椭圆及其标准方程导学案(第1课时)

合集下载

椭圆及其标准方程+学案- 高二上学期数学人教A版(2019)选择性必修第一册

椭圆及其标准方程+学案- 高二上学期数学人教A版(2019)选择性必修第一册

3.1.1 椭圆及其标准方程(第一课时)【学习目标】1.能通过实际绘制椭圆的过程,认识椭圆上点的几何特征,给出椭圆的定义;2.能通过建立适当的坐标系,根据椭圆上的点满足的几何条件推导出椭圆的标准方程;3.会求给定条件的椭圆方程.【学习重点】椭圆的标准方程的推导及求解【学习难点】椭圆的标准方程的推导【学习过程】【活动1】探究:椭圆的定义实验材料:两个图钉,一根无弹性的细绳,一张纸板,一支铅笔,一把直尺.方法步骤:1.细绳的两端拉开一段距离,分别固定在图板的两点F1,F2;2.套上铅笔,拉紧绳子,移动笔尖;3.画出轨迹,测量并记录绳子的长度以及F1,F2两定点间的距离.讨论:问题1:画出的轨迹是什么曲线?在这一过程中,移动的笔尖(动点)满足什么条件?问题2:如果改变F1,F2两点间的距离,笔尖运动时形成的轨迹是否还为椭圆?问题3:你能类比圆的定义用精确的数学语言给出椭圆、焦点、焦距的定义吗?<学以致用1>(1)若两定点A、B间的距离为6,动点M到A、B的距离之和为10,则动点M的轨迹是_________;(2)若两定点A、B间的距离为10,动点P到A、B的距离之和为10,动点P的轨迹是_________;(3)若两定点A、B间的距离为6,动点Q到A、B的距离之和为4,动点Q的轨迹是_________.【活动2】推导椭圆的标准方程.问题4:类比利用圆的标准方程的建立过程,你能根据椭圆的几何特征选择适当的坐标系,求出它的方程吗?提示(1)建系:如图所示,以F1F2所在直线x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系xOy.(2)设点;(3)列式;(4)化简;(5)得出椭圆的标准方程.问题5:椭圆方程中参数a,b,c之间的关系是什么?几何意义分别是什么?问题6:椭圆的标准方程是如何定义的?(焦点在x轴上?焦点在y轴上?)<合作学习1>围绕问题4,小组研讨,展示评析:建立椭圆的标准方程步骤与关键点.<学以致用2>写出下列椭圆的a,b,c 及焦点坐标: (1)x 25+y 23=1 (2)x 29+y 225=1<合作学习2>围绕练习运用2,小组研讨,展示评析:如何判断椭圆焦点在哪个轴上【活动3】求椭圆的标准方程 <学以致用3>椭圆的两个焦点坐标分别是)0,2(),0,2(-,并且经过点)23,25(-,求它的标准方程.<合作学习3> 围绕练习运用2,独立思考后,同桌交流,展示评析:确立椭圆的标准方程的方法.【活动4】求与椭圆有关的轨迹问题<典例分析4>在圆422=+y x 上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,求线段PD 的中点M 的轨迹是什么?为什么?<学以致用4>1.若把上题中的“求线段PD 的中点M 的轨迹是什么?”改为“求线段PD 的三等分点M (靠近点P )的轨迹是什么?”结果会是怎样?2.如图,DP ⊥x 轴,垂足为D ,点M 在DP 的延长线上,且|DM ||DP |=32.当点P 在圆422=+y x 上运动时,求点M 的轨迹方程,并说明轨迹的形状.yxMOBA<典例分析5>如图,设A ,B 的坐标分别为()5,0-,()5,0.直线AM ,BM 相交于点M ,且它们的斜率之积为49-,求点M 的轨迹方程.<合作学习>针对例题,围绕以下问题,进行小组研讨:1.一个动点与两个定点的连线的斜率之积是-1,则动点的轨迹是什么?2.一个动点与两个定点的连线的斜率之积是不为-1的负常数,则动点的轨迹是什么?(椭圆的第三定义)<学以致用5>设A,B的坐标分别为(-1,0),(1,0).直线AM,BM相交于点M,且它们的斜率的商是2,求点M的轨迹方程.二、课后作业:1.动点P 到两定点)0,4(),0,4(21F F -的距离之和是8,则动点P 的轨迹是( ) A 、椭圆 B 、线段21F F C 、直线21F F D 、不确定2.命题甲:动点P 到两定点A,B 的距离和a PB PA 2=+(a a 且,0>为常数). 命题乙:动点P 的轨迹是椭圆.则甲是乙的( ) A 、充分不必要条件 B 、 必要不充分C 、充要条件D 、既不充分也不必要条件3.“1<m <3”是“方程x 2m -1+y 23-m =1表示椭圆”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.若方程3x 2+ky 2=1表示焦点在y 轴上的椭圆,则k 的可能取值为( ) A.1 B.3 C.0 D.-25.已知椭圆x 29+y 25=1上一点P 到一个焦点的距离为2,则P 到另一个焦点的距离为( )A.1B.4C.3D.25-26.设α∈(0,π2),方程x 2sin α+y 2cos α=1表示焦点在y 轴上的椭圆,则α的取值范围为( )A.(0,π4]B.(π4,π2)C.(0,π4)D.[π4,π2)7.设B (-4,0),C (4,0),且△ABC 的周长等于18,则动点A 的轨迹方程为( ) A.x 225+y 29=1(y ≠0) B.y 225+x 29=1(y ≠0) C.x 216+y 216=1(y ≠0) D.y 216+x 29=1(y ≠0)8.已知圆122=+y x ,从这个圆的任意一点P 向y 轴作垂线'PP ,则线段'PP 的中点M 的轨迹方程( )A. 1422=+y xB. 1422=+y xC. 1422=+y xD. 1422=+x y9.已知F 1,F 2为椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于A 、B 两点,若|F 2A |+|F 2B |=12,则|AB |=________.10.若椭圆x 2100+y 264=1的焦点分别为F 1,F 2,椭圆上一点P 满足∠F 1PF 2=60°,则△F 1PF 2的面积是________.11.写出适合下列条件的椭圆的标准方程: (1)焦点坐标分别为(0,-4),(0,4),a =5; (2)a+c=10,a -c=4.12.求与椭圆x 225+y 29=1有相同焦点,且过点(3,15)的椭圆方程.13.已知P 是椭圆14522=+y x 上的一点,且以点P 及焦点F 1,F 2为顶点的三角形的面积等于1,求点P 的坐标.14.设A ,B 的坐标分别为(-1,0),(1,0).直线AM ,BM 相交于点M ,且它们的斜率的商是2,求点M 的轨迹方程.15.如图,DP ⊥x 轴,垂足为D ,点M 在DP 的延长线上,且|DM ||DP |=32.当点P 在圆422=+y x 上运动时,求点M 的轨迹方程,并说明轨迹的形状.。

