对数指数函数公式全集()
对数指数函数公式全集
指数函数和对数函数重点、难点:重点:指数函数和对数函数的概念、图象和性质。
难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y xxa ==,l o g 在a >1及01<<a 两种不同情况。
1、指数函数:定义:函数()y aa a x=>≠01且叫指数函数。
定义域为R ,底数是常数,指数是自变量。
为什么要求函数y ax=中的a 必须a a >≠01且。
因为若a <0时,()y x=-4,当x =14时,函数值不存在。
a =0,y x=0,当x ≤0,函数值不存在。
a =1时,y x=1对一切x 虽有意义,函数值恒为1,但y x =1的反函数不存在, 因为要求函数y a x=中的a a >≠01且。
1、对三个指数函数y y y x xx==⎛⎝ ⎫⎭⎪=21210,,的图象的认识。
对图象的进一步认识,(通过三个函数相互关系的比较):①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0时,y x=10的图象在y x=2的图象的上方,当x <0,刚好相反,故有10222>及10222--<。
②y x=2与y x=⎛⎝ ⎫⎭⎪12的图象关于y 轴对称。
③通过y x =2,y x =10,y x=⎛⎝ ⎫⎭⎪12三个函数图象,可以画出任意一个函数y a x=(a a >≠01且)的示意图,如y x=3的图象,一定位于y x=2和y x=10两个图象的中间,且过点()01,,从而y x=⎛⎝ ⎫⎭⎪13也由关于y 轴的对称性,可得y x=⎛⎝ ⎫⎭⎪13的示意图,即通过有限个函数的图象进一步认识无限个函数的图象。
2、对数:定义:如果a N a a b=>≠()01且,那么数b 就叫做以a 为底的对数,记作b Na =l o g (a 是底数,N 是真数,lo g a N 是对数式。
指数和对数的转换公式
指数和对数的转换公式
1.对数函数的一般形式为 y=logax,它实际上就是指数函数的反函数,图象关于直线y=x对称的两函数互为反函数,可表示为x=a^y。
因此指数
函数里对于a存在规定——a>0且a≠1,对于不同大小a会形成不同的函
数图形关于X轴对称、当a>1时,a越大,图像越靠近x轴、当0<a<1时,a越小,图像越靠近x轴。
2.可通过指数函数或对数函数的单调性来比较两个指数式或对数式的
大小。
求函数y=afx的单调区间,应先求出fx的单调区间,然后根据
y=au的单调性来求出函数y=afx的单调区间.求函数y=logafx的单调区间,则应先求出fx的单调区间,然后根据y=logau的单调性来求出函数
y=logafx的单调区间。
3.如果b^nx,则记n=logbx,其中b叫做底数,x叫做真数。
n叫做
以b为底的x的对数,log(b)(x)函数中x的定义域是x>0,零和负数没
有对数,b的定义域是b>0且b≠1,当01时,图象上显示函数为(0,+∞)单,,随着a的减小,图象逐渐以(1.0)点为轴逆时针转动,但不超过
X=1。
高中数学公式大全指数函数与对数函数的性质
高中数学公式大全指数函数与对数函数的性质指数函数与对数函数是高中数学中重要的内容,掌握它们的性质对于解决数学问题非常有帮助。
本文将介绍指数函数与对数函数的基本定义和性质,并给出一些相关的例题,以帮助读者更好地理解和应用这些数学知识。
一、指数函数的性质指数函数通常可以表示为f(x) = a^x,其中a是一个正实数且不等于1。
指数函数具有以下性质:1. 对于任意实数x和y,有a^x * a^y = a^(x+y)。
这意味着指数函数的相乘等于底数不变,指数相加的性质。
2. 对于任意实数x和y,有(a^x)^y = a^(xy)。
这意味着指数函数的乘方等于底数不变,指数相乘的性质。
3. 指数函数的图像随着底数a的变化而变化,当0<a<1时,图像逐渐下降;当a>1时,图像逐渐上升。
二、对数函数的性质对数函数通常可以表示为f(x) = log_a(x),其中a是一个大于0且不等于1的实数。
对数函数具有以下性质:1. 对于任意正实数x和y,有log_a(xy) = log_a(x) + log_a(y)。
这意味着对数函数的乘积等于底数不变,对数相加的性质。
2. 对于任意正实数x和y,有log_a(x/y) = log_a(x) - log_a(y)。
这意味着对数函数的除法等于底数不变,对数相减的性质。
3. 对数函数的图像在底数a相同时相同,当0<a<1时,图像逐渐下降;当a>1时,图像逐渐上升。
三、指数函数与对数函数的应用举例1. 例题一:已知指数函数f(x) = 2^x的值域为[1, 16],求定义域。
解析:由于指数函数的值域为[1, 16],因此对应的底数应满足1≤2^x≤16,解得0≤x≤4。
所以该指数函数的定义域为[0, 4]。
2. 例题二:已知对数函数g(x) = log_2(x) + log_2(8-x)的定义域为[1, 7],求值域。
解析:对数函数的定义域为[1, 7],因此对应的实际问题应满足定义域内的条件。
指对数函数公式
指对数函数公式一、指数函数公式。
1. 指数函数的定义。
- 一般地,函数y = a^x(a>0,a≠1)叫做指数函数,其中x是自变量,函数的定义域是R。
2. 指数运算法则。
- a^m· a^n=a^m + n(同底数幂相乘,底数不变,指数相加)- frac{a^m}{a^n}=a^m - n(同底数幂相除,底数不变,指数相减)- (a^m)^n=a^mn(幂的乘方,底数不变,指数相乘)- (ab)^n=a^nb^n(积的乘方等于乘方的积)- ((a)/(b))^n=frac{a^n}{b^n}(b≠0)(商的乘方等于乘方的商)3. 指数函数的性质。
- 当a > 1时:- 函数y = a^x在R上单调递增;- x>0时,y>1;x = 0时,y = 1;x<0时,0。
- 当0 < a < 1时:- 函数y = a^x在R上单调递减;- x>0时,0;x = 0时,y = 1;x<0时,y>1。
二、对数函数公式。
1. 对数的定义。
- 如果a^x=N(a > 0,a≠1),那么数x叫做以a为底N的对数,记作x=log_aN,其中a叫做对数的底数,N叫做真数。
- 特别地,当a = 10时,log_10N简记为lg N;当a = e时,log_eN简记为ln N,e≈2.71828。
2. 对数运算法则。
- log_a(MN)=log_aM+log_aN(M > 0,N > 0)(对数的加法运算法则)- log_a(M)/(N)=log_aM-log_aN(M > 0,N > 0)(对数的减法运算法则)- log_aM^n=nlog_aM(M > 0)(对数的幂运算法则)- 换底公式:log_aN=frac{log_bN}{log_ba}(a > 0,a≠1,b > 0,b≠1)3. 对数函数的性质。
对数函数公式转换
对数函数公式转换对数函数是一种特殊的函数形式,由指数函数逆运算得到。
在常用的对数函数公式中,最经典的是以10为底的常用对数函数和以自然对数e为底的自然对数函数。
1.以10为底的常用对数函数公式为:y = log₁₀(x)这个公式表示,y是以10为底的对数函数,x是自变量。
这个公式的意义是,y表示的是一个数x在以10为底的对数函数中的指数值。
例如,若y=2,则表示x=10²=100。
对数函数的特点是,它将一个数的指数转换为以10为底的对数值。
这种转换能够帮助我们更直观地理解数的大小关系,特别是在处理大数字时更为方便。
2.以自然对数e为底的自然对数函数公式为:y = ln(x)这个公式表示,y是以e为底的自然对数函数,x是自变量。
与常用对数函数类似,这个公式的意义是,y表示的是一个数x在以e为底的自然对数函数中的指数值。
对数函数的公式可以在一定条件下进行转换。
这里我们介绍两种常见的对数函数公式转换方法。
1.换底公式:对于任意的底数a、b和正实数x,满足a>0、b>0、a≠1、b≠1,我们有以下换底公式:logₐ(x) = logₐ(b) · log_b(x)这个公式的意思是:将底数为a的对数转换为底数为b的对数,需要将底数为a的对数值除以底数为b的对数的值。
换底公式是在实际应用中常用的对数函数公式转换方式,特别是当需要将对数底数转换为10或e以外的其他数时。
2.对数函数的幂函数表示:对数函数可以使用幂函数来表示。
以常用对数函数为例,将其转换为幂函数形式,则有:y = log₁₀(x)x=10^y这个公式的意思是:将常用对数函数y = log₁₀(x)转换为x = 10^y,即将对数值y转换为以10为底的指数值。
对数函数的幂函数表示提供了一种直观的理解对数函数的方式,帮助我们更好地理解对数函数和指数函数之间的关系。
综上所述,对数函数公式的转换可以通过换底公式和幂函数形式来实现。
对数公式的推导全
对数公式的推导全首先,我们需要了解指数函数和对数函数的定义。
指数函数定义:对于任意实数a和正整数n,我们定义指数函数a^n为连乘的结果,即a^n=a*a*a*...*a(共n个a)。
对数函数定义:对于任意正实数 a、b 和正整数 n,我们定义对数函数 log_a b 为 a^n = b 的等价表达式,其中 a 称为底数,b 称为真数,n 称为对数指数。
特别地,当 a = 10 时,log_a b 可以简写为 log b。
推导一:指数函数和对数函数的互逆关系假设a是一个正实数,b是a的正整数指数,即a^b中的a和b。
根据指数函数的定义,a^b=a*a*a*...*a(共b个a)。
如果我们定义对数函数 log_a,使得 log_a a^b = b,则根据对数函数的定义,我们有 a^b = a^(log_a a^b) = a^(b * log_a a)。
根据指数函数和对数函数的定义,我们可以得出指数函数和对数函数的互逆关系:a^b = a^(log_a a^b) = b * log_a a。
推导二:对数函数之间的运算规则根据指数函数和对数函数的互逆关系,我们可以推导出对数函数之间的运算规则。
假设a是一个正实数,b和c是两个正实数,则有以下运算规则:1. log_a (b * c) = log_a b + log_a c:两数相乘等于其对数相加。
证明:a^(log_a b + log_a c) = a^(log_a b) * a^(log_a c) = b* c。
