132_立方根(2)

合集下载

平方根、立方根

平方根、立方根

B. a 是 S 的算术平方根 D. S= a ) C. BC D. CD A B C D
2.5 3.6 4.7 5.8
*3. 如图,数轴上有 O、A、B、C、D 五点,根据图中各点所表示的数,判断 18在数轴
*4. 下列说法中,不正确的是( A. -2 是 4 的一个平方根 B.
3

8是 8 的立方根
n n
-a一定无意义 -a一定有意义
n
C. 若 n 为偶数,则 -a一定无意义 D. 若 n 为奇数,则 -a一定有意义 二、填空题 *7. 若 x2=64,则 3 x=__________。 *8. 已知:一个正数的两个平方根分别是 2a-2 和 a-4,则 a 的值是__________。 *9. 若 x2=(-2)2,则 x=__________;若 x3=-23,则 x=__________。 **10. 借助计算器计算: 42+32=__________, 442+332=__________, 4442+3332= __________,…请你观察上面几道题的结果,试猜想: 444…4 +333…3 =__________。
二、重、难点提示
重点:求一个数的算术平方根、平方根、立方根; 难点:算术平方根、平方根、立方根的性质及应用。
一、知识列表
定义 算术平 方根 如果一个正数 x 的平方等于 a, 即 x =a,那么这个正数 x 叫做 a 的算术平方根。 如果一个数的平方等于 a, 那么 平方根 这个数叫做 a 的平方根(或二 次方根) ,即如果 x =a,那么 x 叫做 a 的平方根。 如果一个数的立方等于 a, 那么 立方根 这个数叫做 a 的立方根或三次 方根,这就是说,如果 x3=a, 那么 x 叫做 a 的立方根。

实用的平方根表立方根表.pdf

实用的平方根表立方根表.pdf

,检查合同的履行情况;
4.5.4 保管法人代表授权委托书、合同专用章,并按编号归口使用;
4.5.5 建立合同管理台帐,对合同文本资料进行编号统计管理;
4.5.6 组织对法规、制度的学习和贯彻执行,定期向有关领导和部门报告工作;
4.5.7 在总经理领导下,做好合同管理的其他工作,
4.6 工程技术部:专职合同管理员及材料、燃料供应部兼职合同管理员履行以下职责:
4.2 工程部:是发电厂建设施工安装等工程合同签订管理部门;负责签订管理基建、安装、人工技术的工程合同。
4.3 经营部:是合同签订管理部门,负责管理设备、材料、物资的订购合同。
4.5 合同管理部门履行以下职责:
4.5.1 建立健全合同管理办法并逐步完善规范;
4.5.2 参与合同的洽谈、起草、审查、签约、变更、解除以及合同的签证、公证、调解、诉讼等活动,全程跟踪和检查合同的履行质量; 4.5.3 审查、登记合同对方单位代表资格及单位资质,包括营业执照、经营范围、技术装备、信誉、越区域经营许可等证件及履约能力(必要时要求对方提供担保)
立方根 √3 1 = 1 √ 2 = 1.260 √ 3 = 1.442 √ 4 = 1.587 √ 5 = 1.710 √ 6 = 1.817 √ 7 = 1.913 √8 = 2 √ 9 = 2.080 √ 10 = 2.154 √ 11 = 2.224 √ 12 = 2.289 √ 13 = 2.351 √ 14 = 2.410 √ 15 = 2.466 √ 16 = 2.520 √ 17 = 2.571 √ 18 = 2.621 √ 19 = 2.668 √ 20 = 2.714
平方根 √1=1 √2= 1.414 √3= 1.732 √4=2 √5= 2.236 √6= 2.449 √7= 2.646 √8= 2.828 √9=3 √10=3.162 √11 = 3.317 √12 = 3.464 √13 = 3.606 √14 = 3.742 √15 = 3.873 √16 = 4 √17 = 4.123 √18 = 4.243 √19 = 4.359 √20 = 4.472

平方根和立方根

平方根和立方根
2
即 0.0004 0.02 ;
解: ( 25) 25 , 25 的平方根为
2 2
(25) 2 (4)
2
25 ,

25
2
25 ;
(5) 11
解:11的平方根是 11 .

总结:运用平方运算求一个非负数的平 方根是常 用的方法,如果被开方数是小数, 要注意小数点的位置,也可先将小数化为分 数, 再求它的平方根,如果被开方数是带分 数,先要把它化为假分数.
(1)64
解:
49 121
(8) 64 , 64的平方根为 8 ,
2
即 64 8 ;
(2)
解:
7 2 49 7 49 ( ) , 的平方根 , 11 121 121 11
49 7 即 121 11 ;

巩固新知
(3) 0.0004
解: (0.02) 0.0004 , 0.0004的平方根为0.02 ,
注意要弄清 a , a , a 的意义,不能用 a 来表 示a的平方根,如:64的平方根不要写成 64 8 .
议一议 一个正数有几个平方根?它 们是什么关系? 一个正数有两个平方根,它们是互 为相反数.
0的平方根有几个?
一个,0的平方根是0.
负数有平方根吗? 负数没有平方根.
想一想
3的平方等于9,那么9的算术平方根就是
2 5
3
2 5
的平方等于
4 25
4 ,那么 25 的算术平方根就是
展厅的地面为正方形,其面积49平方米,则边长 7 米
4 问题:平方等于9, 25
,49的数还有吗?
3

山东省八年级数学《132 立方根 》学案 精品

山东省八年级数学《132 立方根 》学案 精品

立方根学习目标1. 掌握立方根的概念,立方根的性质,立方根的表示,立方根的公式2.能利用立方根解决实际问题重点:立方根的性质难点:立方根的公式一:知识频道:预习课本77页填一填1.立方根的概念一般地,如果即x3=a,那么x 叫做a的立方根(也叫三次方根)2..立方根的性质都有立方根,而且只有一个。

正数的立方根是,负数的立方根是,0的立方根是想一想填一填:平方根与立方根的区别与联系⑴⑵⑶3.立方根的表示每个数都有一个立方根,记作3a读作,其中a叫做,3叫做,数3 省略。

4.开立方的运算叫开立方。

到现在为止学过的运算有5.立方根的公式(3a)3=a 33a=a想一想a的取值范围是探究3a-与- 3a的关系是二:方法频道:1.求一个数的立方根⑴0.729 ⑵-1 ⑶-22710⑷10 ⑸-64解:(由学生完成)⑴⑵⑶⑷⑸2.根式求值问题⑴.327105-⑵36432+-⑶32004524⨯⨯⑷3271+解:(由学生完成)3.下列说法正确的是()A64的立方根是2 B-3是27的负的立方根C 8的立方根是+2和-2D -(-3)3的立方根是-3 4.一个数的立方根是它本身,则这个数是()A 1B -1C 0D ±1 05.-3216-的立方根是( )A –6B ±3C 36D -36. 若a<0,则a的立方根为()A 3aB - 3aC 3a -D ±3a 7.观察下列各式,思考并填空: 因为31-=-1 -31=-1 所以 31- = -31 因为 38-=-2 -38=-2 所以38-=-38以上各式有什么规律,用式子表示为 8.如果3x+16的立方根为4, 那么2x+4的算术平方根为9.一个正方体的体积为729厘米3, 则它的表面积为 10.求下列各式的值⑴ 364÷(1-81) ⑵323178+11.若m<0 则2m -33m = 12.若(2x-1)3=0.018 则x=13.求x ⑴(3x+2)3–1=6461 ⑵ 31(2x+1)3-81=114.若x 是320的整数部分,y 是320的小数部分. 求x, y。

株洲市四中七年级数学下册第六章【实数】经典习题(提高培优)

株洲市四中七年级数学下册第六章【实数】经典习题(提高培优)