椭圆复习课(第一课时)学案-2025届高三数学一轮复习

椭圆复习课(第一课时)学案-2025届高三数学一轮复习

椭圆复习课(第一课时)学习目标知识与技能:掌握椭圆的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率).过程与方法:通过例题的研究,进一步掌握椭圆的简单应用.理解数形结合的思想. 情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德.教学过程一、知识梳理1、定义:平面内到两个定点21F F ,的距离之 等于常数( )的点的 轨迹叫椭圆.2、椭圆的标准方程和几何性质标准方程22221(0)x y a b a b +=>> )0(12222>>=+b a b x a y 图 像范围 -a ≤x ≤a -b ≤y ≤b -a ≤x ≤a -b ≤y ≤b对称性 对称轴:坐标轴; 对称中心:原点顶点坐标()0,1a A - ()0,2a A ()b B -,01 ()b B ,01()a A -,01 ()a A ,02 ()0,1b B - ()0,2b B焦点坐标 ()0,1c F - ()0,2c F()c F -,01 ()c F ,02轴长 长轴长2a ,短轴长2b焦距 c F F 221=a,b,c 关系222b a c +=亲,表格中有数处错误,你能一一找出吗?离心率1>=ac e(1)动点P 到两定点A (–2,0),B(2,0)的距离之和为4,则点P 的轨迹是椭圆.( )(2)若椭圆1ky 4x 22=+的焦距是22,则k=2. ( )三、能力提升考点一 椭圆的定义及其标准方程例1:已知椭圆以坐标轴为对称轴,求分别满足下列条件的椭圆的标准方程.(1)一个焦点为(2,0),离心率为 ;(2)过 ()23,N 1,6M ,),(-两点.直击高考已知椭圆C: 1b y a x 2222=+(a>b>0)的左右焦点为21F F ,,离心率为33,过2F 的直线L 交C 于A ,B 两点,若B AF 1∆的周长为43,则C 的方程为( )A.12y 3x 22=+B. 1y 3x 22=+ C. 18y 12x 22=+ D. 14y 12x 22=+变式提升:设21F F ,分别是椭圆116y 25x 22=+的左、右焦点,P 为椭圆上一点,M 是P F 1的中点,|OM| =3,则P 点到椭圆左焦点的距离为 ( )A.4B.3C.2D.521=e X YPO xyBOA1F1F2F2FM考点二、椭圆的几何性质例2、已知椭圆C: 1b y a x 2222=+(a>b>0)的左右焦点为21F F ,,P 是椭圆短轴的一个端点,且21PF PF ⊥,则椭圆的离心率为 .变式提升椭圆C :1by a x 2222=+(a >b >0)的左、右焦点分别为21F F ,,焦距为2c ,若直线y=3(x+c )与椭圆C 的一个交点M 满足12212F MF F MF ∠=∠,则该椭圆的离心率等于 .互动探究已知椭圆C: 1by a x 2222=+(a>b>0)的左右焦点为21F F ,,M 为椭圆上一点,021=•M F M F ,则椭圆离心率的范围是 .XYMO1F2FYOXP1F2F探究思考1)本题中若P 点在椭圆内部,其他条件不变,试求之。

(导学案)2.2.1椭圆及其标准方程

(导学案)2.2.1椭圆及其标准方程

2.1.1 椭圆及其标准方程(1) (导学案)【学习目标】(1)从具体情境中抽象出椭圆的模型;(2)掌握椭圆的定义,能用坐标法求椭圆的标准方程; (3)掌握椭圆的标准方程的推导及标准方程的形式。

【重点、难点】重点:椭圆的定义及其标准方程。

难点:椭圆标准方程的推导与化简。

【学习方法】探究、讨论、归纳、类比 一、【基础知识链接】1、曲线可以看作是适合某种条件的点的集合或轨迹。

求曲线方程的一般步骤是: → → → → 。

其中,建立坐标系一般应遵循 的原则。

2、平面内两点间的距离公式:设A (x 1,y 1),B (x 2,y 2),则︱AB ︱=二、【新知导学】 探究任务一:椭圆的定义 【教材导读】 预习课本P38的内容,动动手,做教材P38中的“探究”,并完成下列问题:(1)、设笔尖(动点)为M ,两个定点1F ,2F 的距离为2c ,绳长为2a ,当22a c >时,动点M 的轨迹是 ;当22a c =时,动点M 的轨迹是 ;当22a c <时,动点M 的轨迹是 。

(2)、椭圆的定义:把平面内动点M 与两个定点1F ,2F 的距离之和等于常数(2a大于 )的点的轨迹叫做 . 这两个定点叫做椭圆的 ,两焦点的距离(2c )叫做 .探究任务二:椭圆的标准方程【教材导读】 预习课本P38至P39的内容,并完成下列问题(1)、观察椭圆的形状,可以发现椭圆既是 对称图形,又是 对称图形。

(2)、怎样建立坐标系,才能使求出的椭圆方程最为简单?①、建系;以 为x 轴, 为y 轴,建立平面直角坐标系,则1F ,2F 的坐标分别为:. ②、设点并写出点集:设M ( , )为椭圆上任意一点,根据椭圆定义知:③、列方程:④、化简方程得:⑤、为使上述方程简单并具有对称美,引入字母 ,令 = a 2 - c 2,则方程可化为(3)、类似的,焦点在 轴上的椭圆的标准方程为 : ,其中焦点1F ,2F 的坐标为: .(4)点的位置?试一试:根据下列椭圆方程,写出,,a b c 的值,并指出焦点的坐标: (1)221169y x +=; (2) 2212516y x +=; (1)a = ;b = ;c = (2)a = ;b = ;c = 焦点坐标为: 焦点坐标为: 待课堂上与老师和同学探究解决。

高中数学_椭圆的标准方程(第一课时)教学设计学情分析教材分析课后反思

高中数学_椭圆的标准方程(第一课时)教学设计学情分析教材分析课后反思

椭圆及其标准方程(第1课时)导学案一.【学习目标】:1、知识与技能:理解椭圆定义、掌握标准方程及其推导。

2、过程与方法:通过教师和学生共同协作完成教学试验、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、归 纳问题的能力.3、情感、态度和价值观:在教学中充分揭示“数”与“形”的内在联系,体会数形美的统一,激发学生学习数学的兴趣,培养学生勇于探索,勇于创新和锲而不舍的精神。

增强主动与他人合作与交流的意识。

二.【学习重点】:掌握椭圆的标准方程,理解坐标法的基本思想。

三.【学习难点】:椭圆标准方程的推导与化简,坐标法的应用。

四.【学习过程】:(一)探究一: 椭圆的定义1.创设问题情景:观察生活中的椭圆图片,演示椭圆形成过程.2.动手实验:学生分组画椭圆.思考:1.在画椭圆的过程中,细绳的两端的位置是固定的还是运动的?2.在画椭圆的过程中,绳子的长度变了没有?说明了什么?3.在画椭圆的过程中,绳子长度与两定点距离大小有怎样的关系?实验结果:若将常数记为2a ,两定点21,F F 间的距离记为2c ,椭圆定义: 椭圆的定义用集合语言叙述为: ①当||221F F a >时,其轨迹为 , ②当||221F F a =时,其轨迹为 ,③当||221F F a <时,其轨迹 . 探究二:椭圆标准方程的推导1.回顾:求曲线方程的一般步骤:2.思考:如何建系,使求出的椭圆方程最简单?3.推导过程:① 建系:② 设点:③ 列方程:④ 化简:讨论与思考:1.在图中,请你从中找出表示2.如果以21,F F 所在直线为y 轴,线段21F F 的垂直平分线为x 轴,建立直角坐标系,焦点是 ,椭圆的标准方程是 .3.如何由椭圆标准方程判断椭圆焦点位置?(二)学以致用【思考辨析 判断正误】1.已知F 1(-4,0),F 2(4,0),平面内到F 1,F 2两点的距离之和等于10的点的轨迹是椭圆.( )2.已知F 1(-4,0),F 2(4,0),平面内到F 1,F 2两点的距离之和等于6的点的轨迹是椭圆.( )3.平面内到点F 1(-4,0),F 2(4,0)距离相等的点的轨迹是椭圆.( )【求椭圆的标准方程】例1:已知椭圆两个焦点的坐标分别是()0,2-,()0,2,并且经过点⎪⎭⎫ ⎝⎛23-25,,求它的标准方程.想一想:你还能用其它方法求它的标准方程吗?解题小结:【变式练习】1.如果椭圆22110036x y +=上一点P 到焦点1F 的距离等于6,那么点P 到另一焦点2F 的距离是 .2.写出适合下列条件的椭圆的标准方程:(1)轴上;焦点在x b a ,1,4==(2).,15,4轴上焦点在y c a ==例2 求中心在原点,焦点在坐标轴上,且经过两点P ⎝ ⎛⎭⎪⎫13,13,Q ⎝⎛⎭⎪⎫0,-12的椭圆的标准方程.解题小结:(三)学习小结:(四)巩固检测:1、已知椭圆的方程为22218x ym+=,焦点在x轴上,则其焦距为()(A)(B)C)(D)2、若△ABC的两个顶点坐标是A(-4,0),B(4,0),△ABC的周长为18,则顶点C的轨迹方程是()(A)221259x y+=(B)221259y x+=(C)221(0)169y xy+=≠(D)221(0)259x yy+=≠3、已知点(3,4)是椭圆22221(0)x ya ba b+=>>上的一点,F1,F2是椭圆的两焦点,若PF1⊥PF2,求椭圆的方程。

