2019学年浙江省第一次五校联考 数学(理科)
浙江省宁波市五校联盟2024-2025学年高一上学期期中联考数学试题
浙江省宁波市五校联盟2024-2025学年高一上学期期中联考数学试题一、单选题1.已知集合{}{2,1,0,1,2,A B xy =--==∣,则A B = ()A .{}2,1,0,1,2--B .{}1,0,1,2-C .{}0,1,2D .{}1,22.下列函数中,既是奇函数又在()0,∞+上单调递减的函数是()A .1y x =+B .3y x =-C .21y x =-+D .2y x=-3.设命题p :x ∀∈R ,2420x x m ++≥(其中m 为常数),则“命题p 为真命题”是“12m >”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.函数()22=-xf x x 的图象大致是()A .B .C .D .5.已知0.20.1a =,0.10.2b =,0.022c =,则()A .a b c <<B .c a b <<C .b a c<<D .c b a<<6.已知幂函数()()21af x a a x =--在区间()0,∞+上单调递增,则函数()1(1)x ag x b b +=->的图像过定点()A .()2,0-B .()2,1--C .()1,0D .()1,1-7.若函数()()21225,012,1bb x f x x x b x x -⎧-+<<⎪=⎨⎪+-≥⎩对于任意的实数12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦成立,则实数b 的取值范围为()A .1,42⎛⎤ ⎥⎝⎦B .[)4,+∞C .[]1,4D .1,2⎛⎫+∞ ⎪⎝⎭8.已知0x >,0y >,且311x y +=,则2x x y y++的最小值为()A .9B .10C .11D .13二、多选题9.若0,0a b d c >><<,则下列不等式成立的是()A .ac bc >B .a d b c ->-C .11d c<D .33a b >10.下列说法中正确的有()A .若函数()f x 的定义域为[]22-,,则函数()21f x -的定义域为13,22⎡⎤-⎢⎥⎣⎦B .函数()2x f x x=和函数()g x x =表示同一个函数C.函数2y x =的值域为[)2,+∞D .函数()f x 满足()()221f x f x x --=-,则()213f x x =+11.函数()f x 在[a ,]b 上有定义,若对任意1x ,2[x a ∈,]b ,有12121()[()()]22x x f f x f x ++ ,则称()f x 在[a ,]b 上具有性质P .设()f x 在[1,3]上具有性质P ,下列命题正确的有A .()f x 在[1,3]上的图象是连续不断的B .2()f x 在[1上具有性质PC .若()f x 在2x =处取得最大值1,则()1f x =,[1x ∈,3]D .对任意1x ,2x ,3x ,4[1x ∈,3],有123412341()[()()()()]44x x x x f f x f x f x f x ++++++三、填空题12.函数()22f x x+的定义域为.13.已知不等式()230ax a x c +++>的解集为{|13}x x -<<,则a =,函数y =的单调递增区间为.14.已知函数22,3,()6,3x x x f x x x ⎧-≤⎪=⎨->⎪⎩,若a ,b ,()c a b c <<满足()()()1f a f b f c ==>,记()M af a =+()()bf b cf c +,则M 的取值范围为.四、解答题15.计算:(1)134)0.064--+;(2)已知11221a a--=,求12211a a a a --+-++的值.16.已知函数()2m f x x n =+的图象过点()1,1和12,2⎛⎫⎪⎝⎭.(1)求函数()f x 的解析式;(2)判断函数()f x 在区间0,+∞上的单调性,并用单调性的定义证明.17.已知集合2111x A xx ⎧⎫+=<⎨⎬-⎩⎭,{}22(2)0B x x m x m =+--<.(1)当1m =时,求A B ;(2)已知“x A ∈”是“x B ∈”的必要条件,求实数m 的取值范围.18.某奶茶店今年年初花费16万元购买了一台制作冰淇淋的设备,经估算,该设备每年可为该奶茶店提供12万元的总收入.已知使用x 年(x 为正整数)所需的各种维护费用总计为22x x +万元(今年为第一年).(1)试问:该奶茶店第几年开始盈利(总收入超过总支出)?(2)该奶茶店在若干年后要卖出该冰淇淋设备,有以下两种方案:①当盈利总额达到最大值时,以1万元的价格卖出该设备;②当年均盈利达到最大值时,以2万元的价格卖出该设备.试问哪一种方案较为划算?请说明理由.19.已知函数1()(0xx f x a a a=->,且1)a ≠.(1)判断函数()f x 的奇偶性;(2)若(1)0f >,试判断函数()f x 的单调性.并求使不等式3)(3491)0(x x x f k f ⋅+⋅--<在上恒成立的k 的取值范围;(3)若223(1),()2()2x x f g x a a mf x -==+-,且()g x 在[)1,+∞上的最小值为2-,求m 的值.。
2018-2019学年浙江省台州市温岭市五校联考八年级(上)期中数学试卷
2018-2019学年浙江省台州市温岭市五校联考八年级(上)期中数学试卷一、选择题(本大题有10小题,每小题3分,共30分)1.(3分)如图,下列图形中是轴对称图形的是:()A.B.C.D.2.(3分)小芳有两根长度为6cm和9cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为()的木条.A.2cm B.3cm C.12cm D.15cm3.(3分)如图,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD的度数是()A.110°B.120°C.130°D.140°4.(3分)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD5.(3分)如图,BE、CF都是△ABC的角平分线,且∠BDC=130°,则∠A=()A.50°B.60°C.70°D.80°6.(3分)以下叙述中不正确的是()A.等边三角形的每条高线都是角平分线和中线B.有一内角为60°的等腰三角形是等边三角形C.等腰三角形一定是锐角三角形D.在一个三角形中,如果两条边不相等,那么它们所对的角也不相等;反之,如果两个角不相等,那么它们所对的边也不相等7.(3分)等腰三角形一腰上的高与另一腰的夹角为60°,则顶角的度数为()A.30°B.30°或150°C.60°或150°D.60°或120°8.(3分)在平面直角坐标系中,点A的坐标为(4,0),使△OAB是等腰三角形,此时,点B的坐标不可能是()A.(0,4)B.(2,4)C.(4,4)D.(4,2)9.(3分)如图,在△ABE中,∠A=105°,AE的垂直平分线MN交BE于点C,且AB+BC =BE,则∠B的度数是()A.45°B.60°C.50°D.55°10.(3分)如图,点I为△ABC角平分线交点,AB=8,AC=6,BC=4,将∠ACB平移使其顶点C与I重合,则图中阴影部分的周长为()A.9B.8C.6D.4二、填空题(本大题6小题,每小题3分,共18分)11.(3分)已知在△ABC中,∠C=∠A+∠B,则△ABC的形状是.12.(3分)若正多边形的一个内角等于120°,则这个正多边形的边数是.13.(3分)若点P(a+2,3)与点Q(﹣1,b+1)关于y轴对称,则a+b=.14.(3分)如图,DE是△ABC边AC的垂直平分线,若BC=18cm,AB=10cm,则△ABD 的周长为.15.(3分)如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,第2018个三角形的底角度数是.16.(3分)有依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,﹣1,8,这称为第一次操作;做第二次同样的操作后也产生一个新数串:3,3,6,3,9,﹣10,﹣1,9,8,相继依次操作下,则从数串:3,9,8开始操作第100次时所产生的那个新数串的所有数之和是.三、解答题(本大题共8小题,17-19小题每小题6分,20-22小题每小题6分,23-24小题10分,共52分)17.(6分)已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.18.(6分)a,b分别代表铁路和公路,点M、N分别代表蔬菜和杂货批发市场.现要建中转站O点,使O点到铁路、公路距离相等,且到两市场距离相等.请用尺规画出O点位置(不写作法,保留作图痕迹).19.(6分)如图,将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处.求∠1+∠2的度数.20.(6分)如图,在四边形ABCD中,AB=CD,AD=BC,点O为BD上任意一点,过点O的直线分别交AD,BC于M,N两点.求证:∠1=∠2.21.(7分)小王准备用一段长30m的篱笆围成一个三角形形状的场地,用于饲养家兔,已知第一条边长为am,由于受地势限制,第二条边长只能是第一条边长的2倍多2m.(1)请用a表示第三条边长.(2)问第一条边长可以为7m吗?请说明理由.22.(7分)如图,已知在△ABC中,∠BAC为直角,AB=AC,D为AC上一点,CE⊥BD 于E,交BA的延长线于F.(1)求证:△ABD≌△ACF;(2)若BD平分∠ABC,求证:CE=BD;(3)若D为AC上一动点,∠AED如何变化,若变化,求它的变化范围;若不变,直接写出它的度数.23.(7分)问题情境:如图1,在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,可知:∠BAD=∠C(不需要证明);(1)特例探究:如图2,∠MAN=90°,射线AE在这个角的内部,点B、C在∠MAN的边AM、AN上,且AB=AC,CF⊥AE于点F,BD⊥AE于点D.证明:△ABD≌△CAF;(2)归纳证明:如图3,点B,C在∠MAN的边AM、AN上,点E,F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF;(3)拓展应用:如图4,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为3,则△ACF与△BDE的面积之和为.24.(7分)已知△ABC在平面直角坐标系中的位置如图所示,直线l过点M(3,0)且平行于y轴.(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标.(2)如果点P的坐标是(﹣a,0),其中a>0,点P关于y轴的对称点是P1,点P1关于直线l的对称点是P2,求P1P2的长.(用含a的代数式表示)(3)通过计算加以判断,PP2的长会不会随点P位置的变化而变化.2018-2019学年浙江省台州市温岭市五校联考八年级(上)期中数学试卷参考答案一、选择题(本大题有10小题,每小题3分,共30分)1.C;2.C;3.B;4.D;5.D;6.C;7.B;8.D;9.C;10.B;二、填空题(本大题6小题,每小题3分,共18分)11.直角三角形;12.6;13.1;14.28cm;15.()2017×75°;16.520;三、解答题(本大题共8小题,17-19小题每小题6分,20-22小题每小题6分,23-24小题10分,共52分)17.;18.;19.;20.;21.;22.;23.1;24.;。
浙江省绍兴市越城区五校联考2019-2020学年八年级(上)期末数学试卷 解析版
2019-2020学年八年级(上)期末数学试卷一.选择题(共10小题)1.以下列各组数为边长,能组成一个三角形的是()A.3,4,5 B.2,2,5 C.1,2,3 D.10,20,40 2.若等腰三角形的两边长分别为4和6,则它的周长是()A.14 B.15 C.16 D.14或163.对一个假命题举反例时,应使所举反例()A.满足命题的条件,并满足命题的结论B.满足命题的条件,但不满足命题的结论C.不满足命题的条件,但满足命题的结论D.不满足命题的条件,也不满足命题的结论4.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.>C.x+3>y+3 D.﹣3x>﹣3y 5.点P(﹣2,﹣4)与点Q(6,﹣4)的位置关系是()A.关于直线x=2对称B.关于直线y=2对称C.关于x轴对称D.关于y轴对称6.如图,已知AD是△ABC的BC边上的高,下列能使△ABD≌△ACD的条件是()A.AB=AC B.∠BAC=90°C.BD=AC D.∠B=45°7.如图的坐标平面上有P、Q两点,其坐标分别为(5,a)、(b,7).根据图中P、Q两点的位置,判断点(6﹣b,a﹣10)落在第几象限?()A.一B.二C.三D.四8.已知不等式x﹣1≥0,此不等式的解集在数轴上表示为()A.B.C.D.9.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.10.如图,直线y=x+m与y=nx﹣5n(n≠0)的交点的横坐标为3,则关于x的不等式x+m >nx﹣5n>0的整数解为()A.3 B.4 C.5 D.6二.填空题(共6小题)11.下列图形中全等图形是(填标号).12.如图,身高为xcm的1号同学与身高为ycm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x y(用“>”或“<”填空).13.△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是°.14.如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E为垂足,连接CD,若BD=1,则AC的长是.15.甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.图中l甲、l乙分别表示甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶千米.16.如图,直线l1:y=﹣2x+2交x轴于点A,交y轴于点B,直线l2:y=x+1交x轴于点D,交y轴于点C,直线l1、l2交于点M.(1)点M坐标为;(2)若点E在y轴上,且△BME是以BM为一腰的等腰三角形,则E点坐标为.三.解答题(共7小题)17.解不等式组18.如图,在方格纸中,以格点连线为边的三角形叫格点三角形,请按要求完成下列操作:先将格点△ABC向右平移4个单位得到△A1B1C1,再将△A1B1C1绕点C1点旋转180°得到△A2B2C2.19.在△ABC中,∠ABC=45°,F是高AD与高BE的交点.(1)求证:△ADC≌△BDF.(2)连接CF,若CD=4,求CF的长.20.在平面直角坐标系中,已知直线l:y=﹣x+2交x轴于点A,交y轴于点B,直线l 上的点P(m,n)在第一象限内,设△AOP的面积是S.(1)写出S与m之间的函数表达式,并写出m的取值范围.(2)当S=3时,求点P的坐标.(3)若直线OP平分△AOB的面积,求点P的坐标.21.如图,已知在△ABC中,AB=AC,D是BC边上任意一点,E在AC边上,且AD=AE.(1)若∠BAD=40°,求∠EDC的度数;(2)若∠EDC=15°,求∠BAD的度数;(3)根据上述两小题的答案,试探索∠EDC与∠BAD的关系.22.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A 型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.23.如图①,已知直线y=﹣2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②);(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.以下列各组数为边长,能组成一个三角形的是()A.3,4,5 B.2,2,5 C.1,2,3 D.10,20,40 【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:A、3+4>5,能组成三角形;B、2+2<5,不能组成三角形;C、1+2=3,不能组成三角形;D、10+20<40,不能组成三角形.故选:A.2.若等腰三角形的两边长分别为4和6,则它的周长是()A.14 B.15 C.16 D.14或16【分析】根据等腰三角形的性质,分两种情况:①当腰长为6时,②当腰长为4时,解答出即可.【解答】解:根据题意,①当腰长为6时,符合三角形三边关系,周长=6+6+4=16;②当腰长为4时,符合三角形三边关系,周长=4+4+6=14.故选:D.3.对一个假命题举反例时,应使所举反例()A.满足命题的条件,并满足命题的结论B.满足命题的条件,但不满足命题的结论C.不满足命题的条件,但满足命题的结论D.不满足命题的条件,也不满足命题的结论【分析】利用反例判断命题为假命题的方法对各选项进行判断.【解答】解:对一个假命题举反例时,应使所举反例满足命题的条件,但不满足命题的结论.故选:B.4.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.>C.x+3>y+3 D.﹣3x>﹣3y 【分析】根据不等式的基本性质,进行判断即可.【解答】解:A、根据不等式的性质1,可得x﹣3>y﹣3,故A选项正确;B、根据不等式的性质2,可得>,故B选项正确;C、根据不等式的性质1,可得x+3>y+3,故C选项正确;D、根据不等式的性质3,可得﹣3x<﹣3y,故D选项错误;故选:D.5.点P(﹣2,﹣4)与点Q(6,﹣4)的位置关系是()A.关于直线x=2对称B.关于直线y=2对称C.关于x轴对称D.关于y轴对称【分析】根据轴对称的性质解决问题即可.【解答】解:点P(﹣2,﹣4)与点Q(6,﹣4)的位置关系是关于直线x=2对称,故选:A.6.如图,已知AD是△ABC的BC边上的高,下列能使△ABD≌△ACD的条件是()A.AB=AC B.∠BAC=90°C.BD=AC D.∠B=45°【分析】此题是开放型题型,根据题目现有条件,AD=AD,∠ADB=∠ADC=90°,可以用HL判断确定,也可以用SAS,AAS,SSS判断两个三角形全等.【解答】解:添加AB=AC,符合判定定理HL;添加BD=DC,符合判定定理SAS;添加∠B=∠C,符合判定定理AAS;添加∠BAD=∠CAD,符合判定定理ASA;选其中任何一个均可.故选:A.7.如图的坐标平面上有P、Q两点,其坐标分别为(5,a)、(b,7).根据图中P、Q两点的位置,判断点(6﹣b,a﹣10)落在第几象限?()A.一B.二C.三D.四【分析】由平面直角坐标系判断出a<7,b<5,然后求出6﹣b,a﹣10的正负情况,再根据各象限内点的坐标特征解答.