2. log_a (b / c) = log_a b - log_a c:两数相除等于其对数相减。
证明:a^(log_a b - log_a c) = a^(log_a b) / a^(log_a c) = b/ c。
3. log_a (b^c) = c * log_a b:一个数的幂等于其对数乘以指数。
证明:a^(c * log_a b) = (a^(log_a b))^c = b^c。
对数函数运算公式
对数函数运算公式对数函数是高中数学中的一个重要概念,它在数学和科学运算中都有广泛的应用。
对数函数有着丰富的性质和运算规则,下面将介绍对数函数的运算公式。
1.对数函数的定义:对数函数是指关于求对数的函数,一般表示为y = logₐx,其中a是底数,x是真数,y是对数。
对数函数的定义域是x > 0,值域是实数集。
2.对数的含义:对数的含义是指一个数相对于一个给定底数的幂次。
对数函数的运算公式是以底数为底的指数函数的反函数。
即x = a^y,y = logₐx。
3.基本对数函数的性质和运算规则:- logₐa = 1:任何数以自己为底的对数都等于1- logₐ1 = 0:任何底数为自然数的对数都等于0。
- logₐaⁿ = n:任何底数为幂的对数等于指数。
- logₐxy = logₐx + logₐy:两个数的乘积的对数等于它们的对数之和。
- logₐ(x/y) = logₐx - logₐy:两个数的商的对数等于它们的对数之差。
- logₐxⁿ = nlogₐx:一个数的幂的对数等于幂次与对数的乘积。
- logₐa = 1/logₐa:对数函数的互逆性,任何数以底数为底的对数等于指数函数的互逆。
4.对数函数的换底公式:换底公式是指当给定一个对数的底不是我们所熟悉的常用底数,需要将其换成我们所熟悉的底数的公式。
换底公式如下:logₐx = logᵦx / logᵦa其中,a,b,x为正实数,且a≠1,b≠15.对数函数与指数函数的关系:对数函数和指数函数是互为反函数的关系,即对数函数是指数函数的反函数,反之亦然。
对数函数可以用来求解指数方程,而指数函数可以通过对数函数求解指数方程的解。
6.常用对数函数:在实际应用中,常用的对数函数是以10为底的常用对数函数(log₁₀x),以及以自然对数e为底的自然对数函数(lnx)。
常用的对数函数主要用于科学计算、对数缩尺、音量、酸碱度等方面。
总结起来,对数函数的运算公式包括对数函数的性质和运算规则、换底公式、对数函数与指数函数的关系等。
大一高数公式总结大全
高数是大学数学中最重要的学科,其中的公式为学习者提供了极大的帮助。
下面就是大一高数公式总结大全。
一、有理函数公式:
1、有理函数的定义:
定义域D:D={x|f(x)存在};值域R:R={y|y=f(x),x∈D}
2、有理函数的一阶导数公式:
f′(x)=lim[h->0] (f(x+h) -f(x))/h
3、有理函数的二阶导数公式:
f′′(x)=lim[h->0] (f′(x+h)-f′(x))/h
二、指数函数公式:
1、指数函数的定义:
定义域D:D={x|f(x)存在};值域R:R={y|y=f(x),x∈D}
2、指数函数的一阶导数公式:
f′(x)=f(x)·ln(a)
3、指数函数的二阶导数公式:
f′′(x)=f(x)·ln2(a)
三、三角函数公式:
1、三角函数的定义:
定义域D:D={x|f(x)存在};值域R:R={y|y=f(x),x∈D}
2、三角函数的一阶导数公式:
f′(x)=cosx
3、三角函数的二阶导数公式:
f′′(x)=-sinx
四、对数函数公式:
1、对数函数的定义:
定义域D:D={x|f(x)存在};值域R:R={y|y=f(x),x∈D}
2、对数函数的一阶导数公式:
f′(x)=1/x
3、对数函数的二阶导数公式:
f′′(x)=-1/x2
以上就是大一高数公式总结大全,这些公式可以帮助大学生掌握高数学习中的基本概念,为他们的学习提供便利。
对数函数和指数函数的转换公式
对数函数和指数函数的转换公式
据定义,指数函数是一种比较常见的函数,它由以公差为比例阶的等比数列所构成,这一等比数列的公差通常取值2,3,4,或更大数。
它是一种单调递增或单调递减的函数,其中至少有一个变量在函数定义域上是单调变化的,而另一个变量则是固定的值。
指数函数的定义域单调变量通常为正或负数,但也有一些例外,比如幂函数。
另一方面,对数函数是指构成对数等比数列的函数,这种等比数列的公差通常为负数,也就是说,它的定义域变量的取值在不断变化,却是递减的。
同时,对数函数也有可能是单调递增的。
转换公式:
Proxy函数和指数函数之间的转换公式如下:
指数函数:y = a•x
其中,a 为正数不等于 1,且 x 为正或负实数。
对数函数:y = loga(x)
其中,a 为正数不等于 1,且 x 为正实数。
按照转换公式,把指数函数转换为对数函数,我们只要把指数函数中的“aX”分别转换为“loga(x)”就可以了。
同理,把对数函数转换为指数函数,我们只要把对数函数中的“loga(x)”分别转换为“ax”就可以了。
有时,在具体问题中,我们可能需要把对数函数和指数函数之间进行转换。
这时,只需遵循上述转换公式就可以将对数函数转换为指数函数,或者将指数函数转换为对数函数。
按照信条的转换公式,我们可以找到其中的关系,从而把对数函数或指数函数中的参数全都求出来。
对数函数运算公式
对数函数运算公式对数函数是指以一个常数为底数的指数函数。
对数组的运算公式包括对数函数的性质和对数函数的运算法则。
下面是关于对数函数运算公式的详细解释。
1.对数函数的性质:(1) 对于对数函数y=log_a(x),其中a>0,a≠1,x>0,y是实数。
底数a称为常数底,x称为对数函数的自变量,y称为对数函数的因变量。
(2) 对于对数函数y=log_a(x),x=a^y。
这个性质表示对数函数和指数函数互为逆运算。
(3) 对数函数y=log_a(x)的图像是一个增长趋缓的曲线,曲线上的点的坐标是(x,y)。
(4) 对数函数y=log_a(x)在a<1时是递增函数,在a>1时是递减函数。
(5) 对数函数y=log_a(x)的定义域是x>0,值域是实数集。
(6) 对数函数y=log_a(x)在底数a>1时,正值有限,负值无限;在0<a<1时,正值无限,负值有限。
(7) 对数函数y=log_a(x)与曲线y=x在点(1,0)处相交。
2.对数函数的运算法则:(1) 对数函数的乘法法则:log_a(x*y)=log_a(x)+log_a(y)。
即两个数的乘积的对数等于这两个数的对数之和。
(2) 对数函数的除法法则:log_a(x/y)=log_a(x)-log_a(y)。
即两个数的商的对数等于这两个数的对数之差。
(3) 对数函数的幂法则:log_a(x^n)=n*log_a(x)。
即一个数的幂的对数等于这个幂与这个数的对数之积。
(4) 对数函数的换底公式:log_a(x)=log_b(x)/log_b(a)。
即可以通过换底公式将以任意底数的对数转化为以其他底数的对数。
(5) 对数函数与指数函数的关系:log_a(x)的定义和底数为a的指数函数a^x的定义相对应,是互为逆运算的。
3.例题:(1) 计算log_2(8)/log_2(4)解:根据换底公式(2) 化简log_3(27^2)解:根据幂法则,log_3(27^2)=2*log_3(27)=2*3=6对数函数的运算公式是数学中重要的概念,它在解决各种实际问题和数学推导中都有广泛应用。
对数指数函数公式全集
指数及对数运算公式及习题指数1、运算法则()()(,0)m n m n m n mnmn n nm n n a a a a a a ab a b a m n a a +-⋅===⋅=>≠ 2、n a 叫做a 的n 次幂,a 叫做幂的底数,n 叫做幂的指数,并规定1a a =。
将正整指数幂推广到整数指数幂。
规定:)0(10≠=a a *),0(1N n a aa n n ∈≠=- 3、n 次方根定义:若),1(+∈>=N n n a x n 则x 叫做a 的n 次方根。
当n 为奇数时:正数的n 次方根为正数,负数的n 次方根为负数,即 n a x = ;当n 为偶数时,正数的n 次方根有两个(互为相反数), 负数没有偶次方根; 0的任何次方根为0。
4、根式的定义:n a 叫做根式 ,n 叫做根指数, a a n n =)(||a n a n ⎧=⎨⎩当为奇数时当为偶数时10)n a a =>0,,,mm n m a a n m N n+==>∈且为既约分数) 5、负分数指数幂的意义与负整数指数幂的意义相同,同样可定义:1(0,,,mn mnm a a n m N n a -+=>∈且为既约分数) 213211113625(1)15()()46x y x y x y ----- (2)32573222(2)()x a x x x r b c --57x x(3)3(2)x - (4)322()x r - (5)22a b c对数1、指数对数式互化a N a a b =>≠()01且,记作b N a =l o g (a 是底数,N 是真数,lo g a N 是对数式。
)35x =化为对数式是( )2、对数的性质:①负数和零没有对数;②1的对数是零;③底数的对数等于1。
3、对数的运算法则:()()l o g l o g l o g a a a M N M N M N R =+∈+,()l o g l o g l o g a a a MN M N M N R =-∈+,()()l o g l o g a n a Nn N N R =∈+()l o g l o g a na N n NNR =∈+14、对数换底公式:l o g l o g l o g l o g (.)l o g b a a n e g N NbLN N e N LN N ====其中…称为的自然对数称为常数对数27182810由换底公式推出一些常用的结论:(1)l o g l o g l o g l o g a b a b b a b a ==11或·(2)log log a m a n b m nb =(3)l o g l o g a n a n b b =(4)lo g a m n a mn =5、指数方程与对数方程*定义:在指数里含有未知数的方程称指数方程。
对数函数运算公式
对数函数运算公式对数函数是数学中的一个重要函数,经常用于解决指数函数中的未知数问题。