高二数学2.2.1椭圆及其标准方程教案1人教新课标A版选修21

高二数学2.2.1椭圆及其标准方程教案1人教新课标A版选修21

P F 2F 1课题:2.2.1椭圆及其标准方程(1) 第 课时 总序第 个教案课型: 新授课 编写时时间: 年 月 日 执行时间: 年 月 日教学目标:◆ 知识与技能目标理解椭圆的概念,掌握椭圆的定义、会用椭圆的定义解决实际问题;理解椭圆标准方程的推导过程及化简无理方程的常用的方法;了解求椭圆的动点的伴随点的轨迹方程的一般方法.◆ 过程与方法目标通过作图展示与操作,必须让学生认同:圆、椭圆、双曲线和抛物线都是圆锥曲线,是因它们都是平面与圆锥曲面相截而得其名;已知几何图形建立直角坐标系的两个原则,及引入参量22b a c =-的意义,培养学生用对称的美学思维来体现数学的和谐美。

◆ 情感、态度与价值观目标会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问题来思考,培养学生的数形结合的思想方法;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能力.批 注教学重点:理解椭圆的概念,掌握椭圆的定义、会用椭圆的定义解决实际问题。

教学难点:理解椭圆标准方程的推导过程及化简无理方程的常用的方法。

教学用具: 多媒体,三角板 教学方法: 推导,分析教学过程: 一、课前准备(预习教材P 38~ P 40)复习1:过两点(0,1),(2,0)的直线方程 .复习2:方程22(3)(1)4x y -++= 表示以 为圆心, 为半径的 .二、新课导学 ※ 学习探究取一条定长的细绳,把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个 .如果把细绳的两端拉开一段距离,分别固定在图板的两个点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?思考:移动的笔尖(动点)满足的几何条件是什么?经过观察后思考:在移动笔尖的过程中,细绳的 保持不变,即笔尖 等于常数.新知1: 我们把平面内与两个定点12,F F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 .反思:若将常数记为2a ,为什么122a F F >? 当122a F F =时,其轨迹为 ;当122a F F <时,其轨迹为 .试试:已知1(4,0)F -,2(4,0)F ,到1F ,2F 两点的距离之和等于8的点的轨迹是 .小结:应用椭圆的定义注意两点:①分清动点和定点;②看是否满足常数122a F F >. 新知2:焦点在x 轴上的椭圆的标准方程 ()222210x y a b a b +=>> 其中222b ac =- 若焦点在y 轴上,两个焦点坐标 ,则椭圆的标准方程是 .※ 典型例题例1 写出适合下列条件的椭圆的标准方程: ⑴4,1a b ==,焦点在x 轴上;⑵4,15a c ==,焦点在y 轴上;⑶10,25a b c +==.变式:方程214x ym+=表示焦点在x 轴上的椭圆,则实数m 的范围 .小结:椭圆标准方程中:222a b c =+ ;a b > .例2 已知椭圆两个焦点的坐标分别是()2,0-,(2,0),并且经过点53,22⎛⎫- ⎪⎝⎭,求它的标准方程 .变式:椭圆过点 ()2,0-,(2,0),(0,3),求它的标准方程.小结:由椭圆的定义出发,得椭圆标准方程 .※ 动手试试练1. 已知ABC ∆的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC ∆的周长是( ).彗星太阳A .23B .6C .43D .12练2 .方程219x ym-=表示焦点在y 轴上的椭圆,求实数m 的范围.三、总结提升 ※ 学习小结 1. 椭圆的定义: 2. 椭圆的标准方程:※ 知识拓展1997年初,中国科学院紫金山天文台发布了一条消息,从1997年2月中旬起,海尔·波普彗星将逐渐接近地球,过4月以后,又将渐渐离去,并预测3000年后,它还将光临地球上空1997年2月至3月间,许多人目睹了这一天文现象天文学家是如何计算出彗星出现的准确时间呢?原来,海尔·波普彗星运行的轨道是一个椭圆,通过观察它运行中的一些有关数据,可以推算出它的运行轨道的方程,从而算出它运行周期及轨道的的周长.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1.平面内一动点M 到两定点1F 、2F 距离之和为常数2a ,则点M 的轨迹为( ).A .椭圆B .圆C .无轨迹D .椭圆或线段或无轨迹2.如果方程222x ky +=表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ).A .(0,)+∞B .(0,2)C .(1,)+∞D .(0,1)3.如果椭圆22110036x y +=上一点P 到焦点1F 的距离等于6,那么点P 到另一个焦点2F 的距离是( ).A .4B .14C .12D .84.椭圆两焦点间的距离为16,且椭圆上某一点到两焦点的距离分别等于9和15,则椭圆的标准方程 是 .5.如果点(,)M x y 在运动过程中,总满足关系式2222(3)(3)10x y x y ++++-=,点M 的轨迹是 ,它的方程是 .课后作业1. 写出适合下列条件的椭圆的标准方程:⑴焦点在x 轴上,焦距等于4,并且经过点()3,26P -; ⑵焦点坐标分别为()()0,4,0,4-,5a =;⑶10,4a c a c+=-=.2. 椭圆2214x yn+=的焦距为2,求n的值.教学后记:。

椭圆及其标准方程教学设计(第一课时)

椭圆及其标准方程教学设计(第一课时)

《椭圆及其标准方程》教学设计(第一课时)一、课标要求理解掌握椭圆的定义,标准方程及其推导过程,会求一些简单的椭圆的标准方程.二、教学设计思想《椭圆及其标准方程》是学生学习了直线和圆有关知识后学习的第二种圆锥曲线,因此这一节的教学既可以是对前面所学知识情况进行检查,又为以后进一步学习其它两种圆锥曲线打好基础,所以学好本节课内容具有承上启下的重要意义.我们在教学中采用实验探索法,讲授发现法等教学法,具体做法如下:(1)通过图形由圆变化到椭圆的过程中蕴含着运动变化的思想,由学生通过观察、猜想,从而使学生参与知识的获取、抽象、归纳的全过程,得到了椭圆的定义及其应注意条件,提高学生的综合分析能力.(2)由演示出发,问题思考→研究讨论→点拔引导→抽象概括,得到椭圆标准方程.教师边演示边提出问题,充分调动学生学习自主性和积极性,并从中体会数学知识的和谐美和获取知识的喜悦.一位教育学家说过:“不能只向学生奉献真理,而应教给学生发现和探求真理的方法.”本节课的教学,正是本着这样的教学思想去设计的.三、教学目标(一)知识与技能1、理解椭圆、椭圆的焦点和焦距的定义;2、掌握椭圆标准方程的推导过程;3、会求一些简单的椭圆的标准方程.(二)过程与方法通过数形结合,让学生观察猜想归纳,培养学生自主地获取知识的能力,开拓学生探究发现能力.(三)情感态度、价值观1、通过探究性学习,获得成功的喜悦、培养学好数学的信心;2、帮助学生树立运动、变化观点,培养学生勇于进取精神和良好心理素质;3、经历观察、探究等学习活动,培养尊重事实、实事求是的科学态度.四、教学重点与难点重点:椭圆定义的形成和标准方程的推导.难点:椭圆标准方程的推导.五、教学基本流程→→→→→→→几点说明:(1)本节课容量大,建议采用信息技术创设教学情景.(2)教学中教师应该注意少讲,还应力求克服单纯展示课件的教学形式,使计算机辅助教学的作用得以充分发挥,应该给学生充分的时间去尝试、思考、交流、讨论和表述,从而使学生想象、发现问题的空间更加广阔.。