一、选择题1.对于任意不相等的两个实数a,b,定义运算:a※b=a2﹣b2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为()A.﹣40 B.﹣32 C.18 D.102.a,小数部分为b,则a-b的值为()A.6-B6C.8D83.观察下列各等式:231-+=-5-6+7+8=4-10-l1-12+13+14+15=9-17-18-19-20+21+22+23+24=16……根据以上规律可知第11行左起第11个数是()A.-130 B.-131 C.-132 D.-1334.观察下列运算:81=8,82=64,83=512,84=4 096,85=32 768,86=262 144,…,则81+82+83+84+…+82 017的和的个位数字是()A.2 B.4 C.6 D.85.下列命题是真命题的是()A.两个无理数的和仍是无理数B.有理数与数轴上的点一一对应C.垂线段最短D.如果两个实数的绝对值相等,那么这两个实数相等6.在0.010010001,3.14,π,1.51,27中无理数的个数是().A.5个B.4个C.3 D.2个7.若“!”是一种运算符号,且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,则计算2015! 2014!正确的是()A.2015 B.2014 C.20152014D.2015×20148.如图,直径为1个单位长度的圆从A点沿数轴向右滚动(无滑动)两周到达点B,则点B表示的数是()A .1π-B .21π-C .2πD .21π+9.85-的整数部分是( ) A .4B .5C .6D .710.在1.414,3-,213,5π,23-中,无理数的个数是( ) A .1B .2C .3D .411.已知下列结论:①在数轴上不能表示无理数2;②无理数是无限小数;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中正确的结论是( ) A .① ③B .②③C .③④D .②④二、填空题12.计算:(1)32125(2)(10)4----⨯- (2)2325(24)27-⨯--÷ 13.先化简,再求值:()222233a ab a ab ⎛⎫---⎪⎝⎭,其中|2|a +与3b -互为相反数. 14.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米.(提示:182=324) (1)求正方形纸板的边长;(2)若将该正方形纸板进行裁剪,然后拼成一个体积为343立方厘米的正方体,求剩余的正方形纸板的面积.15.计算. (1)3218433⎛⎫-⨯-+- ⎪⎝⎭(2)178(4)4(5)-÷-+⨯-(3)311256273⎛⎫+-+- ⎪ ⎪⎝⎭(4)22323223⎡⎤⎛⎫-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦16.已知a 是10的整数部分,b 是10的小数部分,求代数式()1b 10a --的平方根.17.求下列各式中x 的值 (1)21(1)64x +-=; (2)3(1)125x -=.18.已知52a +的立方根是3,31a b +-的算术平方根是4,c 是11的整数部分. (1)求a ,b ,c 的值; (2)求3a b c -+的平方根.19.将1、2、3、6按如图方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(15,7)表示的数是____.20.已知(253|530x y -++-=.(1)求x ,y 的值; (2)求xy 的算术平方根.21.比较大小:326-3-(用“>”,“<”或“=”填空).三、解答题22.把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接:1.5-380,134-23.已知290x ,310y +=,求x y +的值.24.观察下列各式:322111124==⨯⨯,33221129234+==⨯⨯,33322112336344++==⨯⨯,33332211234100454+++==⨯⨯;…回答下面的问题:(1)猜想:33333123(1)n n ++++-+=_________;(直接写出你的结果)(2)根据(1)中的结论,直接写出13+23+33+......+93+103的值是_________; (3)计算:213+223+233+......+293+303的值.25.观察下列各式:112⨯=1-12,123⨯=12-13,134⨯=13-14.(1)请根据以上式子填空:①189⨯= ,②1(1)n n ⨯+= (n 是正整数)(2)由以上几个式子及你找到的规律计算:112⨯+123⨯+134⨯+............+120152016⨯一、选择题1.在实数3-,-3.14,0,π,364中,无理数有( ) A .1个B .2个C .3个D .4个2.81的平方根是( ) A .9B .-9C .9和9-D .813.下列计算正确的是( ) A .11-=-B .2(3)3-=-C .42=±D .31182-=-4.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的一个是( )A .pB .qC .mD .n5.下列实数中,属于无理数的是( ) A .3.14B .227C .4D .π6.估计50的立方根在哪两个整数之间( ) A .2与3B .3与4C .4与5D .5与67.在下列实数3,0.31,3π,27-,9,12-,38,1.212212221…(每两个1之间依次多一个2)中,无理数的个数为( ) A .1B .2C .3D .48.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n (n 是整数,且n ≥3)行从左向右数第(n ﹣2)个数是( )(用含n 的代数式表示)A 21n -B 22n -C 23n -D 24n -9.在1.414,3213,5π,23中,无理数的个数是( ) A .1B .2C .3D .410.下列等式成立的是( )A .±1B =±2C 6D 311.下列各组数中都是无理数的为( )A .0.07,23,π; B .0.7•,π;C ,π;D .0.1010101……101,π二、填空题12.先化简,再求值:()222233a ab a ab ⎛⎫--- ⎪⎝⎭,其中|2|a + 13.计算:(1(2)0(0)|2|π-- (3)解方程:4x 2﹣9=0.14.(22-15.把下列各数填在相应的集合里: 4,3.5,0,3π,5-4,10%,2-3,2016,﹣2.030030003…(每两个3之间依次多一个0)正分数集合{ …} 负有理数集合{ …} 非负整数集合{ …} 无理数集合{ …}.16. ________0.5.(填“>”“<”或“=”) 17.已知甲数是719的平方根,乙数是338的立方根,则甲、乙两个数的积是__.18.已知5的整数部分为a ,5-b ,则2ab b +=_________. 19.计算:(1)﹣12﹣(﹣2)(21)+2|20.设a ,b 是两个连续的整数,若a b <<,是,则a b =____.21.比较大小:三、解答题22.把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接:1.5-,38,0,13-,4-23.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A 表示的数为________; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-+ 的点,并比较它们的大小.24.213a -=,31a b -+的平方根是4±,c 433a b c ++的平方根.25.设26+x 、y ,试求x 、y 的值与1x -的立方根.一、选择题1.-18的平方的立方根是()A.4 B.14C.18D.1642.如图,数轴上表示实数5的点可能是()A.点P B.点Q C.点R D.点S 3.下列实数中,是无理数的为()A.3.14 B.13C5D94.在0.010010001,3.14,π10,1.51,27中无理数的个数是().A.5个B.4个C.3 D.2个5.下列说法正确的是()A.22B.(﹣4)2的算术平方根是4C.近似数35万精确到个位D2156. 5.713457.134,则571.34的平方根约为()A.239.03 B.±75.587 C.23.903 D.±23.903 764)A.8B.8-C.22D.22±8.下列各数中是无理数的是()A.227B.1.2012001 C.2πD819.一个正方体的体积为16,那么它的棱长在()之间A.1和2 B.2和3 C.3和4 D.4和5 10.下列计算正确的是()A .21155⎛⎫-= ⎪⎝⎭ B .()239-=C 2=±D .()515-=-11.下列说法正确的有( ) (1)带根号的数都是无理数; (2)立方根等于本身的数是0和1; (3)a -一定没有平方根;(4)实数与数轴上的点是一一对应的; (5)两个无理数的差还是无理数;(6)若面积为3的正方形的边长为a ,a 一定是一个无理数. A .1个B .2个C .3个D .4个二、填空题12.求下列各式中x 的值: (1)()214x -=; (2)3381x =-. 13.计算. (1)3218433⎛⎫-⨯-+- ⎪⎝⎭(2)178(4)4(5)-÷-+⨯-(3163⎫-⎪⎪⎭ (4)22323223⎡⎤⎛⎫-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦14.已知a 、b |3|0b +=,则(a +b )2021的值为________. 15.若求若干个相同的不为零的有理数的除法运算叫做除方,如()()()()2223333÷÷-÷-÷-÷-,等。

2024高中数学计算限时训练(解析版)

2024高中数学计算限时训练(解析版)