【解答】解:∵(5,a)、(b,7),∴a<7,b<5,∴6﹣b>0,a﹣10<0,∴点(6﹣b,a﹣10)在第四象限.故选:D.8.已知不等式x﹣1≥0,此不等式的解集在数轴上表示为()A.B.C.D.【分析】根据不等式的性质求出不等式的解集,再在数轴上表示出不等式的解集即可.【解答】解:∵x﹣1≥0,∴x≥1,在数轴上表示不等式的解集为:,故选:C.9.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.【分析】根据题意画出相应的图形,如图所示,在直角三角形ABC中,由AC及BC的长,利用勾股定理求出AB的长,然后过C作CD垂直于AB,由直角三角形的面积可以由两直角边乘积的一半来求,也可以由斜边AB乘以斜边上的高CD除以2来求,两者相等,将AC,AB及BC的长代入求出CD的长,即为C到AB的距离.【解答】解:根据题意画出相应的图形,如图所示:在Rt△ABC中,AC=9,BC=12,根据勾股定理得:AB==15,过C作CD⊥AB,交AB于点D,又S△ABC=AC•BC=AB•CD,∴CD===,则点C到AB的距离是.故选:A.10.如图,直线y=x+m与y=nx﹣5n(n≠0)的交点的横坐标为3,则关于x的不等式x+m >nx﹣5n>0的整数解为()A.3 B.4 C.5 D.6【分析】令y=0可求出直线y=nx﹣5n与x轴的交点坐标,根据两函数图象与x轴的上下位置关系结合交点横坐标即可得出不等式x+m>nx﹣5n>0的解,找出其内的整数即可.【解答】解:当y=0时,nx﹣5n=0,解得:x=5,∴直线y=nx﹣5n与x轴的交点坐标为(5,0).观察函数图象可知:当3<x<5时,直线y=x+m在直线y=nx﹣5n的上方,且两直线均在x轴上方,∴不等式x+m>nx﹣5n>0的解为3<x<5,∴不等式x+m>nx﹣5n>0的整数解为4.故选:B.二.填空题(共6小题)11.下列图形中全等图形是⑤和⑦(填标号).【分析】要认真观察图形,从①开始找寻,看后面的谁与之全等,然后是②,看后面的哪一个与它全等,如此找寻,可得答案.【解答】解:由全等形的概念可知:共有1对图形全等,即⑤和⑦能够重合.故答案为:⑤和⑦.12.如图,身高为xcm的1号同学与身高为ycm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x<y(用“>”或“<”填空).【分析】由图知1号同学比2号同学矮,据此可解答.【解答】解:如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x<y,故答案为:<.13.△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是140 °.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵∠A=60°,∠B=80°,∴∠C的外角=∠A+∠B=60°+80°=140°.故答案为:140.14.如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E为垂足,连接CD,若BD=1,则AC的长是2.【分析】求出∠ACB,根据线段垂直平分线求出AD=CD,求出∠ACD、∠DCB,求出CD、AD、AB,由勾股定理求出BC,再求出AC即可.【解答】解:∵∠A=30°,∠B=90°,∴∠ACB=180°﹣30°﹣90°=60°,∵DE垂直平分斜边AC,∴AD=CD,∴∠A=∠ACD=30°,∴∠DCB=60°﹣30°=30°,∵BD=1,∴CD=AD=2,∴AB=1+2=3,在Rt△BCD中,由勾股定理得:CB=,在Rt△ABC中,由勾股定理得:AC==2,故答案为:2.15.甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.图中l甲、l乙分别表示甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶千米.【分析】根据函数的图形可以得到甲用了30分钟行驶了12千米,乙用12分钟行驶了12千米,分别算出速度即可求得结果.【解答】解:∵据函数图形知:甲用了30分钟行驶了12千米,乙用(18﹣6)分钟行驶了12千米,∴甲每分钟行驶12÷30=千米,乙每分钟行驶12÷12=1千米,∴每分钟乙比甲多行驶1﹣=千米,故答案为:.16.如图,直线l1:y=﹣2x+2交x轴于点A,交y轴于点B,直线l2:y=x+1交x轴于点D,交y轴于点C,直线l1、l2交于点M.(1)点M坐标为(,);(2)若点E在y轴上,且△BME是以BM为一腰的等腰三角形,则E点坐标为(0,)或(0,)或(0,).【分析】(1)解析式联立,解方程即可求得;(2)求得BM的长,分两种情况讨论即可.【解答】解:(1)解得,∴点M坐标为(,),故答案为(,);(2)∵直线l1:y=﹣2x+2交x轴于点A,交y轴于点B,∴B(0,2),∴BM==,当B为顶点,则E(0,)或(0,);当M为顶点点,则MB=ME,E(0,),综上,E点的坐标为(0,)或(0,)或(0,),故答案为(0,)或(0,)或(0,).三.解答题(共7小题)17.解不等式组【分析】首先分别计算出两个不等式的解集,再根据解集的规律确定不等式组的解集.【解答】解:,解①得:x<10,解②得:1≤x,故不等式组的解为:1≤x<10.18.如图,在方格纸中,以格点连线为边的三角形叫格点三角形,请按要求完成下列操作:先将格点△ABC向右平移4个单位得到△A1B1C1,再将△A1B1C1绕点C1点旋转180°得到△A2B2C2.【分析】将△ABC向右平移4个单位后,横坐标变为x+4,而纵坐标不变,所以点A1、B1、C1的坐标可知,确定坐标点连线即可画出图形,将△ABC中的各点A、B、C旋转180°后,得到相应的对应点A2、B2、C2,连接各对应点即得△A2B2C2.【解答】解:如图所示:.19.在△ABC中,∠ABC=45°,F是高AD与高BE的交点.(1)求证:△ADC≌△BDF.(2)连接CF,若CD=4,求CF的长.【分析】(1)先证明AD=BD,再证明∠FBD=∠DAC,从而利用ASA证明△BDF≌△ADC;(2)利用全等三角形对应边相等得出DF=CD=4,根据勾股定理求出CF即可.【解答】(1)证明:∵AD⊥BC,∴∠FDB=∠ADC=90°,∵∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,∵BE⊥AC,∴∠AEF=∠FDB=90°,∵∠AFE=∠BFD,∴由三角形内角和定理得:∠CAD=∠FBD,在△ADC和△BDE中∴△ADC≌△BDE(ASA);(2)解:∵△ADC≌△BDE,CD=4,∴DF=CD=4,在Rt△FDC中,由勾股定理得:CF===4.20.在平面直角坐标系中,已知直线l:y=﹣x+2交x轴于点A,交y轴于点B,直线l 上的点P(m,n)在第一象限内,设△AOP的面积是S.(1)写出S与m之间的函数表达式,并写出m的取值范围.(2)当S=3时,求点P的坐标.(3)若直线OP平分△AOB的面积,求点P的坐标.【分析】(1)根据点A、P的坐标求得△AOP的底边与高线的长度;然后根据三角形的面积公式即可求得S与m的函数关系式;(2)将S=3代入(1)中所求的式子,即可求出点P的坐标;(3)由直线OP平分△AOB的面积,可知OP为△AOB的中线,点P为AB的中点,根据中点坐标公式即可求解.【解答】解:∵直线l:y=﹣x+2交x轴于点A,交y轴于点B,∴A(4,0),B(0,2),∵P(m,n)∴S=×4×(4﹣m)=4﹣m,即S=4﹣m.∵点P(m,n)在第一象限内,∴m+2n=4,∴,解得0<m<4;(2)当S=3时,4﹣m=3,解得m=1,此时y=(4﹣1)=,故点P的坐标为(1,);(3)若直线OP平分△AOB的面积,则点P为AB的中点.∵A(4,0),B(0,2),∴点P的坐标为(2,1).21.如图,已知在△ABC中,AB=AC,D是BC边上任意一点,E在AC边上,且AD=AE.(1)若∠BAD=40°,求∠EDC的度数;(2)若∠EDC=15°,求∠BAD的度数;(3)根据上述两小题的答案,试探索∠EDC与∠BAD的关系.【分析】(1)根据等腰三角形性质求出∠B的度数,根据三角形的外角性质求出∠ADC,求出∠DAC,根据等腰三角形性质求出∠ADE即可;(2)根据三角形的一个外角等于和它不相邻的两个内角的和,∠AED=∠EDC+∠C,∠ADC =∠B+∠BAD,再根据等边对等角的性质∠B=∠C,∠ADE=∠AED,代入数据计算即可求出∠BAD的度数;(3)根据(1)(2)的结论猜出即可.【解答】解:(1)∵AB=AC,∴∠B=∠C=(180°﹣∠BAC)=90°﹣∠BAC,∴∠ADC=∠B+∠BAD=90°﹣∠BAC+40°=130°﹣∠BAC,∵∠DAC=∠BAC﹣∠BAD=∠BAC﹣40°,∴∠ADE=∠AED=(180°﹣∠DAC)=110°﹣∠BAC,∴∠EDC=∠ADC﹣∠ADE=(130°﹣∠BAC)﹣(110°﹣∠BAC)=20°,故∠EDC的度数是20°.(2)∠AED=∠EDC+∠C,∠ADC=∠B+∠BAD,∵AD=AE,∴∠AED=∠ADE,∵AB=AC,∴∠B=∠C,∴∠B+∠BAD=∠EDC+∠C+∠EDC,即∠BAD=2∠EDC,∵∠EDC=15°,∴∠BAD=30°.(3)∠EDC与∠BAD的数量关系是∠EDC=∠BAD.22.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A 型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.【分析】(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意列出方程组求解,(2)①据题意得,y=﹣50x+15000,②利用不等式求出x的范围,又因为y=﹣50x+15000是减函数,所以x取34,y取最大值,(3)据题意得,y=(100+m)x﹣150(100﹣x),即y=(m﹣50)x+15000,分三种情况讨论,①当0<m<50时,y随x的增大而减小,②m=50时,m﹣50=0,y=15000,③当50<m<100时,m﹣50>0,y随x的增大而增大,分别进行求解.【解答】解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得解得答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,﹣50<0,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,33≤x≤70①当0<m<50时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润;③当50<m<100时,m﹣50>0,y随x的增大而增大,∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.23.如图①,已知直线y=﹣2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②);(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.【分析】(1)已知直线y=﹣2x+4与x轴、y轴分别交于点A、C,即可求得A和C的坐标;(2)根据题意可知△ACD是等腰三角形,算出AD长即可求得D点坐标,最后即可求出CD的解析式;(3)将点P在不同象限进行分类,根据全等三角形的判定方法找出所有全等三角形,找出符合题意的点P的坐标.【解答】解:(1)A(2,0);C(0,4)(2分)(2)由折叠知:CD=AD.设AD=x,则CD=x,BD=4﹣x,根据题意得:(4﹣x)2+22=x2解得:此时,AD=,(2分)设直线CD为y=kx+4,把代入得(1分)解得:∴直线CD解析式为(1分)(3)①当点P与点O重合时,△APC≌△CBA,此时P(0,0)②当点P在第一象限时,如图,由△APC≌△CBA得∠ACP=∠CAB,则点P在直线CD上.过P作PQ⊥AD于点Q,在Rt△ADP中,AD=,PD=BD==,AP=BC=2由AD×PQ=DP×AP得:∴∴,把代入得此时(也可通过Rt△APQ勾股定理求AQ长得到点P的纵坐标)③当点P在第二象限时,如图同理可求得:∴此时综合得,满足条件的点P有三个,分别为:P1(0,0);;.。
浙江省2019届高三第一次五校联考数学理
·1·2019学年浙江省第一次五校联考数学(理科)试题卷本试题卷分选择题和非选择题两部分.全卷共4页,满分150分, 考试时间120分钟.请考生按规定用笔将所有试题的答案涂、写在答题纸上.参考公式:柱体的体积公式V=Sh 其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式V=13Sh其中S 表示锥体的底面积,h 表示锥体的高台体的体积公式1()11223V h S S S S 其中S 1,S 2分别表示台体的上,下底面积球的表面积公式S =4πR 2其中R 表示球的半径,h 表示台体的高球的体积公式V=43πR3其中R 表示球的半径第Ⅰ卷(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U R ,{|21}xA y y,{|ln 0}Bx x,则()U C A B()A . B.1{|1}2x x C .{|1}x x D .01x x2.设0x,则“1a”是“2a x x恒成立”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.已知函数()2sin(2)6f x x,把函数)(x f 的图象沿x 轴向左平移6个单位,得到函数)(x g 的图象.关于函数)(x g ,下列说法正确的是( )A. 在]2,4[上是增函数B.其图象关于直线4x对称C. 函数)(x g 是奇函数D. 当[0,]3x时,函数)(x g 的值域是[1,2]4.已知,a b 为平面向量,若a b 与a 的夹角为3,a b 与b 的夹角为4,则a b=( )A. 33B. 63C.53D.64。
浙江省绍兴市越城区五校联考2019-2020年七年级(上)期末考试数学试卷 解析版
2019-2020学年七年级(上)期末数学试卷一.选择题(共10小题)1.在﹣4,0,﹣1,3这四个数中,最小的数是()A.﹣4 B.2 C.﹣1 D.32.下列各数:,,2π,0.333333,,1.21221222122221(每两个1之间依次多一个2)中,无理数有()A.2个B.3个C.4个D.5个3.北京大兴国际机场,是我国新建的超大型国际航空综合交通枢纽,于今年9月25日正式投入运营.8个巨大的C形柱撑起了70万平方米航站楼的楼顶,形如展翅腾飞的凤凰,蔚为壮观.把数据70万用科学记数法应记为()A.7×104B.7×105C.70×104D.0.7×1064.估计48的立方根的大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间5.如图,用剪刀沿直线将一片平整的树叶剪掉一部分,则剩下的树叶周长小于原树叶的周长,能解释这一现象的数学道理是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.经过一点有无数条直线6.的平方根是多少()A.±9 B.9 C.±3 D.37.若+(b﹣3)2=0,则a b=()A.B.C.8 D.8.如图,已知直线AB、CD相交于点O,OE平分∠COB,若∠EOB=50°,则∠BOD的度数是()A.50°B.60°C.80°D.70°9.如图1,将一张长方形纸板四角各切去一个同样的正方形,制成如图2的无盖纸盒,若该纸盒的容积为4a2b,则图2中纸盒底部长方形的周长为()A.4ab B.8ab C.4a+b D.8a+2b10.如图,在2020个“□”中依次填入一列数字m1,m2,m3,……,m2020,使得其中任意四个相邻的“□”中所填的数字之和都等于13.已知m3=0,m6=﹣7,则m1+m2020的值为()0 ﹣7 …A.0 B.﹣7 C.6 D.20二.填空题(共8小题)11.2019年女排世界杯共12支队伍参赛.东道主日本11场比赛中输5场记为﹣5,那么夺得本届世界杯冠军的中国女排11战全胜可记为.12.若∠β=110°,则它的补角是,它的补角的余角是.13.一个实数的两个平方根分别是a+3和2a﹣9,则这个实数是.14.用四舍五入法得到的近似数14.0精确到位,它表示原数大于或等于,而小于.15.用度、分、秒表示:(35)°=;用度表示:38°24′=.16.对于任意四个有理数a,b,c,d,可以组成两个有理数对(a,b)与(c,d).我们规定:(a,b)※(c,d)=ac﹣bd.例如:(1,2)※(3,4)=1×3﹣2×4=﹣5.若有理数对(2x,﹣3)※(1,x+1)=8,则x=.17.已知多项式ax5+bx3+cx+9,当x=﹣1时,多项式的值为17.则该多项式当x=1时的值是.18.某校为适应电化教学的需要新建阶梯教室,教室的第一排有a个座位,后面每一排都比前一排多一个座位,若第n排有m个座位,则a、n和m之间的关系为m=.三.解答题(共6小题)19.(1)计算:(﹣+)÷(﹣)(2)解方程:5(x﹣1)﹣3=2﹣2x20.已知代数式(3a2﹣ab+2b2)﹣(a2﹣5ab+b2)﹣2(a2+2ab+b2).(1)试说明这个代数式的值与a的取值无关;(2)若b=﹣2,求这个代数式的值.21.如图为4×4的网格(每个小正方形的边长均为1),请画两个格点正方形(顶点在小正方形顶点处)要求:其中一个边长是有理数,另一个边长是大于3的无理数,并写出其边长,∴边长为.∴边长为.22.如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOB的度数.23.某工厂第一车间有x人,第二车间比第一车间人数的少30人,从第二车间调出y人到第一车间,那么:(1)调动后,第一车间的人数为人;第二车间的人数为人.(用x,y 的代数式表示);(2)求调动后,第一车间的人数比第二车间的人数多几人(用x,y的代数式表示)?(3)如果第一车间从第二车间调入的人数,是原来调入的10倍,则第一车间人数将达到360人,求实际调动后,(2)题中的具体人数.24.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B 两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.【问题情境】如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)填空:①A、B两点间的距离AB=,线段AB的中点表示的数为;②用含t的代数式表示:t秒后,点P表示的数为;点Q表示的数为.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)求当t为何值时,PQ=AB;(4)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.参考答案与试题解析一.选择题(共10小题)1.