对数函数的运算公式主要涉及到对数的性质、对数函数的四则运算以及指数与对数之间的互换等内容。
1.对数的性质:(1)对数的定义:设a和b是两个正数,并且a≠1(a>0, b>0),那么对数等式logab=c可以表达成b=ac。
其中a称为底数,b称为真数,c 称为对数。
(2)loga1=0,任何数的对数等于1,即logaa=1(3)loga(ax)=x,对数与指数的互换性。
(4)loga(mn)=logam+logan,对数的乘法性质。
(5)loga(m/n)=logam-logan,对数的除法性质。
(6)loga(m^b)=blogam,对数的指数性质。
(7)logaa^m=m,对数函数与指数函数的互逆性。
2.对数函数的四则运算:(1)对数函数的加法运算:loga(x*y)=logax+logay。
对于乘积,可以拆分为两个单独的对数,并进行相加。
(2)对数函数的减法运算:loga(x/y)=logax-logay。
对于除法,可以拆分为两个单独的对数,并进行相减。
(3)对数函数的乘法运算:loga(x^y)=y*logax。
对于指数,可以将次方数移到对数的前面。
(4)对数函数的除法运算:loga(x^y/z)=y*logax-logaz。
对于指数除法,可以将分子和分母拆分为两个单独的对数,并进行相减。
3.对数与指数之间的互换:(1)当底数相同时,对数和指数可以互换。
例如,log2(x)=y等价于2^y=x。
(2)指数函数与对数函数互为反函数,可以通过对数函数求指数或通过指数函数求对数。
(3)利用对数函数和指数函数的互逆性,可以解决指数方程和对数方程。
4.对数函数的运算例题:例题1:已知log2(a)=3,求a的值。
解:根据对数的定义,可以得到2^3=a,即a=8例题2:已知log(b+2)=1+logb,求b的值。
指数函数运算法则公式有哪些
指数函数运算法则公式有哪些
同底数幂相乘,底数不变,指数相加;(a^m)*(a^n)
=a^(m+n),xx已经为大家整理了指数函数的运算公式,快来看看吧。
指数函数运算公式
同底数幂相乘,底数不变,指数相加;(a^m)*(a^n)
=a^(m+n)
同底数幂相除,底数不变,指数相减;(a^m)÷(a^n)=a^(m-n)
幂的乘方,底数不变,指数相乘;(a^m)^n=a^(mn)
积的乘方,等于每一个因式分别乘方;(ab)^n=(a^n)(b^n)
指数函数定义
指数函数是数学中重要的函数。
应用到值e上的这个函数写为exp(x)。
还可以等价的写为e,这里的e是数学常数,就是自然对数的底数,近似等于2.718281828,还称为欧拉数。
一般地,y=a^x函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是R。
几个基本的函数的导数
y=a^x,y'=a^xlna
y=c(c为常数),y'=0
y=x^n,y'=nx^(n-1)
y=e^x,y'=e^x
y=logax(a为底数,x为真数),y'=1/x*lna y=lnx,y'=1/x
y=sinx,y'=cosx
y=cosx,y'=-sinx
y=tanx,y'=1/cos^2x。
第四章 指数函数与对数函数(公式、定理、结论图表)--2023年高考数学必背知识手册(新教材)
第四章指数函数与对数函数(公式、定理、结论图表)一.根式及相关概念(1)a 的n 次方根定义如果x n=a ,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.(2)a 的n 次方根的表示n 的奇偶性a 的n 次方根的表示符号a 的取值范围n 为奇数n aR n 为偶数±n a[0,+∞)(3)根式式子na 叫做根式,这里n 叫做根指数,a 叫做被开方数.二.根式的性质(n >1,且n ∈N *)(1)n 为奇数时,na n=a .(2)n 为偶数时,na n=|a|=≥0,a <0.(3)n0=0.(4)负数没有偶次方根.思考:(na )n 中实数a 的取值范围是任意实数吗?提示:不一定,当n 为大于1的奇数时,a ∈R ;当n 为大于1的偶数时,a ≥0.三.分数指数幂的意义分数指数幂正分数指数幂规定:a m n =na m (a >0,m ,n ∈N *,且n >1)负分数指数幂规定:a -m n =1a m n =1na m (a >0,m ,n ∈N *,且n >1)0的分数指数幂0的正分数指数幂等于0,0的负分数指数幂没有意义思考:在分数指数幂与根式的互化公式a m n =n a m中,为什么必须规定a >0?提示:①若a =0,0的正分数指数幂恒等于0,即na m=a mn =0,无研究价值.②若a <0,a m n =n a m 不一定成立,如(-2)32=2(-2)3无意义,故为了避免上述情况规定了a >0.四.有理数指数幂的运算性质(1)a r a s=ar +s(a >0,r ,s ∈Q ).(2)(a r )s =a rs (a >0,r ,s ∈Q ).(3)(ab )r =a r b r (a >0,b >0,r ∈Q ).五.无理数指数幂一般地,无理数指数幂a α(a >0,α是无理数)是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.六.指数函数的概念一般地,函数y =a x(a >0,且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域是R .七.指数函数的图象和性质a 的范围a >10<a <1图象性质定义域R值域(0,+∞)过定点(0,1),即当x=0时,y=1单调性在R上是增函数在R上是减函数奇偶性非奇非偶函数对称性函数y=a x与y=a-x的图象关于y轴对称思考1:指数函数y=a x(a>0且a≠1)的图象“升”“降”主要取决于什么?提示:指数函数y=a x(a>0且a≠1)的图象“升”“降”主要取决于字母a.当a>1时,图象具有上升趋势;当0<a<1时,图象具有下降趋势.思考2::指数函数值随自变量有怎样的变化规律?提示:指数函数值随自变量的变化规律.八.对数(1)指数式与对数式的互化及有关概念:(2)底数a的范围是a>0,且a≠1.九.常用对数与自然对数十.对数的基本性质(1)负数和零没有对数.(2)loga1=0(a>0,且a≠1).(3)logaa=1(a>0,且a≠1).思考:为什么零和负数没有对数?提示:由对数的定义:a x=N (a >0且a ≠1),则总有N >0,所以转化为对数式x =log a N 时,不存在N ≤0的情况.十一.对数的运算性质如果a >0,且a ≠1,M >0,N >0,那么:(1)log a (MN )=log a M +log a N ;(2)log a MN=log a M -log a N ;(3)log a M n=n log a M (n ∈R ).思考:当M >0,N >0时,log a (M +N )=log a M +log a N ,log a (MN )=log a M ·log a N 是否成立?提示:不一定.十二.对数的换底公式若a >0且a ≠1;c >0且c ≠1;b >0,则有log a b =log c blog c a.十三.对数函数的概念函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).思考1:函数y =2log 3x ,y =log 3(2x )是对数函数吗?提示:不是,其不符合对数函数的形式.十四.对数函数的图象及性质提示:底数a 与1的关系决定了对数函数的升降.当a >1时,对数函数的图象“上升”;当0<a <1时,对数函数的图象“下降”.十五.反函数指数函数y =a x(a >0,且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数.十六、三种函数模型的性质y=a x(a>1)y=logax(a>1)y=kx(k>0)在(0,+∞)上的增减性增函数增函数增函数图象的变化趋势随x增大逐渐近似与y轴平行随x增大逐渐近似与x轴平行保持固定增长速度增长速度①y=a x(a>1):随着x的增大,y增长速度越来越快,会远远大于y=kx(k>0)的增长速度,y=logax(a>1)的增长速度越来越慢;②存在一个x,当x>x时,有a x>kx>logax十七.函数的零点对于函数y=f(x),把使f(x)=0的实数x叫做函数y=f(x)的零点.思考1:函数的零点是函数与x轴的交点吗?提示:不是.函数的零点不是个点,而是一个数,该数是函数图象与x轴交点的横坐标.十八.方程、函数、函数图象之间的关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.十九.函数零点存在定理如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解.思考2:该定理具备哪些条件?提示:定理要求具备两条:①函数在区间[a,b]上的图象是连续不断的一条曲线;②f(a)·f(b)<0.二十.二分法的定义对于在区间[a,b]上图象连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把它的零点所在的区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.思考:若函数y=f(x)在定义域内有零点,该零点是否一定能用二分法求解?提示:二分法只适用于函数的变号零点(即函数在零点两侧符号相反),因此函数在零点两侧同号的零点不能用二分法求解,如f(x)=(x-1)2的零点就不能用二分法求解.二十一.二分法求函数零点近似值的步骤(1)确定零点x的初始区间[a,b],验证f(a)f(b)<0.(2)求区间(a,b)的中点c.(3)计算f(c),并进一步确定零点所在的区间:①若f(c)=0(此时x=c),则c就是函数的零点;②若f(a)f(c)<0(此时x∈(a,c)),则令b=c;③若f(c)f(b)<0(此时x∈(c,b)),则令a=c.(4)判断是否达到精确度ε:若|a-b|<ε,则得到零点近似值a(或b);否则重复步骤(2)~(4).二十二.常用函数模型思考:解决函数应用问题的基本步骤是什么?提示:利用函数知识和函数观点解决实际问题时,一般按以下几个步骤进行:(一)审题;(二)建模;(三)求模;(四)还原.这些步骤用框图表示如图:<解题方法与技巧>1.