2024高中数学计算限时训练(解析版)计算预备知识1.关于平方112=121122=144132=169142=196152=225162=256172=289182=324 192=361202=4002.关于平方根2≈1.4143≈1.7325≈2.2366≈2.4507≈2.64610≈3.1623.关于立方根32≈1.26033≈1.44234≈1.58735≈1.71036≈1.81737≈1.91339≈2.080310≈2.1544.关于ππ≈3.14π2≈1.57π3≈1.05π4≈0.79π5≈0.63π6≈0.52πe≈22.465.关于ee≈2.718e2≈7.389e3≈20.086e≈1.6491e≈0.3681≈0.135eπ≈23.14e26.关于lnln2≈0.693ln3≈1.099ln5≈1.609ln7≈1.946ln10≈2.3037.关于三角函数sinπ5≈0.588sinπ8≈0.383cosπ5≈0.809cosπ8≈0.924tanπ5≈0.727tanπ8≈0.4148.关于loglg2≈0.301lg3≈0.477lg7≈0.8459.关于阶乘4!=245!=1206!=7207!=504010.关于双重根号3±22=2±14±23=3±17±43=2±38±27=7±1 11.关于三角度数sin15°=cos75°=6-24sin75°=cos15°=6+24tan15°=2-3tan75°=2+3初中内容(简单回顾初中的相关计算)训练1(建议用时:10分钟)1.当x>2时, |x-2|=2.若|m-n|=n-m, 且|m|=4,|n|=3, 则m+n=3.用科学记数法表示248000004.若x,y为有理数, 且|x+2|+(y-2)2=0, 则x+y=5.若|a+2|+(b-3)2=0, 则a b=6.用科学记数法表示0.000000217.若有理数x,y的乘积xy为正, 则|x|x+|y|y+|xy|xy的值为8.已知|x|=3,|y|=5, 且|y-x|=x-y, 则2x+y=9.已知代数式x-3y2的值是5 , 则代数式x-3y22-2x+6y2的值是10.关于x,y的单项式2m3x2y的次数是11.已知代数式a2+2a-2b-a2+3a+mb的值与b无关, 则m的值是12.若a,b互为倒数, m,n互为相反数, 则(m+n)2+2ab=13.-2πx3y5的系数是14.已知a-3b-4=0, 则代数式4+2a-6b的值为15.已知代数式x2+x+1的值是3 , 那么代数式5x2+5x+8的值是16.若a,b互为相反数, m,n互为倒数, 则a+b+2mn-3=17.单项式4πx2y49的系数为 , 次数为训练2(建议用时:10分钟)1.已知3a2x-3b与-12a5b4y+5是同类项,则|x+5y|等于2.多项式-2ab2+4a5b-1的项分别是,次数是3.已知多项式x2-3kxy-y2+6xy-8不含xy项, 则k的值是4.单项式πx2y37的系数是 , 次数是;多项式5x2y-3y2的次数是5.已知(a+1)2+|b-2|=0, 则a b+1的值等于6.当x=时,式子2x+56与x+114+x的值互为相反数.7.已知代数式5x-2的值与110互为倒数, 则x=8.某件商品, 按成本提高40%后标价, 又以8折优惠卖出, 结果仍可获利15元, 则这件商品的成本价为9.当x=时, 32x+1与x-3的值相等10.当代数式1-(3m-5)2有最大值时, 关于x的方程3m-4=3x+2的解为11.若方程4x-1=5与2-a-x3=0的解相同, 则a的值为=b, 则当b=1时方程的解为12.已知13x-213.已知关于x的一元一次方程x+2m=-1的解是x=m, 则m的值是14.已知x=1是方程3x-m=x+2n的一个解, 则整式m+2n+2020的值为15.当x=时,式子3-2x与2+x互为相反数16.若-4a m b3与3a2-m b n-1可以合并成一项,则m n的值是17.已知x=3是方程11-2x=ax-1的解,则a=18.已知一元一次方程(m-4)x+m2=16的解是x=0, 则m=19.要使关于x,y的多项式my3+3nx2y+2y3-x2y+y不含三次项, 则2m+3n的值为训练3(建议用时:10分钟)1.已知a m=3,a n=9, 则a3m-n=2.当a时, (a-2)0=13.已知2x+5y-5=0, 则4x⋅32y的值是4.已知2a=3,2b=5, 则22a+2a+b=5.若3x=10,3y=5, 则32x-y=6.已知3x÷9y=27, 则2020+2y-x的值为7.已知x+4y=1, 则2x⋅16y=8.计算:(-3)2021×13 2020=9.已知2x=3,2y=5, 则22x-y=2020×(1.5)2021=10.-2311.若2x+y=3, 则4x⋅2y=12.若5x=18,5y=3, 则5x-y==0, 则y x=13.若(x-2)2+y+1314.计算:(-1)0+13 -1=15.计算:a2⋅a4+-3a32-10a6=16.已知6m=2,6n=3, 则6m+n2=17.已知2x+3-2x=112, 则x的值为18.已知x-y=5,xy=2, 则x2+y2=19分解因式:-xy2+4x=20.已知m-n=3, 则m2-n2-6n=21.已知25x2+kxy+4y2是一个完全平方式, 则k的值是=22.若m+1m=3, 则m2+1m223.若x2-(m-3)x+4是一个完全平方式, 则m的值是训练4(建议用时:10分钟)1.已知关于x的二次三项式x2+2kx+16是一个完全平方式, 则实数k的值为2.分解因式:4x2-4y2=3.分解因式:3xy3-27x3y=4.分解因式:4(a+b)2-(a-b)2=5.若x2-ax+1(x-1)的展开式是关于x的三次二项式, 则常数a=6.已知x+1x=3, 且0<x<1, 则x-1x=7.若a2+6a+b2-4b+13=0, 则a b=8.若y2+py+q=(y+3)(y-2), 则-pq=9.(-2a)3⋅1-2a+a2=10.已知a+b=2,ab=-2, 则(a-2)(b-2)=11.已知方程组x+2y=k,2x+y=2的解满足x+y=2, 则k的平方根为12.已知2x+5y=3, 用含y的式子表示x, 则x=13.若单项式-3a2m+1b8与4a3m b5m+n是同类项, 则这两个单项式的和为14.若方程组x+y=4,2x-y=-1的解也是2x-ay=14的解, 则a=15.已知二元一次方程组2x+y=7,x+2y=8,则x-y=x+y=16.不等式2x-12-3≤0的非负整数解共有个17.已知不等式12x-3≥2x与不等式3x-a≤0的解集相同, 则a=18.解不等式2+3x≤3-5x, 则x19.不等式组-13x>2,5-x>3的解集为20.不等式组2x-3<1,1-x≤3的解集为训练5(建议用时:10分钟)1.已知直角三角形的两边长分别为3,5 , 且第三边是整数, 则第三边的长度为2.若三角形的三边长分别为a,b,c, 且|a-b|+a2+b2-c2=0, 则△ABC的形状为3.已知直角三角形两直角边a,b满足a+b=17,ab=60, 则此直角三角形斜边上的高为4.在直角坐标系中, 点A(2,-2)与点B(-2,1)之间的距离AB=5.在直角三角形中,其中两边的长度分别为3,4 , 则第三边的长度是6.在直角三角形ABC中, ∠C=90°,BC=12,CA=5,AB=7.若a、b为实数, 且(a+3)2+b-2=0, 则a b的值为8.11的整数部分是小数部分是9.已知实数x,y满足3x+4+y2-6y+9=0, 则-xy的算术平方根的平方根的相反数等于10.计算:|-5|+(2-1)0=11.计算:20+|1-2|=12.3-7的相反数是 , 绝对值等于3的数是13.116的平方根是14.-8的立方根是,16的平方根是15.19-35的整数部分为a, 小数部分为b, 则2a-b=16.若x-4+(y+3)2=0, 则x+y=17.已知a是64的立方根, 2b-3是a的平方根,则114a-4b的算术平方根为训练6(建议用时:10分钟)1.在第三象限内到x轴的距离为2 , 到y轴的距离为3的点的坐标为2.在平面直角坐标系中, 点A(-2,1)关于y轴的对称点A 的坐标是3.点P(-1,1)先向左平移2个单位长度, 再向上平移3个单位长度得点P1, 则点P1的坐标是4.在平面直角坐标系中, 点M(a,b)与点N(5,-3)关于x轴对称, 则ab的值是5.如果点P(m,1-2m)在第四象限,那么m的取值范围是6.点A(3,-2)关于x轴对称的点的坐标为 , 关于y轴对称的点的坐标为7.在平面直角坐标系中, 过点P(6,8)作PA⊥x轴, 垂足为A, 则PA的长为8.点P(-2,6)到x轴的距离是9.若点A(m+2,-3)与点B(-4,n+5)在二、四像限的角平分线上, 则m+n=10.已知点A(m,3)与点B(2,n)关于x轴对称, 则(m+n)2020的值为11.已知点P(2m,m-1), 当m=时, 点P在二、四象限的角平分线上12.点A(-7,9)关于y轴的对称点是13.如果(3a-3b+1)(3a-3b-1)=80, 且a>b, 那么a-b的值为14.已知1<x<5, 化简(x-1)2+|x-5|=15.已知a-1+|b-5|=0,则(a-b)2的值是16.若|x+1|+y-2=0, 则x2+y2的值为17.a,b是自然数,规定a∇b=3×a-b3, 则2∇17的值是训练7(建议用时:15分钟)1.若一组数据1,2,x,4的平均数是2 , 则这组数据的方差为2.有40个数据, 其中最大值为35 , 最小值为14 , 若取组距为4 , 则分成的组数是3.