在﹣4,0,﹣1,3这四个数中,最小的数是()A.﹣4 B.2 C.﹣1 D.3【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣4<﹣1<0<3,在﹣4,0,﹣1,3这四个数中,最小的数是﹣4.故选:A.2.下列各数:,,2π,0.333333,,1.21221222122221(每两个1之间依次多一个2)中,无理数有()A.2个B.3个C.4个D.5个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:是分数,属于有理数;0.333333是有限小数,属于有理数;=4,是整数,属于有理数;无理数有:,2π,1.21221222122221(每两个1之间依次多一个2)共3个.故选:B.3.北京大兴国际机场,是我国新建的超大型国际航空综合交通枢纽,于今年9月25日正式投入运营.8个巨大的C形柱撑起了70万平方米航站楼的楼顶,形如展翅腾飞的凤凰,蔚为壮观.把数据70万用科学记数法应记为()A.7×104B.7×105C.70×104D.0.7×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:70万用科学记数法表示应记为7×105,故选:B.4.估计48的立方根的大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间【分析】根据<<即可得出答案.【解答】解:∵<<,∴3<<4,即48的立方根的大小在3与4之间,故选:B.5.如图,用剪刀沿直线将一片平整的树叶剪掉一部分,则剩下的树叶周长小于原树叶的周长,能解释这一现象的数学道理是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.经过一点有无数条直线【分析】根据线段的性质解答即可.【解答】解:用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是两点之间,线段最短,故选:B.6.的平方根是多少()A.±9 B.9 C.±3 D.3【分析】利用平方根和算术平方根的定义求解即可.【解答】解:的平方根是±3,故选:C.7.若+(b﹣3)2=0,则a b=()A.B.C.8 D.【分析】根据非负数的性质列式分别求出a、b,根据有理数的乘方法则计算,得到答案.【解答】解:由题意得,2a+1=0,b﹣3=0,解得,a=﹣,b=3,则a b=﹣,故选:B.8.如图,已知直线AB、CD相交于点O,OE平分∠COB,若∠EOB=50°,则∠BOD的度数是()A.50°B.60°C.80°D.70°【分析】首先根据角平分线的性质可得∠EOB=∠COE,进而得到∠COB的度数,再根据邻补角互补可算出∠BOD的度数.【解答】解:∵OE平分∠COB,∴∠EOB=∠COE,∵∠EOB=50°,∴∠COB=100°,∴∠BOD=180°﹣100°=80°.故选:C.9.如图1,将一张长方形纸板四角各切去一个同样的正方形,制成如图2的无盖纸盒,若该纸盒的容积为4a2b,则图2中纸盒底部长方形的周长为()A.4ab B.8ab C.4a+b D.8a+2b【分析】根据长方体纸盒的容积等于底面积乘以高,底面积等于底面长方形的长与宽的乘积可以先求出宽,再计算纸盒底部长方形的周长即可.【解答】解:根据题意,得纸盒底部长方形的宽为=4a,∴纸盒底部长方形的周长为:2(4a+b)=8a+2b.故选:D.10.如图,在2020个“□”中依次填入一列数字m1,m2,m3,……,m2020,使得其中任意四个相邻的“□”中所填的数字之和都等于13.已知m3=0,m6=﹣7,则m1+m2020的值为()0 ﹣7 …A.0 B.﹣7 C.6 D.20【分析】根据任意四个相邻“□”中,所填数字之和都等于13,可以发现题目中数字的变化规律,从而可以求得x的值,本题得以解决.【解答】解:∵任意四个相邻“□”中,所填数字之和都等于13,∴m1+m2+m3+m4=m2+m3+m4+m5,m2+m3+m4+m5=m3+m4+m5+m6,m3+m4+m5+m6=m4+m5+m6+m7,m4+m5+m6+m7=m5+m6+m7+m8,∴m1=m5,m2=m6,m3=m7,m4=m8,同理可得,m1=m5=m9=…,m2=m6=m10=…,m3=m7=m11=…,m4=m8=m12=…,∵2020÷4=505,∴m2020=m4,∵m3=0,m6=﹣7,∴m2=﹣7,∴m1+m4=13﹣m2﹣m3=13﹣(﹣7)﹣0=20,∴m1+m2020=20,故选:D.二.填空题(共8小题)11.2019年女排世界杯共12支队伍参赛.东道主日本11场比赛中输5场记为﹣5,那么夺得本届世界杯冠军的中国女排11战全胜可记为+11 .【分析】根据题意输掉1场比赛记为﹣1,那么赢1场比赛应记为+1,据此分析即可.【解答】解:在比赛中输5场记为﹣5,那么输1场记为﹣1.则赢1场比赛应记为+1,所以11战全胜应记为+11.故答案为+11.12.若∠β=110°,则它的补角是70°,它的补角的余角是20°.【分析】根据余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角进行计算.【解答】解:若∠β=110°,则它的补角为:180°﹣110°=70°;它的补角的余角为:90°﹣70°=20°.故答案为:70°;20°.13.一个实数的两个平方根分别是a+3和2a﹣9,则这个实数是25 .【分析】根据题意列出方程即可求出答案.【解答】解:由题意可知:a+3+2a﹣9=0,∴a=2,∴a+3=5,∴这个是数为25,故答案为:25.14.用四舍五入法得到的近似数14.0精确到十分位,它表示原数大于或等于13.95 ,而小于14.05 .【分析】根据近似数的精确度求解.【解答】解:用四舍五入法得到的近似数14.0精确到十分位,它表示原数大于或等于13.95,而小于14.05.故答案为:十分,13.95,14.05.15.用度、分、秒表示:(35)°=35°20′;用度表示:38°24′=38.4°.【分析】根据1°=60′,进行计算即可.【解答】解:(35)°=35°20′;38°24′=38.4°,故答案为:35°20′;38.4°.16.对于任意四个有理数a,b,c,d,可以组成两个有理数对(a,b)与(c,d).我们规定:(a,b)※(c,d)=ac﹣bd.例如:(1,2)※(3,4)=1×3﹣2×4=﹣5.若有理数对(2x,﹣3)※(1,x+1)=8,则x= 1 .【分析】根据题中的新定义化简已知等式,求出解即可得到x的值.【解答】解:根据题中的新定义得:2x+3(x+1)=8,去括号得:2x+3x+3=8,解得:x=1,故答案为:117.已知多项式ax5+bx3+cx+9,当x=﹣1时,多项式的值为17.则该多项式当x=1时的值是 1 .【分析】可以先整体求出(a+b+c)的值,再代入多项式ax5+bx3+cx+9,求得当x=1时多项式的值.【解答】解:∵当x=﹣1时,多项式的值为17,∴ax5+bx3+cx+9=17,即a•(﹣1)5+b•(﹣1)3+c•(﹣1)+9=17,整理得a+b+c=﹣8,当x=1时,ax5+bx3+cx+9=a•15+b•13+c•1+9=(a+b+c)+9=﹣8+9=1.18.某校为适应电化教学的需要新建阶梯教室,教室的第一排有a个座位,后面每一排都比前一排多一个座位,若第n排有m个座位,则a、n和m之间的关系为m=a+n﹣1 .【分析】因为后面每一排都比前一排多一个座位及第一排有a个座位可得出第n排的座位数,再由第n排有m个座位可得出a、n和m之间的关系.【解答】解:由题意得:后面每一排都比前一排多一个座位及第一排有a个座位可得出第n排的座位数第n排的座位数:a+(n﹣1)又第n排有m个座位故a、n和m之间的关系为m=a+n﹣1.三.解答题(共6小题)19.(1)计算:(﹣+)÷(﹣)(2)解方程:5(x﹣1)﹣3=2﹣2x【分析】(1)原式利用除法法则变形,再利用乘法分配律计算即可求出值;(2)方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)原式=(﹣+)×(﹣36)=﹣8+9﹣2=﹣1;(2)去括号得:5x﹣5﹣3=2﹣2x,移项合并得:7x=10,解得:x=.20.已知代数式(3a2﹣ab+2b2)﹣(a2﹣5ab+b2)﹣2(a2+2ab+b2).(1)试说明这个代数式的值与a的取值无关;(2)若b=﹣2,求这个代数式的值.【分析】本题应先去括号,然后合并同类项,结果为﹣b2,然后将b=﹣2即可求出这个代数式的值.【解答】解:(1)(3a2﹣ab+2b2)﹣(a2﹣5ab+b2)﹣2(a2+2ab+b2)=3a2﹣ab+2b2﹣a2+5ab﹣b2﹣2a2﹣4ab﹣2b2=3a2﹣a2﹣2a2﹣ab+5ab﹣4ab+2b2﹣b2﹣2b2=﹣b2;因为原代数式化简后的值为﹣b2,不含字母a,所以这个代数式的值与a的取值无关.(2)当b=﹣2时,原式=﹣b2=﹣(﹣2)2=﹣4.21.如图为4×4的网格(每个小正方形的边长均为1),请画两个格点正方形(顶点在小正方形顶点处)要求:其中一个边长是有理数,另一个边长是大于3的无理数,并写出其边长,∴边长为 2 .∴边长为.【分析】利用勾股定理分别画出边长为无理数和有理数的正方形即可.【解答】解:如图所示:边长为2,边长为=,故答案为:2;.22.如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOB的度数.【分析】此题可以设∠AOC=x,进一步根据角之间的关系用未知数表示其它角,再根据已知的角列方程即可进行计算.【解答】解:设∠AOC=x,则∠BOC=2x.∴∠AOB=3x.又OD平分∠AOB,∴∠AOD=1.5x.∴∠COD=∠AOD﹣∠AOC=1.5x﹣x=20°.∴x=40°∴∠AOB=120°.故答案为120°.23.某工厂第一车间有x人,第二车间比第一车间人数的少30人,从第二车间调出y人到第一车间,那么:(1)调动后,第一车间的人数为x+y人;第二车间的人数为x﹣y﹣30 人.(用x,y的代数式表示);(2)求调动后,第一车间的人数比第二车间的人数多几人(用x,y的代数式表示)?(3)如果第一车间从第二车间调入的人数,是原来调入的10倍,则第一车间人数将达到360人,求实际调动后,(2)题中的具体人数.【分析】(1)表示出调动后两车间的人数即可;(2)根据题意列出算式,计算即可得到结果;(3)根据题意得到:x+10y=360,整理后x=360﹣10y,将其代入(2)中求值.【解答】解:(1)根据题意得调动后,第一车间的人数为(x+y)人;第二车间的人数为(x﹣y﹣30)人.故答案是:(x+y);(x﹣y﹣30);(2)根据题意,得(x+y)﹣(x﹣y﹣30)=x+2y+30;(3)根据题意,得x+10y=360.则x=360﹣10y,所以x+2y+30=(360﹣10y)+2y+30=102.即实际调动后,(2)题中的具体人数是102人.24.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B 两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.【问题情境】如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)填空:①A、B两点间的距离AB=10 ,线段AB的中点表示的数为 3 ;②用含t的代数式表示:t秒后,点P表示的数为﹣2+3t;点Q表示的数为8﹣2t.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)求当t为何值时,PQ=AB;(4)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.【分析】(1)根据题意即可得到结论;(2)当P、Q两点相遇时,P、Q表示的数相等列方程得到t=2,于是得到当t=2时,P、Q相遇,即可得到结论;(3)由t秒后,点P表示的数﹣2+3t,点Q表示的数为8﹣2t,于是得到PQ=|(﹣2+3t)﹣(8﹣2t)|=|5t﹣10|,列方程即可得到结论;(4)由点M表示的数为=﹣2,点N表示的数为=+3,即可得到结论.【解答】解:(1)①10,3;②﹣2+3t,8﹣2t;(2)∵当P、Q两点相遇时,P、Q表示的数相等∴﹣2+3t=8﹣2t,解得:t=2,∴当t=2时,P、Q相遇,此时,﹣2+3t=﹣2+3×2=4,∴相遇点表示的数为4;(3)∵t秒后,点P表示的数﹣2+3t,点Q表示的数为8﹣2t,∴PQ=|(﹣2+3t)﹣(8﹣2t)|=|5t﹣10|,又PQ=AB=×10=5,∴|5t﹣10|=5,解得:t=1或3,∴当:t=1或3时,PQ=AB;(4)∵点M表示的数为=﹣2,点N表示的数为=+3,∴MN=|(﹣2)﹣(+3)|=|﹣2﹣﹣3|=5.。
浙江省杭州下城区五校联考2019-2020学年中考数学模拟试卷
浙江省杭州下城区五校联考2019-2020学年中考数学模拟试卷一、选择题1.一个密闭不透明的盒子里有若干个白球,在不许将球倒出来数的情况下,为估计白球数,小刚向其中放入8个黑球摇匀后,从中随意摸出一个球记下颜色,再把它放回盒中,不断重复这一过程,共摸球200次,其中44次摸到黑球,你估计盒中大约有白球()A.20个B.28个C.36个D.无法估计2.如图,在△ABC所在平面上任意取一点O(与A、B、C不重合),连接OA、OB、OC,分别取OA、OB、OC的中点A1、B1、C1,再连接A1B1、A1C1、B1C1得到△A1B1C1,则下列说法不正确的是()A.△ABC与△A1B1C1是位似图形B.△ABC与是△A1B1C1相似图形C.△ABC与△A1B1C1的周长比为2:1 D.△ABC与△A1B1C1的面积比为2:13.如图,⊙O的直径AB=8cm,AM和BN是它的两条切线,切点分别为A,B,DE切⊙O于E,交AM于D,交BN于C,设AD=x,BC=y,则y与x的函数关系式为()A.16yx=B.y=2x C.y=2x2D.8yx=4.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:A.9.7,9.5B.9.7,9.9C.9.6,9.5D.9.6,9.65.如图所示的几何体的左视图()A. B.C. D.6.2018年是打赢脱贫攻坚战三年行动起步之年.国家统计局2月15日发布的数据显示,2018年年末,全国农村贫困人口比上年末减少1386万人,其中1386万用科学记数法表示应为()A. B. C. D.7.方程的解是( )A.B.C.D.8.如图,在△ABC 中,CA=CB ,∠C=90°,点D 是BC 的中点,将△ABC 沿着直线EF 折叠,使点A 与点D 重合,折痕交AB 于点E ,交AC 于点F ,那么sin ∠BED 的值为( ).A .35B .53C .512D .129.如图,已知四边形ABCO 的边AO 在x 轴上,//,BC AO AB AO ⊥,过点C 的双曲线()0ky k x=≠交OB 于D ,且:1:2OD DB =,若OBC ∆的面积等于3,则k 的值等于( )A .2B .34C .65D .24510.如图,AB 为⊙O 的直径,C ,D 为⊙O 上的两点,若AB =14,BC =7.则∠BDC 的度数是( )A .15°B .30°C .45°D .60°11.如图,AB 是⊙O 的弦,作OC ⊥OA 交⊙O 的切线BC 于点C ,交AB 于点D .已知∠OAB =20°,则∠OCB 的度数为( )A .20°B .30°C .40°D .50°12.如图1,△ABC 中,∠A =30°,点P 从点A 出发以2cm/s 的速度沿折线A→C→B 运动,点Q 从点A 出发以vcm/s 的速度沿AB 运动,P ,Q 两点同时出发,当某一点运动到点B 时,两点同时停止运动.设运动时间为x (s ),△APQ 的面积为y (cm 2),y 关于x 的函数图象由C 1,C 2两段组成,如图2所示,有下列结论:①v =1;②sinB =13;③图象C 2段的函数表达式为y =﹣13x 2+103x ;④△APQ 面积的最大值为8,其中正确有( )A .①②B .①②④C .①③④D .①②③④二、填空题13.如图,矩形ABCD 中,AB =3,BC =4,点E 是AB 边上一点,且AE =2,点F 是边BC 上的任意一点,把△BEF 沿EF 翻折,点B 的对应点为G ,连接AG ,CG ,则四边形AGCD 的面积的最小值为_____.14.已知8,3,m na a ==则m n a +=_____.15.分解因式(a -b)(a -9b)+4ab 的结果是____.16.若一个多边形内角和等于1260°,则该多边形边数是______.17.如图,n 个边长为1的相邻正方形的一边均在同一直线上,点1M ,2M ,3M ,n M 分别为边1B 2B ,23B B ,34B B ,,1n n B B +的中点,111B C M △的面积为1S ,222B C M △的面积为2S ,,n n n B C M △的面积为n S ,则n S =________.(用含n 的式子表示)18.如图,点P 在第一象限,△ABP 是边长为2的等边三角形,当点A 在x 轴的正半轴上运动时,点B 随之在y 轴的正半轴上运动,运动过程中,点P 到原点的最大距离是______;若将△ABP 的PA 边长改为P 到原点的最大距离变为______.三、解答题19.先化简,再求值:(a+12a -)÷221a a a-+,其中a =﹣2.20.如图,在四边形ABCD 中,AD ∥BC ,BA =BC ,BD 平分∠ABC . (1)求证:四边形ABCD 是菱形;(2)过点D 作DE ⊥BD ,交BC 的延长线于点E ,若BC =5,BD =8,求四边形ABED 的周长.21.如图,旗杆AB的顶端B在夕阳的余辉下落在一个斜坡上的点D处,某校数学课外兴趣小组的同学正在测量旗杆的高度,在旗杆的底部A处测得点D的仰角为15°,AC=10米,又测得∠BDA=45°.已知斜坡CD的坡度为i=1,求旗杆AB 1.7≈,结果精确到个位).22.为了增强体质,小明计划晚间骑自行车调练,他在自行车上安装了夜行灯.如图,夜行灯A射出的光线AB、AC与地面MN的夹角分别为10°和14°,该夜行灯照亮地面的宽度BC长为149米,求该夜行灯距离地面的高度AN的长.(参考数据:17961 1010141410050254 sin,tan,sin,tan︒︒︒︒≈≈≈≈)23.如图1,直线1:y=﹣x+1与x轴、y轴分别交于点B、点E,抛物线L:y=ax2+bx+c经过点B、点A(﹣3,0)和点C(0,﹣3),并与直线l交于另一点D.(1)求抛物线L的解析式;(2)点P为x轴上一动点①如图2,过点P作x轴的垂线,与直线1交于点M,与抛物线L交于点N.当点P在点A、点B之间运动时,求四边形AMBN面积的最大值;②连接AD,AC,CP,当∠PCA=∠ADB时,求点P的坐标.24.如图,已知E、F是平行四边形ABCD对角线AC上的两点,并且AE=CF.请说明四边形BFDE是平行四边形.25.如图,在矩形OABC 中,OA =3,OC =2,点F 是AB 上的一个动点(F 不与A ,B 重合),过点F 的反比例函数y =kx的图象与BC 边交于点E . (1)当F 为AB 的中点时,求该函数的解析式;(2)当k 为何值时,△EFA 的面积最大,最大面积是多少?