选修2-1:椭圆及其标准方程(一)教案案

选修2-1:椭圆及其标准方程(一)教案案

一、教案背景1、面向学生:高中学科:高二数学2、课时:1课时3、学生课前准备:(1)预习课本,思考:椭圆的定义及标准方程及其推导方法.(2)思考:椭圆定义中应该注意那些.(3)思考:标准方程是如何推导的.二、教学课题:《椭圆及其标准方程》第一课时1、理解椭圆的定义,明确焦点、焦距的概念,掌握椭圆的标准方程的推导及椭圆的标准方程;2、进一步学习类比、数形结合的数学思想方法,理解坐标法及其应用.3、重点:椭圆的定义、椭圆的标准方程、坐标化的基本思想难点:椭圆标准方程的推导与化简,坐标法的应用关键:含有两个根式的等式化简三、教材分析1、本节教材整体来看是两大块内容:意识椭圆的定义;二是椭圆的标准方程.椭圆是圆锥曲线这一章所要研究的三种圆锥曲线中首先遇到的,所以教材把用坐标法对椭圆的研究放在了重点位置上.学好椭圆对于学生学好圆锥曲线是非常重要的.2、这节课的重点是椭圆的定义、椭圆的标准方程、坐标化的基本思想;难点是椭圆标准方程的推导与化简,坐标法的应用;标准方程推导的关键是含有两个根式的等式化简.四、教学方法1、用模型结合多媒体课件演示椭圆,再给出椭圆的定义,最后加以强调,加强概念的形成过程教学.2、对椭圆的标准方程的推导,可采用观察、分析、归纳、抽象、概括、自主探究、合作交流的教学方法,调动学生参与课堂教学的主动性和积极性.3、本节课坚持推行“学案引导——自主学习——合作探究——精讲点拨——巩固练习”的课堂教学模式,按照“创设情境——学生活动——意义建构——数学理论——数学应用——回顾反思——巩固提高”的程序设计教学过程,并以多媒体手段辅助教学,使学生经历实践、观察、猜想、论证、交流、反思等理性思维的基本过程,切实改进学生的学习方式,使学生真正成为学习的主人.五、教学过程课前预习,搜寻问题1、椭圆的定义及注意事项:2、椭圆的标准方程的推导:3、椭圆的标准方程有那几种形式:课内探究,答疑解惑一、创设情景、引入概念首先用多媒体演示“神州七号”飞船绕地球旋转运行的画面,并描绘出运行轨迹图.★问一:“神州七号”飞船绕地球旋转的轨迹是什么图形?二、尝试探究、形成概念学生实验:按课本上介绍的方法,学生用一块纸板,两个图钉,一根无弹性的细绳尝试画椭圆.实验探究:保持绳长不变,改变两个图钉之间的距离,画出的椭圆有什么变化?思考:根据上面探究实践回答,椭圆是满足什么条件的点的轨迹?椭圆的定义:找定义的关键处:①平面曲线;②任意一点到两个定点的距离的和等于常数;③常数大于| F1F2|.三、标准方程的推导归纳求曲线方程的一般步骤:建系→设点→列出方程→化简方程.建系一般应遵循简单、优化的原则.★问二:怎样建立坐标系,才能使求出的椭圆方程最为简单?推导过程:思考:观察右图,能从中找出表示,a c12222=+byax.(0a b>>)此即为椭圆的标准方程.它所表示的椭圆的焦点在x轴上,焦点是)0,()0,(21cFcF-,中心在坐标原点的椭圆方程.M2F1F★问三:如果椭圆的焦点F 1,F 2在y 轴上,线段F 1F 2的垂直平分线为x 轴,a ,b ,c 意义同上,椭圆的方程形式又如何?注意理解以下几点:① 在椭圆的两种标准方程中,都有0>>b a 的要求;② 在椭圆的两种标准方程中,由于22a b >,所以可以根据分母的大小来判定焦点在哪一个坐标轴上;③ 椭圆的三个参数,,a b c 之间的关系是222a b c =+,其中0,0,a b a c b c >>>>和 大小不确定.四、尝试应用1、下列方程哪些表示的是椭圆,如果是,判断它的焦点在哪个坐标轴上?2、 写出适合下列条件的椭圆的标准方程:两个焦点的坐标分别是()04,-、()04,,椭圆上一点到两焦点距离的和等于10;变式一:将上题焦点改为(0,-4)、(0,4), 结果如何?变式二:将上题改为两个焦点的距离为8,椭圆上一点P 到两焦点的距离和等于10,结果如何?五、典例分析:例:写出适合下列条件的椭圆的标准方程两个焦点的坐标分别是()20-,、()20,,并且经过点P ⎪⎭⎫⎝⎛-2523,. 11)4(2222=++m y m x 123)3(22-=--y x 0225259)2(22=--y x 11625)1(22=+y x六、课堂练习1.写出适合下列条件的椭圆的标准方程:(1)a =4,b =3,焦点在x 轴; (2)a =5,c =2,焦点在y 轴上.2.椭圆191622=+y x 的焦距是 ,焦点坐标为 ;若CD 为过左焦点1F 的弦,则CD F 2∆的周长为 .课后反思,巩固练习1、课后反思与体验<1>、本节课我学到了哪些知识,是用什么方法学会的?<2>、我还有什么知识没有掌握,是什么原因导致的?<3>、我从老师和同学那儿学到了哪些好的学习方法?<4>、通过上述的回顾评价一下自己本节课的表现。

椭圆及其标准方程导学案

椭圆及其标准方程导学案

§2.1.1椭圆及其标准方程导学案学习目标:1.了解椭圆的实际背景,通过作图探究抽象出椭圆的定义,了解椭圆标准方程的推导及化简过程. 2.掌握椭圆的定义及其标准方程.学习重点:椭圆的定义和标准方程的理解与应用.【课前知识准备】1.平面内,到定点的距离等于定长的点的轨迹是 .2.圆心为)0,0(,半径为4的圆的标准方程是 .做一做:将细绳的两端拉开一段距离,分别固定在板上的21,F F 两处,用铅笔把细绳拉紧,使铅笔(动点M )在画纸上慢慢移动形成轨迹.想一想:你作出的点的轨迹是什么图形?①在作图过程中,哪些点的位置不变,哪些距离改变,哪些量不变?②改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?③绳长能小于两图钉之间的距离吗?新知1:椭圆的定义平面内与两个定点21,F F 的距离之和等于常数(大于||21F F )的点的轨迹叫做 ,定点21,F F 叫做 ,两焦点间的距离||21F F 叫做符号表示:问题1:定义中需要注意什么?跟踪练习1:用定义判断下列动点:M 的轨迹是否为椭圆。