小明抛掷一枚质地均匀的硬币, 抛掷100次硬币,结果有55次正面朝上,那么朝上的频率为4.当m=时, 解分式方程x-5x-3=m3-x会出现增根5.若(x-y-2)2+|xy+3|=0, 则3xx-y+2x y-x÷1y的值是6.分式方程3x2-x +1=xx-1的解为7.若关于x的方程axx-2=4x-2+1无解,则a的值是8.化简:1x-1-1x2-x=9.计算2aa2-16-1a-4的结果是10.若m+n=3,mn=2, 则1m+1n=11.若关于x的分式方程2x-ax-2=12的解为非负数, 则a的取值范围是12.若一次函数y=(a-1)x+a-8的图象经过第一、三、四象限, 且关于y的分式方程y-5 1-y+3=ay-1有整数解, 则满足条件的整数a的值之和为13.若整数a使关于x的不等式组x-12<1+x3,5x-2≥x+a有且只有四个整数解, 且使关于y的方程y+ay-1+2a1-y=2的解为非负数, 则符合条件的所有整数a的和为14.若关于x的分式方程2x-ax-2=13的解为非负数, 则实数a的取值范围是15.已知关于x的分式方程2a+1x+1=a有解,则a的取值范围是16.若分式方程2xx-1-m-1x-1=1有增根,则m的值是训练8(建议用时:15分钟)1.已知5x+1(x-1)(x+2)=Ax-1+Bx+2, 则实数A+B=2.当分式21-3m的值为整数时, 整数m的值为3.解方程:3-2xx-1=-1x-1.4.若x=3-1, 则代数式x2+2x-3的值是5.已知等式|a-2021|+a-2022=a成立, 则a-20212的值为6.若m=20202021-1, 则m3-m2-2022m+2020=7.计算(5-2)2021(5+2)2022的结果是8.已知xy=2,x+y=4, 则x y+yx=9.若M=1ab-a b⋅ab, 其中a=3,b=2, 则M的值为10.如果y=x-2+4-2x-5,那么y的值是11.已知16-n是整数, 则自然数n所有可能的值为12.已知20n是整数,则满足条件的最小正整数n为13.若3+5的小数部分是a,3-5的小数部分是b, 则a+b=14.已知整数x,y满足x+3y=72, 则x+y的值是15.已知x=5-12,y=5+12, 则x2+y2+xy的值是16.已知4a+3b与b+12a-b+6都是最简二次根式且可以合并, 则a+b的值为17.已知m,n是正整数, 若2m+5n是整数, 则满足条件的有序数对(m,n)为18.已知4a+1是最简二次根式, 且它与54是同类二次根式, 则a=训练9(建议用时:15分钟)1.设x1,x2是方程5x2-3x-2=0的两个实数根, 则1x1+1x2的值为2.方程(x-1)(x+5)=3转化为一元二次方程的一般形式是3.已知关于x的方程x2+2kx-1=0有两个不相等的实数根, 则k的取值范围是4.如果α,β(α≠β)是一元二次方程x2+2x-1=0的两个根, 则α2+α-β的值是5.写出一个以-1为一个根的一元二次方程6.已知一元二次方程(a-1)x2+7ax+a2+3a-4=0有一个根为零, 则a的值为7.设m,n是一元二次方程x2+3x-7=0的两个根, 则m2+4m+n=8.已知一元二次方程x2+3x-4=0的两个根为x1,x2, 则x21+x1x2+x22=9.已知关于x的方程x2-6x+p=0的两个根是α,β, 且2α+3β=20, 则p=10.已知一个正六边形的边心距是3, 则它的面积为11.同一个圆的内接正方形和正三角形的内切圆半径比为12.以半径为1的⊙O的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是13.用一个圆心角为120°, 半径为9cm的扇形围成一个圆雉侧面, 则圆雉的高是cm.14.有一组数据:-1,a,-2,3,4,2, 它们的中位数是1 , 则这组数据的平均数是15.已知一组数据3,4,6,8,x的平均数是6 , 则这组数据的中位数是16.五个整数从小到大排列后, 其中位数是4 , 如果这组数据的唯一众数是6 , 那么这组数据可能的最大的和是17.小明用s2=110x1-32+x2-32+⋯+x10-32计算一组数据的方差,那么x1+x2+x3+⋯+x10=训练10(建议用时:15分钟)1.一个不透明的布袋里放有5个红球、3个黄球和2个黑球, 它们除颜色外其余都相同,则任意摸出一个球是黑球的概率是2.二次函数y=-x2-2x+3的图象上有两点A-7,y1,B-8,y2, 则y1y2. (填">"∗"或"=")3.若关于x的函数y=ax2+(a+2)x+(a+1)的图象与x轴只有一个公共点, 则实数a的值为4.把抛物线y=x2+1先向右平移3个单位长度, 再向下平移2个单位长度, 得到的抛物线为5.若抛物线y=ax2+bx+c经过点(-1,10), 则a-b+c=6.若二次函数y=ax2+bx-1(a≠0)的图象经过点(1,1), 则代数式1-a-b的值为7.若把二次函数y=x2-2x+3化为y=(x-m)2+k的形式, 其中m,k为常数, 则m+k=8.若抛物线y=-(x-m)(x-2-n)+m-2与抛物线y=x2-4x+5关于原点对称, 则m+n =9.已知△ABC∼△DEF, 且相似比为3:4,S△ABC=2cm2, 则S△DEF=cm210.在△ABC中, 点D,E分别在AB,AC上, 且DE⎳BC. 如果ADAB=35,DE=6, 那么BC=11.在△ABC中, 如果∠A,∠B满足|tan A-1|+cos B-122=0, 那么∠C=12.计算:sin230°+cos260°-tan245°=13.已知等腰三角形的两边长分别为5和8 , 则底角的余弦值为14.已知在△ABC中, ∠B=30°,∠C=45°,AB=4, 则BC的长为15.一个不透明的袋中放有4个红球和x个黄球,从中任意摸出一个恰为黄球的概率为34, 则x 的值为高中内容计算专题加强训练训练11对数运算(建议用时:5分钟)1.log312.log232 33.lg1004.lg0.0015.lg1100006.log1101007.ln e8.log31279.log12410.lg0.1211.lg310012.ln1e13.log214 214.log13915.写出高中阶段学过的对数运算公式.训练12指数运算(建议用时:13分钟)1.化简:56a 13b -2⋅-3a -12b -1 ÷4a 23⋅b -3 12(a >0,b >0).2.化简:a 3b 23ab 2a 14b 12 4a -13b 13(a >0,b >0).3.已知x 12+x -12=3, 求x 32+x -32+2x 2+x -2+3的值.4.已知a 2x=2+1, 求a 3x +a -3x a x +a -x 的值.5.x -1x 23+x 13+1+x +1x 13+1-x -x 13x 13-1.6.a 3+a -3 a 3-a -3a 4+a -4+1 a -a -1 +a 21+a -4 -2a -a -1.训练13指对运算(建议用时:5分钟)这个训练考查对数的相关计算, 要记住什么是指对互换、对数恒等变形、换底公式、对数运算公式,还有就是幂的运算.1.823-log 2510 -1+4log 23+4lg 22-4lg2+1.2.20222023 0+80.25⋅42+(32⋅3)6--23 23⋅49 -13-1.3.4(3-π)4+(0.008)-13-(0.25)12×12 -4.4.12lg 3249-43lg 8+lg 245+21+log 23.训练14错位相减(建议用时:20分钟)1.求b n =(2n -1)2n 的前n 项和.2.求b n=n22n-1的前n项和.3.求c n=(2n-1)4n-1的前n项和.4.求b n=(2n-1)13 n-1的前n项和.+2n的前n项和.5.求b n=n+14n训练15求值域(建议用时:20分钟)下列题目涉及了高中阶段不少求值域的方法, 要学会看到什么式子大概清楚使用什么方法或者说哪些方法来求解, 比如看到y=x-3+5-x就知道可以使用平方法来求解.1.y=5x-14x+2,x∈[-3,-1]..2.y=x2+2x2+13.y=2x+1-2x.4.y=x+4+9-x2..5.y=2x2+4x-7x2+2x+36.y=log3x+log x3-1.7.y=(x+3)2+16+(x-5)2+4.8.y=sin x+2cos x-2.9.y=ln x-x.训练16含参一元二次不等式(建议用时:20分钟)1.解不等式ax2>1.2.解不等式2ax2-(a+2)x+1>0(a≠0,a≠2).3.解不等式ax2+(a+2)x+1>0(a≠0).4.解不等式x2+ax+1<0.训练17解三角形周长(建议用时:20分钟)1.若A=π3,a=3, 求△ABC周长的取值范围.建议使用两种方法来解决:法一:余弦定理+不等式+三角形三边关系.法二:正弦定理+辅助角公式.2.若A=π3,a=3, 求锐角△ABC周长的取值范围.3.在△ABC中, B=π3, 若a+c=1, 求b的取值范围.训练18解三角形面积(建议用时:20分钟)1.若A=π3,a=3, 求S△ABC的最大值.建议使用两种方法来解决:法一:余弦定理+不等式.法二:正弦定理+辅助角公式十三角形面积公式.2.若A=π3,a=2, 求锐角△ABC面积的取值范围.3.在平面四边形ABCD中, AD=2,CD=4,△ABC为等边三角形, 求三角形BCD面积的最大值.训练19数列存在性(建议用时:20分钟)在新高考的模式下, 原本的数列压轴题被调整到了解答题的前两题,但是得分率并不乐观, 接下来的几篇训练着重练习数列中的存在性、奇偶项、绝对值、不等式(放缩)等问题.1.