【参考答案】*** 一、选择题13.. 14.24 15.(a-3b)216.9 17.()142n 1-18.三、解答题 19.-32【解析】 【分析】根据分式的加法和除法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题. 【详解】解:22112a a a a a -⎛⎫+÷ ⎪-+⎝⎭ (2)1(1)2(1)(1)a a a a a a a -++=⋅-+-22121a a aa a -+=⋅-- 2(1)21a aa a -=⋅-- (1)2a a a -=-当a =﹣2时,原式=2(21)3-222-⨯--=-- 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法. 20.(1)详见解析;(2)26. 【解析】 【分析】(1)根据平行线的性质得到∠ADB =∠CBD ,根据角平分线定义得到∠ABD =∠CBD ,等量代换得到∠ADB =∠ABD ,根据等腰三角形的判定定理得到AD =AB ,根据菱形的判定即可得到结论;(2)由垂直的定义得到∠BDE =90°,等量代换得到∠CDE =∠E ,根据等腰三角形的判定得到CD =CE =BC ,根据勾股定理得到DE =6,于是得到结论. 【详解】(1)证明:∵AD ∥BC , ∴∠ADB =∠CBD , ∵BD 平分∠ABC , ∴∠ABD =∠CBD , ∴∠ADB =∠ABD , ∴AD =AB , ∵BA =BC , ∴AD =BC ,∴四边形ABCD 是平行四边形, ∵BA =BC ,∴四边形ABCD 是菱形; (2)解:∵DE ⊥BD ,∴∠BDE =90°,∴∠DBC+∠E =∠BDC+∠CDE =90°, ∵CB =CD , ∴∠DBC =∠BDC , ∴∠CDE =∠E , ∴CD =CE =BC , ∴BE =2BC =10, ∵BD =8,∴DE 6, ∵四边形ABCD 是菱形,∴AD =AB =BC =5,∴四边形ABED 的周长=AD+AB+BE+DE =26. 【点睛】本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键. 21.旗杆AB 的高度约为16米. 【解析】 【分析】延长BD ,AC 交于点E ,过点D 作DF ⊥AE 于点F .构建直角△DEF 和直角△CDF .通过解这两个直角三角形求得相关线段的长度即可. 【详解】解:延长BD ,AC 交于点E ,过点D 作DF ⊥AE 于点F . ∵i =tan ∠DCF= ∴∠DCF =30°. 又∵∠DAC =15°, ∴∠ADC =15°. ∴CD =AC =10.在Rt △DCF 中,DF =CD•sin30°=10×12=5(米), CF=CDF =60°. ∴∠BDF =45°+15°+60°=120°, ∴∠E =120°﹣90°=30°,在Rt △DFE 中,EF=tan DF E == ∴AE =10++=.在Rt △BAE 中,BA=AE•tanE=()×3=10+3≈16(米).答:旗杆AB 的高度约为16米.【点睛】本题考查了解直角三角形的应用−−仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.22.该夜行灯距离地面的高度AN 的长为1m . 【解析】 【分析】过点A 作AD ⊥MN 于点D ,在Rt △ADB 与Rt △ACD 中,由锐角三角函数的定义可知tan10°14919,tan14504AD DC AD AD DC BC DC ︒+====+=,即可得出AD 的长. 【详解】过点A 作AD ⊥MN 于点D ,在Rt △ADB 与Rt △ACD 中,由锐角三角函数的定义可知:tan10°=914509AD AD DC BCDC ==++, tan14°=14AD DC =, 故4AD =DC ,则9145049ADAD =+解得:AD =1,答:该夜行灯距离地面的高度AN 的长为1m .【点睛】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形,利用锐角三角函数的定义求解是解答此题的关键.23.(1)y =x 2+2x ﹣3;(2)①S 四边形AMBN 最大值为252 ;②P 的坐标:P 13,05⎛⎫- ⎪⎝⎭,P 2(﹣15,0). 【解析】 【分析】(1)先求出B 的坐标,再将A 、B 、C 坐标代入y =ax 2+bx+c 列方程组,然后求解,即可求出抛物线的解析式;(2)①根据S 四边形AMBN =12AB•M N =214[(1)(23)]2x x x ⨯-+-+-=﹣2(x+32)2+252,所以当x =﹣32时,S 四边形AMBN 最大值为252; ②先联立方程组.求出D 点的坐标,两种情况讨论:Ⅰ.当点P 在点A 的右边,∠PCA =∠ADB 时,△PAC ∽△ABD ;Ⅱ.当点P 在点A 的左边,∠PCA =∠ADB 时,记此时的点P 为P 2,则有∠P 2CA =∠P 1CA . 【详解】(1)∵y =﹣x+1, ∴B (1,0),将A (﹣3,0)、C (0,﹣3),B (1,0)代入y =ax 2+bx+c ,93030a b c c a b c -+=⎧⎪=-⎨⎪++=⎩,∴123a b c =⎧⎪=⎨⎪=-⎩∴抛物线L 的解析式:y =x 2+2x ﹣3; (2)设P (x ,0). ①S 四边形AMBN =12AB•MN =214[(1)(23)]2x x x ⨯-+-+- =﹣2(x+32)2+252, ∴当x =﹣32时,S 四边形AMBN 最大值为252; ②由2231y x x y x ⎧=+-⎨=-+⎩,得1110x y =⎧⎨=⎩,2245x y =-⎧⎨=⎩,∴D (﹣4,5), ∵y =﹣x+1,∴E (0,1),B (1,0), ∴OB =OE , ∴∠OBD =45°. ∴BD=∵A (﹣3,0),C (0,﹣3), ∴OA =OC ,AC=AB =4. ∴∠OAC =45°,∴∠OBD =∠OAC .Ⅰ.当点P 在点A 的右边,∠PCA =∠ADB 时,△PAC ∽△ABD .∴AP ACAB BD=,∴4AP =, ∴125AP =,∴P13 (,0)5-Ⅱ.当点P在点A的左边,∠PCA=∠ADB时,记此时的点P为P2,则有∠P2CA=∠P1CA.过点A作x轴的垂线,交P2C于点K,则∠CAK=∠CAP1,又AC公共边,∴△CAK≌△CAP1(ASA)∴AK=AP1=125,∴K(﹣3,﹣125),∴直线CK:135y=--,∴P2(﹣15,0).P的坐标:P13(,0)5-,P2(﹣15,0).【点睛】本题考查了二次函数,熟练掌握二次函数的基本性质和相似三角形的性质是解题的关键.24.证明见解析.【解析】【分析】连接BD,利用对角线互相平分来证明即可.【详解】证明:连接BD,交AC于点O.∵四边形ABCD是平行四边形∴OA=OC OB=OD(平行四边形的对角线互相平分)又∵AE=CF∴OA﹣AE=OC﹣CF,即OE=OF∴四边形BFDE是平行四边形(对角线互相平分的四边形是平行四边形)【点睛】本题考查平行四边形的性质和判定,解题的关键是熟练掌握平行四边形的判定和性质,属于中考常考题型.25.(1)3yx=;(2)当k=3时,S有最大值. S最大值=34.【解析】【分析】(1)当F为AB的中点时,点F的坐标为(3,1),由此代入求得函数解析式即可;(2)根据图中的点的坐标表示出三角形的面积,得到关于k的二次函数,利用二次函数求出最值即可.【详解】(1)∵在矩形OABC中,OA=3,OC=2,∴B(3,2),∵F为AB的中点,∴F (3,1),∵点F 在反比例函数y =k x 的图象上, ∴k =3,∴该函数的解析式为y =3x; (2)由题意知E ,F 两点坐标分别为E (2k ,2),F (3,3k ), ∴S △EFA =12 AF•BE=12×13k (3﹣12k ), =12k ﹣112k 2 =﹣112(k 2﹣6k+9﹣9) =﹣112(k ﹣3)2+34当k =3时,S 有最大值. S 最大值=34. 【点睛】此题考查反比例函数综合题,涉及的知识有:坐标与图形性质,待定系数法确定反比例解析式,以及二次函数的性质,熟练掌握待定系数法是解本题的关键.。
浙江省五校2014届高三第一次联考数学(理)试题
数学(理科)试题卷
本试题卷分选择题和非选择题两部分。满分 150 分, 考试时间 120 分钟。
选择题部分(共 50 分)
参考公式: 如果事件 A, B 互斥, 那么 P(A+B)=P(A)+ P(B) 如果事件 A, B 相互独立,那么 P(A·B)=P(A)· P(B) 如果事件 A 在一次试验中发生的概率是 p, 那么 n 次独立重复试验中事件 A 恰好发生 k 次的概率 Pn(k)=C n pk (1-p)n-k (k = 0,1,2,…, n)
2
( Ⅱ )若把 “ 上确界 ” 减去 “ 下确界 ” 的差称为函数 f ( x ) 在 D 上的 “ 极差 M ” , 试求函数
F ( x ) = x x − 2a + ( 3 a > 0) 在 [1 , 2] 上的“极差 M ”;
(Ⅲ)类比函数 F ( x ) 的“极差 M ”的概念, 请求出 G ( x, y ) = (1 − x)(1 − y ) + 在 D = {( x, y ) x, y ∈ [0,1]} 上的“极差 M ”.
uuuu r uuur uuur uuu r uuu r C 在圆内,且满足 OC = λ OA + (1 − λ )OB (0 < λ < 1) ,则 CM ⋅ CN 的取值范围是(
A. [−
)
1 ,1) 2
B. [ −1,1)
C. [ −
3 , 0) 4
D. [ −1, 0)
9 .已知函数 f ( x) =
B B P P P P
棱柱的体积公式 V=Sh 其中 S 表示棱柱的底面积, h 表示棱柱的高 棱锥的体积公式 V=
浙江省2019-2020学年第一学期五校联考试题高三年级数学试题卷
2020届浙江省五校联考高三数学试卷考生须知:1.本卷共4页满分120分,考试时间100分钟;2.答题前,在答题卷指定区域填写班级、姓名、考场号、座位号及准考证号并填涂相应数字。
3.所有答案必须写在答题纸上,写在试卷上无效; 4.考试结束后,只需上交答题纸。
一、选择题:本大题共10小题,共40分 1. 已知集合{}|lg 0A x x =>,{}2|4B x x =≤,AB =( ) A .()1,2B .(]1,2C .(]0,2D .()1,+∞ 2. 已知向量1=a ,2=b ,且a 与b 的夹角为60︒,则( ) A .()⊥+a a b B .()+⊥b a bC .()⊥-a a bD .()⊥-b a b3. 函数()332xx xf x =+的值域为( ) A .[)1,+∞B .()1,+∞C .(]0,1D .()0,14. 已知数列{}n a 是公差为d 的等差数列,其前n 项和为n S ,则( )A .0d <时,n S 一定存在最大值B .0d >时,n S 一定存在最大值C .n S 存在最大值时,0d <D .n S 存在最大值时,0d >5. 已知关于x 的不等式2230ax x a -+<在(]0,2上有解,则实数a 的取值范围是( )A.⎛-∞ ⎝⎭ B .4,7⎛⎫-∞ ⎪⎝⎭ C.⎫+∞⎪⎪⎝⎭ D .4,7⎛⎫+∞ ⎪⎝⎭ 6. 已知a ,b 为实数,则01b a <<<,是log log a b b a >的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7. 定义{}max ,a a ba b b a b ≥⎧=⎨<⎩,则关于实数x ,y 的不等式组{}22max ,0x y x y x y ⎧≤⎪≤⎨⎪+-≥⎩所表示的平面区域的面积是( )A .4B .6C .8D .128. 函数()()sin 22cos 0f x x x x π=+≤≤,则()f x ( )A .在0,3π⎡⎤⎢⎥⎣⎦上递增B .在0,6π⎡⎤⎢⎥⎣⎦上递减C .在5,66ππ⎡⎤⎢⎥⎣⎦上递减D .在2,63ππ⎡⎤⎢⎥⎣⎦上递增9. 在三角形ABC 中,已知sin cos 0sin AC B+=,tan A =tan B =( ) AB.CD10. 若不等式()sin 06x a b x ππ⎛⎫--+≤ ⎪⎝⎭对[]1,1x ∈-上恒成立,则a b +=( )A .23B .56C .1D .2二、填空题:本大题共7小题,共36分11. 已知集合{}2|210A x x x =--<,{}|B x a x b =<<,若{}|21AB x x =-<<,则a = ;若(){}|13A B x x =≤<R,则b = .12. 已知0,2πα⎛⎫∈ ⎪⎝⎭,若2sin sin 21αα+=,则tan α= ;sin 2α= .13. 不等式1231122xx --⎛⎫< ⎪⎝⎭的解集是 ;不等式212log (31)log 4x -<的解集是 .14. 设数列{}n a 的前n 项和为n S ,满足()()*112nnn n S a n N ⎛⎫=--∈ ⎪⎝⎭,则3a = ,7S = .15. 定义{},max ,,a a ba b b a b ≥⎧=⎨<⎩,已知(){}max 11,2f x x x =++,()g x ax b =+.若()()f x g x ≤对[)1+x ∈∞,恒成立,则2a b +的最小值是 .16. 已知向量,,a b c ,其中||2-=a b ,||1-=a c ,b 与c 夹角为60︒,且()()1-⋅-=-a b a c .则a 的最大值为 .17. 已知实数,a b 满足:2224b a -=,则2a b -的最小值为 .三、解答题:本大题共5小题,共74分18. (14分)已知()sin 3f x x x π⎛⎫=+ ⎪⎝⎭,ABC △中,角A ,B ,C 所对的边为a ,b ,c .(1)若,22x ππ⎡⎤∈-⎢⎥⎣⎦,求()f x 的值域;(2)若()13f A =,a =2b =,求sin B 的值.19. (15分)已知多面体P ABCD -中,AB CD ∥,90BAD PAB ==︒∠∠,12AB PA DA PD DC ====, M 为PB 中点.(1)求证:PA CM ⊥;(2)求直线BC 与平面CDM 所成角的正弦.20. (15分)设数列{}n a 是等比数列,数列{}n b 是等差数列,若223a b ==,359a b ==.(1)若nn n n b c a ⋅=,数列{}n c 中的最大项是第k 项,求k 的值;(2)设n n n d a b =⋅,求数列{}n d 的前n 项和n T .21. (15分)过椭圆2212x y +=的左焦点F 作斜率为1k (10k ≠)的直线交椭圆于A ,B 两点,M 为弦AB的中点,直线OM 交椭圆于C ,D 两点. (1)设直线OM 的斜率为2k ,求12k k 的值;(2)若F ,B 分别在直线CD 的两侧,2MB M M C D =⋅,求△FCD的面积.22. (15分)设函数()1x f x e x =+≥-M BPAD C(1)当1a =-时,若0x 是函数()f x 的极值点,求证:0102x -<<;(2)(i )求证:当0x ≥时,()2112f x x x ≥+++(ii )若不等式()25242f x ax x a++≤对任意0x ≥恒成立,求实数a 的取值范围.注:e=2.71828…为自然对数的底数.。
浙江省宁波市五校联盟2023-2024学年高一上学期期中联考数学试题含解析
2023学年第一学期宁波五校联盟期中联考高一年级数学学科试题(答案在最后)考生须知:1.本卷共5页满分150分,考试时间120分钟.2.答题前,在答题卷指定区域填写班级、姓名、考场号、座位号及准考证号并填涂相应数字.3.所有答案必须写在答题纸上,写在试卷上无效.4.考试结束后,只需上交答题纸.选择题部分一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{}{}{}1,2,3,4,5,6,1,3,5,3,4,5U A B ===,则()U A B ⋃=ð()A.{}2,6 B.{}3,5 C.{}1,3,4,5 D.{}1,2,4,6【答案】A 【解析】【分析】先求A B ⋃,再求补集可得答案.【详解】集合{}{}{}1,3,53,4,51,3,4,5== A B ,则(){}2,6U A B ⋃=ð.故选:A.2.=是“22=”的()A .充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】利用充分必要条件的判断方法判断即可.=1,1a b =-=-,22=不成立,则充分性不成立;当22=时,0a b =≥,则220a b =≥,=综上:=是“22=”的必要不充分条件.故选:B.3.已知命题p :“R x ∃∈,210x ax -+<”为假命题,则实数a 的取值范围为().A.(],2-∞ B.()2,2-C.()(),22,∞∞--⋃+ D.[]22-,【答案】D 【解析】【分析】由命题p ⌝为真命题,则0∆≤,解不等式得出实数a 的取值范围即可.【详解】命题2:,10p x R x ax ∃∈++<为假命题,所以2:,10p x R x ax ⌝∀∈++≥为真命题,则240a ∆=-≤,解得[]2,2a ∈-故选:D4.已知0x >,0y >,且21x y +=,下列结论中错误的是()A.xy 的最大值是18B.24x y +的最小值是2C.12x y+的最小值是9 D.224x y +的最小值是12【答案】B 【解析】【分析】根据基本不等式判断各选项即可.【详解】对于A ,由0x >,0y >,且21x y +=,由2x y +≥,当且仅当122x y ==时,等号成立,所以1≤,解得18xy ≤,即xy 的最大值为18,故A 正确;对于B ,由22224x y x y =+≥=+=当且仅当122x y ==时,等号成立,所以24x y +最小值为B 错误;对于C ,()1212222559y x x y x y x y x y ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当22y x x y =,即13x y ==时,等号成立,所以12x y +的最小值是9,故C 正确;对于D ,由()2222224212224x y x yx y +++⎛⎫=≥= ⎪⎝⎭,当且仅当122x y ==时,等号成立,所以224x y +的最小值是12,故D 正确.故选:B.5.设(,)a -∞是函数245y x x =-+的一个减区间,则实数a 的取值范围为()A.2a ≤- B.2a ≥- C.2a ≥ D.2a ≤【答案】A 【解析】【分析】根据图象的翻折变换作出函数图象,观察图象可得.【详解】函数224545y x x x x =-+=-+,先作函数245y x x =-+的图象,如图:根据函数图象的翻折变换可得245y x x =-+的图象如图:由图可知,当2a ≤-时,(,)a -∞是函数245y x x =-+的一个减区间,所以,实数a 的取值范围为(,)a -∞.故选:A6.