(1)到F1(-2,0)、F2(2,0)的距离之和为6的点的轨迹。

(2)到F1(0,-2)、F2(0,2)的距离之和为4的点的轨迹。

(3)到F1(-2,0)、F2(0,2)的距离之和为3的点的轨迹。

问题2:如何求椭圆的方程?(提示:类比求圆的轨迹方程的方法)新知2:椭圆的标准方程为( )【说明】①焦点在 轴上②焦点坐标为1F ( , ), 2F ( , ); ③c b a ,,的关系为: .跟踪练习2:根据下列椭圆方程,说出方程中a 、b 、c 的值.(1)192522=+y x ; (2) 114416922=+y x ;问题3:回顾椭圆方程的探求过程,若把两焦点1F 、2F 放在y 轴上恰当的位置,椭圆的方程又是什么呢?( )【说明】①焦点在 轴上②焦点坐标为1F ( , ), 2F ( , ); ③c b a ,,的关系为: .问题4:在图形中,a,b,c 分别代表哪段的长度?根据椭圆的标准方程,如何判断焦点的位置?跟踪练习3:判定下列椭圆的焦点在哪个轴上,并写出焦点坐标。

高中数学教案——椭圆及其标准方程 第一课时

高中数学教案——椭圆及其标准方程 第一课时

课题:8.1椭圆及其标准方程(一)教学目的:1.理解椭圆的定义明确焦点、焦距的概念2.熟练掌握椭圆的标准方程,会根据所给的条件画出椭圆的草图并确定椭圆的标准方程3.能由椭圆定义推导椭圆的方程4.启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题;培养学生抽象概括能力和逻辑思维能力教学重点:椭圆的定义和标准方程教学难点:椭圆标准方程的推导授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:高中数学学科课程标准对本节课的教学要求达到“掌握”的层次,即在对有关概念有理性的认识,能用自己的语言进行叙述和解释,了解它们与其他知识联系的基础上,通过训练形成技能,并能作简单的应用根据数学学科的特点、学生身心发展的合理需要和社会的政治经济、科学技术的需求,本节课从知识、能力和情感三个层面确定了相应的教学目标椭圆的定义是一种发生性定义,是通过描述椭圆形成过程进行定义的 作为椭圆本质属性的揭示和椭圆方程建立的基石,理应作为本堂课的教学重点 同时,椭圆的标准方程作为今后研究椭圆性质的根本依据,自然成为本节课的另一教学重点学生对“曲线与方程”的内在联系(数形结合思想的具体表现)仅在“圆的方程”一节中有过一次感性认识 但由于学生比较了解圆的性质,从“曲线与方程”的内在联系角度来看,学生并未真正有所感受 所以,椭圆定义和椭圆标准方程的联系成为了本堂课的教学难点圆锥曲线的有关知识不仅在生产、日常生活和科学技术中有着广泛的应用,而且是今后进一步数学的基础 教科书以椭圆为学习圆锥曲线的开始和重点,并以之来介绍求圆锥曲线方程和利用方程讨论几何性质的一般方法,可见本节内容所处的重要地位通过本节学习,学生一方面认识到一般椭圆与圆的区别与联系,另一方面也为利用方程研究椭圆的几何性质以及为学生类比椭圆的研究过程和方法,学习双曲线、抛物线奠定了基础 根据本节教材的重点、难点,课时拟作如下安排:第一课时,椭圆的定义及标准方程的推导;第二课时,椭圆标准方程的两种形式及运用待定系数法求椭圆的标准方程;第三课时,以椭圆为载体的动点轨迹方程的探求 教学过程:一、复习引入:1.1997年初,中国科学院紫金山天文台发布了一条消息,从1997年2月中旬起,海尔·波普彗星将逐渐接近地球,过4月以后,又将渐渐离去,并预测3000年后,它还将光临地球上空 1997年2月至3月间,许多人目睹了这一天文现象学家是如何计算出彗星出现的准确时间呢?原来,海尔·波普彗星运行的轨道是一个椭圆,通过观察它运行中的一些有关数据,可以推算出它的运行轨道的方程,从而算出它运行周期及轨道的的周长(说明椭圆在天文学和实际生产生活实践中的广泛应用,指出研究椭圆的重要性和必要性,从而导入本节课的主题) 2.复习求轨迹方程的基本步骤:3.手工操作演示椭圆的形成:取一条定长的细绳,把它的两端固定在画图板上的21,F F 两点,当绳长大于两点间的距离时,用铅笔把绳子拉 近,使笔尖在图板上慢慢移动,就可以画出一个椭圆分析:(1)轨迹上的点是怎么来的?(2)在这个运动过程中,什么是不变的?答:两个定点,绳长即不论运动到何处,绳长不变(即轨迹上与两个定点距离之和不变) 二、讲解新课: 1 椭圆定义:平面内与两个定点21,F F 的距离之和等于常数(大于||21F F )的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 注意:椭圆定义中容易遗漏的两处地方: (1)两个定点---两点间距离确定(2)绳长--轨迹上任意点到两定点距离和确定较扁(→线段)在同样的绳长下,两定点间距离较短,则所画出的椭圆较圆(→圆) 由此,椭圆的形状与两定点间距离、绳长有关(为下面离心率概念作铺垫) 2.根据定义推导椭圆标准方程:取过焦点21,F F 的直线为x 轴,线段21F F 的垂直平分线为y 轴设),(y x P 为椭圆上的任意一点,椭圆的焦距是c 2(0>c ).则)0,(),0,(21c F c F -,又设M 与21,F F 距离之和等于a 2(c a 22>)(常数){}a PF PF P P 221=+=∴221)(y c x PF ++= 又,a y c x y c x 2)()(2222=+-+++∴,化简,得 )()(22222222c a a y a x c a -=+-,由定义c a 22>,022>-∴c a令222b c a =-∴代入,得 222222b a y a x b =+,两边同除22b a 得 12222=+by a x此即为椭圆的标准方程它所表示的椭圆的焦点在x 轴上,焦点是)0,()0,(21c F c F -,中心在坐标原点的椭圆方程 其中22b c a +=注意若坐标系的选取不同,可得到椭圆的不同的方程如果椭圆的焦点在y 轴上(选取方式不同,调换y x ,轴)焦点则变成),0(),,0(21c F c F -,只要将方程12222=+by a x 中的y x ,调换,即可得12222=+bx a y ,也是椭圆的标准方程 理解:所谓椭圆标准方程,一定指的是焦点在坐标轴上,且两焦点的中点为坐标原点;在12222=+by a x 与12222=+b x a y 这两个标准方程中,都有0>>b a 的要求,如方程),0,0(122n m n m n y m x ≠>>=+就不能肯定焦点在哪个轴上;分清两种形式的标准方程,可与直线截距式1=+b y a x 类比,如12222=+by a x 中,由于b a >,所以在x 轴上的“截距”更大,因而焦点在x 轴上(即看22,y x 分母的大小)三、讲解范例:例1 写出适合下列条件的椭圆的标准方程: ⑴两个焦点坐标分别是(-4,0)、(4,0),椭圆上一点P 到两焦点的距离 之和等于10;⑵两个焦点坐标分别是(0,-2)和(0,2)且过(23-,25) 解:(1)因为椭圆的焦点在x 轴上,所以设它的标准方程为12222=+by a x )0(>>b a9454,582,10222222=-=-=∴==∴==c a b c a c a所以所求椭圆标准方程为92522=+y x ⑵ 因为椭圆的焦点在y 轴上,所以设它的标准方程为12222=+b x a y )0(>>b a 由椭圆的定义知,22)225()23(2++-=a +22)225()23(-+-10211023+=102= 10=∴a 又2=c6410222=-=-=∴c a b所以所求标准方程为161022=+x y 另法:∵ 42222-=-=a c a b∴可设所求方程142222=-+a x a y ,后将点(23-,25)的坐标代入可求出a ,从而求出椭圆方程点评:题(1)根据定义求 若将焦点改为(0,-4)、(0,4)其结果如何;题(2)由学生的思考与练习,总结有两种求法:其一由定义求出长轴与短轴长,根据条件写出方程;其二是由已知焦距,求出长轴与短轴的关系,设出椭圆方程,由点在椭圆上的条件,用待定系数的办法得出方程 四、课堂练习:1 椭圆192522=+y x 上一点P 到一个焦点的距离为5,则P 到另一个焦点的距离为( )A.5B.6C.4D.102.椭圆11692522=+y x 的焦点坐标是( ) A.(±5,0) B.(0,±5)C.(0,±12)D.(±12,0)3.已知椭圆的方程为18222=+my x ,焦点在x 轴上,则其焦距为( ) A.228m - B.2m -22 C.282-m D.222-m4.1,6==c a ,焦点在y 轴上的椭圆的标准方程是5.方程1)42sin(322=+-παy x 表示椭圆,则α的取值范围是( ) .838παπ≤≤-B.k k k (838ππαππ+<<-∈Z) C.838παπ<<- D. k k k (83282ππαππ+<<-∈Z) 参考答案: 1.A2.C3.A4.1353622=+x y 5.B五、小结 :本节课学习了椭圆的定义及标准方程,应注意以下几点: ①椭圆的定义中, 022>>c a ;②椭圆的标准方程中,焦点的位置看x ,y 的分母大小来确定; ③a 、b 、c 的几何意义 六、课后作业:1.判断下列方程是否表上椭圆,若是,求出c b a ,,的值①12222=+y x ;②12422=+y x ;③12422=-y x ;④9422=+x y 答案:①表示园;②是椭圆2,2,2===c b a ;③不是椭圆(是双曲线);④369422=+x y 可以表示为1322222=+y x ,是椭圆,,2,3===c b a 2 椭圆191622=+y x 的焦距是 ,焦点坐标为 ;若CD 为过左焦点1F 的弦,则CD F 2∆的周长为答案:4);0,7(),0,7(;72221=-=a F F c3. 方程1422=+ky x 的曲线是焦点在y 上的椭圆 ,求k 的取值范围答案:0<<k4 化简方程:)3()3(2222=-++++y x y x答案:1251622=+y x 5 椭圆13610022=+y x 上一点P 到焦点F 1的距离等于6,则点P 到另一个焦点F 2的距离是 答案:46 动点P 到两定点1F (-4,0),2F (4,0)的距离的和是8,则动点P 的轨迹为 _______ 答案:是线段21F F ,即)44(0≤≤-=x y七、板书设计(略)八、课后记:写出适合下列条件的椭圆的标准方程:(口答)(1)a=4,b=3,焦点在x 轴;(2)a=5,c=2,焦点在y 轴上.(答案:19y 16x 22=+;121x 25y 22=+)(2) 已知三角形ΔABC 的一边∠长为6,周长为16,求顶点A 的轨迹方程解:以BC 边为x 轴,BC 线段的中垂线为y 轴建立直角坐标系,则A 点的轨迹是椭圆,其方程为:116y 25x 22=+ 若以BC 边为y 轴,BC 线段的中垂线为x 轴建立直角坐标系,则A 点的轨迹是椭圆,其方程为:125y 16x 22=+。