带条件根式的化简(1)有条件根式的化简问题,是指被开方数或被开方的表达式可以通过配方、拆分等方式进行化简.(2)有条件根式的化简经常用到配方的方法.当根指数为偶数时,在利用公式化简时,要考虑被开方数或被开方的表达式的正负.典例1:(1)若x <0,则x +|x |+x 2x=________.(2)若-3<x <3,求x 2-2x +1-x 2+6x +9的值.[思路点拨](1)由x <0,先计算|x |及x 2,再化简.(2)结合-3<x<3,开方、化简,再求值.(1)-1[∵x<0,∴|x|=-x,x2=|x|=-x,∴x+|x|+x2x=x-x-1=-1.](2)[解]x2-2x+1-x2+6x+9=(x-1)2-(x+3)2=|x-1|-|x+3|,当-3<x≤1时,原式=1-x-(x+3)=-2x-2.当1<x<3时,原式=x-1-(x+3)=-4.x-2,-3<x≤1,x<3.2.根式与分数指数幂互化的规律(1)根指数分数指数的分母,被开方数(式)的指数分数指数的分子.(2)在具体计算时,通常会把根式转化成分数指数幂的形式,然后利用有理数指数幂的运算性质解题.典例2:将下列根式化成分数指数幂的形式:(1)a a(a>0);(2)13x(5x2)2;-23(b>0).[解](1)原式=a·a12=a34.(2)原式=13x·(x25)2=13x·x45=13x95=11x35=x-35.-23=b-23×14×=b19.3.指数幂运算的常用技巧(1)有括号先算括号里的,无括号先进行指数运算.(2)负指数幂化为正指数幂的倒数.(3)底数是小数,先要化成分数;底数是带分数,要先化成假分数,然后要尽可能用幂的形式表示,便于用指数幂的运算性质.提醒:化简的结果不能同时含有根式和分数指数,也不能既含有分母又含有负指数.典例3:化简求值:4.解决条件求值的思路(1)在利用条件等式求值时,往往先将所求式子进行有目的的变形,或先对条件式加以变形,沟通所求式子与条件等式的联系,以便用整体代入法求值.典例4:已知a 12+a -12=4,求下列各式的值:(1)a +a -1;(2)a 2+a -2.[思路点拨]a 12+a -12=4――――→两边平方得a +a -1的值――――→两边平方得a 2+a -2的值[解](1)将a 12+a -12=4两边平方,得a +a -1+2=16,故a +a -1=14.(2)将a +a -1=14两边平方,得a 2+a -2+2=196,故a 2+a -2=194.5.判断一个函数是否为指数函数,要牢牢抓住三点:(1)底数是大于0且不等于1的常数;(2)指数函数的自变量必须位于指数的位置上;(3)a x的系数必须为1.典例5:(1)下列函数中,是指数函数的个数是()①y =(-8)x;②y =2x 2-1;③y =a x;④y =2·3x.A.1B.2C.3D.0(2)已知函数f (x )为指数函数,且=39,则f (-2)=________.(1)D(2)19[(1)①中底数-8<0,所以不是指数函数;②中指数不是自变量x ,而是x 的函数,所以不是指数函数;③中底数a ,只有规定a >0且a ≠1时,才是指数函数;④中3x前的系数是2,而不是1,所以不是指数函数,故选D.(2)设f (x )=a x(a >0且a ≠1),由=39得a -32=39,所以a =3,又f (-2)=a -2,所以f (-2)=3-2=19.]6.指数函数图象问题的处理技巧(1)抓住图象上的特殊点,如指数函数的图象过定点.(2)利用图象变换,如函数图象的平移变换(左右平移、上下平移).(3)利用函数的奇偶性与单调性.奇偶性确定函数的对称情况,单调性决定函数图象的走势.典例6:(1)函数f (x )=a x -b 的图象如图所示,其中a ,b 为常数,则下列结论正确的是()A.a >1,b <0B.a >1,b >0C.0<a <1,b >0D.0<a <1,b <0(2)函数y =a x -3+3(a >0,且a ≠1)的图象过定点________.(1)D(2)(3,4)[(1)由于f (x )的图象单调递减,所以0<a <1,又0<f (0)<1,所以0<a -b <1=a 0,即-b >0,b <0,故选D.(2)令x -3=0得x =3,此时y =4.故函数y =a x -3+3(a >0,且a ≠1)的图象过定点(3,4).]7.比较幂的大小的方法(1)同底数幂比较大小时构造指数函数,根据其单调性比较.(2)指数相同底数不同时分别画出以两幂底数为底数的指数函数图象,当x 取相同幂指数时可观察出函数值的大小.(3)底数、指数都不相同时,取与其中一底数相同与另一指数相同的幂与两数比较,或借助“1”与两数比较.(4)当底数含参数时,要按底数a >1和0<a <1两种情况分类讨论.典例7:比较下列各组数的大小:(1)1.52.5和1.53.2;(2)0.6-1.2和0.6-1.5;(3)1.70.2和0.92.1;(4)a 1.1与a 0.3(a >0且a ≠1).[解](1)1.52.5,1.53.2可看作函数y =1.5x 的两个函数值,由于底数1.5>1,所以函数y =1.5x在R 上是增函数,因为2.5<3.2,所以1.52.5<1.53.2.(2)0.6-1.2,0.6-1.5可看作函数y =0.6x的两个函数值,因为函数y =0.6x 在R 上是减函数,且-1.2>-1.5,所以0.6-1.2<0.6-1.5.(3)由指数函数性质得,1.70.2>1.70=1,0.92.1<0.90=1,所以1.70.2>0.92.1.(4)当a >1时,y =a x 在R 上是增函数,故a 1.1>a 0.3;当0<a <1时,y =a x在R 上是减函数,故a 1.1<a 0.3.8.利用指数函数的单调性解不等式(1)利用指数型函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式.(2)解不等式af (x )>ag (x )(a >0,a ≠1)的依据是指数型函数的单调性,要养成判断底数取值范围的习惯,典例8:(1)解不等式x -1≤2;(2)已知ax 2-3x +1<a x +6(a >0,a ≠1),求x 的取值范围.[解],∴原不等式可以转化为x -1.∵y 在R 上是减函数,∴3x -1≥-1,∴x ≥0,故原不等式的解集是{x |x ≥0}.(2)分情况讨论:①当0<a <1时,函数f (x )=a x(a >0,a ≠1)在R 上是减函数,∴x 2-3x +1>x +6,∴x2-4x-5>0,根据相应二次函数的图象可得x<-1或x>5;②当a>1时,函数f(x)=a x(a>0,a≠1)在R上是增函数,∴x2-3x+1<x+6,∴x2-4x-5<0,根据相应二次函数的图象可得-1<x<5.综上所述,当0<a<1时,x<-1或x>5;当a>1时,-1<x<5.9.函数y=a f(x)(a>0,a≠1)的单调性的处理技巧(1)关于指数型函数y=a f(x)(a>0,且a≠1)的单调性由两点决定,一是底数a>1还是0<a<1;二是f(x)的单调性,它由两个函数y=a u,u=f(x)复合而成.(2)求复合函数的单调区间,首先求出函数的定义域,然后把函数分解成y=f(u),u=φ(x),通过考查f(u)和φ(x)的单调性,求出y=f(φ(x))的单调性.典例9:判断f(x 2-2x的单调性,并求其值域.[思路点拨]令u=x2-2x―→函数u(x)的单调性――→函数f(x)的单调性[解]令u=x2-2x,则原函数变为y.∵u=x2-2x=(x-1)2-1在(-∞,1]上递减,在[1,+∞)上递增,又∵y在(-∞,+∞)上递减,∴y 2-2x在(-∞,1]上递增,在[1,+∞)上递减.∵u=x2-2x=(x-1)2-1≥-1,∴y,u∈[-1,+∞),=3,∴原函数的值域为(0,3].10.指数式与对数式互化的方法(1)将指数式化为对数式,只需要将幂作为真数,指数当成对数值,底数不变,写出对数式;(2)将对数式化为指数式,只需将真数作为幂,对数作为指数,底数不变,写出指数式.典例10:将下列对数形式化为指数形式或将指数形式化为对数形式:(1)2-7=1128;(2)log 1232=-5;(3)lg 1000=3;(4)ln x =2.[解](1)由2-7=1128,可得log 21128=-7.(2)由log 12=32.(3)由lg 1000=3,可得103=1000.(4)由ln x =2,可得e 2=x .11.求对数式log a N (a >0,且a ≠1,N >0)的值的步骤(1)设log a N =m ;(2)将log a N =m 写成指数式a m =N ;(3)将N 写成以a 为底的指数幂N =a b ,则m =b ,即log a N =b .典例11:求下列各式中的x 的值:(1)log 64x =-23;(2)log x 8=6;(3)lg 100=x;(4)-ln e 2=x .[解](1)x =(64)-23=(43)-23=4-2=116.(2)x 6=8,所以x =(x 6)16=816=(23)16=212= 2.(3)10x =100=102,于是x =2.(4)由-ln e 2=x ,得-x =ln e 2,即e -x =e 2,所以x =-2.12.应用换底公式应注意的两个方面(1)化成同底的对数时,要注意换底公式的正用、逆用以及变形应用.(2)题目中有指数式和对数式时,要注意将指数式与对数式统一成一种形式.典例12:已知3a =5b =c ,且1a +1b=2,求c 的值.[思路点拨]3a =5b =c ――――→指对互化求1a ,1b ――――→1a +1b =2求c 的值[解]∵3a =5b =c ,∴a =log 3c ,b =log 5c ,∴1a =log c 3,1b=log c 5,∴1a +1b=log c 15.由log c 15=2得c 2=15,即c =15.13.求对数型函数的定义域时应遵循的原则(1)分母不能为0.(2)根指数为偶数时,被开方数非负.(3)对数的真数大于0,底数大于0且不为1.提醒:定义域是使解析式有意义的自变量的取值集合,求与对数函数有关的定义域问题时,要注意对数函数的概念,若自变量在真数上,则必须保证真数大于0;若自变量在底数上,应保证底数大于0且不等于1.典例13:求下列函数的定义域:(1)f (x )=1log 12x +1;(2)f (x )=12-x +ln(x +1);(3)f (x )=log (2x -1)(-4x +8).