已知函数()f x 是偶函数,()g x 是奇函数,满足2()()2f x g x x x +=+-,则(2)f =()A.1B.2C.3D.4【答案】B 【解析】【分析】根据奇偶性求得函数()f x ,然后再代入计算函数值.【详解】2()()2f x g x x x +=+-,则2()()2f x g x x x +-=---,又函数()f x 是偶函数,()g x 是奇函数,则2()()2f x g x x x =---,所以()()()()()()22222222x x x x f x g x f x g x f x x +-+--⎡⎤⎡⎤++-⎣⎦⎣⎦===-,2(2)222f =-=,故选:B .7.已知2535a ⎛⎫= ⎪⎝⎭,3525b ⎛⎫= ⎪⎝⎭,2525c ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系为()A.a b c <<B.c b a <<C.b<c<aD.c<a<b【答案】C 【解析】【分析】根据指数函数和幂函数的单调性即可比较.【详解】25y x= 在()0,+¥为增函数,22553255⎛⎫⎛⎫∴> ⎪ ⎪⎝⎭⎝⎭,即a c >,25xy ⎛⎫= ⎪⎝⎭为减函数,32552255⎛⎫⎛⎫∴< ⎪ ⎪⎝⎭⎝⎭,即b c <,a c b ∴>>,故选:C.【点睛】本题考查了指数函数和幂函数的单调性,属于基础题.8.已知幂函数f (x )=x a 的图象经过点(2),则函数f (x )为()A.奇函数且在()0,+∞上单调递增B.偶函数且在()0,+∞上单调递减C.非奇非偶函数且在()0,+∞上单调递增D.非奇非偶函数且在()0,+∞上单调递减【答案】C 【解析】【分析】根据已知求出a=12,从而函数f(x)=12x ,由此得到函数f(x)是非奇非偶函数且在(0,+∞)上单调递增.【详解】∵幂函数f(x)=x a),∴2a,解得a=12,∴函数f(x)=12x ,∴函数f(x)是非奇非偶函数且在(0,+∞)上单调递增.故选C.【点睛】本题考查命题真假的判断,考查幂函数的性质等基础知识,考查运算求解能力,是基础题.二、多项选择题(本大题共4个小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求全部选对得5分,选对但不全的得3分,有选错的得0分)9.下列各组函数中是同一函数的是()A.()f x =()g x =B.()f x =,()g x =C.()||f x x =,()g t =D.()1f x x =+,()1g t t =-【答案】BC 【解析】【分析】逐一判断定义域和对应关系即可.【详解】A 选项:由1010x x +≥⎧⎨-≥⎩得()f x 的定义域为[)1,+∞,由()()110x x +-≥解得()g x 的定义域为(][),11,-∞-⋃+∞,A 错误;B 选项:由1010x x +≥⎧⎨-≥⎩得()f x 的定义域为[]1,1-,由()()110x x +-≥解得()g x 的定义域为[]1,1-,且()f x ==,故B 正确;C 选项:()f x 和()g x 的定义域都是R ,()g t t ==,对应关系相同,故C 正确;D 选项:对应关系不同,故D 错误.故选:BC10.已知关于x 的不等式20ax bx c ++>的解集为{|2x x <-或}3x >,则下列说法正确的是()A.0a >B.不等式0bx c +>的解集是{}6x x <C.0a b c ++<D.不等式20cx bx a -+<的解集是{1|3x x <-或12x ⎫>⎬⎭【答案】ACD 【解析】【分析】由不等式20ax bx c ++>与方程20ax bx c ++=之间的关系及题设条件得到,,a b c 之间的关系,然后逐项分析即可得出正确选项.【详解】由题意不等式20ax bx c ++>的解集为{|2x x <-或}3x >,则可知0a >,即A 正确;易知,2-和3是方程20ax bx c ++=的两个实数根,由韦达定理可得2323b ac a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,则,6b a c a =-=-;所以不等式0bx c +>即为60ax a -->,解得6x <-,所以B 错误;易知60a b c a ++=-<,所以C 正确;不等式20cx bx a -+<即为260ax ax a -++<,也即2610x x -->,解得{1|3x x <-或12x ⎫>⎬⎭,所以D 正确.故选:ACD11.如果函数()f x 在[],a b 上是增函数,对于任意的[]()1212,,x x a b x x ∈≠,则下列结论中正确的是()A.()()1212f x f x x x ->- B.()()()12120x x f x f x -->⎡⎤⎣⎦C.()()()()12f a f x f x f b ≤<≤ D.()()12f x f x >【答案】AB 【解析】【分析】根据函数单调性的等价条件进行判断即可.【详解】由函数单调性的定义可知,若函数()f x 在给定的区间上是增函数,则12x x -与()()12f x f x -同号,由此可知,选项A ,B 正确;对于选项C ,D ,因为12,x x 的大小关系无法判断,则()()12,f x f x 的大小关系确定也无法判断,故C ,D 不正确.故选:AB【点睛】结论点睛:若函数()f x 在[],a b 上是增函数,对于任意的[]()1212,,x x a b x x ∈≠,则有()()12120f x f x x x ->-(或者()()()12120x x f x f x -->⎡⎤⎣⎦);若函数()f x 在[],a b 上是减函数,对于任意的[]()1212,,x x a b x x ∈≠,则有()()12120f x f x x x -<-(或者()()()12120x x f x f x --<⎡⎤⎣⎦);12.形如()()0af x x a x=+>的函数,我们称之为“对勾函数”.“对勾函数”具有如下性质:该函数在(上单调递减,在)+∞上单调递增.已知函数()()0af x x a x=+>在[]2,4上的最大值比最小值大1,则a 的值可以是()A.4B.12C.6-D.6+【答案】AD 【解析】2≤、4≥、24<<三种情况讨论,分别求出函数的最值,即可得到方程,解得即可.【详解】依题意可得()()0af x x a x=+>在(上单调递减,在)+∞上单调递增,2≤,即04a <≤时()f x 在[]2,4上单调递增,所以()()max 444a f x f ==+,()()min 222a f x f ==+,所以()()max min 4221424a a af x f x ⎛⎫-=+-+=-= ⎪⎝⎭,解得4a =;4≥,即16a ≥时()f x 在[]2,4上单调递减,所以()()min 444af x f ==+,()()max 222a f x f ==+,所以()()max min 2421244a a af x f x ⎛⎫-=+-+=-= ⎪⎝⎭,解得12a =(舍去);当24<<,即416a <<时()f x 在⎡⎣上单调递减,在4⎤⎦上单调递增,所以()min f x f ==,()()(){}max max 2,4f x f f =,若4242a a +>+且416a <<,即48a <<,()()max 444af x f ==+,所以()()max min 414af x f x -=+-=,解得4a =或36a =(舍去);若4242a a +≤+且416a <<,即816a ≤<,()()max 222a f x f ==+,所以()()max min 212af x f x -=+-=,解得6a =+或6a =-(舍去);综上可得6a =+或4a =.故选:AD非选择题部分三、填空题(本大题共4个小题,每小题5分,共20分)13.221302182********--⎛⎫⎛⎫+--= ⎪ ⎪⎝⎭⎝⎭______.【答案】54-【解析】【分析】根据幂的运算法则计算.【详解】222133()03218295202316144()1227344--⨯-⎛⎫⎛⎫+--=+--=-=- ⎪ ⎪⎝⎭⎝⎭,故答案为:54-.14.集合{}Z |23A x x =∈-≤<的子集个数是______.【答案】32【解析】【分析】确定出集合A 中元素个数,由子集的概念可得.【详解】由已知{2,1,0,1,2}A =--,A 有5个元素,它的子集个数为5232=.故答案为:32.15.若函数()f x x x a =-在区间(0,2]上既有最小值又有最大值,那么实数a 的取值范围是______.【答案】(0,2]【解析】【分析】当a<0,0a =讨论函数单调性,当0a >时,利用函数图象分析可得.【详解】当a<0时,在(0,2]上2()f x x ax =-,对称轴为2ax =,所以,函数()f x 在(0,2]上单调递增,所以()f x 有最大值,无最小值;当0a =时,在(0,2]上2()f x x =,在(0,2]上单调递增,所以()f x 有最大值,无最小值;当0a >时,22,(),x ax x af x ax x x a ⎧-≥=⎨-<⎩,函数图象如图所示,()f x 在0,2a ⎛⎫ ⎪⎝⎭和(),a +∞上单调递增,在,2a a ⎛⎫⎪⎝⎭上单调递减,要使()f x 在(0,2]上既有最小值又有最大值,则02a <≤,即实数a 的取值范围为(0,2].故答案为:(0,2]16.设()f x 是定义在R 上的奇函数,且当0x ≥时,2()f x x =,若对任意的[,1]x t t ∈+,不等式()2()f x t f x +≥恒成立,则实数t 的最小值是______.【答案】2【解析】【分析】由奇偶性求得()f x 的解析式,从而可得2())f x f =,然后由函数的单调性求解不等式.【详解】由已知0x <时,22()()()f x f x x x =--=--=-,即22,0(),0x x f x x x ⎧≥=⎨-<⎩,所以()f x 在R 上是增函数,且2())f x f =,不等式()2()f x t f x +≥化为())f x t f +≥,所以x t +≥,1)x t -≤,所以1)x t ≤,在[,1]x t t ∈+时恒成立,1)(1)t t -+≤,2t ≥,所以t 的最小值是2,故答案为:2.四、解答题(共6小题,共70分.解答题应写出文字说明,证明过程或演算步骤)17.已知集合A x y ⎧⎫⎪==⎨⎪⎩,{|123}B x m x m =-≤≤+.(1)当0m =时,求A B ⋂,A B ⋃;(2)若B A ⊆时,求实数m 的取值范围.【答案】(1)[1,2)A B ⋂=,(1,3]A B =- .(2)1,2⎛⎫-∞-⎪⎝⎭.【解析】【分析】(1)先解一元二次不等式得集合A ,然后由集合的运算可得;(2)根据集合的包含关系可解.【小问1详解】由220-++>x x 解得(1,2)A =-,当0m =时,[1,3]B =,故[1,2)A B ⋂=,(1,3]A B =- .【小问2详解】由题知B A ⊆,(ⅰ)当123m m ->+,即23m <-时,B =∅符合题意;(ⅱ)当123m m -≤+,即23m ≥-时,B ≠∅,因为B A ⊆,所以11232m m -<-⎧⎨+<⎩,解得12m <-,所以2132m -≤<-.综上所述,实数m 的取值范围为12∞⎛⎫--⎪⎝⎭.18.已知命题2:23,0p x x a ∀≤≤-≥,命题2:R,220q x x ax a ∃∈++=.(1)若命题p ⌝为假命题,求实数a 的取值范围;(2)若命题p 和q ⌝均为真命题,求实数a 的取值范围.【答案】(1)(],4∞-(2)()0,2【解析】【分析】(1)根据题意,由条件可得命题p 为真命题,列出不等式,即可得到结果;(2)根据题意,先求得当命题q 为真命题时a 的范围,即可得到q ⌝为真命题时a 的范围,再结合(1)中的结论,即可得到结果.【小问1详解】若命题p ⌝为假命题,则命题p 为真命题,即2a x ≤在[]2,3x ∈恒成立,所以()2min 4a x≤=,即实数a 的取值范围是(],4∞-.【小问2详解】当命题q 为真命题时,因为2R,220x x ax a ∃∈++=,所以2480a a ∆=-≥,解得0a ≤或2a ≥,因为q ⌝为真命题,则02a <<,又由(1)可知,命题p 为真命题时4a ≤,所以4a ≤且02a <<,即实数a 的取值范围是()0,2.19.已知二次函数2()(24)3(15)f x x a x a x =--++≤≤.(1)记()f x 的最小值为()g a ,求()g a 的解析式;(2)记()f x 的最大值为()h a ,求()h a 的解析式.【答案】(1)28,3()51,37489,7a a g a a a a a a -<⎧⎪=-+-≤≤⎨⎪->⎩(2)489,5()8,5a a h a a a -<⎧=⎨-≥⎩【解析】【分析】(1)结合二次函数()f x 的图像和性质,分类讨论单调性和最小值,求出()g a ,最后写成分段函数的形式即可;(2)结合二次函数()f x 的图像和性质,分类讨论函数最大值,求出()h a ,最后写成分段函数的形式即可.【小问1详解】二次函数()f x 的图像抛物线开口向上,对称轴为直线2=-x a ,(ⅰ)当21a -≤,即3a ≤时,此时()f x 在区间[1,5]上单调递增,所以()f x 的最小值()(1)8g a f a ==-;(ⅱ)当25a -≥,即7a ≥时,此时()f x 在区间[1,5]上单调递减,所以()f x 的最小值()(5)489g a f a ==-;(ⅲ)当125a <-<,即37a <<时,函数()f x 在[]1,2a -上单调递减,在(]25a -,上单调递增,此时()f x 的最小值2()(2)51g a f a a a =-=-+-;综上所述,()28,351,37489,7a a g a a a a a a -≤⎧⎪=-+-<<⎨⎪-≥⎩.【小问2详解】二次函数()f x 的图像抛物线开口向上,对称轴为直线2=-x a ,(ⅰ)当23a -<,即5a <时,右端点5x =距离对称性较远,此时()f x 的最大值()(5)489h a f a ==-;(ⅱ)当23a -≥,即5a ≥时,左端点1x =距离对称轴较远,此时()f x 的最大值()(1)8h a f a ==-;综上所述,489,5()8,5a a h a a a -<⎧=⎨-≥⎩.20.(1)已知正数,a b 满足121a b+=,求8a b +的最小值;(2)已知正数,a b 满足21a b +=,求11a ab+的最小值.【答案】(1)25;(2)5+.【解析】【分析】(1)(2)妙用“1”求解即可.【详解】(1)因为121a b+=,所以128(8)a b a b a b ⎛⎫+=++⎪⎝⎭281161717825a b b a =+++≥+=+=,当且仅当28121a b b a a b⎧=⎪⎪⎨⎪+=⎪⎩,即552a b =⎧⎪⎨=⎪⎩时,取得最小值,最小值为25.(2)因为21a b +=,所以111231a b a ab a ab a b++=+=+316(2)32552b a a b a b a b ⎛⎫=++=+++≥++ ⎪⎝⎭,当且仅当621b a a b a b ⎧=⎪⎨⎪+=⎩,即312a b ⎧=-⎪⎨=-⎪⎩时,取得最小值,最小值为5+.21.“绿色低碳、节能减排”是习近平总书记指示下的新时代发展方针.某市一企业积极响应习总书记的号召,采用某项新工艺,把企业生产中排放的二氧化碳转化为一种可利用的化工产品,以达到减排效果.已知该企业每月的二氧化碳处理量最少为300吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系式可近似地表示为213001250002y x x =-+,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该企业每月处理量为多少吨时,才能使其每吨的平均处理成本最低?(2)该市政府也积极支持该企业的减排措施,试问该企业在该减排措施下每月能否获利?如果获利,请求出最大利润;如果不获利,则该市政府至少需要补贴多少元才能使该企业在该措施下不亏损?【答案】(1)500(2)不能获利,该市政府需要补贴45000元【解析】【分析】(1)由题意列出每吨二氧化碳的平均处理成本的表达式,进而结合基本不等式求解即可;(2)由题意列出该企业每月的利润的函数表达式,进而结合二次函数的性质求解即可.【小问1详解】由题意,()213001250003006002y x x x =-+≤≤,所以每吨二氧化碳的平均处理成本为11250003003002002y x x x =-+≥=元,当且仅当11250002x x=,即500x =时,等号成立,所以该企业每月处理量为500吨时,才能使其每吨的平均处理成本最低.【小问2详解】设该企业每月的利润为()P x ,则()()22211130012500040012500040045000022210x P x x x x x x -++-=⎛⎫=-=- -⎪⎝⎭--,因为300600x ≤≤,所以当400x =时,函数()P x 取得最大值,即()()max 40045000P x P ==-,所以该企业每月不能获利,该市政府至少需要补贴45000元才能使该企业在该措施下不亏损.22.已知函数21()x f x ax b+=+是定义域上的奇函数,且(1)2f -=-.(1)判断并用定义证明函数()f x 在(0,)+∞上的单调性;(2)设函数()()g x f x m =-,若()g x 在(0,)+∞上有两个零点,求实数m 的取值范围;(3)设函数221()2()(0)h x x t f x t x =+-⋅<,若对121,,22x x ⎡⎤∀∈⎢⎥⎣⎦,都有()()12154h x h x -≤,求实数t 的取值范围.【答案】(1)()f x 在(0,1)上单调递减,在(1,)+∞上单调递增,证明见解析(2)m>2(3)3,02⎡⎫-⎪⎢⎣⎭【解析】【分析】(1)根据奇函数性质和已知列方程求出a ,b ,然后按照定义法证明单调性的步骤取值、作差、化简、定号、下结论即可;(2)利用一元二次方程根的分布列不等式组求解可得;(3)令1z x x =+换元得222y z tz =--,将问题转化为求最值问题,然后由()()max min 154h z h z -≤求解可得.【小问1详解】由(1)2f -=-,且()f x 是奇函数,得(1)2f =,于是2222a b a b ⎧=-⎪⎪-+⎨⎪=⎪+⎩,解得10a b =⎧⎨=⎩,即1()f x x x =+.经检验,()f x 是奇函数,满足题意.函数()f x 在(0,1)上单调递减,在(1,)+∞上单调递增,证明如下:任取12,(0,)x x ∈+∞,且12x x <,则()()()()121212121212121211111x x f x f x x x x x x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫--=+-+=--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,当12,(0,1)x x ∈,且12x x <,则120x x -<,1201x x <<,∴1210x x -<,∴12())0(f x f x ->,即()()12f x f x >,所以,函数()f x 在(0,1)上单调递减.当()12,1,x x ∈+∞,且12x x <,则120x x -<,121x x >,∴1210x x ->,∴12())0(f x f x -<,即()()12f x f x <所以,函数()f x 在(1,)+∞上单调递增.【小问2详解】函数()g x 在(0,)+∞上有两个零点,即方程10x m x+-=在(0,)+∞上有两个不相等的实数根,所以210x mx -+=在(0,)+∞上有两个不相等的实数根,则21212Δ400210m m x x x x ⎧=->⎪⎪+=>⎨⎪=>⎪⎩,解得m>2.【小问3详解】由题意知2221111()222h x x t x x t x x x x x ⎛⎫⎛⎫⎛⎫=+-+=+-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令1z x x=+,则222y z tz =--,由(1)可知函数1z x x =+在1,12⎡⎤⎢⎥⎣⎦上单调递减,在[1,2]上单调递增,∴52,2z ⎡⎤∈⎢⎥⎣⎦,因为函数222y z tz =--的对称轴方程为0z t =<,∴函数222y z tz =--在52,2⎡⎤⎢⎥⎣⎦上单调递增,当2z =时,222y z tz =--取得最小值,min 42y t =-+;当52z =时,222y z tz =--取得最大值,max 1754y t =-+.所以min ()42h x t =-+,max 17()54h x t =-+,又因为对任意的1x ∀,21,22x ⎡⎤∈⎢⎥⎣⎦都有()()12154h x h x -≤恒成立,∴max min 15()()4h x h x -≤,即17155(42)44t t -+--+≤,解得32t ≥-,。
