10的幂的形式。

二、典例选讲
例1、上智中学暑期组织学生夏令营,分赴庐山、神农架、昆明三个地方,营员共有210人,去神农架的营员比去庐山的营员的3倍还多6人,去昆明的营员比去神农架的营员的2倍少8人,问三个夏令营各有营员多少?
例2、用内径为90毫米的圆柱形长玻璃杯(已装满水)向一个内底面积为131×131平方毫米,内高为81毫米的长方形铁盒倒水,当铁盒装满水时,玻璃杯中的高度下降了多少?( 取3.14)
例3、在甲处劳动的有27人,在乙处劳动的有19人,现在另调20人去支援,使在甲处的人数为在乙处人数的2倍,应调往甲、乙两处各多少人?
例4、一个三角形三条边长的比是2:4:5,最长的边比最短的边长6厘米,求这个三角形的周长。

例5、一项工程,甲单独做20天完成,乙单独做15天完成,现在先由甲、乙合做若干天后,剩下的部分由乙独做,先后共用12天,问甲做了几天?
例6、一队学生从甲地到乙地,速度为每小时8千米,当行进2千米路后,通讯员奉命回甲地取东西,他以每小时10千米的速度回甲地取了东西后,立即以同样速度追赶队伍,结果在距乙地3千米处追上队伍,求甲、乙两地的距离(取东西的时间不计)。

例7、一艘轮船航行在A、B两个码头之间,已知水流的速度为3千米/时,轮船顺水航行需用5小时,逆水航行需用7小时,求A、B两地之间的距离。

例8、有一个三位数,它最高数位上的数是2,若将2移到末尾,得到的新三位数是原三位数的2倍还多74,求原三位数。

例9.甲、乙两人分别从A、B两地同时相向匀速前进,第一次相遇在距A地700米处,然后继续前进,甲到B地,乙到A地后都立即返回,第二次相遇在距B地400米处,求A、B两地的距离。

设A、B两地相距x米,由题意得:1
2
(x-300)=700,求得x=1700(米)。

相关文档
最新文档