椭圆的定义与标准方程导学案(1)(1)

椭圆的定义与标准方程导学案(1)(1)

2.1.1椭圆的定义与标准方程主备人:许玉霞 复备人:许月珠、蔡素晗、蔡慧鸿、高二备课组 授课班级:高二(18)班 第 1 课时(总2课时)课型新授课授课教材 课前准备 学生课前预习、教师阅读数学课程标准、研读课本,收集资料,制作多媒体课件学习目标1.掌握椭圆的定义及其标准方程的推导.2.初步学会用坐标法解决几何问题.3.通过观察、联想、类比,体会分类讨论及数形结合的数学思想方法,逐步培养数学应用建模的意识.湘教版 《数学选修2-1》 《2.1.1椭圆的定义与标准方程》重点、难点 教学重点:椭圆的定义和标准方程.教学难点:椭圆标准方程的推导.学情分析学习者特征:学生是高二(18)班的学生,选科是史政地组合。

本班共有55人,其中选体音美的学生共有22人.学生的基础非常薄弱,但是对于数学新内容的学习有较大的兴趣和较强的积极性,不过探究问题的能力,数学建模、数学运算等核心素养有待提高.初始能力:学生已具备了圆的知识并初步掌握求轨迹方程的方法;初步学会了用坐标法解决平面几何问题,学生学习的障碍在于实际问题抽象成数学问题的能力有待进一步提高.导学过程教学过程 学生活动教师指导 信息技术融合情况目标提示1.掌握椭圆的定义及其标准方程的推导.2.初步学会用坐标法解决几何问题.简单讲解教师借助 PPT 课件强调本节学习目标.自学检测 判断下列方程是否表示椭圆? 124)3(134)2(144)1(222222=+=-=+y x y x y x 核对答案,反馈完成情况.学生借助移动终端进行答题, 教师借助智慧课堂统计答题情况.一.椭圆的定义1.实验演示取一条长度一定且没有弹性的细绳,如果把细绳的两端拉开一交流讨论段距离,分别固定在图板的两点处(标记为F1,F2),套上铅笔,拉紧绳子,移动笔尖,画出的是什么图形?这一过程中,笔尖(动点)满足什么几何条件?2.椭圆的定义平面上到两个定点F1,F2的距离之和为定值(大于|F1F2|)的点的轨迹叫做椭圆.①两个定点F1、F2——椭圆的焦点;②12FF——焦距,记为2c(c>0).③定值记为.022),(2>>>caaa讨论:为什么这个定值要大于|F1F2| ?结论:若定值大于|F1F2|,则点M的轨迹是()若定值等于|F1F2|,则点M的轨迹是()若定值小于|F1F2|,则点M的轨迹是()总结演示实验得到的轨迹,引出椭圆的定义;引导学生交流讨论,辩中得真知,并总结归纳.教师借助PPT 课件展示椭圆的形成过程,引导学生归纳椭圆的定义.教师借助智慧课堂反馈讨论情况.释疑解难二.椭圆的标准方程的推导焦点在x轴上:)0(12222>>=+babyax焦点在y轴上:)0(12222>>=+babxay标准方程相同点焦点位置的判断不同点图形焦点坐标a、b、c 的关系焦点在x轴上焦点在y轴上yxMOF1F2归纳求动点轨迹方程的一般步骤:(坐标法)(1)建立适当的坐标系;(2)设M的坐标(x,y)表示曲线上任意一点;(3)写出限制条件 P(M) ;(4)把坐标代入条件P(M),列出方程 ;(5)化方程为最简形式.引导学生如何建系,推导标准方程,让学生体会数形结合的重要性.教师借助PPT 课件展示椭圆的定义;教师引导学生如何建系,推导标准方程,让学生体会数形结合的重要性.典例精析例:判断下列方程是否表示椭圆?若是,写出它的焦点坐标.)0(14)6(1234)5(1244124)3(134)2(144)1(222222222222>=+=+=+=+=-=+nnyxyxyxyxyxyx)(探究:先由自学检测入手,再进一步求椭圆的焦点坐标.通过实例分析,帮助学生梳理知识,突出本节的重点.训练学生观察能力,培养学生化归与转化能力,运算能力.教师借助PPT课件展示例题,讲解题目,突出重点,指出易错点,巩固概念.教师借助智慧课堂反馈学生的探究情况.当堂训练抢答:,1351.2222=+yx则=a,=b;,1642.2222=+yx则=a,=b;,1693.22=+yx则=a,=b;,1474.22=+yx则=a,=b.由学生完成,老师点拨.巩固所学的知识,并提升能力.教师借助PPT 课件展示,讲解题目,突出重点,指出易错点,巩固概念.课堂小结一个概念:|MF1|+|MF2|=2a(2a>2c>0)二个方程:三个意识:求美意识;求简意识;建模意识思想方法:数形结合;分类讨论;化归与转化引导学生进行反思小结,教师再做补充.教师借助PPT 课件归纳本节课的学习内容和方法,突出重点,突破难点.作业延伸一.必做题1.校本作业2.《同步导学》p19——213.推导焦点在y轴上椭圆的标准方程.二.选做题:1.方程219x ym-=表示焦点在y轴上的椭圆,求实数m的范围.学生课后自主完成,促进知识的巩固和提升.教师借助PPT 课件向全班同学推送作业,课后实时查看、批改作业.圆?满足什么条件时表示椭中方程nmnyx,1m22=+1byax2222=+()0ba1bxay2222>>=+2.椭圆1422=+ny x 的焦距为2,求n 的值.板书设计椭圆的定义与标准方程1.定义 例题2.标准方程。