[解](1)要使函数f (x )有意义,则log 12x +1>0,即log 12x >-1,解得0<x <2,即函数f (x )的定义域为(0,2).+1>0,x >0,>-1,<2,解得-1<x <2,故函数的定义域为(-1,2).x +8>0,x -1>0,x -1≠1,<2,>12,≠1.故函数y =log (2x -1)(-4x +8)的定义域为|12<x<2,且x ≠114.函数图象的变换规律(1)一般地,函数y =f (x ±a )+b (a ,b 为实数)的图象是由函数y =f (x )的图象沿x 轴向左或向右平移|a |个单位长度,再沿y 轴向上或向下平移|b |个单位长度得到的.(2)含有绝对值的函数的图象一般是经过对称变换得到的.一般地,y =f (|x -a |)的图象是关于直线x =a 对称的轴对称图形;函数y =|f (x )|的图象与y =f (x )的图象在f (x )≥0的部分相同,在f (x )<0的部分关于x 轴对称.典例14:(1)当a >1时,在同一坐标系中,函数y =a -x 与y =log a x 的图象为()A B C D(2)已知f (x )=log a |x |,满足f (-5)=1,试画出函数f (x )的图象.[思路点拨](1)结合a >1时y =a -x 及y =log a x 的图象求解.(2)由f (-5)=1求得a ,然后借助函数的奇偶性作图.(1)C [∵a >1,∴0<1a<1,∴y =a -x 是减函数,y =log a x 是增函数,故选C.](2)[解]∵f (x )=log a |x |,∴f (-5)=log a 5=1,即a =5,∴f (x )=log 5|x |,∴f (x )是偶函数,其图象如图所示.15.比较对数值大小的常用方法(2)同真数的利用对数函数的图象或用换底公式转化.(3)底数和真数都不同,找中间量.提醒:比较数的大小时先利用性质比较出与零或1的大小.典例15:比较下列各组值的大小:(1)log 534与log 543;(2)log 132与log 152;(3)log 23与log 54.[解](1)法一(单调性法):对数函数y =log 5x 在(0,+∞)上是增函数,而34<43,所以log 534<log 543.法二(中间值法):因为log 534<0,log 543>0,所以log 534<log 543.(2)法一(单调性法):由于log 132=1log 213,log 152=1log 215,又因对数函数y =log 2x 在(0,+∞)上是增函数,且13>15,所以0>log 213>log 215,所以1log 213<1log 215,所以log 132<log 152.法二(图象法):如图,在同一坐标系中分别画出y =log 13x 及y =log 15x 的图象,由图易知:log 132<log 152.(3)取中间值1,因为log 23>log 22=1=log 55>log 54,所以log 23>log 54.16.常见的对数不等式的三种类型(1)形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论;(2)形如log a x >b 的不等式,应将b 化为以a 为底数的对数式的形式,再借助y =log a x的单调性求解;典例16:已知函数f (x )=log a (x -1),g (x )=log a (6-2x )(a >0,且a ≠1).(1)求函数φ(x )=f (x )+g (x )的定义域;(2)试确定不等式f (x )≤g (x )中x 的取值范围.[思路点拨](1)直接由对数式的真数大于0联立不等式组求解x 的取值集合.(2)分a >1和0<a <1求解不等式得答案.[解]-1>0,x >0,解得1<x <3,∴函数φ(x )的定义域为{x |1<x <3}.(2)不等式f (x )≤g (x ),即为log a (x -1)≤log a (6-2x ),①当a >1x <3,-1≤6-2x ,解得1<x ≤73;②当0<a <1x <3,-1≥6-2x,解得73≤x <3.综上可得,当a >11,73;当0<a <1时,不等式的解集为73,317.常见的函数模型及增长特点(1)线性函数模型线性函数模型y =kx +b (k >0)的增长特点是直线上升,其增长速度不变.(2)指数函数模型指数函数模型y =a x (a >1)的增长特点是随着自变量的增大,函数值增大的速度越来越快,即增长速度急剧,形象地称为“指数爆炸”.(3)对数函数模型对数函数模型y =log a x (a >1)的增长特点是随着自变量的增大,函数值增大的速度越来越慢,即增长速度平缓.典例17:(1)下列函数中,增长速度最快的是()A.y =2019x B.y =2019C.y =log 2019xD.y =2019x(2)下面对函数f (x )=log 12x ,g (x 与h (x )=-2x 在区间(0,+∞)上的递减情况说法正确的是()A.f (x )递减速度越来越慢,g (x )递减速度越来越快,h (x )递减速度越来越慢B.f (x )递减速度越来越快,g (x )递减速度越来越慢,h (x )递减速度越来越快C.f (x )递减速度越来越慢,g (x )递减速度越来越慢,h (x )递减速度不变D.f (x )递减速度越来越快,g (x )递减速度越来越快,h (x )递减速度越来越快(1)A(2)C [(1)指数函数y =a x,在a >1时呈爆炸式增长,并且随a 值的增大,增长速度越快,应选A.(2)观察函数f (x )=log 12x ,g (x 与h (x )=-2x 在区间(0,+∞)上的图象(如图)可知:函数f (x )的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上,递减较慢,且越来越慢,同样,函数g (x )的图象在区间(0,+∞)上,递减较慢,且递减速度越来越慢;函数h (x )的图象递减速度不变.]18.由图象判断指数函数、一次函数的方法根据图象判断增长型的指数函数、一次函数时,通常是观察函数图象上升得快慢,即随着自变量的增大,图象最“陡”的函数是指数函数.典例18:函数f (x )=2x和g (x )=2x 的图象如图所示,设两函数的图象交于点A (x 1,y 1),B (x 2,y 2),且x 1<x 2.(1)请指出图中曲线C 1,C 2分别对应的函数;(2)结合函数图象,判断f f (2019)与g (2019)的大小.[解](1)C 1对应的函数为g (x )=2x ,C 2对应的函数为f (x )=2x.(2)∵f (1)=g (1),f (2)=g (2)从图象上可以看出,当1<x <2时,f (x )<g (x ),∴当x >2时,f (x )>g (x ),∴f (2019)>g (2019).19.函数零点的求法(1)代数法:求方程f (x )=0的实数根.(2)几何法:对于不能用求根公式的方程f (x )=0,可以将它与函数y =f (x )的图象联系起来.图象与x 轴的交点的横坐标即为函数的零点.典例19:(1)求函数f (x 2+2x -3,x ≤0,x ,x >0的零点;(2)已知函数f (x )=ax -b (a ≠0)的零点为3,求函数g (x )=bx 2+ax 的零点.[解](1)当x ≤0时,令x 2+2x -3=0,解得x =-3;当x >0时,令-2+ln x =0,解得x =e 2.所以函数f (x 2+2x -3,x ≤0x ,x >0的零点为-3和e 2.(2)由已知得f (3)=0即3a -b =0,即b =3a .故g (x )=3ax 2+ax =ax (3x +1).令g (x )=0,即ax (3x +1)=0,解得x =0或x =-13.所以函数g (x )的零点为0和-13.20.判断函数零点所在区间的三个步骤(1)代入:将区间端点值代入函数求出函数的值.(2)判断:把所得的函数值相乘,并进行符号判断.(3)结论:若符号为正且函数在该区间内是单调函数,则在该区间内无零点,若符号为负且函数连续,则在该区间内至少有一个零点.典例20:(1)函数f (x )=ln(x +1)-2x的零点所在的大致区间是()A.(3,4)B.(2,e)C.(1,2)D.(0,1)(2)根据表格内的数据,可以断定方程e x -x -3=0的一个根所在区间是()x -10123e x 0.371 2.727.3920.08x +323456A.(-1,0)B.(0,1)C.(1,2)D.(2,3)(1)C (2)C [(1)因为f (1)=ln 2-21<0,f (2)=ln 3-1>0,且函数f (x )在(0,+∞)上单调递增,C.(2)构造函数f (x )=e x -x -3,由上表可得f (-1)=0.37-2=-1.63<0,f (0)=1-3=-2<0,f (1)=2.72-4=-1.28<0,f (2)=7.39-5=2.39>0,f (3)=20.08-6=14.08>0,f (1)·f (2)<0,所以方程的一个根所在区间为(1,2),故选C.]21.判断一个函数能否用二分法求其零点的依据是:其图象在零点附近是连续不断的,且该零点为变号零点.因此,用二分法求函数的零点近似值的方法仅对函数的变号零点适合,对函数的不变号零点不适合.典例21:已知函数f (x )的图象如图所示,其中零点的个数与可以用二分法求解的个数分别为()A.4,4B.3,4C.5,4D.4,3D [图象与x 轴有4个交点,所以零点的个数为4;左右函数值异号的零点有3个,所以用二分法求解的个数为3,故选D.]22.函数拟合与预测的一般步骤:(1)根据原始数据、表格,绘出散点图.(2)通过考察散点图,画出拟合直线或拟合曲线.(3)求出拟合直线或拟合曲线的函数关系式.(4)利用函数关系式,根据条件对所给问题进行预测和控制,为决策和管理提供依据.典例22:某企业常年生产一种出口产品,自2015年以来,每年在正常情况下,该产品产量平稳增长.已知2015年为第1年,前4年年产量f (x )(万件)如下表所示:x1234f (x ) 4.00 5.587.008.44(1)画出2015~2018年该企业年产量的散点图;(2)建立一个能基本反映(误差小于0.1)这一时期该企业年产量变化的函数模型,并求出函数解析式;(3)2019年(即x =5)因受到某国对我国该产品反倾销的影响,年产量减少30%,试根据所建立的函数模型,确定2019年的年产量为多少?[思路点拨]描点――→依散点图选模――→待定系数法求模――→误差验模→用模[解](1)画出散点图,如图所示.(2)由散点图知,可选用一次函数模型.设f (x )=ax +b (a +b =4,a +b =7,=1.5,=2.5,∴f (x )=1.5x +2.5.检验:f (2)=5.5,且|5.58-5.5|=0.08<0.1,f (4)=8.5,且|8.44-8.5|=0.06<0.1.∴一次函数模型f (x )=1.5x +2.5能基本反映年产量的变化.(3)根据所建的函数模型,预计2019年的年产量为f (5)=1.5×5+2.5=10万件,又年产量减少30%,即10×70%=7万件,即2019年的年产量为7万件.。