已知等差数列a n=2n-1, 求m,k m,k∈N∗的值, 使得a m+a m+1+a m+2+⋯+a m+k=65.2.已知等差数列a n=2n-7, 试求所有的正整数m, 使得a m a m+1a m+2为数列a n中的项.3.已知数列a n=1n(n+1), 问:是否存在正整数m,k, 使1akS k=1a m+19成立?若存在, 求出m,k的值;若不存在, 请说明理由.4.已知数列a n=3n,b n=2n-1, 数列b n的前n项和为T n, 问:是否存在正整数m,n,r, 使得T n=a m+r⋅b n成立?如果存在, 请求出m,n,r的关系式;如果不存在, 请说明理由.训练20数列奇偶项(建议用时:20分钟)常见的奇偶项问题(1)a n+a n+1=f(n)或a n⋅a n+1=f(n)类型;(2)(-1)n类型;(3)a2n,a2n-1类型.1已知数列a n满足a n+1+a n=11-n+(-1)n, 且0<a6<1. 记数列a n的前n项和为S n, 求当S n取最大值时n的值.2.已知数列a n满足a1=1,a n+1=12a n+n-1,n为奇数a n-2n,n为偶数记bn-a2n,求数列a n的通项公式.3.设S n为数列a n的前n项和, S n=(-1)n a n-12n,n∈N∗, 求数列a n的通项公式.4.已知等差数列a n=2n-1, 令b n=(-1)n-14na n a n+1, 求数列b n的前n项和T n.训练21数列绝对值(建议用时:20分钟)求数列绝对值的前n项和T n的一般步骤为:(1)求出数列的通项公式;(2)令a n≥0或a n≤0, 求出n的临界值m;(3)若等差数列的项先负后正, 则:T n=-S n,n≤m, -2S m+S n,n>m(4)若等差数列的项先正后负,则:T n=S n,n≤m, 2S m-S n,n>m.1.已知数列a n=53-3n, 求数列a n的前n项和T n.2.已知数列a n=2n-4n, 求数列a n的前n项和S n.3.已知数列a n=sin nπ6-34, 记数列a n 的前n项和为S n, 求S2021.训练22数列不等式(建议用时:20分钟)在学习裂项时我们遇到了数列不等式, 后来随着难度的加大, 各式各样的不等式出现, 比如:12+13+14+⋯+1n=ni=21i<ln n(n≥2)同时这类不等式还会和放缩联系在一起,即:1 n2=44n2<44n2-1=212n-1-12n+1,1n+2<n+2-n类似于这样的还有很多,在此就不一一列举了.1.已知数列a n=12 n-1,数列a n 的前n项和为T n,令b1=a1,b n=T n-1n+ 1+12+13+⋯+1n ⋅a n(n≥2), 求证:数列b n 的前n项和S n满足S n<2+2ln n.2.已知数列a n=2n-1的前n项和为S n, 设b n=1a n S n , 数列b n的前n项和为T n, 求证:T n<323.已知数列a n=3n-1,b n=2n-1, 求证:对任意的n∈N∗且n≥2, 有1a2-b2+1a3-b3+⋯+1a n-b n<32训练23导数单调性(建议用时:20分钟)1.讨论函数f (x )=ln x +ax x +1的单调性.2.已知函数f (x )=(ax +1)e x , 其中a ∈R 且a 为常数, 讨论函数f (x )的单调性.3.函数f (x )=xe x -ax 2-2ax +2a 2-a , 其中a ∈R , 讨论f (x )的单调性.训练24圆锥计算化简求值(建议用时:11分钟)这个训练主要考查学生在圆锥曲线上面的计算能力,一方面考查能否化简到底,另一方面考查能否对最后的式子进行求最值计算.1.已知1212-k 2k +22k 2+2k +4+1+12-k 2+2k +4-4-1 =0, 求k 的值.2.求24k 1+2k 2+-16k -44k 2-61+2k 224k 1+2k 2+-48k +124k 2-61+2k 2.3.求1+k 2⋅-12k 21+3k 2 2-4×12k 2-61+3k 2.4.已知12⋅21+k 21+k 2 64k 21+2k 22-241+2k 2 =225, 求k 的值.训练25联立后的韦达与判别式(建议用时:15分钟)1.写出Δ以及韦达式子:y2=8x,y=kx+b.2.写出Δ以及韦达式子:y=kx+2, x28+y22=1.3.写出Δ以及韦达式子:y=kx+m, x26+y2=1.4.写出Δ以及韦达式子:y=k(x-1)+2, x23+y2=1.(建议用时:20分钟)1.已知y=32(x-1),x24+y23=1,求y1-y2的值.2.已知x24+y2=1,x=my+3,m≠0, 两交点分别为M,N, 原点到直线的距离为d, 求当|MN|⋅d取得最大值时直线的方程.3.已知x=my-1,x24+y23=1,若y1-y2=1227, 求m的值.4.已知y=x+b,y2=4x,若y1x1+2+y2x2+2=0, 则求其直线方程.(建议用时:20分钟)1.化简(x+1)2+(y+4)2(x-a)2+(y-2a+2)2=λ(λ>0,λ≠1)之后为(x-2)2+(y-2)2=10, 求a,λ.2.已知直线x=ky+m与圆x2+y2=1联立得1+k2y2+2kmy+m2-1=0, 且k2+m=0, 若x1x2+y1y2=0, 求m,k.3.已知R=t2+16-2, 求y=t+R3-t-R31+t+R3⋅t-R3的最大值.4.已知直线y=kx+1与圆(x-2)2+(y-3)2=1相交, 若x1x2+y1y2=12, 求k.(建议用时:20分钟)1.当λ≠1时, 把(x+1)2+y2(x-1)2+y2=λ化简成圆的标准方程的形式.2.当k>0,k≠1时, 把x2+y2(x-a)2+y2=k化简成圆的标准方程的形式.3.已知0<m2<13, 求41-3m21+m2⋅6m2+11-3m2的取值范围.4.使用两种方式求S△ABC=121+k23+4k24+3k2的最小值.(建议用时:20分钟)1.已知x22+y2=1,x=my+1,且t≠1, 若要使y1x1-ty2x2-t是定值, 求t的值.2.已知x24-y25=1,x=my+3,若k1=y1x1+2,k2=y2x2-2, 求k1k2的值.3.已知x=ty+p2,y2=2px,求k1+k2=y1-px1+p2+y2-px2+p2的值.4.已知y=kx+m,x2+2y2=2,若x1x2+y1-1y2-1=0, 求m的值.1.已知圆(x +1)2+(y -2)2=20与过点B (-2,0)的动直线l 相交于M ,N 两点, 当|MN |=219时,求直线l 的方程.2.已知圆C :x 2+y 2-8y +12=0, 直线l :ax +y +2a =0, 当直线l 与圆C 相交于A ,B 两点,且|AB |=22时,求直线l 的方程.3.已知圆C :x 2+(y +1)2=4, 过点P (0,2)的直线l 与圆相交于不同的两点A ,B .(1)若OA ⋅OB =1, 求直线l 的方程.(2)判断PA ⋅PB 是否为定值. 若是, 求出这个定值;若不是, 请说明理由.4.已知圆C :(x +3)2+(y -3)2=4, 一动直线l 过点P (-4,0)且与圆C 相交于A ,B 两点, Q 是AB 的中点, 直线l 与直线m :x +3y +6=0相交于点E .(1)当|AB |=23时,求直线l 的方程.(2)判断PQ ⋅PE 的值是否与直线l 的倾斜角有关. 若无关, 请求出其值;若有关, 请说明理由.1.已知两点A (0,3),B (-4,0), 若P 是圆x 2+y 2-2y =0上的动点,求△ABP 面积的最大值.2.已知P (m ,n )是函数y =-x 2-2x 图象上的动点,求|4m +3n -21|的最小值.3.已知圆C :(x -1)2+(y -2)2=2, 点P (2,-1), 过P 点作圆C 的切线PA ,PB ,A ,B 为切点.求:(1)PA ,PB 所在直线的方程;(2)切线长|PA |.4.已知圆C 经过坐标原点, 且与直线x -y +2=0相切, 切点为A (2,4).(1)求圆C 的方程;(2)若斜率为-1的直线l 与圆C 相交于不同的两点M ,N , 求AM ⋅AN 的取值范围.1.已知直线l:x+3y-4=0, 圆C的圆心在x轴的负半轴上,半径为3, 且圆心C到直线l的距离为310 5.(1)求圆C的方程;(2)由直线l上一点Q作圆C的两条切线, 切点分别为M,N, 若∠MQN=120°, 求点Q的坐标.2.已知圆C:(x-3)2+(y-4)2=4, 直线l1过定点A(1,0).(1)若l1与圆相切, 求l1的方程;(2)若l1与圆相交于P,Q两点, 线段PQ的中点为M,l1与l2:x+2y+2=0的交点为N, 求证:|AM|⋅|AN|为定值.3.已知圆C的圆心在x轴上, 且与直线4x-3y-2=0相切于点-25,-65.(1)求圆C的方程;(2)经过点P(1,0)作斜率不为0的直线l与圆C相交于A,B两点, 若直线OA,OB的斜率之和等于8 , 求直线l的方程.4.已知P是直线3x+4y+8=0上的动点, PA,PB是圆C:x2+y2-2x-2y+1=0的两条切线, A,B是切点.(1)求四边形PACB面积的最小值.(2)直线上是否存在点P, 使∠BPA=60°?若存在, 求出点P的坐标;若不存在, 说明理由.训练33解析解答(4)(建议用时:25分钟)1.已知直线l:y=2x+m和椭圆C:x24+y2=1,m为何值时, 直线l被椭圆C所截的弦长为20172.