椭圆及其标准方程1导学案

椭圆及其标准方程1导学案

※ 当堂检测(时量:5分钟 满分:10分)计分:
1.平面内一动点M 到两定点1F 、2F 距离之和为常数2a ,则点M 的轨迹为( ). A .椭圆 B .圆
C .无轨迹
D .椭圆或线段或无轨迹
2.如果方程222x ky +=表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ). A .(0,)+∞ B .(0,2) C .(1,)+∞ D .(0,1) 3.如果椭圆22
110036
x y +=上一点P 到焦点1F 的距离等于6,那么点P 到另一个焦点2F 的
距离是( ).
A .4
B .14
C .12
D .8
4.椭圆两焦点间的距离为16,且椭圆上某一点到两焦点的距离分别等于9和15,则椭圆的标准方程
是 .
5.如果点(,)M x y 在运动过程中,10,点M 的轨迹是 ,它的方程是 .
1. 写出适合下列条件的椭圆的标准方程:
⑴焦点在x 轴上,焦距等于4,并且经过点(3,P -; ⑵焦点坐标分别为()()0,4,0,4-,5a =; ⑶10,4a c a c +=-=.
2. 椭圆22
14x y n
+=的焦距为2,求n 的值.。

椭圆及其标准方程(第一课时)导学案

椭圆及其标准方程(第一课时)导学案

课题:2.2.1 椭圆及其标准方程(第一课时)【课标要求】1.了解椭圆的实际背景,经历从具体情境中抽象出椭圆的过程、椭圆标准方程的推导与化简过程. 2.掌握椭圆的定义、标准方程及几何图形.【考纲要求】(1)掌握椭圆的定义,标准方程和椭圆的简单几何性质,理解椭圆的参数方程。

(2)了解圆锥曲线的初步应用。

编写者试图通过本节教材,使学生系统地掌握坐标法并进一步激活数形结合的数学思想。

【教学目标叙写】根据学生在日常生活中的经验积累,对椭圆形状有了初步的认识。

通过典故的课堂引入及从圆和相关的图片引入着手学生亲自体验画椭圆,激发学习的兴趣和研究椭圆定义的求知欲,去发现椭圆定义的本质,探索图形变化规律,掌握椭圆的概念。

从而推导出椭圆标准方程并会利用待定系数法求椭圆标准方程。

【使用说明与学法指导】1.阅读探究课本P38-P40的基础知识,自主高效预习;2.阅读导学案预习案部分的内容,自主自主完成各项要求;3.结合课本基础知识和例题及预习案,完成预习自测题;对合作探究部分认真审题,做不好的上课时组内讨论。

4.本导学案中题号后凡标明A ,B ,C 的只要求相应层次的学生完成即可。

5.将预习中不能解决的问题标识出来,并写到后面“我的疑惑”处,准备课上讨论质疑。

【预习案】一. 温故夯基1.圆心为O ,半径为r 的圆上的点M 满足集合P ={M||MO|=r},其中r>0. 2.求曲线方程的基本方法有:_________,_________,__________ 二.知新益能1.课堂引入:这是一个发生在古希腊的故事:西西里岛的一个岩洞里,被关押的犯人不堪忍受这非人的待遇,他们偷偷聚集在岩洞的最里面,小声议论越狱和暴动的办法。

但是,他们商量好的计划很快就被看守人员掌握了,看守人员提前采取了措施,使商量好的计划无法实行,犯人们开始互相猜疑,认为一定是出了叛徒,但是不管怎么查找,也找不到告密者是谁,这究竟是怎么回事呢?原来,并没有人当叛徒去告密,当然找不到告密者了。

椭圆及其标准方程(1)

椭圆及其标准方程(1)
2 2 由定义 2a 2c , a c 0
两边同除以 a 2 (a 2 c 2 ) 得
x2 y2 1 ① a2 a2 c2
观察右图,你能从中找出表示 a, c, a 2 c 2 的线段吗? = 令a c =
2 2
=a; 代入①,得
=
=c;
=
= a2 c2 ②
x2 y2 1 (a b 0) a2 b2
M ( x, y) 为椭圆上的任意一点, 椭圆的焦距是 2c(c 0) .则 F1 (c,0) ,F2 (c,0) , 又设 M
与 F1、F2 距离之和等于 2a(2a 2c) 椭圆的集合 P M MF1 MF2 2a


滨州实验中学 2015 级 又 MF 1 , MF2
3、平面内与两个定点 F1、F2 的 自 主 学 习 连个定点 F1、F2 叫做椭圆的 二、对椭圆定义的理解
1、将“大于 F1 F2 ”改为“等于 F1 F2 ”的常数,其他条件不变,点的轨迹是 2、将“大于 F1 F2 ”改为“小于 F1 F2 ”的常数,其他条件不变,点的轨迹存在吗? 三、椭圆的标准方程及其推导: (仔细阅读教材(p32—p34)回答下列问题) 根据定义推导椭圆标准方程:取过 直线为 x 轴,线段 为 y 轴 .设
数学学科
课时导学案
( x c ) 2 y 2 ( x c ) 2 y 2 2a
( x c ) 2 y 2 2a
2 2 等式两边平方整理得: a ( x c) y
, ,
等式两边在平方整理得: (a 2 c 2 ) x 2 a 2 y 2 a 2 (a 2 c 2 ) ,
由椭圆的定义可知,方程②为焦点在 x 轴上的椭圆的标准方程. 它的焦点在 x 轴上,两个焦点坐标分别是 思考 如图,如果焦点 F1、F2 在 y 轴上,且 F1、F2 的坐标 分别为 F1 (0,-c) F2 (0, c) , a , b 的意义同上,那么椭圆 的方程是什么? ,其中 a, b, c 满足的关系式为

导学案1:椭圆的定义与标准方程

导学案1:椭圆的定义与标准方程

椭圆的定义与标准方程学习目标1.通过作椭圆的过程,掌握椭圆的定义.2.了解椭圆的标准方程的推导过程.3.掌握椭圆两种位置的标准方程.学习过程一、要点梳理(预习教材,完成下面的空格,并找出疑惑之处)1.椭圆的定义平面内与等于常数()的点的轨迹(或集合叫做椭圆.这两个定点叫做椭圆的,叫做椭圆的焦距.2.椭圆的标准方程二、课内探究※ 学生汇报自学成果,提出自学中遇到的问题。