三角函数指数函数与对数函数公式
三角函数指数函数与对数函数公式三角函数、指数函数和对数函数是高中数学中重要的函数概念,在数学和物理等领域具有广泛的应用。
本文将对三角函数、指数函数和对数函数的公式进行详细介绍。
一、三角函数的公式三角函数是以单位圆为基础的函数,常见的三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)等。
下面是一些常见的三角函数公式:1.三角函数的基本关系:正弦函数和余弦函数是最基本的三角函数,它们的定义如下:正弦函数sin(x) = y / r = y / √(x^2 + y^2)余弦函数cos(x) = x / r = x / √(x^2 + y^2)其中,r=√(x^2+y^2)为点(x,y)到原点的距离。
2.三角函数的周期性:正弦函数和余弦函数具有周期性,即它们的值在一定范围内反复重复。
正弦函数的周期为2π,余弦函数的周期也为2π。
3.三角函数的互相关系:根据三角函数的定义和周期性,我们可以得到一些三角函数之间的常用关系:sin(x) = cos(π/2 - x)cos(x) = sin(π/2 - x)tan(x) = sin(x) / cos(x)4.三角函数的性质:三角函数具有一些重要的性质,如:sin(-x) = -sin(x)cos(-x) = cos(x)sin(x ± y) = sin(x) * cos(y) ± cos(x) * sin(y)cos(x ± y) = cos(x) * cos(y) ∓ sin(x) * sin(y)这些性质对于进行三角函数的运算和简化非常有用。
5.值域和定义域:sin(x) 和 cos(x) 的值域都在 [-1, 1] 的范围内,即 -1 ≤sin(x), cos(x) ≤ 1它们的定义域是整个实数集。
二、指数函数的公式指数函数是形如f(x)=a^x的函数,其中a为底数,x为指数。
常见的指数函数有以e为底的指数函数(e^x)和以10为底的指数函数(10^x)。
对数公式总结
对数公式总结1对数的概念如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数.由定义知:①负数和零没有对数;②a>0且a≠1,N>0;③loga1=0,logaa=1,alogaN=N,logaab=b.特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN.2对数式与指数式的互化式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数)3对数的运算性质如果a>0,a≠1,M>0,N>0,那么(1)loga(MN)=logaM+logaN.(2)logaMN=logaM-logaN.(3)logaMn=nlogaM (n∈R).问:①公式中为什么要加条件a>0,a≠1,M>0,N>0?②logaan=? (n∈R)③对数式与指数式的比较.(学生填表)式子ab=NlogaN=b名称a—幂的底数b—N—a—对数的底数b—N—运算性质am•an=am+nam÷an=(am)n=(a>0且a≠1,n∈R)logaMN=logaM+logaN logaMN=logaMn=(n∈R)(a>0,a≠1,M>0,N>0)难点疑点突破对数定义中,为什么要规定a>0,,且a≠1?理由如下:①若a<0,则N的某些值不存在,例如log-28②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数解题方法技巧1(1)将下列指数式写成对数式:①54=625;②2-6=164;③3x=27;④13m=573.(2)将下列对数式写成指数式:①log1216=-4;②log2128=7;③log327=x;④lg0.01=-2;⑤ln10=2.303;⑥lgπ=k.解析由对数定义:ab=N logaN=b.解答(1)①log5625=4.②log2164=-6.③log327=x.④log135.73=m.解题方法指数式与对数式的互化,必须并且只需紧紧抓住对数的定义:ab=N logaN=b.(2)①12-4=16.②27=128.③3x=27.④10-2=0.01.⑤e2.303=10.⑥10k=π.2根据下列条件分别求x的值:(1)log8x=-23;(2)log2(log5x)=0;(3)logx27=31+log32;(4)logx(2+3)=-1.解析(1)对数式化指数式,得:x=8-23=?(2)log5x=20=1. x=?(3)31+log32=3×3log32=?27=x?(4)2+3=x-1=1x. x=?解答(1)x=8-23=(23)-23=2-2=14.(2)log5x=20=1,x=51=5.(3)logx27=3×3log32=3×2=6,∴x6=27=33=(3)6,故x=3.(4)2+3=x-1=1x,∴x=12+3=2-3.解题技巧①转化的思想是一个重要的数学思想,对数式与指数式有着密切的关系,在解决有关问题时,经常进行着两种形式的相互转化.②熟练应用公式:loga1=0,logaa=1,alogaM=M,logaan=n.3已知logax=4,logay=5,求A=〔x•3x-1y2〕12的值.解析思路一,已知对数式的值,要求指数式的值,可将对数式转化为指数式,再利用指数式的运算求值;思路二,对指数式的两边取同底的对数,再利用对数式的运算求值解答解法一∵logax=4,logay=5,∴x=a4,y=a5,∴A=x512y-13=(a4)512(a5)-13=a53•a-53=a0=1. 解法二对所求指数式两边取以a为底的对数得logaA=loga(x512y-13)=512logax-13logay=512×4-13×5=0,∴A=1.解题技巧有时对数运算比指数运算来得方便,因此以指数形式出现的式子,可利用取对数的方法,把指数运算转化为对数运算.4设x,y均为正数,且x•y1+lgx=1(x≠110),求lg(xy)的取值范围.解析一个等式中含两个变量x、y,对每一个确定的正数x由等式都有惟一的正数y与之对应,故y是x的函数,从而lg(xy)也是x的函数.因此求lg(xy)的取值范围实际上是一个求函数值域的问题,怎样才能建立这种函数关系呢?能否对已知的等式两边也取对数?解答∵x>0,y>0,x•y1+lgx=1,两边取对数得:lgx+(1+lgx)lgy=0.即lgy=-lgx1+lgx(x≠110,lgx≠-1).令lgx=t, 则lgy=-t1+t(t≠-1).∴lg(xy)=lgx+lgy=t-t1+t=t21+t.解题规律对一个等式两边取对数是解决含有指数式和对数式问题的常用的有效方法;而变量替换可把较复杂问题转化为较简单的问题.设S=t21+t,得关于t的方程t2-St-S=0有实数解.∴Δ=S2+4S≥0,解得S≤-4或S≥0,故lg(xy)的取值范围是(-∞,-4〕∪〔0,+∞).5求值:(1)lg25+lg2•lg50+(lg2)2;(2)2log32-log3329+log38-52log53;(3)设lga+lgb=2lg(a-2b),求log2a-log2b的值;(4)求7lg20•12lg0.7的值.解析(1)25=52,50=5×10.都化成lg2与lg5的关系式.(2)转化为log32的关系式.(3)所求log2a-log2b=log2ab由已知等式给出了a,b之间的关系,能否从中求出ab的值呢?(4)7lg20•12lg0.7是两个指数幂的乘积,且指数含常用对数,设x=7lg20•12lg0.7能否先求出lgx,再求x? 解答(1)原式=lg52+lg2•lg(10×5)+(lg2)2=2lg5+lg2•(1+lg5)+(lg2)2=lg5•(2+lg2)+lg2+(lg2)2=lg102•(2+lg2)+lg2+(lg2)2=(1-lg2)(2+lg2)+lg2+(lg2)2=2-lg2-(lg2)2+lg2+(lg2)2=2.(2)原式=2log32-(log325-log332)+log323-5log59=2log32-5log32+2+3log32-9=-7.(3)由已知lgab=lg(a-2b)2 (a-2b>0),∴ab=(a-2b)2, 即a2-5ab+4b2=0.∴ab=1或ab=4,这里a>0,b>0.若ab=1,则a-2b<0, ∴ab=1(舍去).∴ab=4,∴log2a-log2b=log2ab=log24=2.(4)设x=7lg20•12l g0.7,则lgx=lg20×lg7+lg0.7×lg12=(1+lg2)•lg7+(lg7-1)•(-lg2)=lg7+lg2=14,∴x=14, 故原式=14.解题规律①对数的运算法则是进行同底的对数运算的依据,对数的运算法则是等式两边都有意义的恒等式,运用法则进行对数变形时要注意对数的真数的范围是否改变,为防止增根所以需要检验,如(3).②对一个式子先求它的常用对数值,再求原式的值是代数运算中常用的方法,如(4).6证明(1)logaN=logcNlogca(a>0,a≠1,c>0,c≠1,N>0);(2)logab•logbc=logac;(3)logab=1logba(b>0,b≠1);(4)loganbm=mnlogab.解析(1)设logaN=b得ab=N,两边取以c为底的对数求出b就可能得证.(2)中logbc能否也换成以a为底的对数.(3)应用(1)将logab换成以b为底的对数.(4)应用(1)将loganbm换成以a为底的对数. 