2019年10月浙江省学考选考浙江省五校联考2019学年第一学期五校联考数学试题参考答案
2019∴O D C M ,,,∴OM DC //OM AB DC AB //,//⊥PA DO O PA ===aB b A 6sin sin 2=A Ba b sin sin =−+=+ππA A 336sin sin[()]1−=A 33cos()1−∈−πππA 333(,)2=−=πf A A 33()sin()1−2[1,]1f x ()∴−∈−πππx 366[,]5∈−ππx 22[,]=−=−πx x x 223sin cos sin()1=+ππf x x x x 33()sin cos cos sin 3−2561−161⎩⎭⎨⎬<<⎧⎫x x 312|15<x x {|0}5421−2学年第一学期五校联考参考答案一、选择题:1-5 BCDAA 6-10 ADCDB二、填空题:11.,3 12. , 13. , 14., 15. 5 16. 17. 2 三、解答题:18.解:(I)…………………………………………(4分) 当时,,的值域是……(3分) (II) ,由于,则 于是,………………………(4分) 由正弦定理得: ………………………(3分)19.解:(Ⅰ)证明:取的中点则--------------①四点共面高三年级数学学科命题:杭州高级中学又//AB OM AB PA ⊥且PA OM ∴⊥------------②由①②及DO OM O ⋂= PA ODCM ∴⊥面PA CM ∴⊥………………………………(5分)(Ⅱ)过点B 作OM 延长线的垂线且交OM 延长线于Q 点 , 则BQ OQ ⊥ 由(Ⅰ)知PA ODCM ∴⊥面, ODCM PAB ∴⊥面面又=ODCM PAB OQ ⋂面面, BQ ODCM ∴⊥面BCQ ∴∠为求直线BC 与平面CDM 所成角设1=22AB PA DA PD DC ====, 则1BC BQ ==sin4BCQ ∴∠==………………………………(10分) 20.解:()1即13n n a −=,21n b n =−,…………………… (3分)()1213n n n n c −⋅−=, ()()()111212133n n n n n n n n c c +−++−−=−=24613n n n −++ 令10n n c c +−>即24610n n −−<解得1n =21c c ∴>当2n ≥时,10n n c c +−<,此时数列{}n c 单调递减∴数列{}n c 中的最大项为第2项,2k ∴=……………………………………(5分) (II )221133353(23)+3(21)n n n T n n −−=+⋅+⋅++−−23133133353(23)3(21)n n n T n n −=⋅+⋅+⋅++⋅−+⋅− 相减得:13(13)2123(21)13n n n T n −−−=+⋅−⋅−− 于是:3(1)1n n T n =−+…………………………………………(7分) 解:(1)左焦点F 的坐标为(1,0)−1(1)y k x =+ 代入2212x y += 2222111(12)4220k x k x k +++−=设1122(,),(,)A x y B x y ,0.0(,)M x y 则221112122211422,1212k k x x x x k k −+=−=++ 21210212212x x k x k +==−+ ,101021(1)12k y k x k =+=+ 2112OM k k k ==− ,所以1212k k =− (2)12AB x =−=21211)12k k +=+ , 2y k x = 代入2212x y +=,得D x =,C x =00MC MD ⋅=+222221202222212222(1)(1)()121212k k x k k k k =+−=+−+++ 因为2MB MC MD =⋅,所以214AB MC MD =⋅, 2222211122221112(1)24()(12)1212k k k k k k +=−+++ ,解得2112k = 所以{}12,,22k k =−⎨⎪⎪⎩⎭,由对称性,不妨设12,22k k ==− 直线CD20y += ,点F 到直线CD距离分别是3F d =C D CD x =−==四边形FCBD 的面积为12F CD d ⋅ 22. (1)当1a =−时,()x f x e =1x ≥−()x f x e '= 显然,()f x '在()1,−+∞上递增,又1()02f '−=−<,1(0)102f '=−>所以()0x f x e '=−=在1,02⎛⎫− ⎪⎝⎭有唯一零点 所以0102x −<<………………………………(6分)(2)(i)证明:设2211()()(1(1)22x h x f x x x e x x =−+++=−++,0x ≥ 则()(1)xh x e x '=−+,0x ≥那么()1x h x e ''=−,0x ≥当0x >时,()10x f x e '''=−>所以()(1)x f x e x '=−+在()0∞,+上递增 故()(0)0f x f ''≥= 所以21()(1)2x f x e x x =−++在()0∞,+上递增 故()(0)0f x f ≥= 所以2112x e x x ≥++………………………………(4分)(ii)在25242x a e x x a+++≤中,令0x =,得01a <≤ 当01a <≤时,2255(2)(2)4242x a e a x x x x a −++=++251(2)142x e x x ≥+++设251()(2)42x g x e x x =++,则5()()4x g x e x '=+ 由(i )得,当0x ≥时2515()()1()424x g x e x x x x '=+−+≥++++21124x =+−,当1x ≥时,221111110242424x x +−>−≥−>当01x ≤<时,2111102444x +−≥>−=所以当0x ≥时,()0g x '>,251()(2)42x g x e x x =++在()0∞,+上递增 所以()(0)0g x g ≥=,因此当01a <≤时,不等式25()242a f x x x a ++≤对任意0x ≥恒成立。
浙江省2019届高三上学期“五校联考”第一次技术考试答案
② ____ k=k+1 (3)_____20____ 15.flash(共 8 分) (1) __________ACD____________________ (注:全部选对的得 2 分,选对但不全的得 1 分,不选或有选错的得 0 分) (2) _________B______________ (3) _ (4) 能 stop();stopAllSounds(); ___ _____ _
2018 学年浙江分
1-12 选择题(2X12=24 分) 1 D 2 B 3 B 4 D 5 D 6 B 7 B 8 A 9 C 10 D 11 C 12 A
信息技术
13.excel(共 4 分) (1)=E4-$E$14 或=E4-AVERAGE($E$4:$E$13)或=E4-E$14 或=E4-AVERAGE(E$4:E$13)(1 分) (4)____________A_____________ __ (3)____A3:A13,E3:F13 (4)_________6___________ 14.vb(共 5 分) (1)________________B_______________ (2) ① ____i=left (1 分) (2 分) ___________________ (1 分) (1 分) (1 分) (1 分) (1 分)
(2 分) (2 分)
17. vb 加试 2(共 5 分) (1)__________31275261_________________ (2) ①___________a(j) = 1 - a(j) ②______ (j - 1) * 6 + 1___ ___ _________ ___ ___ (1 分) (2 分) (1 分) (1 分)
浙江省2019-2020学年第一学期五校联考试题高三年级数学试题卷参考答案
2019学年第一学期五校联考参考答案高三年级数学学科命题:杭州高级中学一、选择题:1-5 BCDAA 6-10 ADCDB二、填空题:11.2−,3 12. 12,45 13. {|0}x x <,15|312x x ⎧⎫<<⎨⎬⎩⎭ 14.116−,1256− 15. 516. 3 17. 2 三、解答题:18.解:(I)()sin cos cos sin 33f x x x x ππ=+1sin cos sin()223x x x π=−=−…………………………………………(4分) 当[,]22x ππ∈−时,5[,]366x πππ−∈−,∴()f x 的值域是1[1,]2−……(3分) (II) 1()sin()33f A A π=−=,由于2(,)333A πππ−∈−,则1cos()33A −=于是1sin sin[()]336A A ππ+=−+=,………………………(4分) 由正弦定理sin sin a b A B=得:2sin sin 6b A B a===………………………(3分)19.解:(Ⅰ)证明:取PA 的中点O则PA DO ⊥--------------①//,//OM AB DC AB//OM DC ∴,,,O D C M ∴四点共面又−=−+T n n n 3(1)1−−=+⋅−⋅−−−T n n n n 132123(21)3(13)1=⋅+⋅+⋅++⋅−+⋅−−T n n n n n 33133353(23)3(21)231=+⋅+⋅++−−−−T n n n n n 133353(23)+3(21)221∴=k 2c n }{∴c n }{−<+c c n n 01≥n 2∴>c c 21=n 1−−<n n 46102−>+c c n n 01−++n n n 34612−=−++−−+c c n n n n n n n n 331212111)()()(=⋅−−c n n n n 3211)(=−b n n 21=−a n n 311)(∴∠==BCQ4sin==BC BQ 1====AB PA DA PD DC 2=21CDM BC ∴∠BCQ 面∴⊥BQ ODCM 面面⋂ODCM PAB OQ =面面∴⊥ODCM PAB 面∴⊥PA ODCM ⊥BQ OQ Q OM OM B ∴⊥PA CM 面∴⊥PA ODCM ⋂=DO OM O ∴⊥PA OM 且⊥AB OM AB PA //------------②由①②及………………………………(5分)(Ⅱ)过点作延长线的垂线且交延长线于点 , 则 由(Ⅰ)知,又,为求直线与平面所成角设, 则 ………………………………(10分) 20.解:即,,…………………… (3分), = 令即解得当时,,此时数列单调递减数列中的最大项为第2项,……………………………………(5分) (II )相减得: 于是:…………………………………………(7分) 解:微信公众号:浙考神墙750(1)左焦点F 的坐标为(1,0)1(1)y k x =+ 代入2212x y += 2222111(12)4220k x k x k +++−=设1122(,),(,)A x y B x y ,0.0(,)M x y 则221112122211422,1212k k x x x x k k −+=−=++ 21210212212x x k x k +==−+ ,101021(1)12k y k x k =+=+ 2112OM k k k ==− ,所以1212k k =− (2)12AB x =−=21211)12k k +=+ , 2y k x = 代入2212x y +=,得D x =,C x =00MC MD ⋅=+222221202222212222(1)(1)()121212k k x k k k k =+−=+−+++ 因为2MB MC MD =⋅,所以214AB MC MD =⋅, 2222211122221112(1)24()(12)1212k k k k k k +=−+++ ,解得2112k = 所以{}12,,22k k =−⎨⎪⎪⎩⎭,由对称性,不妨设12,22k k ==− 直线CD20y += ,点F 到直线CD距离分别是3F d =C D CD x =−==四边形FCBD 的面积为12F CD d ⋅ 22. (1)当1a =−时,()x f x e =1x ≥−()x f x e '= 显然,()f x '在()1,−+∞上递增,又1()02f '−=−<,1(0)102f '=−>所以()0x f x e '=−=在1,02⎛⎫− ⎪⎝⎭有唯一零点 所以0102x −<<………………………………(6分)(2)(i)证明:设2211()()(1(1)22x h x f x x x e x x =−+++=−++,0x ≥ 则()(1)xh x e x '=−+,0x ≥那么()1x h x e ''=−,0x ≥当0x >时,()10x f x e '''=−>所以()(1)x f x e x '=−+在()0∞,+上递增 故()(0)0f x f ''≥= 所以21()(1)2x f x e x x =−++在()0∞,+上递增 故()(0)0f x f ≥= 所以2112x e x x ≥++………………………………(4分)(ii)在25242x a e x x a+++≤中,令0x =,得01a <≤ 当01a <≤时,2255(2)(2)4242x a e a x x x x a −++=++251(2)142x e x x ≥+++设251()(2)42x g x e x x =++,则5()()4x g x e x '=+ 由(i )得,当0x ≥时2515()()1()424x g x e x x x x '=+−+≥++++21124x =+−,当1x ≥时,221111110242424x x +−>−≥−>当01x ≤<时,2111102444x +−≥>−=所以当0x ≥时,()0g x '>,251()(2)42x g x e x x =++在()0∞,+上递增 所以()(0)0g x g ≥=,因此当01a <≤时,不等式25()242a f x x x a ++≤对任意0x ≥恒成立。
2019届高考数学(理)一轮复习讲练测:专题6.2 等差数列及其前n项和(测)(解析版)