已知椭圆x23+y22=1(a>b>0), 过左焦点F1的斜率为1的直线与椭圆分别交于A,B两点,求|AB|.3.已知点A(0,-1)在椭圆C:x23+y2=1上, 设直线l:y=k(x-1)(其中k≠1 与椭圆C交于E,F两点, 直线AE,AF分别交直线x=3于点M,N. 当△AMN的面积为33时, 求k 的值.4.已知F是抛物线x2=4y的焦点,过点F的直线与曲线C交于A,B两点, Q(-2,-1), 记直线QA,QB的斜率分别为k1,k2, 求证:1k1+1k2为定值.训练34解析解答(建议用时:25分钟)1.已知椭圆C:x24+y2=1, 直线l:y=x+m与椭圆C交于A,B两点, P为椭圆的上顶点, 且|PA|=|PB|, 求m的值.2.已知椭圆E:x24+y22=1, 设直线y=kx-2被椭圆C截得的弦长为83, 求k的值.3.已知F 为椭圆x 22+y 2=1的左焦点, 设直线l 同时与椭圆和抛物线y 2=4x 各恰有一个公共交点,求直线l 的方程.4.已知抛物线x 2=4y 的焦点为F , 过点F 的直线l 交抛物线于P ,Q 两点, 交直线y =-1于点R , 求RP ⋅RQ 的最小值.训练35解析解答(6)(建议用时:25分钟)1.已知椭圆C :x 24+y 22=1, 点A (0,1), 若点B 在椭圆C 上, 求线段AB 长度的最大值.2.已知椭圆C :x 26+y 23=1, 直线y =x +1与椭圆交于A ,B 两点, 求AB 中点的坐标和AB 的长度.3.已知椭圆M :x 23+y 2=1, 直线l 与椭圆M 有两个不同的交点A ,B , 设直线l 的方程为y =x +m , 先用m 表示|AB |, 再求其最大值.4.已知抛物线y2=6x的弦AB经过点P(4,2), 且OA⊥OB(O为坐标原点), 求弦AB的长.训练36复合求导(1)(建议用时:3分钟)本训练考查复合函数求导, 这在一些导数压轴题中可能会出现..1.求x-1e x.2.求-34ln x+1+x23.求y=ln2x+1-1的导数.4.求y=cos(-2x)+32x+1的导数.训练37复合求导(2)(建议用时:6分钟)求下列函数的导数.1.y=ln x+1+x22.y=e x+1e x-13.y=2x sin(2x+5)4.y=3x e x-2x+e5.y=ln xx2+16.y=x2(2x+1)37.y=e-x sin2x训练38二面角求解(建议用时:10分钟)1.两平面的法向量为n1=(0,1,-2),n2=(-1,1,-2), 设二面角的平面角为α, 且为锐角, 则求二面角的大小.2.两平面的法向量为n1=(1,0,1),n2=(1,1,1), 求两平面所成锐二面角α的余弦值.3.一个平面的法向量n1=(x,y,z)满足方程组2x+y-z=0,x+2y-z=0,另一个平面的法向量n2=(0,2,0), 求两平面所成锐二面角α的余弦值.4.一个平面的法向量n1=x1,y1,z1满足方程组-x1+12z1=0,-y1+12z1=0,另一个平面的法向量n2=x2,y2,z2满足方程组2x2+2y2-2z2=0,2y2-2z2=0,求两平面所成锐二面角α的大小.训练39卡方计算(1)(建议用时:6分钟)本训练主要考查独立性检验的计算,附表: (1)独立性检验统计量K2值的计算公式:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),n=a+b+c+d(2)独立性检验临界值表:PK2≥k00.150.100.050.0250.010.0050.001k0 2.072 2.706 3.841 5.024 6.6357.87910.828 1.列联表如下,计算K2:成绩优良人数成绩非优良人数总计男生92130女生11920总计203050数学成绩优秀数学成绩不优秀合计物理成绩优秀527物理成绩不优秀11213合计614204.列联表如下,计算K2:[0,150](150,475] [0,75]6416(75,115]1010训练40卡方计算(2)(建议用时:10分钟)1.列联表如下, 计算K2:甲有机肥料乙有机肥料合计质量优等603090质量非优等4070110合计100100200选择物理不选择物理合计男451560女202040合计65351003.列联表如下, 计算K2:视力正常视力不正常总计男生6040100女生401050总计100501504.列联表如下, 计算K2:女性男性合计直播电商用户8040120非直播电商用户404080合计12080200满意不满意合计工薪族403070非工薪族401050合计8040120训练41线性回归计算(1)(建议用时13分钟)本训练考查的是线性回归方程的相关计算, 参考公式:b=ni=1x i-xy i-yni=1x i-x2=ni=1x i y i-nx yni=1x2i-nx 2,a=y -bx ,y=bx+ar=ni=1x i-xy i-yni=1x i-x2ni=1y i-y2=ni=1x i y i-xxyni=1x2i-nx 2ni=1y2i-ny 21,某餐厅查阅了最近5次食品交易会参会人数x(万人)与餐厅所用原材料数量y(袋), 得到如下统计表:第一次第二次第三次第四次第五次参会人数x/万人13981012原材料y/袋3223182428根据所给5组数据,求出y关于x的线性回归方程.2.某连锁经营公司旗下的5个零售店某月的销售额和利润额如下表:商店名称A B C D E销售额x/千35679万元利润额y/百23345万元用最小二乘法计算利润额y关于销售额x的线性回归方程.3.某企业坚持以市场需求为导向, 合理配置生产资源, 不断改革、探索销售模式. 下表是该企业每月生产的一种核心产品的产量x(件)与相应的生产总成本y(万元)的五组对照数据:产量x/件12345生产总成本y3781012 /万元试求y与x的相关系数r, 并利用相关系数r说明y与x是否具有较强的线性相关关系(若|r|>0.75, 则线性相关程度很高, 可用线性回归模型拟合).训练42线性回归计算(2)(建议用时13分钟)1某专营店统计了近五年来该店的创收利润y(单位:万元)与时间t i(单位:年)的相关数据,列表如下:t i12345y i 2.4 2.7 4.1 6.47.9依据表中给出的数据, 是否可用线性回归模型拟合y与t的关系?请计算相关系数r并加以说明(计算结果精确到0.01, 若|r|>0. 8 , 则认为y与t高度相关, 可用线性回归模型拟合y 与t的关系).2某部门统计了某网红景点在2022年3月至7月的旅游收人y(单位:万元), 得到以下数据:月份x34567旅游收人y1012111220根据表中所给数据, 用相关系数r加以判断, 是否可用线性回归模型拟合y与x的关系?若可以,求出y关于x的线性回归方程;若不可以,请说明理由.3某汽车4S店关于某品牌汽车的使用年限x(年)和所支出的维修费用y(千元)有如下的统计资料:x23456y 2.0 3.5 6.0 6.57.0试求y关于x的线性回归方程.训练43期望求解(1)(建议用时:12分钟) 1.求期望值.P(X=0)=C02C23C25=P(X=1)=C12C13C25=P(X=2)=C22C03C25=2.求期望值.P(X=0)=C36C310=P(X=1)=C26C14C310=P(X=2)=C16C24C310=P(X=3)=C34C310=3.求分布列Y的期望值, 已知Y=5X,X的可能取值为0,1,2,3,4, 且X∼B4,34.(1)P(X=0)=C0434 014 4=(2)P(X=1)=C1434 114 3=(3)P(X=2)=C2434 214 2=(4)P(X=3)=C3434 314 1=(5)P(X=4)=C4434 414 0=训练44期望求解(2)(建议用时:12分钟)1随机变量ξ的可能取值为0,1,2,3,4.P (ξ=0)=1-34 21-232=P (ξ=1)=C 1234 1-34 1-23 2+C 1223 1-23 1-34 2=P (ξ=2)=34 21-23 2+1-34 223 2+C 12231-23 C 1234 1-34 =P (ξ=3)=34 2C 1223 1-23 +C 1234 1-34 23 2=P (ξ=4)=34223 2=求随机变量ξ的期望值.2随机变量X 的可能取值为2,3,4,5.P (X =2)=C 12C 22+C 22C 12C 310=P (X =3)=C 12C 24+C 22C 14C 310=P (X =4)=C 12C 26+C 22C 16C 310=P (X =5)=C 12C 28+C 22C 18C 310=求随机变量X 的期望值.(建议用时:20分钟)1.C r 12⋅212-r ≥C r -112⋅213-r ,C r 12⋅212-r ≥C r +112⋅211-r ,为整数, 则r =2.(-2)r C r 8≥(-2)r +2C r +28,(-2)r C r 8≥(-2)-2C r -28,为偶数, 则r =3.设m ,n ∈N ∗,m ≤n , 求证:C m +1n +1=n +1m +1C mn.4.用二项式定理证明:3n >2n 2+1n ≥3,n ∈N ∗ .(建议用时:20分钟)1.求r的取值范围:C r7⋅2r≥C r-17⋅2r-1,C r7⋅2r≥C r+17⋅2r+1 .2.求r的取值范围:C r8⋅2r≥C r+18⋅2r+1, C r8⋅2r≥C r-18⋅2r-1.3.求k的取值范围:C k1012 k≥C k-11012 k-1, C k1012 k≥C k+11012 k+1.4.展开:x-12x6=。