解答(1)设logaN=b,则ab=N,两边取以c为底的对数得:b•logca=logcN,∴b=logcNlogca.∴logaN=logcNlogca. (2)由(1)logbc=logaclogab.所以logab•logbc=logab•logaclogab=logac.(3)由(1)logab=logbblogba=1logba.解题规律(1)中logaN=logcNlogca叫做对数换底公式,(2)(3)(4)是(1)的推论,它们在对数运算和含对数的等式证明中经常应用.对于对数的换底公式,既要善于正用,也要善于逆用.(4)由(1)loganbm=logabmlogaan=mlogabnlogaa= mnlogab.7已知log67=a,3b=4,求log127.解析依题意a,b是常数,求log127就是要用a,b 表示log127,又3b=4即log34=b,能否将log127转化为以6为底的对数,进而转化为以3为底呢?解答已知log67=a,log34=b,∴log127=log67log612=a1+log62.又log62=log32log36=log321+log32,由log34=b,得2log32=b.∴log32=b2,∴log62=b21+b2=b2+b.∴log127=a1+b2+b=a(2+b)2+2b.解题技巧利用已知条件求对数的值,一般运用换底公式和对数运算法则,把对数用已知条件表示出来,这是常用的方法技巧8已知x,y,z∈R+,且3x=4y=6z.(1)求满足2x=py的p值;(2)求与p最接近的整数值;(3)求证:12y=1z-1x.解析已知条件中给出了指数幂的连等式,能否引进中间量m,再用m分别表示x,y,z?又想,对于指数式能否用对数的方法去解答?解答(1)解法一3x=4y log33x=log34y x=ylog342x=2ylo g34=ylog316,∴p=log316.解法二设3x=4y=m,取对数得:x•lg3=lgm,ylg4=lgm,∴x=lgmlg3,y=lgmlg4,2x=2lgmlg3,py=plgmlg4 .由2y=py, 得2lgmlg3=plgmlg4,∴p=2lg4lg3=lg42lg3=log316.(2)∵2=log39<log316<log327=3,∴2<p<3.又3-p=log327-log316=log32716,p-2=log316-log39=log3169,而2716<169,∴log32716<log3169,∴p-2>3-p.∴与p最接近的整数是3.解题思想①提倡一题多解.不同的思路,不同的方法,应用了不同的知识或者是相同知识的灵活运用,既发散了思维,又提高了分析问题和解决问题的能力,何乐而不为呢?②(2)中涉及比较两个对数的大小.这是同底的两个对数比大小.因为底3>1,所以真数大的对数就大,问题转化为比较两个真数的大小,这里超前应用了对数函数的单调性,以鼓励学生超前学习,自觉学习的学习积极性.(3)解法一令3x=4y=6z=m,由于x,y,z∈R+,∴k>1,则x=lgmlg3,y=lgmlg4,z=lgmlg6,所以1z-1x=lg6lgm-lg3lgm=lg6-lg3lgm=lg2lgm,12y=12•lg4lgm=lg2lgm,故12y=1z-1x.解法二3x=4y=6z=m,则有3=m1x①,4=m1y②,6=m1z③,③÷①,得m1z-1x=63=2=m12y.∴1z-1x=12y.9已知正数a,b满足a2+b2=7ab.求证:logma+b3=12(logma+logmb)(m>0且m≠1). 解析已知a>0,b>0,a2+b2=7ab.求证式中真数都只含a,b的一次式,想:能否将真数中的一次式也转化为二次,进而应用a2+b2=7ab?解答logma+b3=logm(a+b3)212=解题技巧①将a+b3向二次转化以利于应用a2+b2=7ab 是技巧之一.②应用a2+b2=7ab将真数的和式转化为ab的乘积式,以便于应用对数运算性质是技巧之二.12logma+b32=12logma2+b2+2ab9.∵a2+b2=7ab,∴logma+b3=12logm7ab+2ab9=12logmab=12( logma+logmb),即logma+b3=12(logma+logmb).思维拓展发散1数学兴趣小组专门研究了科学记数法与常用对数间的关系.设真数N=a×10n.其中N>0,1≤a<10,n∈Z.这就是用科学记数法表示真数N.其科学性体现在哪里?我们只要研究数N 的常用对数,就能揭示其中的奥秘.解析由已知,对N=a×10n取常用对数得,lgN=n+lga.真数与对数有何联系?解答lgN=lg(a×10n)=n+lga.n∈Z,1≤a<10,∴lga∈〔0,1).我们把整数n叫做N的常用对数的首数,把lga 叫做N的常用对数的尾数,它是正的纯小数或0.小结:①lgN的首数就是N中10n的指数,尾数就是lga,0≤lga<1;②有效数字相同的不同正数它们的常用对数的尾数相同,只是首数不同;③当N≥1时,lgN的首数n比它的整数位数少1,当N∈(0,1)时,lgN的首数n是负整数,|n|-1与N的小数点后第一个不是0的有效数字前的零的个数相同.师生互动什么叫做科学记数法?N>0,lgN的首数和尾数与a×10n有什么联系?有效数字相同的不同正数其常用对数的什么相同?什么不同?2若lgx的首数比lg1x的首数大9,lgx的尾数比lg1x的尾数小0380 4,且lg0.203 4=1.308 3,求lgx,x,lg1x的值.解析①lg0.203 4=1308 3,即lg0.2034=1+0.308 3,1是对数的首数,0.308 3是对数的尾数,是正的纯小数;②若设lgx=n+lga,则lg1x也可表出.解答设lgx=n+lga,依题意lg1x=(n-9)+(lga+0.380 4).又lg1x=-lgx=-(n+lga),∴(n-9)+(lga+0380 4)=-n-lga,其中n-9是首数,lga+0380 4是尾数,-n-lga=-(n+1)+(1-lga),-(n+1)是首数1-lga是尾数,所以:n-9=-(n+1)lga+0.380 4=1-lga n=4,lga=0.308 3.∴lgx=4+0.308 3=4.308 3,∵lg0.203 4=1.308 3,∴x=2.034×104.∴lg1x=-(4+0.308 3)=5.691 7.解题规律把lgx的首数和尾数,lg1x的首数和尾数都看成未知数,根据题目的等量关系列方程.再由同一对数的首数等于首数,尾数等于尾数,求出未知数的值,是解决这类问题的常用方法.3计算:(1)log2-3(2+3)+log6(2+3+2-3);(2)2lg(lga100)2+lg(lga).解析(1)中.2+3与2-3有何关系?2+3+2-3双重根号,如何化简?(2)中分母已无法化简,分子能化简吗?解题方法认真审题、理解题意、抓住特点、找出明确的解题思路和方法,不要被表面的繁、难所吓倒.解答(1)原式=log2-3(2-3)-1+12log6(2+3+2-3)2 =-1+12log6(4+22+3•2-3)=-1+12log66=-12.(2)原式=2lg(100lga)2+lg(lga)=2〔lg100+lg(lga)〕2+lg(lga)=2〔2+lg(lga)〕2+lg(lga)=2.4已知log2x=log3y=log5z<0,比较x,3y,5z的大小.解析已知是对数等式,要比较大小的是根式,根式能转化成指数幂,所以,对数等式应设法转化为指数式.解答设log2x=log3y=log5z=m<0.则x=2m,y=3m,z=5m.x=(2)m,3y=(33)m,5z=(55)m.下面只需比较2与33,55的大小:(2)6=23=8,(33)6=32=9,所以2<33.又(2)10=25=32,(55)10=52=25,∴2>55.∴55<2<33. 又m<0,图2-7-1考查指数函数y=(2)x,y=(33)x,y=(55)x 在第二象限的图像,如图2-7-1解题规律①转化的思想是一个重要的数学思想,对数与指数有着密切的关系,在解决有关问题时要充分注意这种关系及对数式与指数式的相互转化.②比较指数相同,底不同的指数幂(底大于0)的大小,要应用多个指数函数在同一坐标系中第一象限(指数大于0)或第二象限(指数小于0)的性质进行比较①是y=(55)x,②是y=(2)x,③是y=(33)x.指数m<0时,图像在第二象限从下到上,底从大到小.所以(33)m<(2)m<(55)m,故3y<x<5z.潜能挑战测试1(1)将下列指数式化为对数式:①73=343;②14-2=16;③e-5=m.(2)将下列对数式化为指数式:①log128=-3;②lg10000=4;③ln3.5=p.2计算:(1)24+log23;(2)2723-log32;(3)2513log527+2l og52.3(1)已知lg2=0.301 0,lg3=0.477 1,求lg45;(2)若lg3.127=a,求lg0.031 27.4已知a≠0,则下列各式中与log2a2总相等的是()A若logx+1(x+1)=1 ,则x的取值范围是()A已知ab=M(a>0,b>0,M≠1),且logMb=x,则logMa的值为()A若log63=0.673 1,log6x=-0.326 9, 则x为()A若log5〔log3(log2x)〕=0,则x=.98log87•log76•log65=.10如果方程lg2x+(lg2+lg3)lgx+lg2•lg3=0的两根为x1、x2,那么x1•x2的值为.11生态学指出:生物系统中,每输入一个营养级的能量,大约只有10%的能量流到下一个营养级.H1→H2→H3→H4→H5→H6这条生物链中(Hn表示第n个营养级,n=1,2,3,4,5,6).已知对H1输入了106千焦的能量,问第几个营养级能获得100千焦的能量?12已知x,y,z∈R+且3x=4y=6z,比较3x,4y,6z的大小.13已知a,b均为不等于1的正数,且axby=aybx=1,求证x2=y2.14已知2a•5b=2c•5d=10,证明(a-1)(d-1)=(b-1)(c-1).15设集合M={x|lg〔ax2-2(a+1)x-1〕>0},若M≠,M{x|x<0},求实数a的取值范围. 16在张江高科技园区的上海超级计算中心内,被称为“神威Ⅰ”的计算机运算速度为每秒钟384 000 000 000次.