班级__________ 姓名_____________ 学号___________ 得分__________一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.【浙江省高三第一次五校联考】在等差数列{}n a 中,53a =,62a =-,则348a a a ++等于( )A. 1B. 2C. 3D. 4 【答案】C. 【解析】试题分析:∵等差数列{}n a ,∴3847561a a a a a a +=+=+=,∴3483a a a ++=.2.【辽宁省沈阳市东北育才学校高三八模】等差数列{}n a 中,564a a +=,则10122log (222)a a a ⋅= ( )A.10B.20C.40D.22log 5+ 【答案】B 【解析】 试题分析:因为10121056125()54222222a a a a a a a a ++++⨯⋅⋅⋅===,所以10125422log (222)log 220.a a a ⨯⋅⋅⋅==选B.3. 数列{}n a 为等差数列,满足242010a a a +++=,则数列{}n a 前21项的和等于( )A .212B .21C .42D .84 【答案】B 【解析】4.各项均为正数的等差数列}{n a 中,4936a a =,则前12项和12S 的最小值为( ) (A )78 (B )48 (C )60 (D )72 【答案】D 【解析】试题分析:因为112124912()6()722a a S a a +==+≥=,当且仅当496a a ==时取等号,所以12S 的最小值为72,选D.5.【改编题】已知n S 是等差数列{}n a 的前n 项和,则=-nnn S S S 32( ) A. 30 B. 3 C. 300 D. 31 【答案】D【解析】因为)(2)(231212n n n n n a a n a a n S S +=+=-+,)(23313n n a a nS +=,所以3132=-n n n S S S .6.【改编题】已知n S 是公差d 不为零的等差数列}{n a 的前n 项和,且83S S =,k S S =7(7≠k ),则k 的值为( )A. 3B.4C.5D.6 【答案】B【解析】依题意,83S S =可知d a d a 2883311+=+,即d a 51-=,由k S S =7得d k k ka d a 2)1(2)17(7711-+=-⨯+,将d a 51-=代入化简得028112=+-k k , 解得4=k 或7-=k (舍去),选B.7.【2019新课标I 学易大联考二】已知数列{}n a 的前n 项和n S 满足21(1)22n n nS n S n n +-+=+*()n N ∈,13a =,则数列{}n a 的通项n a =( )A .41n -B .21n +C .3nD .2n +【命题意图】本题考查数列前n 项和n S 与通项n a 间的关系、等差数列通项公式等基础知识,意在考查学生的逻辑思维能力、运算求解能力,以及转化思想的应用. 【答案】A8.【2019新课标II 学易大联考一】《九章算术》有这样一个问题:今有女子善织,日增等尺,七日织二十一尺,第二日、第五日、第八日所织之和为十五尺,问第十日所织尺数为( ) A .6 B .9 C .12 D .15【命题意图】本题主要考查等差数列的通项公式与前n 项和公式,是基础题. 【答案】D【解析】由题知该女每天所织尺数等差数列,设为{}n a ,n S 是其前n 项和,则7S =177()2a a +=47a =21,所以4a =3,因为258a a a ++=53a =15,所以5a =5,所以公差54d a a =-=2,所以10a =55a d +=15,故选D.9.某企业为节能减排,用9万元购进一台新设备用于生产. 第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该设备每年生产的收入均为11万元. 设该设备使用了()n n N *∈年后,盈利总额达到最大值(盈利额等于收入减去成本),则n 等于( ) A.4 B.5 C.6 D.7 【答案】A【解析】设该设备第()n n N *∈的营运费用为n a 万元,则数列{}n a 是以2为首项,以2为公差的等差数列,则2n a n =,则该设备到第()n n N *∈年的营运费用总和为12242n a a a n +++=+++=()2222n n n n +=+,设第()n n N *∈的盈利总额为nS 万元,则()22119109n S n n n n n =-+-=-+-()2516n =--+,因此,当5n =时,n S 取最大值16,故选B.10.【原创题】已知等差数列}{n a 中,59914,90a a S +==, 则12a 的值是( ) A . 15 B .12-C .32-D .32【答案】B11.【原创题】已知等差数列765)1()1()1(53}{x x x n a a n n +++++-=,则,的展开式中4x 项的系数是数列}{n a 中的 ( )A .第9项B .第10项C .第19项D .第20项 【答案】D .【解析】由二项式定理得567(1)(1)(1)x x x +++++的展开式中4x 项的系数为44456776551555123C C C ⨯⨯++=++=⨯⨯,由3555n -=,得20n =,故选D .12.【2019浙江理6】如图所示,点列{}{},n n A B 分别在某锐角的两边上,且1n n A A +=12n n A A ++,2n n A A +≠,n ∈*N ,112n n n n B B B B +++=,2n n B B +≠,n ∈*N (P Q≠表示点P 与点Q 不重合).若n n n d A B =,n S 为1n n n A B B +△的面积,则( ).S nB 1B 2B nB 3B n+1A n+1A 3A nS 1S 2A 2A 1••••••••••••••••••A. {}n S 是等差数列B.2{}n S 是等差数列 C.{}n d 是等差数列 D.2{}n d 是等差数列【答案】A .【解析】设点n A 到对面直线的距离为n h ,则112n n n n+S h B B =. 由题目中条件可知1n n B B +的长度为定值,则1212n n S h B B =.那么我们需要知道n h 的关系式,过点1A 作垂直得到初始距离1h ,那么1,n A A 和两个垂足构成了直角梯形,那11tan n n h h A A θ=+⋅,其中θ为两条线的夹角,那么11121(tan )2n n S h A A B B θ=+⋅.由题目中条件知112n n n n A A A A +++=,则()1121n A A n A A =-.所以()1121211tan 2n S h n A A B B θ=⎡+-⋅⎤⎣⎦,其中θ为定值,所以n S 为等差数列.故选A. 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.【2019江苏8】已知{}n a 是等差数列,n S 是其前n 项和.若2123a a +=-,510S =,则9a 的值是 .【答案】20【解析】设公差为d ,则由题意可得()2111351010a a d a d ⎧++=-⎪⎨+=⎪⎩,解得143a d =-⎧⎨=⎩,则948320a =-+⨯=.14.【2019北京理12】已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则6S =__________.【答案】615.如图,有一个形如六边形的点阵,它的中心是一个点(算第..1.层.),第2层每边有两个点,第3层每边有三个点,依次类推.(1) 试问第n 层()2n N n *∈≥且的点数为___________个; (2) 如果一个六边形点阵共有169个点,那么它一共有_____层.【答案】(1)()61n -;(2)8.16.【2019届江苏省盐城市高三第三次模拟考试】设n S 是等差数列{}n a 的前n 项和,若数列{}n a 满足2n n a S An Bn C +=++且0A >,则1B C A+-的最小值为 .【答案】【解析】试题分析:令1(1)n a a n d =+-,则1(1)2n n n S na d -=+, 又2n n a S An Bn C +=++ 所以2211(1)22d da n d na n n An Bn C +-++-=++ 即得2d A =,12dB a =+,1C a d =- 所以11122322d d B C a a d A d d +-=++-+=+因为0A >,所以0d >232d d +≥=232d d =即d =所以1B C A+-的最小值为故答案为三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【2019届广东省惠州市高三第一次调研考试】(本题10分)已知{}n a 为等差数列,且满足138a a +=,2412a a +=.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,若31,,k k a a S +成等比数列,求正整数k 的值. 【答案】(Ⅰ)2n a n =;(Ⅱ)2k = 【解析】18.【2019届宁夏银川一中高三上学期第一次月考】等差数列{}n a 中,13a =,前n 项和为n S ,等比数列{}n b 各项均为正数,11b =,且2212b S +=,{}n b 的公比22S q b = (1)求n a 与n b ;(2)求nS S S 11121+++ . 【答案】(1)n n a n 3)1(33=-+=,13-=n n b (2)23(1)n nS n =+【解析】19.【2019全国甲理17】n S 为等差数列{}n a 的前n 项和,且11a =,728S =.记[]lg n n b a =,其中[]x 表示不超过的最大整数,如[]0.90=,[]lg991=. (1)求1b ,11b ,101b ;(2)求数列{}n b 的前1000项和. 【答案】(1)0,1,2;(2)1893. 【解析】20.【江苏省盐城市高三第三次模拟考试】设函数21()1+f x px qx=+(其中220p q +≠),且存在无穷数列{}n a ,使得函数在其定义域内还可以表示为212()1n n f x a x a x a x =+++++.(1)求2a (用,p q 表示); (2)当1,1p q =-=-时,令12n n n n a b a a ++=,设数列{}n b 的前n 项和为n S ,求证:32n S <;(3)若数列{}n a 是公差不为零的等差数列,求{}n a 的通项公式. 【答案】(1)22a p q =-;(2)证明见解析;(3)1n a n =+. 【解析】试题分析:(1) 由21()1+f x px qx=+,得2212(1)(1)1n n px qx a x a x a x +++++++=,可利用展开式含未知量的系数为0,求得2a ;(2)由已知求出数列前两项,再由(3)nx n ≥的系数为0得到数列的递推式,代入12n n n n a b a a ++=后利用裂项相消法求得数列{}n b 的前n 项和为n S ,放大后证得32n S <; (3)由(2)120n n n a pa qa --++=,因数列{}n a 是等差数列,所以1220n n n a a a ---+=,所以12(2+)(1)n n p a q a --=-对一切3n ≥都成立,然后排出数列为常数列的情况,再结合数列的前两项即可得数列{}n a 的通项公式.21.【2019年山西高三四校联考】(本小题满分12分)在等差数列}{n a 中,11,552==a a ,数列}{n b 的前n 项和n n a n S +=2. (Ⅰ)求数列}{n a ,}{n b 的通项公式;(Ⅱ)求数列⎩⎨⎧⎭⎬⎫+11n n b b 的前n 项和n T .【答案】(I )12+=n a n ,⎩⎨⎧≥+==)2(,12)1(,4n n n b n ;(II ))32(2016+-=n n T n .(2)n=1时,2011211==b b T , n ≥2时,)321121(21)32)(12(111+-+=++=+n n n n b b n n , 所以 )32(201615101201)32151(21201)32112191717151(21201+-=+-+=+-+=+-+++-+-+=n n n n n n n T n n=1仍然适合上式, …………(10分) 综上,)32(201615101201+-=+-+=n n n n T n ………… (12分) 22.【2019年江西师大附中高三二模】(本小题满分12分)在公比为2的等比数列{}n a 中,2a 与5a 的等差中项是.(Ⅰ)求1a 的值;(Ⅱ)若函数1sin 4y a x πφ⎛⎫=+ ⎪⎝⎭,φπ<,的一部分图像如图所示,()11,M a -,()13,N a -为图像上的两点,设MPN β∠=,其中P 与坐标原点O 重合,πβ<<0,求()tan φβ-的值.【答案】(I );(II)32-+.【解析】 (Ⅱ)∵点在函数的图像上,∴,又∵,∴ -------------7分 如图,连接MN ,在中,由余弦定理得1a ()11,M a -1sin 4y a x πφ⎛⎫=+ ⎪⎝⎭sin 14πφ⎛⎫-+= ⎪⎝⎭φπ<34φπ=MPN ∆。
浙江省五校联盟2023-2024学年高三下学期3月联考试题 数学含答案
浙江省五校联盟2023-2024学年高三下学期3月联考数学试卷(答案在最后)命题:一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.若全集U ,集合A,B 及其关系如图所示,则图中阴影部分表示的集合是()A.()U A B ⋂ðB.()U A B ⋃ðC.()U A B⋂ð D.()U A B⋂ð2.已知(1,2),||2a b == ,且a b ⊥ ,则a b - 与a的夹角的余弦值为()A.5B.3C.4D.63.设b ,c 表示两条直线,,αβ表示两个平面,则下列说法中正确的是()A.若//,b c αα⊂,则//b cB.若//,b c b α⊂,则//c αC.若,//c αβα⊥,则c β⊥ D.若//,c c αβ⊥,则αβ⊥4.已知角α的终边过点(3,2cos )P α-,则cos α=()A.2B.2-C.2±D.12-5.设等比数列{}n a 的公比为q ,前n 项和为n S ,则“2q =”是“{}1n S a +为等比数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知实数x ,y 满足3x >,且2312xy x y +-=,则x y +的最小值为()A.1+B.8C. D.1+7.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,点A 为双曲线的左顶点,以12F F 为直径的圆交双曲线的一条渐近线于P ,Q 两点,且23PAQ π∠=,则该双曲线的离心率为()C.2138.在等边三角形ABC 的三边上各取一点D ,E ,F ,满足3,90DE DF DEF ︒==∠=,则三角形ABC 的面积的最大值是()A. B.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.在学校组织的《青春如火,初心如炬》主题演讲比赛中,有8位评委对每位选手进行评分(评分互不相同),将选手的得分去掉一个最低评分和一个最高评分,则下列说法中正确的是()A.剩下评分的平均值变大B.剩下评分的极差变小C.剩下评分的方差变小D.剩下评分的中位数变大10.在三棱锥A BCD -中,已知3,2AB AC BD CD AD BC ======,点M ,N 分别是AD ,BC 的中点,则()A.MN ⊥ADB.异面直线AN ,CM 所成的角的余弦值是78C.三棱锥A BCD -的体积为3D.三棱锥A BCD -的外接球的表面积为11π11.已知函数()(sin cos )xf x e x x =⋅+,则()A.()f x 的零点为,4x k k Z ππ=-∈B.()f x 的单调递增区间为32,2,22k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C.当0,2x π⎡⎤∈⎢⎣⎦时,若()f x kx ≥恒成立,则22k e ππ≤⋅D.当10031005,22x ππ⎡⎤∈-⎢⎥⎣⎦时,过点1,02π-⎛⎫⎪⎝⎭作()f x 的图象的所有切线,则所有切点的横坐标之和为502π三、填空题:本题共3小题,每小题5分,共15分.12.直线3430x y -+=的一个方向向量是.13.甲、乙两人争夺一场羽毛球比赛的冠军,比赛为“三局两胜”制.如果每局比赛中甲获胜的概率为23,乙获胜的概率为13,则在甲获得冠军的情况下,比赛进行了三局的概率为.14.已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若(21),(2)f x g x --均为偶函数,且当[1,2]x ∈时,3()2f x mx x =-,则(2024)g =.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)如图,斜三棱柱111ABC A B C -的底面是直角三角形,90ACB ︒∠=,点1B 在底面ABC 内的射影恰好是BC 的中点,且2BC CA ==.(I)求证:平面11ACC A ⊥平面11B C CB ;(II),求平面1ABB 与平面11AB C 夹角的余弦值.16.(本小题满分15分)己知函数()ln f x x ax =-,其中a R ∈.(I)若曲线()y f x =在1x =处的切线在两坐标轴上的截距相等,求a 的值;(II)是否存在实数a ,使得()f x 在(0,]x e ∈上的最大值是-3?若存在,求出a 的值;若不存在,说明理由.17.(本小题满分15分)记复数的一个构造:从数集中随机取出2个不同的数作为复数的实部和虚部.重复n 次这样的构造,可得到n 个复数,将它们的乘积记为n z .已知复数具有运算性质:|()()||()||()|a bi c di a bi c di +⋅+=+⋅+,其中,,,a b c d R ∈.(I)当2n =时,记2z 的取值为X ,求X 的分布列;(II)当3n =时,求满足32z ≤的概率;(III)求5n z <的概率n P .18.(本小题满分17分)在平面直角坐标系xOy 中,我们把点*(,),,x y x y N ∈称为自然点.按如图所示的规则,将每个自然点(,)x y 进行赋值记为(,)P x y ,例如(2,3)8P =,(4,2)14,(2,5)17P P ==.(I)求(,1)P x ;(II)求证:2(,)(1,)(,1)P x y P x y P x y =-++;(III)如果(,)P x y 满足方程(1,1)(,1)(1,)(1,1)2024P x y P x y P x y P x y +-+++++++=,求(,)P x y 的值.19.(本小题满分17分)在平面直角坐标系xOy 中,过点(1,0)F 的直线l 与抛物线2:4C y x =交于M ,N 两点(M在第一象限).(I)当||3||MF NF =时,求直线l 的方程;(II)若三角形OMN 的外接圆与曲线C 交于点D (异于点O ,M ,N ),(i)证明:△MND 的重心的纵坐标为定值,并求出此定值;(ii)求凸四边形OMDN 的面积的取值范围.参考答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.题号12345678答案CBDBCACA二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.题号91011答案BCABDACD三、填空题:本题共3小题,每小题5分,共15分.12.31,4⎛⎫⎪⎝⎭(答案不唯一)13.2514.-6四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)(第I 问,6分;第II 问,7分)解:(I)取BC 中点为M ,连接11,B M B 在底面内的射影恰好是BC 中点,1B M ∴⊥平面ABC ,又AC ⊂ 平面1,ABC B M AC ∴⊥,又90,ACB AC BC ︒∠=∴⊥ ,1,B M BC ⊂ 平面111,,B C CB B M BC M AC ⋂=∴⊥平面11B C CB ,又AC ⊂ 平面11,ACC A ∴平面11ACC A ⊥平面11B C CB .(II)以C 为坐标原点,建立如图所示空间直角坐标系,2BC CA == ,11(2,0,0),(0,2,0),(0,1,0),(0,A B M B C ∴-,111((2,2,0),(0,2,0)AB AB B C =-=-=-,设平面1BAB 的法向量为(,,)n x y z =,100n AB n AB ⎧⋅=⎪∴⎨⋅=⎪⎩则有20220x y x y ⎧-++=⎪⎨-+=⎪⎩,令z =,则3,x y n ==∴= ,设平面1BAB 的法向量为(,,)m a b c =,11100m AB m B C ⎧⋅=⎪∴⎨⋅=⎪⎩则有2020a b b ⎧-++=⎪⎨-=⎪⎩,令a =则0,2,b c n ==∴=,||5|cos ,||||7| n m n m n m ⋅∴<〉==,平面1ABB 与平面11AB C 夹角的余弦值为57.16.