山东省东营市东营区2022-2023学年七年级上学期期末数学试题及解析

山东省东营市东营区2022-2023学年七年级上学期期末数学试题及解析
(2)解不等式: ,并把解集在数轴上表示出来.
21.如图,三角形 中任一点 经平移后对应点为 ,将三角形 作同样的平移得到三角形 .
(1)直接写出 、 的坐标分别为 , ;
(2)在图中画出 ;
(3)请直接写出 的面积是.
22.某校组织学生书法比赛,在限定每人只交一份书法作品的条件下,对参赛作品按A、B、C、D四个等级进行了评定.现随机抽取部分学生书法作品的评定结果进行分析,并绘制扇形统计图和条形统计图如下:
∴ ,
∴-2<m< ,
又∵点 的横坐标、纵坐标均为整数,,
∴m=-1,
∴2m+1=-1,m+2=1,
∴点A的坐标为(-1,1),
故答案为(-1,1).
【点睛】本题考查了象限内点的坐标特征、解不等式组等,熟练掌握各象限内点的坐标特征是解题的关键.
13.84°
【分析】首先根据平行线的性质得出∠3=180°-∠2=48°,∠1=∠4.再根据折叠的性质,得∠AEB=2∠3=96°,由邻补角定义求出∠4,从而得到∠1.
【详解】解:由题意得: , ,
解得: , ,