※ 新课探究:要点一:关于椭圆的定义根据椭圆的定义,用集合语言可叙述为:集合P={M||MF1|+|MF2|=2a,2a>|F 1F 2|}.设| F 1F 2|=2c >0.则a >c 时,集合P 为椭圆.a =c 时,集合P 为线段F 1F 2.a <c 时,集合P 为空集.要点二:椭圆的标准方程1.所谓“标准”指的是中心在原点,对称轴为坐标轴.2.椭圆的标准方程有两种形式,即x 2a 2+y 2b 2=1(a >b >0)和y 2a 2+x 2b 2=1(a >b >0),这两种形式的方程表示的椭圆的相同点是它们的形状、大小都相同,都有a >b >0,a 2=b 2+c 2,不同点是椭圆在直角坐标系中的位置不同,焦点坐标不同,前者焦点在x 轴上,后者焦点在y 轴上.要点三:求椭圆的方程时要注意1.确定椭圆的标准方程包括“定位”和“定量”两个方面.“定位”是指确定椭圆与坐标系的相对位置,在中心为原点的前提下,确定焦点位于哪条坐标轴上,以判断方程的形式;“定量”则是指确定a 2、b 2的具体数值,常用待定系数法.2.当椭圆的焦点位置不明确(无法确定)求其标准方程时,可设方程为x 2m+y 2n=1(m >0,n >0),可以避免讨论和繁杂的计算,也可设为Ax 2+By 2=1(A >0,B >0),这种形式在解题中较为方便.※ 典型例题:例1.求适合下列条件的椭圆的标准方程:(1)两个焦点的坐标分别为(-4,0)和(4,0),且椭圆经过点(5,0);(2)焦点在y 轴上,且经过两个点(0,2)和(1,0).例2.求经过两点P 1⎝ ⎛⎭⎪⎫13,13,P 2⎝⎛⎭⎪⎫0,-12的椭圆的标准方程. 例3. 方程x 2k -5+y 23-k=-1表示椭圆,求k 的取值范围. ※ 变式训练:1.求两个焦点分别是(-3,0)、(3,0)且经过点(5,0) 的椭圆的方程;2.求坐标轴为对称轴,并且经过两点A(0,2)和B(12,3)的椭圆的方程.3.若方程x2a2+y2a+6=1表示焦点在x轴上的椭圆,则实数a的取值范围是( )A.a>3 B.a<-2C.a>3或a<-2 D.a>3或-6<a<-2三、当堂检测1.求两焦点在坐标轴上,两焦点的中点为坐标原点,焦距为8,椭圆上一点到两焦点的距离之和为12的椭圆的方程.2.求经过点(2,-3)且与椭圆9x2+4y2=36有共同的焦点的椭圆的方程.四、课后巩固提高※ 本堂小结:。

《椭圆及其标准方程》(第一课时)教学设计

《椭圆及其标准方程》(第一课时)教学设计

《椭圆及其标准方程》(第一课时)教学设计一、教学内容分析教材选自人教A版《普通高中课程标准实验教科书》数学选修2-1.《椭圆及其标准方程》是继学习圆以后运用“曲线与方程”思想解决二次曲线问题的又一实例。

椭圆的标准方程是圆锥曲线方程研究的基础,它的学习方法对整个这一章具有导向和引领作用.一方面,它是对前面所学的运用“代数方法研究几何问题”的又一次实际演练,同时它也是进一步研究椭圆几何性质和双曲线、抛物线的基础;另一方面,教科书以椭圆作为学习圆锥曲线的开始和重点,并依此来介绍求圆锥曲线方程和利用方程讨论几何性质的一般方法,为我们后面研究双曲线、抛物线这两种圆锥曲线提供了基本模式和方法。

因此本节课有承前启后的作用,是本章和本节的重点内容。

椭圆是通过描述椭圆形成过程进行定义的,作为椭圆本质属性的揭示和椭圆方程建立的基石,这是本节课的一个教学重点;而坐标法是解析几何中的重要数学方法,椭圆方程的推导是利用坐标法求曲线方程的很好应用实例,让学生亲身经历椭圆概念形成的数学化过程,并通过探究得到椭圆的标准方程,有利于培养学生观察分析、抽象概括的能力。

学生对“曲线与方程"的内在联系仅在“圆的方程"一节中有过一次感性认识,并未真正有所感受。

通过本节学习,学生一方面认识到椭圆与圆的区别与联系,另一方面也为利用方程研究椭圆的几何性质以及为学生类比椭圆的研究过程和方法,学习双曲线、抛物线奠定了基础。

根据以上分析,确定本课时的教学难点和教学重点分别是:教学重点:掌握椭圆的定义及标准方程,体会坐标法的应用。

教学难点:椭圆概念的深入理解及选择不同的坐标系推导椭圆的标准方程.二、学生学情分析在学习本节课前,学生已经学习了直线与圆的方程,对曲线和方程的思想方法有了一些了解和运用的经验,对坐标法研究几何问题也有了初步的认识。

因此,学生已经具备探究有关点的轨迹问题的知识基础和学习能力。

而本节课要求学生通过自己动手亲自作出椭圆并且还要利用曲线方程的知识推导出方程,与前面学生熟悉的圆相比,对学生的抽象、分析、实践的能力要求比较高,可能困难要大一点,导致学生在学习中可能出现的困难是:学生动手作图慢;用尺规作图的思路可能出现障碍;受教材的影响,学生选择坐标系的思维可能受到限制;方程的化简也是一个难点.三、教学目标与目标解析根据新课程标准对本节课的要求以及对教材和学生情况的分析,本节课教学目标确定为:1、感受建立曲线方程的基本过程,使学生理解椭圆的定义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.1椭圆及其标准方程导学案(第1课时)
【学习目标】
1.能准确的说出椭圆的定义;
2.会推导椭圆的标准方程并掌握椭圆的标准方程的写法. 3会用待定系数法求椭圆的标准方程 【学习过程】 一.自学探究 1.椭圆的产生 2.椭圆的定义
我们把平面内与两个定点12,F F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 .
反思②:若将距离之和(| P F 1|+| P F 2|)记为2a ,为什么122a F F >? 当122a F F =时,其轨迹为 ; 当122a F F <时,其轨迹为 .
试一试:
1若动点P 到两定点F 1(-4,0),F 2(4,0)的距离之和为8,则动点P 的轨迹为( ) A.椭圆 B.线段F 1F 2 C.直线F 1F 2 D.不存在
2命题甲:动点P 到两定点A 、B 的距离之和|PA|+|PB|=2a(a>0,常数)命题乙:P 点轨迹是椭圆, 则命题甲是命题乙的( )
A.充分不必要条件
B.必要不充分条件
C.充分且必要条件
D.既不充分也不必要条件
小结:理解椭圆的定义注意两点:①分清动点和定点;②看是否满足常数122a F F >
二.椭圆标准方程的推导 1.标准方程的推导步骤 (1)建立坐标系 (2)设点 (3)列式 (4)化简 (5)检验
2.两种标准方程的比较
2
三:典型例题
例1. 已知椭圆两个焦点的坐标分别是()2,0-,(2,0),并且经过点53,22⎛⎫
- ⎪⎝⎭
,求它的标准
方程 .
方法总结:椭圆的标准方程的两种求法:(1)定义法:定义是研究椭圆问题的基础和根本,根据椭圆的定义得到相应的,,a b c ,再写出椭圆的标准方程。

(2)待定系数法,先设出椭圆
的标准方程22221x y a b +=或22
221x y b a
+=(0a b >>),然后求出待定的系数代入方程即可
四、练习提升
1求适合下列条件的椭圆的标准方程:
(1)椭圆的两焦点分别为F 1(-3,0)、F 2(3.,0),且椭圆上的点到两焦点的距离之和等于8;
(2)求经过两点(1,0),(0,2),且焦点在y 轴上。

(3)求经过两点(2,0),(0,1),且焦点在坐标轴上
2.如果椭圆22
110036
x y +=上一点P 到焦点1F 的距离等于6,那么点P 到另一个焦点2F 的距
离是( ).
A .4
B .14
C .12
D .8
3.椭圆两焦点间的距离为16,且椭圆上某一点到两焦点的距离分别等于9和15,则椭圆的标准方程是 .
4.如果点(,)M x y 在运动过程中,
10=,点M 的轨迹是 ,它的方程是 .
5.如果方程222x ky +=表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ). A .(0,)+∞ B .(0,2) C .(1,)+∞ D .(0,1)
6.已知
12
102
2=-+-m x m y 表示焦点在y 轴上的椭圆,则实数m 的范围是________ 7.椭圆22
1x y m n
+=--,(0)m n <<的焦点坐标是。

相关文档
最新文档