用科学记数法表示这个数为N=,若已知lg3.840=0.584 3,则lgN=.17某工厂引进新的生产设备,预计产品的生产成本比上一年降低10%,试问经过几年,生产成本降低为原来的40%?(lg2=0.3, lg3=0.48) 18某厂为适应改革开放,完善管理机制,满足市场需求,某种产品每季度平均比上一季度增长10.4%,那么经过y季度增长到原来的x倍,则函数y=f(x)的解析式f(x)=.名师助你成长1.(1)①log7343=3.②log1416=-2.③lnm=-5.(2)①12-3=8.②104=10 000.③ep=3.5.2.(1)48点拨:先应用积的乘方,再用对数恒等式.(2)98点拨:应用商的乘方和对数恒等式.(3)144点拨:应用对数运算性质和积的乘方. 3.(1)0.826 6点拨:lg45=12lg45=12lg902=12(lg32+lg10-lg2). (2)lg0.03127=lg(3.127×10-2)=-2+lg3.127=-2+a4.C点拨:a≠0,a可能是负数,应用对数运算性质要注意对数都有意义.5.B点拨:底x+1>0且x+1≠1;真数x+1>0.6.A点拨:对ab=M取以M为底的对数.7.C点拨:注意0.673 1+0.3269=1,log61x=0.326 9,所以log63+log61x=log63x=1.∴3x=6, x=12.8.x=8点拨:由外向内.log3(log2x)=1, log2x=3, x=23.9.5点拨:log87•log76•log65=log85,8log85=5.10.16点拨:关于lgx的一元二次方程的两根是lgx1,lgx2.由lgx1=-lg2,lgx2=-lg3,得x1=12,x2=13. 11.设第n个营养级能获得100千焦的能量,依题意:106•10100n-1=100,化简得:107-n=102,利用同底幂相等,得7-n=2, 或者两边取常用对数也得7-n=2.∴n=5,即第5个营养级能获能量100千焦.12设3x=4y=6z=k,因为x,y,z∈R+,所以k>1.取以k为底的对数,得:x=1logk3,y=1logk4,z=1logk6.∴3x=3logk3=113logk3=1logk33,同理得:4y=1logk44,6z=1logk66.而33=1281,44=1264,66=1236,∴logk33>logk44>logk66.又k>1,33>44>66>1,∴logk33>logk44>logk66>0,∴3x<4y<6z. 13.∵axby=aybx=1,∴lg(axby)=lg(aybx)=0, 即xlga+ylgb=ylga+xlgb=0.(※)两式相加,得x(lga+lgb)+y(lga+lgb)=0.即(lga+lgb)(x+y)=0.∴lga+lgb=0 或x+y=0.当lga+lgb=0时,代入xlga+ylgb=0,得:(x-y)lga=0, a是不为1的正数lga≠0,∴x-y=0. ∴x+y=0或x-y=0,∴x2=y2.14.∵2a5b=10,∴2a-1=51-b.两边取以2为底的对数,得:a-1=(1-b)log25.∴log25=a-11-b(b≠1). 同理得log25=c-11-d(d≠1).即b≠1,d≠1时,a-11-b=c-11-d.∴(a-1)(1-d)=(c-1)(1-b),∴(a-1)(d-1)=(b-1)(c-1).当b=1,c=1时显然成立.15.设lg〔ax2-2(a+1)x-1〕=t (t>0),则ax2-2(a+1)x-1=10t(t>0).∴10t>1 ,ax2-2(a+1)x-1>1,∴ax2-2(a+1)x-2>0.①当a=0时,解集{x|x<-1}{x|x<0};当a≠0时,M≠且M{x|x<0}.∴方程ax2-2(a+1)x-2=0 必有两不等实根,设为x1,x2且x1<x2,则②当a>0时,M={x|x<x1,或x>x2},显然不是{x|x<0}的子集;③当a<0时,M={x|x1<x<x2}只要:a<0,Δ=4(a+1)2+8a>0,x1+x2=2(a+1)a<0,x1•x2=-2a>0.解得3-2<a<0,综上所求,a的取值范围是:3-2<a≤0.16.N=3.840×1011, lgN=11.584 3.17.设经过x年,成本降为原来的40%.则(1-10%)x=40%,两边取常用对数,得:x•lg(1-10%)=lg40% ,即x=lg0.4lg0.9=lg4-1lg9-1=2lg2-12lg3-1=10. 所以经过10年成本降低为原来的40%.18.f(x)=log1.104x〔或f(x)=lgxlg1.104〕.点拨:设原来一个季度产品为a,则a(1+10.4%)y=xa,∴y=log1.104x.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指数函数和对数函数
重点、难点:
重点:指数函数和对数函数的概念、图象和性质。
难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y x x a ==,l o g 在a >1及01<<a 两种不同情况。
1、指数函数:
定义:函数()y aa a x =>≠01且叫指数函数。
定义域为R ,底数是常数,指数是自变量。
为什么要求函数y a x =中的a 必须a a >≠01且。
因为若a <0时,()y x =-4,当x =1
4时,函数值不存在。
a =0,y x =0,当x ≤0,函数值不存在。
a =1时,y x =1对一切x 虽有意义,函数值恒为1,但y x =1的反函数不存在, 因为
要求函数y a x =中的a a >≠01且。
1、对三个指数函数y y y x x
x ==⎛⎝ ⎫
⎭⎪=21210,,的图象的认识。
图象特征与函数性质:
对图象的进一步认识,(通过三个函数相互关系的比较):
①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及102
22--<。
②y x =2与y x
=⎛⎝ ⎫⎭
⎪12的图象关于y 轴对称。
③通过y x =2,y x =10,y x =⎛⎝ ⎫⎭⎪12三个函数图象,可以画出任意一个函数y a x
=(a a >≠01
且)的示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中间,且过点()01,,从而y x =⎛⎝ ⎫⎭⎪13也由关于y 轴的对称性,可得y x
=⎛⎝ ⎫⎭⎪13的示意图,即通过有限个函数的图象进一步认识无限个函数的图象。
2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =l o g (a 是底数,N 是真数,lo g a N 是对数式。
)
由于N a b =>0故lo g a N 中N 必须大于0。
当N 为零的负数时对数不存在。
(1)对数式与指数式的互化。
由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如: 求log .032524⎛⎝ ⎫⎭
⎪ 分析:对于初学者来说,对上述问题一般是束手无策,若将它写成log .032524⎛⎝
⎫⎭⎪=x ,再改写为指数式就比较好办。
解:设log .032524⎛⎝ ⎫⎭⎪=x 评述:由对数式化为指数式可以解决问题,反之由指数式化为对数式也能解决问题,因此必须因题而异。
如求35x =中的x ,化为对数式x =log 35即成。
(2)对数恒等式:
由a N b N b a ==()l o g ()12
将(2)代入(1)得a N a N l o g = 运用对数恒等式时要注意此式的特点,不能乱用,特别是注意转化时必须幂的底数和对数的底数相同。
计算:()3132-log 解:原式==⎛⎝ ⎫⎭⎪-=313122221313l o g l o g 。
(3)对数的性质:
①负数和零没有对数;
②1的对数是零;
③底数的对数等于1。
(4)对数的运算法则:
①()()l o g l o g l o g a a a M N M N M N R =+∈+, ②()l o g l o g l o g a a a M N M N M N R =-∈+,
③()()l o g l o g a n a N n N N R =∈+ ④()l o g l o g a n a N n NNR =∈+1
3、对数函数:
定义:指数函数y a a a x =>≠()01且的反函数y x a =l o g x ∈+∞(,)0叫做对数函数。
1、对三个对数函数y x y x
==l o g l o g 212
,, y x =lg 的图象的认识。
图象特征与函数性质:
对图象的进一步的认识(通过三个函数图象的相互关系的比较):
(1)所有对数函数的图象都过点(1,0),但是y x
=l o g 2与y x =lg 在点(1,0)曲线是交叉的,即当x >0时,y x =l o g 2的图象在y x =lg 的图象上方;而01<<x 时,y x =l o g 2的图象在y x =lg 的图象的下方,故有:l o g.l g .21515>;l o g .l g .2
0101<。
(2)y x =l o g 2的图象与y x =log 12
的图象关于x 轴对称。
(3)通过y x
=l o g 2,y x =lg ,y x =log 12
三个函数图象,可以作出任意一个对数函数的示意图,如作y x =l o g 3的图象,它一定位于y x
=l o g 2和y x =lg 两个图象的中间,且过点(1,0),x >0时,在y x =lg 的上方,而位于y x
=l o g 2的下方,01<<x 时,刚好相反,则对称性,可知y x =log 13
的示意图。
因而通过课本上的三个函数的图象进一步认识无限个函数的图象。
4、对数换底公式:
由换底公式可得: 由换底公式推出一些常用的结论:
(1)l o g l o g l o g l o g a b a b b a b a ==11或·
(2)log log a m a n b m n b =
(3)l o g l o g a n a n b b = (4)lo g a m n a m n
= 5、指数方程与对数方程*
定义:在指数里含有未知数的方程称指数方程。
在对数符号后面含有未知数的方程称对数方程。
由于指数运算及对数运算不是一般的代数运算,故指数方程对数方程不是代数方程而属于超越方程。
指数方程的题型与解法:
对数方程的题型与解法:。