故答案为:5.
【点睛】题目主要考查二元一次方程的定义及求代数式的值,深刻理解二元一次方程的定义是解题关键.
12.
【分析】根据点A在第二象限,可得关于m的不等式组,解不等式组可求得m的取值范围,再根据坐标均为整数,可确定m的值,继而可求得答案.
【详解】∵ 在第二象限内,
C.调查人们垃圾分类的意识
D.对“神舟十三号”飞船零部件的调查
5.若 ,则 的算术平方根为()
A.4B.2C. D.
6.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳五尺四寸:屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余 尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y尺,可列方程组为( )

《带省略号问题》专题(填空题)

《带省略号问题》专题(填空题)

《带省略号问题》专题(填空题)1.瑞士中学老师巴尔末成功地从光谱数据59,1216,2125,3236,……中得到巴尔末公式,从而打开了光谱奥妙的 大门,请你按这种规律写出第七个数据是 。

2.有一个多项式876253a a b a b a b -+-+ ,按照此规律写下去,这个多项式的第八项是__ __。

3.观察下列各式:0,x ,2x ,32x ,43x ,55x ,68x ,……。

试按此规律写出的第10个式子是__ __。

4.观察下列单项式:a ,-2a 2,4a 3,-8a 4,16a 5,…。

按此规律,第n 个(n 是正整数)单项式是__ __。

5.观察下列各式:x ,3x 2,7x 3,15x 4,31x 5,…。

按此规律写出的第8个式子是6.观察下列单项式:0,23x ,38x ,415x ,524x ,……,按此规律写出第13个单项式是 。

7.观察分析下列数据,寻找规律:0,3,6,3,32,15,23,……那么第10个数据应是 ,第n 个数是_______ ____。

8.有一列数: 2,6, 32,52,30,42,142,……那么第18个数是_______ ____,第n 个数是_______ ____。

9.=-2n 122211个个n _______ ____。

10.设22121111++=S , 22231211++=S , 22341311++=S , …, 22)1(111+++=n n S n , 设n S S S S +++=21,则=S11.观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●●○○○●○○●●●○○○●○○●●●○○○●……,从第1个球起到第2020个球止共有实心球__ __个。

12.如图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n(n 是正整数)个图案中由__ __个基础图形组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实际上,很多有理数的立方根是无 限不循环小数,
如 3 2,3 3 等都是无限不循环小数。
要求一个数的立方根(或近似值),我们可 以利用计算器中的 3 键来计算。
例1、用计算器求1845的立方根。
依次按键 3
1845 =
显示:12.264 940 82
练习:用计算器求下列各式的值.
(1)3 4.09; (2)3 1.369; (3)3 0.352; (4)3 87.69; (5)3 0.5248; (6)3 3.0587.
D、任意数
6. 3 5 的整数部分是(
3 12的整数部分是(
),小数部分是( ) ),小数部分是( )
7、比较大小
3 4 3 50
例3:
如图,底面半径为r,高为h的圆柱体的体积
v r2h,且圆柱的底面半径与高相等。若
它的体积为,2930π cm3,求这个圆柱的半径
(结果精确到0.1)
A、4㎝~5㎝之间 B、5cm~6cm之间 C、6㎝~7㎝之间 D、7㎝~8㎝之间
3、下列各组数中互为相反数的一组是( A )
A、 3与 32
B、 32与 1
3
C、 3与3 27
D、3 27与 3
4、要使 3 4 a3 4 a 成立,则a必须满足
(D)
A、a 4
B、a 4
C、0 a 4
1728 15625
2197
用计算器计算下列数值,并发现规律

3 0.000216
… 0.06
3 0.216
0.6
3 216
6

3 216000

60
归纳:被开方数的小数点每向右(或左) 移动三位,开方后立方根的小数点就向右 (或左)移动一位。
观察下面的运算,请你找出其中的规律
3 1 __1__, 3 1000 __10__, 3 0.001 _0_.1__。
规律是: ①被开方数每扩大 1000 倍,其结果就扩大 10 倍; ②被开方数每缩小 1000 倍,其结果就缩小 10 倍。 反之也成立。 用你发现的规律填空:
① 已知,3 216 6,则3 216000 _6_0__,3 0.216 _0_._6_
② 已知,3 1331 11,则3 1.331 _1_._1_,3 1331000 _1_1_0_ ③ 正方体的体积扩大为原来的8倍,
则它的边长变为原来的__2__倍。
1.已 知3 0.342 0.6993,3 3.42 1.507, 3 34.2 3.246, 求 下 列 各 式 的 值 。 (1)3 0.000342 = 0—.—0—6—9—9—3。 (2)3 34200000 = -—3—2—4—.6——。 (3) 3 0.00342 = -—0—.1—5—0—7—。
回顾
1、什么是立方根? 若一个数的立方等于a,那么这个 数叫做 a 的立方根或三次方根。 2、正数的立方根是一个_正__数___,负 数的立方根是一个__负__数___,0 的立 方根是__0__;立方根是它本身的数 是1_、__-_1、__0.平方根是它本身的数是_0_ 算术平方根是它本身的数是_0_、__1__.
2.已知3 32.8 3.201,3 2.28 1.486, 3 0.328 0.6896,3 x 14.86,3 y 68.96, 则x 2 28 0; y 3 28 00。 0
1、估计68的立方根的大小在( C)
A、2与3之间 B、3与4之间 C、4与5之间 D、5与6之间
2、一个正方体的水晶砖,体积为100cm³, 它的棱长大约在 ( A)
பைடு நூலகம்
练习
1.-8的立方根是 -2 2.(-3)3 的立方根是
,2的立方根是 3 2
-3
3. 3 512 的立方根是 8
8
45..一3个数12的5立的方倒根数是是32;,15则这相个反数数是是
27 5
6.
3 m 3
2
2 3,则m的值为
2 3
7.已知 3 4a 3 3 则a= -6 ,a-2的立方根为 -2
是负数 x
2.非负数的立方根还是非负数 √
3.一个数的平方根与其立方根相同,则这
个数是1 x
4. 3 a不可能是负数 x
5.一个数的立方根有两个,它们互为相反
数x
6. 27的立方根的平方根是 + 3

7.若 x3 (2)3 ,则 x 2 √
问题:如果一个立方体的体积是2㎝³,则 这个立方体的棱长是多少呢?
例2.用计算器求 3 1.354 的值(计算结果保留4位有 效数字).
解:用计算器求3 1.354 的步骤如下:
按键
显示
3 1.354 =
2ndF 0.
1.354 1.106299938
因为计算结果要求保留4位 有效数字,所以
3 1.354 1.106
•练习:用计算器求下列 各数的立方根(保留三 位小数)
1、立方和开立方是互逆运算
a (3 a )3 a 3 a3
3 a 3 a
平方和开平方是互逆运算
( a )2 a(a≥0)
a2 a
2.立方根与平方根的异同
相同点: ①0的平方根、立方根都有一个是0
②平方根、立方根都是开方的结果。
不同点:
①定义不同 ②个数不同
③表示方法不同 ④被开方数的取值范围不同
口答
求1,1,1 , 1 的立方根. 27 27
3 1 1 3 1 1 3 1 1 3 1 1
27 3 27 3
互为相反数 的数的立方 根也互为相 反数
1.求下列数的立方根
(1) (216) (4) 27
(2) 2 10 27
(5) (8)2
(6) (5)3
(7) 124 1 125
38 3 1 64
(1) 27(x 1)3 1 (2) 2(x 1)2 32 (3) (2 x)3 27 0 (4) (x 15)2 169
5、当x_取__任__意_值___时,3 x 1 有意义
6、将一个立方体的体积扩大到原来的8 倍,则它的棱长扩大到原来的__2___倍。
1.任何有理数都有立方根,它不是正数就
(3) 343 729
2、求下列各式的值
(1) 3 343 (2) 3 512 (3) 3 27 8
(4)
3 27
(5)
10 32
(6)
9
64
27
25
(7) 289 (8) (5)2 (9) 3 (5)3
(1)
16 81 (2)
(3) 3 2 3
(4)
64
4、求下列各式中x的值
31 4 16
相关文档
最新文档