高等数学第八章多元函数积分学PPT

合集下载

大一高数课件第八章8-1-1多元函数的基本概念

大一高数课件第八章8-1-1多元函数的基本概念

故f(x,y) 在 (0,0点) 极限不存在 .
确定极限不存在的方法:
(1) 令 P( x, y)沿 y kx 趋向于 P0( x0, y0),若极限值与k 有 关,则可断言极限不存在;
(2) 找两种不同趋近方式,使 lim f ( x, y)存在,但两者不相
x x0 y y0
等,此时也可断言 f ( x, y)在点 P0( x0, y0)处极限不存在.
等都是二元初等函数
一切多元初等函数在其定义区域内是连续的.
定义区域是指包含在定义域内的区域或闭区域.
一般地,li求 mf(P)时,如f果 (P)是初等函
PP0
数,且 P0 是f(P)的定义域的内f点 (P), 在则 点P0处连续,于 lim是f(P) f(P0).
PP0
例7 解
求 lim xy11. x0 xy

3 x
x2 y2
y2 0

1 2
x
x2 y2

y2
4
所求定义域为
D {x ,( y ) |2 x 2 y 2 4 ,x y 2 }.是有界闭区域
例如 zlnx (y) 的定义域
y
D (x ,y )x y 0
当 x取遍 D上一切点时,得一个空间点集
{( x, y, z) | z f ( x, y), ( x, y) D},这个点集称为二元函数的 图形.
二元函数的图形 通常是一张曲面.
例如, zsinxy 图形如右图.
例如, x2y2z2a2
左图球面. D{x (,y)x2y2a2}.
单值分支: z a2x2y2 za2x2y2.
z
o
y

高等数学与工程数学课件第八章多元函数积分学基础.ppt

高等数学与工程数学课件第八章多元函数积分学基础.ppt

第一节 二重积分的概念与性质
一、实例
1.曲顶柱体的体积 在空间直角坐标系Oxyz中,以在xOy平面上的有界闭区域D为 底,以D的边界曲线为准线,母线平行于z轴的柱面为侧面,以z f (x, y)]表示的曲面S为顶[这里f (x, y) 0且在D上连续]的几何体称 为以曲面S为顶,区域D为底的曲顶住体(见图8-1)
f (x, y)d | f (x, y) | d
D
D
性质6 设M 和m分别为f (x, y)在闭区域D上的最大值和最小值,
是D的面积,则有不等式
m f (x, y)d M D
性质7 (二重积分的中值定理)设函数f (x, y)在闭区域D上连续,
是D的面积,则在D内至少存在一点( ,)使得下列等式成立
1 4
y4
1
0
dx
y
1 0
计算从1(x)到2 (x)的定积分,然后把计算结果(关于x的函数)再
对x计算从a到b的定积分.从而得到把二重积分化为先对y, 再对x 的二次积分公式为
b
2 ( x)
f (x, y)dxdy dx f (x, y)dy
a
1 ( x )
D
类似地,若底面区域D为1( y) x 2 ( y), c y d, (见图8 6)
x
P(xi yi )
图8-2 曲顶柱体划分
n
(3)把n个小平顶柱体体积相加得 f (xi , yi )i ,它就是曲顶 i1
柱体体积V的近似值,即
n
V f (xi , yi )i i1
n
(4)对闭区域D的分割不断加细加密, f (xi , yi )i就越来越 i1
近曲顶柱体的体积V .当n个小闭区域的最大直径(指有界闭区域

多元函数微分基本概念ppt课件

多元函数微分基本概念ppt课件

Rn, 即 Rn R R R
Rn 中的每一个元素用单个粗体字母 x 表示, 即
定义:
x y ( x1 y1, x2 y2,, xn yn )
x ( x1, x2, , xn )
线性运算
定义了线性运算的 Rn 称为 n 维空间, 其元素称为点或
PP0
当 n =2 时, 记 PP0 (x x0 )2 ( y y0 )2
二元函数的极限可写作:
lim f (x, y) A lim f (x, y) A
0
x x0
y y0
15
例1.

f (x, y) (x2

y2 ) sin x2
1
y2
求证: lim f (x, y) 0.


1 cos r 2 ~ r 4
2
19
方法2
见到此类问题,用极坐标替换法,也可以得前 面的结论:令 x r cos, y r sin,
20
注. 二重极限 lim f (x, y) 与累次极限 lim lim f (x, y)
x x0
xx0 y y0
y y0
不同.
如果它们都存在, 则三者相等. 仅知其中一个存在, 推不出其他二者存在.
x0
y0
证:
(x2 y2 0)
要证
ε
ε 0, δ ε , 当0 x2 y2 δ时, 总有
x2 y2

lim f (x, y) 0
x0
y0
16
例2.

f
(x,
y)


x

第8章-多元函数微分学及其应用 高等数学教学课件

第8章-多元函数微分学及其应用 高等数学教学课件

xy2 x2
sin y y2
0
xy2 sin y x
x2 y2
故 lim (x, y)(0,0)
xy2 sin x x2 y2
0.
例5 求下列各极限.
1 lim sin(xy) ;
( x, y)(1,0)
y
2 lim xsin 1 .
( x, y)(0,0)
如果多元函数 f (P)在有界闭区域 D上连续, 则该函数在D上能取得最大值和最小值 .
性质3(介值定理)
如果多元函数 f (P)在有界闭区域 D上连续, 则该函数在D上必取得介于最大值M和最小值m 之间的任何值,即对于∀c[m, M ],∃P0D 使得 f(P0) = c .
lim f (x, y) lim f (0, y) lim0 0.
(x, y)(0,0)
y0
y0
当点P(x, y)沿抛物线y kx2(k 0)趋于点0,0时,
lim
(x, y)(0,0)
f (x, y) lim x0
f
(x, kx2 )
lim x0
x4
kx4 k2x4
k 1 k2
PQ x x0 )2 ( y y0 )2 .
称集合U(P,δ) ={Q(x, y)| |PQ| <δ}为点P的δ邻域.
在xOy平面上, U(P, δ)的几何意义:以点P为圆心、 δ为半径的圆内所有点所构成的集合.
集合U(P, δ)\P称为点P的去心δ邻域, 记作
U P, ,即U P, Q x, y | 0 PQ .
.
此极限值与数k有关,当k的值不同时,极限值也不同.
lim f (x, y)不存在. ( x, y)(0,0)

高等数学微积分课件--82多元函数的概念

高等数学微积分课件--82多元函数的概念

方向导数与梯度
方向导数的定义
方向导数是函数在某点处沿某一特定方向的 变化率。
梯度的几何意义
梯度在几何上表示函数值在空间中上升最快 的方向。
梯度的定义
梯度是方向导数的最大值,表示函数在某点 处沿某一方向的最大变化率。
方向导数与梯度的关系
方向导数是梯度的组成部分,但方向导数的 值可能小于梯度。
07
多元函数的极值与最 值
多元函数的自变量x的取值范围。
值域
多元函数因变量y的取值范围。
多元函数的表示方法
1 2
解析法
使用数学表达式来表示多元函数,如z = f(x,y)。
图示法
通过图形来表示多元函数,可以直观地观察函数 的变化趋势和形状。
3
表列法
列出函数在不同点上的取值,便于计算和比较。
多元函数的图形表示
平面图
在二维平面上表示多元函数,通过绘制等高线、 等值线等方式来表现函数的值。
三维图
在三维空间中表示多元函数,通过绘制立体图形 来表现函数的值和变化趋势。
参数方程
通过参数方程来表示多元函数,便于分析和计算 。
03
多元函数的性质
连续性
总结词
连续性是多元函数的基本性质,表示 函数在某点的极限值等于该点的函数 值。
详细描述
在多元函数中,如果一个函数在某点 的所有方向上的极限都存在且相等, 则称该函数在该点连续。连续性是函 数光滑、可微的重要前提。
VS
牛顿-莱布尼茨公式
牛顿-莱布尼茨公式是微积分基本定理的 特殊形式,用于计算定积分的值。
重积分与曲面积分
重积分
重积分是多元函数积分的扩展,用于计算多 元函数在区域上的积分。

多元函数的微积分PPT课件

多元函数的微积分PPT课件

曲线的一般方程为
z
F x, y, z 0
G
x,
y,
z
0
x2 y2 1 如
z 2
o
y
x
x2 y2 1
z y, z 0
第9页/共29页
二次曲面及截痕法 椭球面(几何演示)
抛物面(几何演示)
双曲面(几何演示)
第10页/共29页
曲面在坐标平面内的投影
例 求上半球面 z 2 x与2上半锥y面2 所围成的立体在 xoy 面内的投影区域。
第2页/共29页
空间解析几何简介
空间直角坐标系(三维直角坐标系)
z(竖轴)
O
x(横轴)
y (纵轴)
右手原则
第3页/共29页
O O O
z 空间直角坐标系
z
z
y
y
x
y
x
x
三个坐标平面分空间为八个卦限 (演示)
z
八个卦限
三个坐标平面


xoy 平面


xoz 平面
O
y
yoz 平面
x
第4页/共29页


∙ Px0, y0
第18页/共29页
二元函数的极限计算
6 lim x y
x0 x y
y0
×x 2 y 3y lim 3 y0 y
事实上,设 x ky k 1
x y
x y 换元时 与 不能相互制约
则 lim
x0 x y
y0
lim
y0
yk yk
1 1
k k
1 1
∙ Px0, y0
结果与 k 有关,故原极限不存在。

第八章多元函数微分学课件

第八章多元函数微分学课件

四.多元函数的连续性
习题
返回
第一节 多元函数的基本概念
一、区域
1.邻域 设 P0(x0, y0) 是xOy平面上的一个点,δ是某一
正数.与点 P0(x0, y0) 距离小于δ的点 P(x, y) 的全体 称为P0 的邻域,记为U (P0, ),即
U (P0, ) {P PP0 }
也就是
U (P0, ) {(x, y) (x x0 )2 ( y y0 )2 }
也称为因变量,数集
{z z f (x, y),(x, y)D}
称为该函数的值域.
把定义1中的平面点集D换成n维空间内的点集 D.则可类似的定义n元函数 u f (x1, x2, , xn ) .当 n=1时,n元函数就是一元函数.当n≥2时n元函 数统称为多元函数.
上一页 下一页 返 回
三、多元函数的极限
M 0Tx 对y轴的斜率.
上一页 下一页 返 回
x
z y
2z yx
fyx (x,
y), y
z y
2z y2
fyy (x,
y)
其中第二、第三两个偏导数称为混合偏导数.同 样可得三阶、四阶、···以及n阶偏导数.二阶及 二阶以上的偏导数统称为高阶偏导数.
例题
定理 如果函数z=f(x,y)的两个二阶混合偏
,
x
x x0 y y0
,
zx
xx0 或fx (x0, y0 )
y y0
如果函数 z f (x, y) 在区域D内每一点(x,y)
处对x的偏导数都存在,那么这个偏导数就是
x、y函数,它就称为函数 z f (x, y) 对自变量x
的偏导函数,记作
上一页 下一页 返 回

高等数学第八章课件.ppt

高等数学第八章课件.ppt
x x0 y y0 z z0 . x(t0 ) y(t0 ) z(t0 ) 切向量:切线的方向向量称为曲线的切向量.
T x(t0), y(t0), z(t0)
法平面:过M点且与切线垂直的平面.
x(t0 )(x x0 ) y(t0 )( y y0 ) z(t0 )(z z0 ) 0
限,记为
lim f( x, y) A,
( x, y x0 , y0 )
或 f(x,y) A,( x, y)( x0, y0 )
例 考察函数
g( x,
y)
xy
x2 y2
,
x2 y2 0 ,
0 , x2 y2 0
当 ( x, y ) ( 0 , 0 ) 时的极限
解 当 ( x, y ) 沿 y 轴趋向于原点,即当 y 0 而
若函数 u u(x, y), v v(x, y) 在点(x, y) 处有偏导 数,则 z f (u) 在对应点(u, v) 处有连续偏导数, 则复合函数 z f [u(x, y), v(x, y)] 在点(x, y) 处也存 在偏导数,并且
两种特殊情况:
(二) 隐函数的求导法则
设方程 F (x , y) = 0 确定了函数 y = y(x),两端 对 x 求导,得
f(x0,y0)=C
第二节 偏导数
一、偏导数的概念及几何意义 二、高阶偏导数 三、复合函数与隐函数的求导法则
一、偏导数的概念及几何意义
(一) 偏导数的概念
定义 设函数
在点
的某邻域内极限
存在,则称此极限为函数 的偏导数,记为
注意:
同样可定义对 y 的偏导数为
若函数 z f ( x, y)在域 D 内每一点 ( x, y)处对 x

高等数学第八章多元函数积分学

高等数学第八章多元函数积分学

假f定 (x,y)0 . f(x,y)d的值等 D为 于底 以,
D
以曲z面 f(x,y)为曲顶柱体的体积.
A(x) 2(x) f(x,y)dy. 1(x)
z
dVA(x)dx
y
zf(x,y)
A( x )
y2(x)
b
b
f (x, y)d V dV A(x)dx
o
a
a
a
D
b x x dx x
母线平行于 z 轴的柱面, 其
0
顶是曲面 z= f (x, y)0, 连续.
称为曲顶柱体.
x
z = f (x,y)
y D
如图
若立体的顶是平行于 xy 面的平面. 则平顶柱体的体积 = 底面积×高.
(i)用曲线将D分成 n 个小区域 D1, D2,…, Dn , 每个小区域Di 都对应着一个小曲顶柱体.
(iv) 记m 1in{aD x i的直 },径
其中Di的直径是指Di中相距最远的两点的距离.
如图
n
x
则Vl i0m i1f(i,i)i,
y Di
其中 ( i , i) Di , i = Di 的面积.
求曲顶柱体体积的方法:
分割、取近似、 求和、取极限。
z
zf(x,y)
o xD
y

(i,i)
( 2 )二 重 积 分 值 仅 与 f( x ,y ) 及 D 有 关 , 与 积 分 变 量 符 号 无 关 , 即
f(x,y)df(u ,v)d
D
D
( 3 )当 f(x ,y )在 闭 区 域 上 连 续 时 , 定 义 中 和 式 的 极 限 必 存 在 , 即 二 重 积 分 必 存 在 .

《高等数学教学课件》高数-第八章-多元函数微分学

《高等数学教学课件》高数-第八章-多元函数微分学
邻域U(P, ), 使U(P, ) E为空集,则
称点P为E的 外点。
边界点的定义:
若点P的任意的邻域内,既有属于E的点
也 有 不 属 于E的 点, 则 称 点P是E的 边 界 点 。
边界的定义:
E的边界点的全体称为E的 边 界 。
3、聚点、孤立点
设E是一个平面点集
聚点的定义:
若点P的任意邻域都含有E的无穷多个点,
为P0的 邻域。
0
U(P0 , ) {( x, y) 0 ( x x0 )2 ( y y0 )2 2 }
为P0的 去心邻域。
2、内点、外点、边界点
设E是一个平面点集.
内点的定义:
若点P E,并且存在P点的一个
邻域U(P, ), 使U(P, ) E,则称点P
为E的内点。
外点的定义: 若点P E,并且存在P点的一个
一切多元初等函数在其定义区域内是连续的。
例6、讨论下列函数的连续性
(1)、f
(
x,
y)
x
3 xy 2 2
y
2
x2 y2 0
解 0
x2 y2 0
当x 2 y 2 0时, f ( x, y) 3xy 是初等函数, x2 2y2
且 有 定 义, 连 续.
3kx 2
lim f ( x, y) lim
lim
x0
x2 2y4
02 2(1)4
. 2
y1
在有界闭区域上连续的多元函数的重要性质如下:
定理1、(最大最小值定理)
在有界闭区域D上连续的多元函数f , 在D上必有
最大值和最小值,亦即在D上有点P1和P2 , 使对D上任意
点P,恒有 f P1 f P f P2 , P D

《高等数学教学课件》高数-第八章-多元函数微分学

《高等数学教学课件》高数-第八章-多元函数微分学
高数-第八章-多元函数微分学

CONTENCT

• 多元函数微分学概述 • 多元函数的导数与偏导数计算 • 多元函数微分学在几何上的应用 • 多元函数微分学在极值问题中的应


CONTENCT

• 多元函数微分学在约束最优化问题 中的应用
• 多元函数微分学在实际问题中的应 用
01
多元函数微分学概述
04
多元函数微分学在极值问题中的应用
极值的第一充分条件
总结词
极值的第一充分条件是多元函数微分 学中用于判断函数极值的重要定理。
详细描述
极值的第一充分条件表明,如果一个 多元函数在某一点的偏导数等于零, 并且这个点的海森矩阵(Hessian matrix)是正定的或负定的,那么这 个点就是函数的极值点。
多元函数的概念
80%
多元函数
设D是n维空间的一个区域,对D 中的任意点P,若存在实数x、y、 z...与之对应,则称f(x,y,z...)是D上 的多元函数。
100%
多元函数的定义域函数f(x Nhomakorabeay,z...)中所有自变量x、y 、z...的取值范围共同构成的集合 称为多元函数的定义域。
80%
多元函数的几何意义
在三维空间中,二元函数f(x,y)表 示曲面上的点P(x,y,f(x,y))的轨迹 。
偏导数的定义与性质
偏导数的定义
对于多元函数f(x,y,z...),如果当 其他变量保持不变时,函数关 于某个特定变量的一阶导数存 在,则称这个导数为该函数在 该特定变量上的偏导数。
偏导数的几何意义
在三维空间中,二元函数f(x,y) 在点(x0,y0)处关于x的偏导数 表示曲面在点(x0,y0)处沿x轴 方向的切线斜率。

《多元函数积分学》课件

《多元函数积分学》课件

物理应用
重积分在物理中有广泛的应用,如计 算物体的质量、质心、转动惯量等物 理量,还可以用来解决流体动力学、 弹性力学等领域的问题。
数值分析应用
重积分在数值分析中有重要的应用, 如数值积分、数值微分等计算方法的 实现都需要用到重积分的知识。
04 曲线积分与曲面积分
曲线积分的概念与性质
总结词
理解曲线积分的定义和计算方法,掌握其在几何和物理问题中的应用。
总结词
掌握多元函数的可积性和积分的基本性 质是理解多元函数积分学的重要环节。
VS
详细描述
可积性的判定条件和积分的基本性质(如 线性性质、可加性、不等式性质等)是多 元函数积分学中的核心知识点,对于理解 和应用积分具有重要意义。
多元函数积分的计算方法
总结词
掌握多元函数积分的计算方法是学习多元函数积分学的关键。
《多元函数积分学》ppt课件
• 多元函数积分学概述 • 多元函数积分的基本概念 • 重积分 • 曲线积分与曲面积分 • 多元函数积分学的应用
01 多元函数积分学概述
多元函数积分学的定义
定义
多元函数积分学是研究多元函数 的积分、微分和微积分基本定理 的一门学科。
多元函数
一个数学函数,其中自变量不止 一个,即函数的输入和输出都是 向量或更高维度的几何对象。
计算多维工程结构的热传导和流 体流动
在工程中,很多问题需要考虑多维工程结构的热传导和 流体流动,如热力管道、流体机械等。多元函数积分学 可以用来计算这些结构的热传导和流体流动。
THANKS 感谢观看
积分
对一个函数在某个区域上的所有 点的值进行加权求和,权值由该 点的坐标决定。
多元函数积分学的重要性
解决实际问题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3. 求和
n
Vf(im 0i 1f(i,i)i. m 1 , a 1 , , x 16 n }
2.求平面薄片的质量
设有一平面薄片,占有xo面 y上的闭区域 D,在点
(x,y)处的面密度为(x,y),假定 (x,y)在 D上连
续,平面薄片的质量为多少?
D
以曲z面 f(x, y)为曲顶柱体的体积.
A(x) 2(x) f(x,y)dy. 1(x)
dVA(x)dx
z
y
zf(x,y)
A( x)
y2(x)
b
b
f (x, y)d V dV A(x)dx
o
a
a
a
D
b x x dx x
y1(x)
b
a
2(x) 1(x)
f(x,y)dy
dx
将薄片分割成若干小块,
y
取典型小块,将其近似
看作均匀薄片,

所有小块质量之和
近似等于薄片总质量
o
n
Ml im 0i 1(i,i)i.
(i,i)
i
x
17
二、二重积分的概念
定义 设f (x, y)是有界闭区域D上的有界函数,将闭区域
D任意分成n个小闭区域1 ,2, …,n, 其中
i 表示第i 个小闭区域,也表示它的面积,在每
32
一般地,
积分区域为: axb, 1 (x )y 2 (x ).
[X-型]
Df(x,y)da b 1 2 ((x x)) f(x,y)d yd.x
b
dx
2(x) f(x,y)dy
a
1(x)
--- 先对 y 积分,后对 x 积分的二次积分
33
如果积分区域为: cyd, 1 (y ) x2 (y ).
20
二重积分的几何意义
当被积函数大于零时,二重积分是柱体的体积.
当被积函数小于零时,二重积分是柱体的体积的负 值.
z
zf(x,y)
z
o D• x
(i,i)
y i
o xD
y

(i,i)
i
zf(x,y)
21
在直角坐标系下用平行于坐 y
标轴的直线网来划分区域D,
则面积元素为
ddxdy
o 故二重积分可写为
y
y
y
0
x0
x0
x
等等, 则既可先对 x 积分, 又可先对 y 积分. 此时,
bdy x 2(x)f(x,y)d yddx y 2(y)f(x,y)dx f (x, y)d
a y 1(x)
c x 1(y)
D
当用某次序算二重积分不好算时, 可改换积分次序,
可能好算.
35
2.
(1)如果积分区域是矩形 axb,cyd
个 i 上任取一点 (i ,i ),作乘积 f (i ,i )i ,
n
(i 1,2, ,n),并作和 f (i ,i )i ,
i1
如果当各小闭区域的直径中的最大值 趋近于零时,
这和式的极限存在,则称此极限为函数 f ( x, y)在闭
区域 D 上的二重积分,记为 f ( x, y)d ,即
D
n
D
i
15
步骤如下:
1. 分割
z
zf(x,y)
D 任意分成 n 个小闭区域1 ,
2,…,n, 其中 i 表示
第 i 个小闭区域,也表示它的面
o
积。对应的小曲顶柱体体积为Vi . x D
2. 取近似
y

(i,i)
i
在 每 个 i上 任 取 一 点 (i,i) , V i f (i,i) i.
x 1
dx
2 1
x3 2
x 2
dx
x4 8
x2 4
2 1
9 8
.
44
例3
计算 xydxdy ,其中 D:x2 y2 ≤ 1 x ≥ 0 , y ≥ 0 .
D
解 作 D 的 图 形 (见 下 图 ).先 对 y 积 分 (固 定 x), y 的 变 化 范 围 由 0 到 1 x2 ,然 后 再 在 x 的 最 大 变 化 范 围 [0,1]内 对 x 积 分 , 于 是 得 到
曲顶柱体体积
f ( i , i)
Di
( i , i)
n
(iii)因此, 大曲顶柱体的体积 Vf(i,i)i
i1
分割得越细, 则右端的近似值越接近于精
确值V, 若分割得"无限细", 则右端近似值
会无限接近于精确值V.
n
若 lim f (i,i)i 存在 i1 n 则 Vlim f(i,i)i i1
y
xydxdy
1
dx
1x2
xydy
D
00
11x(1x2)dx1(x2x4)11. 1
02
22 4 0 8
D
本 题 若 先 对 x 积 分 , 解 法 类 似 . O x 1
x
45
例4
改变积分
01dx
1
0
x
f
( x,
y )dy 的次序.
解 积分区域为 y
0x1, D:
1
0y1x.
0x1y, D:
则 f(x,y)da bf1(x)dxcdf2(y)d.y
D
证:f (x, y)d
y
D
d
f1(x) f2(y)dxdy
c
D
bd
dx ac
f1(x)
f2(y)dy
0a
bx
b
d
d
b
a[f1(x) c f2(y)d]ydxc f2(y)dy af1(x)d.x
37
比如, 1dx3xyed y1xd x 3eyd.y
值和最小值,为D的面积,则
m f(x,y)dM
D
(二重积分估值不等式)
性质7设 函 数 f(x ,y )在 闭 区 域 D 上 连 续 , 为 D 的 面 积 , 则 在 D 上 至 少 存 在 一 点 (,)使 得
f(x,y)df(,)
D
(二重积分中值定理)
25
思考题
将二重积分定义与定积分定义进行比较,找出 它们的相同之处与不同之处.
f (x ,y ) d f (x ,y ) d f (x ,y ) d.
D
D 1
D 2
性质4 若为D的面积, 1dd.
D
D
性质5 若在D上 f(x ,y ) g (x ,y ),
则有 f(x,y)d g (x,y)d.
D
D
特殊地 f(x,y)df(x,y)d.
D
D
24
性质6 设M、m分别是f(x,y)在闭区域D上的最大
如图
z
z = f (x,y)
z = f (x,y)
0
x Di
y
D
Di
(ii)由于Di很小, z = f (x,y)连续, 小曲顶柱体
可近似看作小平顶柱体.
( i , i) Di .
z = f (x,y)
小平顶柱体的高 = f ( i , i). 若记 i = Di的面积.
则小平顶柱体的体积
= f ( i , i) i 小
39
例1 将 f(x, y)dxdy 化为二次积分。
D
其中 D 由直线 y x ,y x 2 ,y 2 ,y 4 围成。
解 1: 先画出积分区域 D 。 D 是 Y-型。
yxy2, D:
2y4. 于是,
y
4
2
yx
o 2 4 6x
yx2
f(x,y)dxdy
D
4
2
dy
y2
y
f(x,
y)dx
( 2 )二 重 积 分 值 仅 与 f( x ,y ) 及 D 有 关 , 与 积 分 变 量 符 号 无 关 , 即
f(x,y)df(u ,v)d
D
D
( 3 )当 f(x ,y )在 闭 区 域 上 连 续 时 , 定 义 中 和 式 的 极 限 必 存 在 , 即 二 重 积 分 必 存 在 .
1.求曲顶柱体的体积V.
z
设有一立体. 其底面是
xy 面上的区域D, 其侧面为
母线平行于 z 轴的柱面, 其
0
顶是曲面 z= f (x, y)0, 连续.
称为曲顶柱体.
x
z = f (x,y)
y D
如图
若立体的顶是平行于 xy 面的平面. 则平顶柱体的体积 = 底面积×高.
(i)用曲线将D分成 n 个小区域 D1, D2,…, Dn , 每个小区域Di 都对应着一个小曲顶柱体.
28
思考题解答
定积分与二重积分相同之处:都表示某种和式 的极限值,且此值只与被积函数及 积分区域有关.
不同的是: 定积分的积分区域为区间,被积函 数为定义在区间上的一元函数; 二重积分的积分区域为平面区域, 被积函数为定义在平面区域上的二 元函数.
29
利用直角坐标计算二重积分
30
利用直角坐标系计算二重积分
02
0
2
2d1rsirndr 21rsirnd . r
0
0
0
38
3.
若区域如图,则必须分割. 在分割后的三个区域上分别使 用积分公式
D3
D1
D2
f ( x ,y ) d f ( x ,y ) d f ( x ,y ) d f ( x ,y ) d .
D
D 1
D 2
D 3
4
求曲顶柱体的体积采用 “分割、求和、取极 限”的方法.
相关文档
最新文档