(本小题满分15分)(第I 问,6分;第II 问,9分)(I)1()f x a x'=-,则(1)1,(1)f a f a '=-=-,故曲线()y f x =在1x =处的切线为(1)(1)y a a x +=--,即(1)1y a x =--,当1a =时,此时切线为1y =-,不符合要求当1a ≠时,令0x =,有1y =-,令0y =,有11x a =-,故111a=--,即2a =,故2a =(II)11()ln ,()axf x x ax f x a x x-=-∴=-= ,①当0a ≤时,()f x 在(0,e]上单调递增,()f x ∴的最大值是(e)1e 3f a =-=-,解得40ea =>,舍去;②当0a >时,由11()0ax f x a x x -=-==,得1x a=,当10e a <<,即1a e >时,10,a x ⎛⎫∴∈ ⎪⎝⎭时,1()0;,e f x x a ⎛⎫>∈ ⎪⎝⎭时,()0f x <,()f x ∴的单调递增区间是10,a ⎛⎫ ⎪⎝⎭,单调递减区间是1,e a ⎛⎫ ⎪⎝⎭,又()f x 在(0,e]上的最大值为2max 13,()1ln 3,e f x f a a a ⎛⎫-∴==--=-∴= ⎪⎝⎭;当1e a ≤,即10ea <≤时,()f x 在(0,e]上单调递增,max ()(e)1e 3f x f a ∴==-=-,解得41e ea =,舍去.综上,存在a 符合题意,此时2e a =17.(本小题满分15分)(第I 问,6分;第II 问,4分;第III 问,5分)(I)由题意可知,可构成的复数为{1,,1}i i +,|1|||1,||||||| 2.i i =====+=且X的可能取值为,111111224242111111666666122(1),(,(2)999C C C C C C P X P X P X C C C C C C ⋅⋅⋅=========⋅⋅⋅,112211661(3)9C C P X C C ⋅===⋅111142221111666621(,(4)99C C C C P X P X C C C C ⋅⋅======⋅⋅,所以分布列为:(II)共有111666216CC C ⋅⋅=种,满足32z ≤的情况有:①3个复数的模长均为1,共有1112228C C C ⋅⋅=种;②3个复数中,2个模长均为1,1或者2,共有2111322448C C C C ⋅⋅⋅=种;所以()38487221627P z +≤==.(III)当1n =或2时,显然都满足,此时1n P =;当3n ≥时,满足5n z <共有三种情况:①n 个复数的模长均为1,则共有()122nn C =;②1n -个复数的模长为1,剩余1或者2,则共有()11111242n n n n C C C n --+⋅⋅=⋅;③2n -个复数的模长为1,剩余2个模长为2,则共有()221111244(1)2n n n nCCC C n n --+⋅⋅⋅=-⋅.故()()()2112621222(1)212563n n n n n nn nn n n n n P z C ++++⋅+-⋅+<===,此时当1,2n =均成立.所以()21253n nn P z +<=.18.(本小题满分17分)(第I 问,4分;第II 问,7分;第III 问,6分)解:(I)根据图形可知(1)(,1)1232x x P x x +=++++=,(II)固定x ,则(,)P x y 为一个高阶等差数列,且满足(,1)(,)1,(1,)(,),P x y P x y x y P x y P x y x y +-=+-+-=+所以(1)(,1)(,1)12(1)(1)2y y P x y P x y y x y x ++-=++++-=+- (1)(1)(,1)(1)22y y x x P x y y x +++=+-+所以(1)(1)(,)(1)(1)22x x y y P x y x y +-=++--,(1)(1)(1,)(2)(1)22x x y y P x y x y ---=++--,所以(1)(1)(1)(1)(,1)(1,)(2)(1)(1)2222x x y y y y x x P x y P x y x y y x --++++-=++--++-+222322(,)x y xy y x P x y =++--+=(III)P(x +1,y -1)+P(x ,y +1)+P(x +1,y )+P(x +1,y +1)=2024等价于(,)(,1)(1,)(1,1)2023P x y P x y P x y P x y +++++++=,等价于(,1)3(1,)2023P x y P x y +++=即13[(1)(21)][(1)(2)(1)(2)]202322x x y y x x x y y x +++-++++-+=,化简得2221010(1)()21010y xy x y x x y x y x ++-+=⇔+-++=,由于x y +增大,(1)()x y x y +-+也增大,当31x y +=时,(1)()29921010x y x y x +-++<<,当33x y +=时,(1)()210561010x y x y x +-++>>,故当32x y +=时,(1)()210109,23x y x y x x y +-++=⇒==,即9102322(9,23)82247422P ⨯⨯=++⨯=19.(本小题满分17分)(第I 问,4分;第II 问,5分;第III 问,8分)解:(I)设直线()()1122:1,,,,MN X my M x y N x y =+联立214x my y x=+⎧⎨=⎩,消去x ,得2440y my --=,所以12124,4y y m y y +=⋅=-,||3||MF NF =,则123y y =-122212224,34y y y m y y y +=-=∴⋅=-=-,则213m =,又由题意0,3m m >∴=,直线的方程是y =;(II)(i)方法1:设()()()112233,,,,,M x y N x y D x y 因为O ,M ,D ,N 四点共圆,设该圆的方程为220x y dx ey +++=,联立22204x y dx ey y x⎧+++=⎨=⎩,消去x ,得42(416)160y d y ey +++=,即()3(416)160y y d y e +++=,所以123,,y y y 即为关于y 的方程3(416)160y d y e +++=的3个根,则()()()3123(416)16y d y e y y y y y y +++=---,因为()()()()()32123123122313123y y y y y y y y y y y y y y y y y y y y y ---=-+++++-,由2y 的系数对应相等得,1230y y y ++=,所以MND 的重心的纵坐标为0.方法2:设()()()112233,,,,,M x y N x y D x y ,则1213234444,,,OM ON MD ND k k k k y y y y y y ====++,因为O,M,C,N 四点共圆,所以MON MDN π∠+∠=,即tan tan 0MON MDN ∠+∠=,()21124tan 116OM ONOM ON y y k k MON k k y y --∠==+⋅+()()()1213234tan ,116ND MDND MD y y k k MDN k k y y y y --∠==+⋅+++化简可得:312y y y =--,所以MND 的重心的纵坐标为0.(ii)记,OMN MND 的面积分别为12,S S ,由已知得直线MN 的斜率不为0设直线:1MN x my =+,联立214x my y x=+⎧⎨=⎩,消去x ,得2440y my --=,所以12124,4y y m y y +=⋅=-,所以11211||22S OF y y =⋅⋅-==由(i)得,()3124y y y m =-+=-,所以2223311(4)444x y m m ==⨯-=,即()24,4D m m -,因为()21212||2444MN x x m y y m =++=++=+,点D 到直线MN的距离d =所以()22211||448122S MN d m m =⋅⋅=⋅+⋅-,所以)221281181S S S m m =+=+-=+-M 在第一象限,即1230,0,40y y y m ><=-<,依次连接O,M,D,N 构成凸四边形OMDN ,所以()3122y y y y =-+<,即122y y -<,又因为122244,2y y y y ⋅=-<,即222y <,即20y <<,所以122244m y y y y =+=->+=,即24m >,即218m >,所以)218116S m m =+-=,设t =,则4t >,令()2()161f t t t =-,则()()222()1611614816f t t t t t ''=-+-=-,因为4t >,所以2()48160f t t '=->,所以()f t在区间4⎛⎫+∞⎪⎝⎭上单调递增,所以()42f t f ⎛⎫>=⎪⎝⎭,所以S的取值范围为,2⎛⎫+∞ ⎪⎝⎭.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019学年浙江省第一次五校联考数学(理科)试题卷本试题卷分选择题和非选择题两部分。
满分150分, 考试时间120分钟。
选择题部分(共50分)参考公式:如果事件A , B 互斥, 那么 棱柱的体积公式 P (A +B )=P (A )+P (B ) V =Sh如果事件A , B 相互独立, 那么 其中S 表示棱柱的底面积, h 表示棱柱的高 P (A ·B )=P (A )·P (B )棱锥的体积公式 如果事件A 在一次试验中发生的概率是p , 那么n V =31Sh次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示棱锥的底面积, h 表示棱锥的高 P n (k )=C kn p k (1-p )n -k (k = 0,1,2,…, n ) 球的表面积公式 棱台的体积公式S = 4πR 2 )2211(31S S S S h V ++=球的体积公式 其中S 1, S 2分别表示棱台的上、下底面积, V =34πR 3h 表示棱台的高 其中R 表示球的半径一、选择题: 本大题共10小题, 每小题5分,共50分。
在每小题给出的四个选项中, 只有一项是符合题目要求的。
1.若全集U=R,集合M ={}24x x >,N =301x xx ⎧-⎫>⎨⎬+⎩⎭,则()UMN 等于A .{2}x x <-B .{23}x x x <-≥或C . {3}x x ≥D .{23}x x -≤<2.已知α∈(2π,π),sin α=53,则tan (4πα-)等于A . -7B . - 71C . 7D .713.若,x y 满足约束条件1122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,目标函数2z ax y =+仅在点()1,0处取得最小值,则a 的取值范围是A .()1,2-B .()4,2-C .(]4,0-D .()2,4-0.0005300035000.00030.0004200015000.00020.0001400025001000月收入(元)频率/组距4.一质点受到平面上的三个力123,,F F F (单位:牛顿)的作用而处于平衡状态.已知12,F F 成120 角, 且12,F F 的大小分别为1和2,则有A .13,F F 成90角B .13,F F 成150角C .23,F F 成90角D .23,F F 成60角 5.已知函数()sin 3(0)f x x x ωωω=->的图象与x 轴的两个相邻交点的距离等于2π,若将函数 ()y f x =的图象向左平移6π个单位得到函数()y g x =的图象,则()y g x =是减函数的区间为 A .(,0)3π- B . (,)44ππ- C . (0,)3πD .(,)43ππ 6.若()f x 是R 上的减函数,且(0)3,(3)1f f ==-,设{}1()3P x f x t =-<+<,{}()1Q x f x =<-,若“”x P x Q ∈∈“” 是的充分不必要条件,则实数t 的取值范围是A .0t ≤B .0t ≥C .3t ≤-D .3t ≥-7.已知函数()2xf x =的定义域为[]b a ,)(b a <,值域为[]1,4,则在平面直角坐标系内,点),(b a 的 运动轨迹与两坐标轴围成的图形的面积为A .8B .6C .4D .28.已知数列:1213214321,,,,,,,,,,...,1121231234依它的前10项的规律,这个数列的第2019项2012a 满足A .20121010a <<B .20121110a ≤< C .2012110a ≤≤ D .201210a >9.在1,2,3,4,5,6,7的任一排列1234567,,,,,,a a a a a a a 中,使相邻两数都互质的排列方式种数共有A .576B .720C .864D .1152 10.已知321()3f x x x ax m =-++,其中0a >,如果存在实数t ,使()0f t '<, 则21(2)()3t f t f +''+⋅的值A .必为正数B .必为负数C .必为非负D .必为非正非选择题部分 (共100分)二、 填空题: 本大题共7小题, 每小题4分, 共28分。
11.一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分 布直方图(如右图).为了分析居民的收入与年 龄、学历、职业等方面的关系,要从这10 000人 中再用分层抽样方法抽出100人作进一步调查, 则在[2500,3000)(元)月收入段 应抽出 ▲ 人.12.已知∈m R ,复数iim +-1为纯虚数(i 为虚数单位), 则=m ▲ .13.如右图程序框图,输出s= ▲ . (用数值作答)14.已知n n n x a x a x a a ax ++++=+ 2210)1(,若41=a ,72=a ,则a 的值为 ▲ . 15.设关于x 的不等式4|4|2+≤+-x m x x 的解集为A ,且A A ∉∈2,0,则实数m 的 取值范围是 ▲ .16、已知向量()1,1sin θ=+a ,()1,cos θ=b ,42ππθ≤≤,则⋅a b 的取值范围是 ▲ .17.已知数列{}n a 满足:n n n a a a a +==+211,21,用[x]表示不超过x 的最大整数,则122012111111a a a ⎡⎤+++⎢⎥+++⎣⎦的值等于 ▲ .三、解答题:本大题共5小题,共72分。
解答应写出文字说明、证明过程或演算步骤。
18.(本小题满分14分)在ABC △中,内角,,A B C 对边的边长分别是,,a b c .已知2,3c C π==.(Ⅰ)若ABC △,试判断ABC △的形状,并说明理由; (Ⅱ)若sin sin()2sin 2C B A A +-=,求ABC △的面积.19.(本小题满分14分)已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球.(Ⅰ)求取出的4个球均为黑球的概率;(Ⅱ)求取出的4个球中恰有1个红球的概率; (Ⅲ)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望.20.(本小题满分14分)若}{n a 是各项均不为零的等差数列,公差为d ,n S 为其前n 项和,且满足221n n a S -=,n N *∈.数列{}n b 满足11n n n b a a +=⋅,n T 为数列{}n b 的前n 项和.(Ⅰ)求n a 和n T ;(Ⅱ)是否存在正整数(),1m n m n <<,使得1,,m n T T T 成等比数列?若存在,求出所有,m n 的值;若不存在,请说明理由.21.(本小题满分15分)线段4||=BC ,BC 中点为M ,点A 与B ,C 两点的距离之和为6,设y AM =||,x AB =||. (Ⅰ)求)(x f y =的函数表达式及函数的定义域;(Ⅱ)设1-+=x y d ,试求d 的取值范围. 22.(本小题满分15分)设x m =和x n =是函数21()ln (2)2f x x x a x =+-+的两个极值点,其中m n <,a R ∈. (Ⅰ) 求()()f m f n +的取值范围; (Ⅱ)若2a ≥,求()()f n f m -的最大值. 注:e 是自然对数的底数.2019学年浙江省第一次五校联考数学(理科)答案一.选择题:1.B . 2.A . 3.B . 4.A .5.D . 6.C . 7.C . 8.A . 9.C . 10.B . 二.填空题:11.25;12.1m =;13.91; 14.12;15.)2,4[--;16.⎡⎢⎣⎦;17.1.三.解答题:18.解:(Ⅰ)由余弦定理及已知条件得,224a b ab +-=,又因为ABC △,所以1sin 2ab C =4ab =. 联立方程组2244a b ab ab ⎧+-=⎨=⎩,,解得2a =,2b =.故ABC △为等边三角形。
……………………..6分 (Ⅱ)由题意得sin()sin()4sin cos B A B A A A ++-=,即sin cos 2sin cos B A A A =, …………8分 若cos 0A =,则2A π=,由2,3c C π==,得b =所以ABC △的面积12S bc ==………………………….11分 若cos 0A ≠,可得sin 2sin B A =,由正弦定理知2b a =,联立方程组2242a b ab b a ⎧+-=⎨=⎩,,解得3a =3b =.所以ABC △的面积1sin 23S ab C ==.………………………….14分 19.解:(Ⅰ)设“从甲盒内取出的2个球均为黑球”为事件A ,“从乙盒内取出的2个球均为黑球”为事件B .由于事件AB ,相互独立,且23241()2C P A C ==,24262()5C P B C ==. 故取出的4个球均为黑球的概率为121()()()255P AB P A P B ==⨯=··.…………4分 (Ⅱ)设“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件C ,“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个球均为黑球”为事件D .由于事件C D ,互斥,且21132422464()15C C C P C C C ==··,123422461()5C C PD C C ==·.………………8分 故取出的4个球中恰有1个红球的概率为417()()()15515P C D P C P D +=+=+=. (Ⅲ)ξ可能的取值为0123,,,.由(Ⅰ),(Ⅱ)得1(0)5P ξ==,7(1)15P ξ==, 13224611(3)30C P C C ξ===·.从而3(2)1(0)(1)(3)10P P P P ξξξξ==-=-=-==.ξ的分布列为………………………………12分ξ的数学期望17317012351510306E ξ=⨯+⨯+⨯+⨯=.…………………………14分20.解:(Ⅰ)在221n n a S -=中,令1,2n =,解得11,2a d ==,…………2分从而21n a n =-,11122121n b n n ⎛⎫=- ⎪-+⎝⎭,于是11111112335212121n n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-= ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎣⎦。