平面直角坐标系难题培训资料
人教版七年级数学下册平面直角坐标系知识汇总及经典题型培训资料
资料收集于网络,如有侵权请联系网站删除平面直角坐标系二、平行于坐标轴的直线的点的坐标特点:平行于x轴(或横轴)的直线上的点的纵坐标相同;平行于y轴(或纵轴)的直线上的点的横坐标相同。
三、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同;第二、四象限角平分线上的点的横纵坐标相反。
四、与坐标轴、原点对称的点的坐标特点:关于x轴对称的点的横坐标相同,纵坐标互为相反数关于y轴对称的点的纵坐标相同,横坐标互为相反数关于原点对称的点的横坐标、纵坐标都互为相反数五、特殊位置点的特殊坐标:坐标轴上点P(x,y)连线平行于坐标轴的点点P(x,y)在各象限的坐标特点象限角平分线上的点X轴Y轴原平行X轴平行Y轴第一第二第三第四第一、第二、四象限点(x,0)(0,y)(0,0纵坐标相横坐标相象限x>0象限x<0象限x<0象限x>0三象限(m,m)(m,-m))同,横坐同,纵坐标y>0y>0y<0y<0标不同七、用坐标表示平移:见下图不同P(x,y+a)向上平移a个单位P(x-a,y)向左平移a个单位P(x,y)向右平移a个单位P(x+a,y)二、经典例题知识一、坐标系的理解例1、平面内点的坐标是()向下平移a个单位P(x,y-a)A一个点B一个图形C一个数对D一个有序数对学生自测1.在平面内要确定一个点的位置,一般需要________个数据;在空间内要确定一个点的位置,一般需要________个数据.2、在平面直角坐标系内,下列说法错误的是()A原点O不在任何象限内word可编辑B原点O的坐标是0资料收集于网络,如有侵权请联系网站删除C原点O既在X轴上也在Y轴上D原点O在坐标平面内知识二、已知坐标系中特殊位置上的点,求点的坐标点在x轴上,坐标为(x,0)在x轴的负半轴上时,x<0,在x轴的正半轴上时,x>0点在y轴上,坐标为(0,y)在y轴的负半轴上时,y<0,在y轴的正半轴上时,y>0第一、三象限角平分线上的点的横纵坐标相同(即在y=x直线上);坐标点(x,y)xy>0第二、四象限角平分线上的点的横纵坐标相反(即在y=-x直线上);坐标点(x,y)xy<0平行于x轴(或横轴)的直线上的点的纵坐标相同;平行于y轴(或纵轴)的直线上的点的横坐标相同。
平面直角坐标系复习课件
CATALOGUE 目录•平面直角坐标系的基本知识•平面直角坐标系中的点与方程•平面直角坐标系的应用•平面直角坐标系的进阶知识•复习题及解答知识在平面内,以一个定点O为原点,分别以两条互相垂直的直线为轴,建立两条互相垂直的数轴,这样就建立了平面直角坐标系。
定义通常把横轴称为x轴,纵轴称为y轴,垂直于x轴的轴称为z轴。
坐标系命名x轴正向为东,x轴负向为西;y轴正向为北,y轴负向为南;z轴正向为上,z轴负向为下。
坐标系方向平面直角坐标系的定义坐标系的原点O称为原点。
原点x轴和y轴构成了平面直角坐标系的两个坐标轴。
坐标轴在坐标系中,我们把第一象限到第四象限按照逆时针方向依次称为第一象限、第二象限、第三象限和第四象限。
象限坐标轴上的单位长度通常根据实际需要而定,一般以1,2,5,10等数为单位长度。
单位长度坐标系中的基本元素确定坐标原点建立x轴和y轴定义坐标系方向确定单位长度平面直角坐标系的建立步骤01020304选择一个定点作为原点O。
过原点O作两条互相垂直的直线,分别为x轴和y轴。
根据需要定义x轴和y轴的正方向。
根据需要确定x轴和y轴上的单位长度。
与方程点在平面直角坐标系中的水平位置由点的横坐标确定。
点的横坐标点的纵坐标点的坐标表示点在平面直角坐标系中的垂直位置由点的纵坐标确定。
一个点在平面直角坐标系中的位置由它的横坐标和纵坐标共同确定。
030201点在平面直角坐标系中的表示描述一条直线的方程通常形式为y=kx+b,其中k和b是常数,x和y是变量。
直线方程描述一个曲线的方程通常形式为f(x,y)=0,其中f是函数,x和y是变量。
曲线方程方程在平面直角坐标系中的图形表示了满足方程的点的集合。
方程的图形表示方程在平面直角坐标系中的表示方程描述了点的集合一个方程在平面直角坐标系中描述了一个或多个点的集合。
点与方程的相互转换通过解方程可以得到对应的点,通过给定点可以得到相应的方程。
点的坐标满足方程平面直角坐标系中任意一点的坐标都满足相应的方程。
平面直角坐标系综合问题复习资料-含详细解析
7.【答案】5;2或-10
【解析】
解:(1)∵P0(2,-3),O为坐标原点,
∴d(O,P0)=|0-2|+|0-(-3)|=5.
本题考查了相似三角形的判定与性质,二次函数的性质,得出y与x之间的函数解析式是解题的关键.
3.【答案】D
【解析】
解:∵A(1,1),B(-1,1),C(-1,-2),D(1,-2),
∴AB=1-(-1)=2,BC=1-(-2)=3,CD=1-(-1)=2,DA=1-(-2)=3,
∴绕四边形ABCD一周的细线长度为2+3+2+3=10,
(1)d(O,P0)= ______;
(2)若P(a,-3)到直线y=x+1的直角距离为6,则a= ______.
8.平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形”,现有点A(2,5),B(-1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是______.
如图,等边△ABC的边长为1,点A在第一象限,点B与原点O重合,点C在x轴的正半轴上.△A1B1C1就是△ABC经γ(1,180°)变换后所得的图形.
若△ABC经γ(1,180°)变换后得△A1B1C1,△A1B1C1经γ(2,180°)变换后得△A2B2C2,△A2B2C2经γ(3,180°)变换后得△A3B3C3,依此类推……
平面直角坐标系重难点题型(四大题型)(原卷版)
专题05 平面直角坐标系重难点题型(四大题型)【题型1 两点间距离】【题型2 求平面直角坐标系中动点问题的面积】【题型3 平面直角坐标系中规律题探究】【题型4 等腰三角形个数讨论问题】【题型1 两点间距离】1.在平面直角坐标系中,有A(﹣2,a+1),B(a﹣1,4),C(b﹣2,b)三点.(1)当AB∥x轴时,求A、B两点间的距离;(2)当CD⊥x轴于点D,且CD=1时,求点C的坐标.2.已知平面直角坐标系内的三点:A(a﹣1,﹣2),B(﹣3,a+2),C(b﹣6,2b).(1)当直线AB∥x轴时,求A,B两点间的距离;(2)当直线AC⊥x轴,点C在第二、四象限的角平分线上时,求点A和点C 的坐标.3.先阅读一段文字,再回答下列问题:已知在平面内两点坐标P1(x1,y1),P2(x2,y2),其两点间距离公式为P1P2=,同时,当两点所在的直线在坐标轴上或平行于x轴或垂直于x轴时,两点距离公式可简化成|x1﹣x2|或|y2﹣y1|.(1)已知A(3,5),B(﹣2,﹣1),试求A,B两点的距离;(2)已知A,B在平行于y轴的直线上,点A的纵坐标为6,点B的纵坐标为﹣4,试求A,B两点的距离;(3)已知一个三角形各顶点坐标为A(0,6),B(﹣3,2),C(3,2),找出三角形中相等的边?说明理由.4.先阅读一段文字,再回答下列问题:已知在平面内两点坐标P1(x1,y1),P2(x2,y2),其两点间距离公式为:p1p2=,例如:点(3,2)和(4,0)的距离为.同时,当两点所在的直线在坐标轴上或平行于x轴或平行于y轴距离公式可简化成:p1p2=|x1﹣x2|或p1p2=|y1﹣y2|.(1)已知A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为2,则A,B两点的距离为;(2)线段AB平行于x轴,且AB=3,若点B的坐标为(2,4),则点A的坐标是;(3)已知A(3,5),B(﹣4,4),A,B两点的距离为;(4)已知△ABC三个顶点坐标为A(3,4),B(0,5),C(﹣1,2),请判断此三角形的形状,并说明理由.5.先阅读下列一段文字,再解答问题:已知在平面内有两点P1(x1,y1),P2(x2,y2),其两点间的距离公式为;同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知点A(2,4),B(﹣2,1),则AB=;(2)已知点C,D在平行于y的直线上,点C的纵坐标为3,点D的纵坐标为﹣2,则CD=;(3)已知点M和(1)中的点A有MA∥x轴,且MA=3,则点M的坐标为;(4)已知点P(3,1)和(1)中的点A,B,则线段P A,PB,AB中相等的两条线段是.6.先阅读下列一段文字,再回答后面的问题:已知在平面直角坐标系内两点P1(x1,y1),P2(x2,y2),其两点间的距离P1P2=,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(1,3),B(﹣3,﹣5),试求A,B两点间的距离;(2)已知线段MN∥y轴,MN=4,若点M的坐标为(2,﹣1),试求点N 的坐标.7.先阅读下列一段文字,再回答后面的问题.已知在平面内两点P1(x1,y1),P2(x2,y2),这两点间的距离P1P2=,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4),B(﹣3,﹣8),试求A,B两点间的距离;(2)已知A,B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A,B两点间的距离.8.阅读材料:两点间的距离公式:如果平面直角坐标系内有两点A(x1,y1)、B(x2,y2),那么A、B两点的距离AB=,则AB2=(x1﹣x2)2+(y1﹣y2)2.例如:若点A(4,1),B(3,2),则AB=,若点A(a,1),B(3,2),且AB=,则.根据实数章节所学的开方运算即可求出满足条件的a的值.根据上面材料完成下列各题:(1)若点A(﹣2,3),B(1,2),则A、B两点间的距离是.(2)若点A(﹣2,3),点B在x轴上,且A、B两点间的距离是5,求B 点坐标.9.在平面直角坐标系中,有A(﹣2,a+1),B(a﹣1,4),C(b﹣2,b)三点.(1)当点C在y轴上时,求点C的坐标;(2)当AB∥x轴时,求A,B两点间的距离;(3)当CD⊥x轴于点D,且CD=1时,求点C的坐标.10.先阅读下列一段文字,在回答后面的问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离公式,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A、B两点间的距离.(3)已知一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),你能判定此三角形的形状吗?说明理由.【题型2 求平面直角坐标系中动点问题的面积】11.如图所示,在平面直角坐标系中,已知A(0,1),B(2,0),C(4,3).(1)在平面直角坐标系中画出△ABC,则△ABC的面积是;(2)若点D与点C关于原点对称,则点D的坐标为;(3)已知P为x轴上一点,若△ABP的面积为4,求点P的坐标.12.如图,在平面直角坐标系中,已知A(a,0),B(b,0),其中a,b满足.(1)填空:a=,b=;(2)若在第三象限内有一点M(﹣2,m),用含m的式子表示△ABM的面积;(3)在(2)条件下,线段BM与y轴相交于C(0,﹣),当时,点P是y轴上的动点,当满足△PBM的面积是△ABM的面积的2倍时,求点P的坐标.13.如图,在平面直角坐标系内,已知点A的坐标为(3,2),点B的坐标为(3,﹣4),点P为直线AB上任意一点(不与A、B重合),点Q是点P 关于x轴的对称点.(1)在方格纸中标出A、B,并求出△ABO的面积;(2)设点P的纵坐标为a,求点Q的坐标;(3)设△OP A和△OPQ的面积相等,且点P在点Q的上方,求出此时P点坐标.14.如图,在平面直角坐标系中,已知A(a,0),B(b,0),其中a,b满足a2+2a+1+|3a+b|=0.(1)填空:a=,b=;(2)若存在一点M(﹣2,m)(m<0),点M到x轴距离,到y轴距离,求△ABM的面积(用含m的式子表示);(3)在(2)条件下,当m=﹣1.5时,在y轴上有一点P,使得△MOP的面积与△ABM的面积相等,请求出点P的坐标.15.如图,在平面直角坐标系中,已知A(0,a),B(b,0),C(3,c)三点,其中a、b、c满足关系式:|a﹣2|+(b﹣3)2+=0.(1)求a、b、c的值;(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP 的面积;(3)在(2)的条件下,是否存在负整数m,使四边形ABOP的面积不小于△AOP面积的两倍?若存在,求出所有满足条件的点P的坐标,若不存在,请说明理由.16.如图,已知在平面直角坐标系中,点A在y轴上,点B、C在x轴上,S△ABO =8,OA=OB,BC=10,点P的坐标是(﹣6,a),(1)求△ABC三个顶点A、B、C的坐标;(2)连接P A、PB,并用含字母a的式子表示△P AB的面积(a≠2);(3)在(2)问的条件下,是否存在点P,使△P AB的面积等于△ABC的面积?如果存在,请求出点P的坐标;若不存在,请说明理由.17.如图,在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2),且|a+2|+=0.(1)求a,b的值;(2)①在x轴的正半轴上存在一点M,使△COM的面积=△ABC的面积,求出点M的坐标;②在坐标轴的其它位置是否存在点M,使△COM的面积=△ABC的面积恒成立?若存在,请直接写出符合条件的点M的坐标.18.如图,直线AB与x轴,y轴分别相交于点A(6,0),B(0,8),M是OB上一点,若将△ABM沿AM折叠,则点B恰好落在x轴上的点B'处.求:(1)点B'的坐标;(2)△ABM的面积.19.如图在直角坐标系中,已知A(0,a),B(b,0)C(3,c)三点,若a,b,c满足关系式:|a﹣2|+(b﹣3)2+=0.(1)求a,b,c的值.(2)求四边形AOBC的面积.(3)是否存在点P(x,﹣x),使△AOP的面积为四边形AOBC的面积的两倍?若存在,求出点P的坐标,若不存在,请说明理由.20.已知:在平面直角坐标系中,A(0,1),B(2,0),C(4,3)(1)求△ABC的面积;(2)设点P在x轴上,且△ABP与△ABC的面积相等,求点P的坐标.21.如图,在平面直角坐标系中,A(2,2),B(﹣1,0),C(3,0)(1)求△ABC面积;(2)在y轴上存在一点D,使得△AOD的面积是△ABC面积的2倍,求出点D的坐标;(3)在平面内有点P(3,m),是否存在m值,使△AOP的面积等于△ABC 面积的2倍?若存在,直接写出m的值;若不存在,请说明理由.22.在平面直角坐标系中,△ABC的顶点坐标分别为A(2,0),B(0,4),C(﹣3,2).(1)如图1,求△ABC的面积.(2)若点P的坐标为(m,0),①请直接写出线段AP的长为(用含m的式子表示);②当S△P AB =2S△ABC时,求m的值.(3)如图2,若AC交y轴于点D,直接写出点D的坐标为.23.如图,在平面直角坐标系中,点A(﹣3b,0)为x轴负半轴上一点,点B (0,4b)为y轴正半轴上一点,其中b满足方程:3(b+1)=6.(1)求点A、B的坐标;(2)点C为y轴负半轴上一点,且△ABC的面积为12,求点C的坐标;(3)在(2)的条件下,在x轴上是否存在点P,使得△PBC的面积等于△ABC的面积的一半?若存在,求出相应的点P的坐标;若不存在,请说明理由.【题型3 平面直角坐标系中规律题探究】24.如图,动点P按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,2),…,按这样的运动规律,则第2021次运动到点()A.(2021,1)B.(2021,2)C.(2020,1)D.(2021,0)25.有一组数,按照下列规律排列:1,2,3,6,5,4,7,8,9,10,15,14,13,12,11,16,17,18,19,20,21,……数字5在第三行左数第二个,我们用(3,2)点示5的位置,那点这组成数里的数字100的位置可以表示为()A.(14,9)B.(14,10)C.(14,11)D.(14,12)26.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(1,﹣1)B.(﹣1,1)C.(﹣1,﹣2)D.(1,﹣2)27.如图,在平面直角坐标系上有个点P(1,0),点P第一次向上跳动1个单位至P1(1,1),紧接着第二次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P第100次跳动至点P100的坐标是()A.(﹣24,49)B.(﹣25,50)C.(26,50)D.(26,51)28.如图,一个机器人从O点出发,向正东方向走3m到达A1点,再向正北方向走6m到达A2点,再向正西方向走9m到达A3点,再向正南方向走12m到达A4点,再向正东方向走15m到达A5点.按如此规律走下去,当机器人走到A6点时,离O点的距离是()A.10m B.12m C.15m D.20m29.如图,将正整数按有图所示规律排列下去,若用有序数对(n,m)表示n 排从左到右第m个数.如(4,3)表示9,则(10,3)表示.30.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(0,1),(0,2),(1,2),(1,3),(0,3),(﹣1,3)…,根据这个规律探索可得,第90个点的坐标为.31.如图所示点A0(0,0),A1(1,2),A2(2,0),A3(3,﹣2),A4(4,0),…根据这个规律,探究可得点A2017坐标是.32.如图所示,一个机器人从O点出发,向正东方向走3m到达A1点,再向正北方向走6m到达A2点,再向正西方向走9m到达A3点,再向正南方向走12m 到达A4点,再向正东方向走15m到达A5点,按如此规律走下去,相对于点O,机器人走到A6时是位置.33.如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(﹣1,1),第四次向右跳动5个单位至点A4(3,2),…,依此规律跳动下去,点A第100次跳动至点A100的坐标是.【题型4 等腰三角形个数讨论问题】34.如图,在平面直角坐标系中,点A的坐标是(6,6),点B在坐标轴上,且△OAB是等腰直角三角形,则点B的坐标不可能是()A.(0,6)B.(6,0)C.(12,0)D.(0,﹣6)35.如图,在平面直角坐标系中,A,B两点的坐标分别为(﹣4,0),(0,3),连接AB,点P在第二象限,以点P,A,B为顶点的等腰直角三角形有个,任意写出其中一个点P坐标为.36.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3.(1)观察每次变换前后的三角形的变化规律,若将△OA3B3变换成△OA4B4,则A4的坐标是,B4的坐标是.(2)若按第(1)题找到的规律将△OAB进行n次变换,得到△OA n B n,比较每次变换中三角形顶点坐标有何变化,找出规律,推测A n的坐标是,B n的坐标是.(3)若按第(1)题找到的规律将△OAB进行n次变换,得到△OA n B n,则△OA n B n的面积S为37.如图,方格纸中小正方形的边长均为1个单位长度,A、B均为格点.(1)在图中建立直角坐标系,使点A、B的坐标分别为(3,3)和(﹣1,0);(2)在(1)中x轴上是否存在点C,使△ABC为等腰三角形(其中AB为腰)?若存在,请直接写出所有满足条件的点C的坐标.38.如图,在平面直角坐标系中,已知点A(﹣2,0),B(2,0).(1)画出等腰三角形ABC(画一个即可);(2)写出(1)中画出的三角形ABC的顶点C的坐标.。
初一平面直角坐标系所有知识点总结材料和常考题提高难题压轴题练习(含问题详解解析汇报)
适用文档初一平面直角坐标系全部知识点总结和常考题提升难题压轴题练习( 含答案分析 )知识点:1 、对应关系:平面直角坐标系内的点与有序实数对一一对应。
2、平面内两条相互垂直、原点重合构成的数轴构成平面直角坐标系。
水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴为y 轴或纵轴,取向上为正方向;两个坐标轴的交点为平面直角坐标系的原点。
坐标:对于平面内任一点 P,过 P 分别向 x 轴, y 轴作垂线,垂足分别在 x 轴, y 轴上,对应的数a,b 分别叫点 P 的横坐标和纵坐标。
象限:两条坐标轴把平面分红四个局部,右上局部叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。
坐标轴上的点不在任何一个象限内3、三大规律〔 1〕平移规律:点的平移规律左右平移→纵坐标不变,横坐标左减右加;上下平移→ 横坐标不变,纵坐标上加下减。
图形的平移规律找特别点〔 2〕对称规律对于 x 轴对称→横坐标不变,纵坐标互为相反数;对于 y 轴对称→横坐标互为相反数,纵坐标不变;对于原点对称→ 横纵坐标都互为相反数。
〔 3 〕地点规律各象限点的坐标符号:〔注意:坐标轴上的点不属于任何一个象限〕第二象限第一象限〔—, +〕〔+,+〕假定在平面直角坐标系上有一点P〔a,b〕1.假如 P 点在第一象限,有 a>0, b>0 〔横、纵坐标都大于 0〕2.假如 P 点在第二象限,有 a<0, b>0 〔横坐标小于 0,纵坐标大于 0〕3.假如 P 点在第三象限,有 a<0, b<0〔横、纵坐标都小于0〕第三象限第四象限 4.假如 P 点在第四象限,有 a>0, b<0〔横坐标大于 0,纵坐〔—,—〕〔 +,—〕标小于 0〕5.假如 P 点在 x 轴上,有 b=0〔横轴上点的纵坐标为0〕特色坐标: 6.假如 P 点在 y 轴上,有 a=0〔纵轴上点的横坐标为0〕x 轴上→纵坐标为 0; y 轴上→横坐标为 0;第一、三象限夹角均分线上→横纵坐标相等;第二、四象限夹角均分线上→横纵坐标互为相反数。
平面直角坐标系难题数学课件PPT模板
(1)当∠A=90°时,C(1,5)或(1,-3) (2)当∠B=90°时,C(11,5)或(11,-3) (3)当∠C=90°时,C(3,5)或(9,5)
或(3,-3)或(9,-3)
8. 如图,在平面直角坐标系中,直线l是第一、三象限的
角平分线. (1)由图观察易知A(0,2)关于直线l的对称点的
当点P在BD上移动时(不与B,D重合)给出下
列结论:① DCP BOP 的值不变,
CPO
② DCP CPO 的值不变,其中有且只有一个
BOP
是正确的,请你找出这个结论并求其值.
y
①的值为1,
①正确。
C
D
P
A
B
O
x
轻轻的,我走了, 正如我轻轻的来。
我轻轻地点击鼠标, 留பைடு நூலகம்同学们的风采。
感谢您的阅读! 为 了 便于学习和使用,本 文档下载后内容可随意修 改调整及打印 , 欢 迎 下 载 !
坐标为(2,0),请在图中分别标明B(5,3) 、C(-2,5) 关于直
线l的对称点 的位置,并写出他们的坐标:_B_'_(_3_,_5_)___、
__C__'(_5_,_-_2__) ;(2)结合图形观察以上三组点的坐标,你会
发现:坐标平面内任一点P(a,b)关于第一、三象限的角
平分线l的对称点 的坐标为
(1)当△ODP是腰长为5的等腰三角形时,
则P点的坐标为(_3__,4__)_____. 或(2,4) 或(8,4)
(2)当△ODP是边长
为5的等腰三角形时,则P点的坐标为
(_3_,_4_)__或__(_2_,_4__)_或__(_8_,_4_.) 或(2.5,4)
平面直角坐标系复习讲义(知识点+典型例题)
D、第四象限.
【例 3】点 P(m,1)在第二象限内,则点 Q(-m,0)在( )
A.x 轴正半轴上 B.x 轴负半轴上 C.y 轴正半轴上 D.y 轴负半轴上
【例 4】(1)在平面直角坐标系内,已知点(1-2a,a-2)在第三象限的角平分线上,则 a= ,点的坐标为
。
(2)当 b=______时,点 B(-3,|b-1|)在第二、四象限角平分线上.
电量为 8 千瓦时,则应交电费 4.4 元;④若所交电费为 2.75 元,则用电量为 6 千瓦时,其中正确的有( )
A.4 个 B.3 个 C.2 个 D.1 个
【例 7】小明骑自行车上学,开始以正常速度匀速行驶,途中自行车出了故障,他只好停下来修车.车修好后,因怕
耽误上课,故加快速度继续匀速行驶赶往学校.如图是行驶路程 S(米)与时间 t(分)的函数图象,那么符合小明骑
D. .
11、星期天,小明从家里出发到图书馆去看书,再回到家.他离家的距离 y(千米)与时间 t(分钟)的关系如图所示.根 据图象回答下列问题:
2
2
巩固练习
5
1、下列 各曲线中表示 y 是 x 的函数的是( )
A.
B.
C.
D.
2、下列平面直角坐标系中的图象,不能表示 y 是 x 的函数的是( )
A.
B.
C.
D.
3、下列四个选项中,不是 y 关于 x 的函数的是( )
A.|y|=x﹣1 B.y=
C.y=2x﹣7 D.y=x2
4、下列四个关系式:(1)y=x;(2) y x2 ;(3) y x3 ;(4) y x ,其中 y 不是 x 的函数的是( )
.
【例 8】在坐标系内,点 P(2,-2)和点 Q(2,4)之间的距离等于
平面直角坐标系重难点
平面直角坐标系基础知识及重难点归纳一、本章的主要知识点(一)有序数对:有顺序的两个数a 与b 组成的数对。
1、记作(a ,b );2、注意:a 、b 的先后顺序对位置的影响。
(二)平面直角坐标系1、历史:法国数学家笛卡儿最早引入坐标系,用代数方法研究几何图形 ; 定义:在平面内,两条互相垂直且有公共原点的数轴组成了平面直角坐标系;2、坐标的定义;过点作x 轴的 线,垂足所代表的 是这点的横坐标;过点作y 轴的垂线,垂足所代表的实数,是这点的 。
点的横坐标写在小括号里第一个位置,纵坐标写小括号里的第 个位置,中间用 隔开。
如图点P 的坐标可表示为: (三)坐标方法的简单应用1、用坐标表示地理位置;2、用坐标表示移。
二、平面坐标系内特殊位置点的特殊坐标:三、平行直线上的点的坐标特征:⑴在与x 轴平行的直线上, 所有点的纵坐标相等;点A 、B 的纵坐标都等于m ;⑵在与y 轴平行的直线上,所有点的横坐标相等;点C 、D 的横坐标都等于n ;坐标轴上 点P (x ,y ) 点P (x ,y )在各象限 的坐标特点 象限角平分线上 的点 X 轴Y 轴原点第一象限第二象限 第三象限 第四象限 第一、 三象限 第二、四象限 (x,0) (0,y) (0,0) x >0 y >0x <0 y >0x <0 y <0 x >0 y <0(m,m) (m,-m) XYA BmnXYCD-3 -2 -1 0 1 ab1-1 -2 -3P(a,b)Yx四、对称点的坐标特征:a) 点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数; b) 点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数; c) 点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;关于x 轴对称 关于y 轴对称 关于原点对称五、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:• 建立坐标系,选择一个适当的参照点为原点,确定x 轴、y 轴的正方向; • 根据具体问题确定适当的比例尺,在坐标轴上标出单位长度; •在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。
专题11 平面直角坐标系(归纳与讲解)(解析版)
专题11平面直角坐标系【专题目录】技巧1:点的坐标变化规律探究问题技巧2:巧用坐标求图形的面积技巧3:活用有序数对表示点的位置技巧4:巧用直角坐标系中点的坐标特征解相关问题【题型】一、用有序数对表示位置【题型】二、求点的坐标【题型】三、距离与点坐标的关系【题型】四、象限角的平分线上的点的坐标【题型】五、与坐标轴平行的直线上的点的坐标特征【题型】六、点的坐标的规律探索【题型】七、函数图象的应用【考纲要求】1、会画平面直角坐标系,并能根据点的坐标描出点的位置,掌握坐标平面内点的坐标特征.2、了解函数的有关概念和函数的表示方法,并能结合图象对实际问题中的函数关系进行分析.3、能确定函数自变量的取值范围,并会求函数值.【考点总结】一、平面直角坐标系【考点总结】二、函数有关的概念及图象【注意】1、坐标轴上的点不属于任何象限点的坐标:对于坐标轴内任意一点A,过点A分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应的数a、b分别叫做点A的横坐标和纵坐标,有序数对A(a,b)叫做点A的坐标,记作A(a,b)。
2、确定出数自变量力的取值范围的方法 (1)整式:取全体实数 (2)有分母:取值使分母不为零(3)有二次根式:取值使被开方数不小于0 (4)有很多情况:取它们的公共部分 (5)在实际问题中:取值要符合实际意义 【技巧归纳】技巧1:点的坐标变化规律探究问题【类型】一、沿坐标轴运动的点的坐标规律探究1.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…,组成一条平滑的曲线.点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2 019秒时,点P 的坐标是( )(第1题)A .(2 018,0)B .(2 019,-1)C .(2 019,1)D .(2 020,0)2.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2 017次运动后,动点P 的坐标是________,经过第2 018次运动后,动点P 的坐标是________.3.如图,一个粒子在第一象限内及x 轴、y 轴上运动,第一分钟从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),然后它接着按图中箭头所示的方向运动(在第一象限内运动时,运动方向与x 轴或y 轴平行),且每分钟移动1个单位长度.(1)当粒子所在位置是(2,2)时,所经过的时间是________; (2)在第2 017分钟时,这个粒子所在位置的坐标是________.【类型】二、绕原点呈“回”字形运动的点的坐标规律探究4.将正整数按如图所示的规律在平面直角坐标系中进行排列,每个正整数对应一个整点坐标(x ,y),其中x ,y 均为整数,如数5对应的坐标为(-1,1),则数2 018对应的坐标的( )A .(16,22)B .(-15,-22)C .(15,-22)D .(16,-22) 【类型】三、图形变换的点的坐标规律探究5.在平面直角坐标系中有三个点A(1,-1),B(-1,-1),C(0,1),点P(0,2)关于A 的对称点为P 1,P 1关于B 的对称点为P 2,P 2关于C 的对称点为P 3,按此规律继续以A ,B ,C 为对称中心重复前面的操作,依次得到P 4,P 5,P 6,…,则点P 2 018的坐标是( )A .(0,0)B .(0,2)C .(2,-4)D .(-4,2)6.(探究题)如图,在平面直角坐标系中,第一次将三角形OAB 变换成三角形OA 1B 1,第二次将三角形OA 1B 1变换成三角形OA 2B 2,第三次将三角形OA 2B 2变换成三角形OA 3B 3,已知A(1,3),A 1(2,3),A 2(4,3),A 3(8,3),B(2,0),B 1(4,0),B 2(8,0),B 3(16,0).(1)观察每次变换前后的三角形有何变化,找出规律,按此变换规律再将三角形OA 3B 3变换成三角形OA 4B 4,则点A 4的坐标是________,点B 4的坐标是________;(2)若按(1)题中的规律,将三角形OAB 进行n(n 为正整数)次变换,得到三角形OA n B n ,比较每次变换前后三角形顶点坐标有何变化,找出规律,推测点A n 的坐标是__________,点B n 的坐标是__________. 参考答案1.B 点拨:半径为1个单位长度的圆的周长的一半为12×2π×1=π,因为点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,所以点P 1秒走12个半圆.当点P 从原点O 出发,沿这条曲线向右运动,运动时间为1秒时,点P 的坐标为(1,1); 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为2秒时,点P 的坐标为(2,0); 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为3秒时,点P 的坐标为(3,-1); 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为4秒时,点P 的坐标为(4,0);当点P 从原点O 出发,沿这条曲线向右运动,运动时间为5秒时,点P 的坐标为(5,1); 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为6秒时,点P 的坐标为(6,0); ….因为2 019÷4=504……3,所以第2 019秒时,点P 的坐标是(2 019,-1). 2.(2 017,1);(2 018,0) 3.(1)6分钟 (2)(44,7)4.C 点拨:以原点为中心,数阵图形成多层正方形(不完整),观察图形得出下表:正方形在第四象限的顶点 因为442<2 018<452=(2×22+1)2=2 025, 所以数2 025对应的坐标为(22,-22). 所以数2 018对应的坐标为(15,-22).5.D 点拨:设P 1(x ,y),因为点A(1,-1),点P(0,2)关于A 的对称点为P 1,所以x2=1,y +22=-1,解得x =2,y =-4,所以P 1(2,-4).同理可得P 2(-4,2),P 3(4,0),P 4(-2,-2),P 5(0,0),P 6(0,2),P 7(2,-4),…,所以每6个点循环一次.因为2 018÷6=336……2,所以点P 2 018的坐标是(-4,2).故选D . 6.(1)(16,3);(32,0)(2)(2n ,3);(2n +1,0) 技巧2:巧用坐标求图形的面积 【类型】一、直接求图形的面积1.如图,已知A(-2,0),B(4,0),C(-4,4),求三角形ABC 的面积.【类型】二、利用补形法求图形的面积2.已知在四边形ABCD中,A(-3,0),B(3,0),C(3,2),D(1,3),画出图形,求四边形ABCD 的面积.3.如图,已知点A(-3,1),B(1,-3),C(3,4),求三角形ABC的面积.【类型】三、利用分割法求图形的面积4.在如图所示的平面直角坐标系中,四边形OABC各顶点分别是O(0,0),A(-4,10),B(-12,8),C(-14,0),求四边形OABC的面积.【类型】四、已知三角形的面积求点的坐标5.已知点O(0,0),点A(-3,2),点B在y轴的正半轴上,若三角形AOB的面积为12,则点B 的坐标为()A.(0,8) B.(0,4) C.(8,0) D.(0,-8)6.已知点A(-4,0),B(6,0),C(3,m),如果三角形ABC的面积是12,求m的值.7.已知A(-2,0),B(4,0),C(x,y).(1)若点C在第二象限,且|x|=4,|y|=4,求点C的坐标,并求三角形ABC的面积;(2)若点C在第四象限,且三角形ABC的面积为9,|x|=3,求点C的坐标.参考答案1.解:因为C点坐标为(-4,4),所以三角形ABC 的AB 边上的高为4. 又由题易知AB =6, 所以S 三角形ABC =12×6×4=12.2.解:如图所示.过点D 作DE 垂直于BC ,交BC 的延长线于点E ,则四边形DABE 为直角梯形. S 四边形ABCD =S 梯形DABE -S 三角形C DE =12×(2+6)×3-12×1×2=11.3.解:方法一:如图,作长方形CDEF ,则S 三角形ABC =S 长方形CDEF -S 三角形ACD -S 三角形ABE -S 三角形BCF =CD·DE -12·AD·CD -12AE·BE -12BF·CF =6×7-12×3×6-12×4×4-12×2×7=18.方法二:如图,过点B 作EF ∥x 轴,并分别过点A 和点C 作EF 的垂线,垂足分别为点E ,F.易知AE =4,BE =4,BF =2,CF =7,EF =6,所以S 三角形ABC =S 梯形AEFC -S 三角形ABE -S 三角形BFC =12(AE +CF)·EF -12AE·BE -12BF·CF =12×(4+7)×6-12×4×4-12×2×7=18. 方法三:如图,过点A 作DE ∥y 轴,并分别过点C 和点B 作DE 的垂线,垂足分别为点D ,E. 易知AE =4,BE =4,AD =3,CD =6,DE =7,所以S 三角形ABC =S 梯形BEDC -S 三角形ABE -S 三角形ADC=12(BE +CD)·DE -12AE·BE -12AD·CD =12×(4+6)×7-12×4×4-12×3×6=18.4.解:如图,过点A 作AD ⊥x 轴,垂足为点D ,过点B 作BE ⊥AD ,垂足为点E.易知D(-4,0),E(-4,8),且BE =-4-(-12)=8,AE =10-8=2,CD =-4-(-14)=10,所以S 四边形OABC =S 三角形AOD +S 三角形ABE +S 梯形DEBC =12OD·AD +12AE·BE +12(BE +CD)·DE =12×4×10+12×2×8+12×(8+10)×8=20+8+72=100.点拨:本题的解题技巧在于把不规则的四边形OABC 分割为几个规则图形,实际上分割的方法是不唯一的,并且不仅可以用分割法,还可以用补形法. 5.A6.解:AB =6-(-4)=10.根据三角形的面积公式,得12AB·|m|=12,即12×10·|m|=12,解得|m|=2.4. 因为点C(3,m),所以点C 在第一象限或第四象限. 当点C 在第一象限时,m >0, 则m =2.4;当点C 在第四象限时,m <0,则m =-2.4.综上所述,m 的值为-2.4或2.4.7.解:(1)因为点C 在第二象限,且|x|=4,|y|=4,所以点C 的坐标为(-4,4). 又易知AB =6,所以S 三角形ABC =12×6×4=12.(2)由题意可知AB =6.因为点C 在第四象限,|x|=3,所以x =3.因为S 三角形ABC =12×6×|y|=9,所以|y|=3.所以y =-3.所以点C 的坐标为(3,-3). 技巧3:活用有序数对表示点的位置 【类型】一、利用有序数对表示座位号1.如图,王明同学的座位是1组2排,如果用有序数对(1,2)表示,那么张敏同学和石玲同学的座位怎样用有序数对表示?【类型】二、利用有序数对表示棋子位置2.五子棋深受广大棋友的喜爱,其规则是:在正方形棋盘中,由黑方先行,轮流弈子,在任一方向上连成五子者为胜.如图是两个五子棋爱好者甲和乙对弈时的部分示意图(甲执黑子先行,乙执白子后走),观察棋盘思考:若A点的位置记为(8,4),甲必须在哪个位置上落子,才不会让乙在短时间内获胜?为什么?【类型】三、利用有序数对表示地理位置3.如图是某市市区几个旅游景点示意图(图中每个小正方形的边长为1个单位长度),如果以O为原点建立两条互相垂直的数轴,如果用(2,2.5)表示金凤广场的位置,用(11,7)表示动物园的位置,根据此规定:(1)湖心岛、光岳楼、山陕会馆的位置如何表示?(2)(11,7)和(7,11)是同一个位置吗?为什么?【类型】四、利用有序数对表示运动路径4.如图,小军家的位置点A在经5路和纬4路的十字路口,用有序数对(5,4)表示;点B是学校的位置,点C是小芸家的位置,如果用(5,4)→(5,5)→(5,6)→(6,6)→(7,6)→(8,6)表示小军家到学校的一条路径.(1)请你用有序数对表示出学校和小芸家的位置;(2)请你写出小军家到学校的其他几条路径.(写3条)参考答案1.解:张敏同学的座位可以表示为(3,3),石玲同学的座位可以表示为(4,5).2.解:甲必须在(1,7)或(5,3)处落子,因为若甲不先截断以上两处之一,而让乙在(1,7)或(5,3)处落子,则下一步不论截断何处,乙总有一处落子可连成五子,乙必胜无疑.3.解:(1)湖心岛的位置可表示为(2.5,5);光岳楼的位置可表示为(4,4);山陕会馆的位置可表示为(7,3).(2)不是同一个位置,因为前面一个数字代表横向,后一个数字代表纵向,交换数字的位置后,就会表示不同的位置.4.解:(1)学校和小芸家的位置分别可表示为(8,6),(3,3).(2)答案不唯一,如:①(5,4)→(5,5)→(6,5)→(7,5)→(8,5)→(8,6);②(5,4)→(6,4)→(7,4)→(8,4)→(8,5)→(8,6);③(5,4)→(6,4)→(6,5)→(7,5)→(8,5)→(8,6).技巧4:巧用直角坐标系中点的坐标特征解相关问题【类型】一、象限内的点的坐标1.若点M(x,y)满足(x+y)2=x2+y2-2,则点M所在象限是()A.第一象限或第三象限B.第二象限或第四象限C.第一象限或第二象限D.不能确定2.在平面直角坐标系中,若点P(m,m-2)在第一象限内,则m的取值范围是________.【类型】二、坐标轴上的点的坐标3.若点M的坐标为(-a2,|b|+1),则下列说法中正确的是()A.点M在x轴正半轴上B.点M在x轴负半轴上C.点M在y轴正半轴上D.点M在y轴负半轴上4.已知点P(a-1,a2-9)在y轴上,则点P的坐标为________.【类型】三、平面直角坐标系中一些特殊点的坐标5.已知点P(2m-5,m-1),当m为何值时,(1)点P在第二、四象限的角平分线上?(2)点P在第一、三象限的角平分线上?6.已知A(-3,m),B(n,4),若AB∥x轴,求m的值,并确定n的取值范围.【类型】四、点的坐标与点到x轴、y轴的距离之间的关系7.已知点A(3a,2b)在x轴上方,y轴的左侧,则点A到x轴、y轴的距离分别为() A.3a,-2b B.-3a,2b C.2b,-3a D.-2b,3a8.已知点P到x轴和y轴的距离分别是2和5,求点P的坐标.【类型】五、关于坐标轴对称的点9.点P(-3,4)关于x轴对称的点的坐标是()A.(-4,3)B.(3,-4)C.(-3,-4) D.(3,4)10.已知点P(3,a)关于y轴的对称点为Q(b,2),则ab=________.11.在平面直角坐标系中,点A的坐标是(2,-3),作点A关于x轴的对称点,得到点A′,再作点A′关于y轴的对称点,得到点A″,则点A″的坐标是(______,______).【类型】六、关于特殊直线对称的点12.点P(3,5)关于第一、三象限的角平分线对称的点为点P1,关于第二、四象限的角平分线对称的点为点P2,则点P1,P2的坐标分别为()A.(3,5),(5,3)B.(5,3),(-5,-3)C.(5,3),(3,5) D.(-5,-3),(5,3) 13.点M(1,4-m)关于过点(5,0)且垂直于x轴的直线对称的点的坐标是____________;若点M关于过点(0,-3)且平行于x轴的直线对称的点的坐标为(1,7),则m=________.参考答案1.B2.m>2点拨:第一象限内的点的横、纵坐标必须同时为正,所以m>2.3.C点拨:由-a2可确定a=0,所以-a2=0. 又|b|+1>0,所以点M(-a2,|b|+1)在y轴正半轴上.4.(0,-8)5.解:(1)根据题意,得2m-5+m-1=0,解得m=2.所以当m=2时,点P在第二、四象限的角平分线上.(2)根据题意,得2m-5=m-1,解得m=4.所以当m=4时,点P在第一、三象限的角平分线上.点拨:第一、三象限的角平分线上的点的横、纵坐标相等,第二、四象限的角平分线上的点的横、纵坐标互为相反数.6.解:因为AB∥x轴,所以m=4.因为A,B不重合,所以n≠-3.点拨:与x轴平行的直线上的点的纵坐标相等.7.C点拨:由点A(3a,2b)在x轴上方,y轴的左侧可知点A在第二象限,故3a是负数,2b是正数,所以点A到x轴、y轴的距离分别为2b,-3a.8.解:设点P的坐标为(x, y),依题意,得|x|=5,|y|=2,所以x=±5,y=±2.所以点P的坐标为(5,2)或(5,-2)或(-5,2)或(-5,-2).点拨:(1)点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|.(2)写点P的坐标时,横、纵坐标的前后顺序不能随意改变.(3)找全满足条件的点P的坐标,不要遗漏.9.C10.-611.-2;312.B点拨:任意点A(a,b)关于第一、三象限的角平分线对称的点的坐标为(b,a),关于第二、四象限的角平分线对称的点的坐标为(-b,-a).13.(9,4-m);17点拨:点A(a,b)关于过点(k,0)且垂直于x轴的直线对称的点的坐标为(2k-a,b),关于过点(0,k)且平行于x轴的直线对称的点的坐标为(a,2k-b).【题型讲解】【题型】一、用有序数对表示位置例1、小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是().A.小李现在位置为第1排第2列B.小张现在位置为第3排第2列C.小王现在位置为第2排第2列D.小谢现在位置为第4排第2列【答案】B【分析】由于撤走一排,则四人所在的列数不变、排数减一,据此逐项排除即可.【详解】解:A. 小李现在位置为第1排第4列,故A选项错误;B. 小张现在位置为第3排第2列,故B选项正确;C. 小王现在位置为第2排第3列,故C选项错误;D. 小谢现在位置为第4排第4列,故D选项错误.故选:B.【题型】二、求点的坐标例2、如图,四边形OBCD 是正方形,O ,D 两点的坐标分别是()0,0,()0,6,点C 在第一象限,则点C 的坐标是( )A .()6,3B .()3,6C .()0,6D .()6,6【答案】D【分析】利用O ,D 两点的坐标,求出OD 的长度,利用正方形的性质求出OB ,BC 的长度,进而得出C 点的坐标即可.【详解】解:①O ,D 两点的坐标分别是()0,0,()0,6,①OD =6,①四边形OBCD 是正方形,①OB ①BC ,OB =BC =6 ①C 点的坐标为:()6,6, 故选:D .【题型】三、距离与点坐标的关系例3、在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( ) A .(3,4)- B .(4,3)-C .(4,3)-D .()3,4-【答案】C 【解析】 由题意,得 x=-4,y=3,即M 点的坐标是(-4,3), 故选C .【题型】四、象限角的平分线上的点的坐标例4、若点N 在第一、三象限的角平分线上,且点N 到y 轴的距离为2,则点N 的坐标是( ) A .(2,2) B .(-2,-2) C .(2,2)或(-2,-2) D .(-2,2)或(2,-2)【答案】C 【解析】已知点M 在第一、三象限的角平分线上,点M 到x 轴的距离为2,所以点M 到y 轴的距离也为2.当点M 在第一象限时,点M 的坐标为(2,2);点M 在第三象限时,点M 的坐标为(-2,-2).所以,点M 的坐标为(2,2)或(-2,-2).故选C . 【题型】五、与坐标轴平行的直线上的点的坐标特征例5、已知点A (a ﹣2,2a +7),点B 的坐标为(1,5),直线AB ①y 轴,则a 的值是( ) A .1 B .3C .﹣1D .5【答案】B 【详解】 解:①AB①y 轴,①点A 横坐标与点A 横坐标相同,为1, 可得:a -2=1,a=3 故选:B .【题型】六、点的坐标的规律探索例6、在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A ,第二次移动到点2A ……第n 次移动到点n A ,则点2019A 的坐标是( )A .()1010,0B .()1010,1C .()1009,0D .()1009,1【答案】C【分析】根据图象可得移动4次图象完成一个循环,从而可得出点2019A 的坐标. 【详解】()10,1A ,()21,1A ,()31,0A ,()42,0A ,()52,1A ,()63,1A ,…,201945043÷=⋅⋅⋅,所以2019A 的坐标为()50421,0⨯+,则2019A 的坐标是()1009,0, 故选C .【题型】七、函数图象的应用例7、如图,一只蚂蚁从O 点出发,沿着扇形OAB 的边缘匀速爬行一周,设蚂蚁的运动时间为t ,蚂蚁到O 点的距离..为s ,则s 关于t 的函数图象大致为( ).【答案】C【分析】利用函数关系和图象分析解决实际问题,要透过问题情境准确地寻找出问题的自变量和函数,探求变量和函数之间的变化趋势,合理地分析变化过程,准确地结合图象解决实际问题. 【详解】本题是典型的数形结合问题,通过对图形的观察,可以看出s 与t 的函数图象应分为三段:(1)当蚂蚁从点O 到点A 时,s 与t 成正比例函数关系;(2)当蚂蚁从点A 到点B 时,s 不变;(3)当蚂蚁从点B 回到点O 时,s 与t 成一次函数关系,且回到点O 时,s 为零.平面直角坐标系(达标训练)一、单选题1.在平面直角坐标系中,点A (a ,2)在第二象限内,则a 的取值可以是( ) A .1 B .-3C .4D .4或-4【答案】B【分析】根据第二象限的坐标特征判断即可; 【详解】解:①点A (a ,2)在第二象限内, ①a <0, A .不符合题意;B .符合题意;C .不符合题意;D .不符合题意; 故选: B .【点睛】本题考查了象限的坐标特征,掌握第二象限内点的横坐标为负数,纵坐标为正数是解题关键. 2.若点(),1A a a -在x 轴上,则点()1,2B a a +-在第( )象限. A .一 B .二 C .三 D .四【答案】D【分析】由点A 在x 轴上求得a 的值,进而求得点B 坐标,进而得到答案. 【详解】解:点(),1A a a -在x 轴上, 10a ∴-=,即1a =,则点B 坐标为()2,1-, ∴点B 在第四象限,故选:D .【点睛】本题主要考查点的坐标,解题的关键是掌握各象限及坐标轴上点的横纵坐标特点. 3.如图,在围棋棋盘上有3枚棋子,如果黑棋①的位置用有序数对(0,−1)表示,黑棋①的位置用有序数对(−3,0)表示,则白棋①的位置可用有序数对表示为( )A .()2,1-B .()1,2-C .()2,1-D .()1,2-【答案】C【分析】根据黑棋①的坐标向上1个单位确定出坐标原点,然后建立平面直角坐标系,再写出白棋①的坐标即可.【详解】解:建立平面直角坐标系如图,白棋①的坐标为(-2,1).故选:C.【点睛】本题考查了坐标确定位置,根据已知点的坐标确定出坐标原点的位置是解题的关键.4.如图,货船A与港口B相距35海里,我们用有序数对(南偏西40°,35海里)来描述货船B相对港口A的位置,那么港口A相对货船B的位置可描述为()A.(南偏西50°,35海里)B.(北偏西40°,35海里)C.(北偏东50°,35海里)D.(北偏东40°,35海里)【答案】D【分析】根据方位角的概念并结合平行线的性质,可得答案.【详解】解:过点B作BD①AC,①①1=①A=40°①港口A相对货船B的位置可描述为(北偏东40°,35海里),故选:D.【点睛】本题考查了方向角的知识点,解答本题的关键是理解确定一个点的位置需要两个量应该是方向角,一个是距离.5.某天早晨,小明从家骑自行车去上学,途中因自行车发生故障而维修,如图所示的图像反映了他骑车上学的整个过程,则下列结论正确的是()A .修车花了25分钟B .小明家距离学校1000米C .修好车后骑行的速度是200米/分钟D .修好车后花了15分钟到达学校【答案】C【分析】根据横坐标,可得时间;根据函数图像的纵坐标,可得路程.【详解】解:A .由横坐标看出,小明修车时间为25-10=15(分钟),故本选项不符合题意; B .由纵坐标看出,小明家离学校的距离2000米,故本选项不合题意;C .小明修好车后骑行到学校的平均速度是:(2000-1000)÷5=200(米/分钟),故本选项符合题意;D .由横坐标看出,小明修好车后花了30-25=5(分钟)到达学校,故本选项不合题意. 故选:D .【点睛】本题考查了函数图像,观察函数图像得出相应的时间,函数图像的纵坐标得出路程是解题关键.二、填空题6.已知点()29,62A m m --在第三象限.则m 的取值范围是______. 【答案】3<m <4.5【分析】在第三象限内的点的横纵坐标均为负数,列式求值即可. 【详解】解:①点A (2m −9,6−2m )在第三象限, ①2m −9<0且6−2m <0, ①3<m <4.5, 故答案为: 3<m <4.5【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,此特点常与不等式、方程结合起来求一些字母的取值范围.7.如图,两只福娃的发尖所处的位置的坐标分别为M (-2,2)、N (1,-1), 则A 、B 、C 三个点中为坐标系原点的是____.【答案】A【分析】利用平移规律,从M(-2,2)向右平移2个单位长度,向下平移2个单位长度,可得A是坐标原点.【详解】解:①M(-2,2),①A是坐标原点.故答案为A.【点睛】本题考查了平面直角坐标系,利用平移逆向推理是解题关键.三、解答题8.某学校STEAM社团在进行项目化学习时,根据古代的沙漏模型(图1)制作了一套“沙漏计时装置”,该装置由沙漏和精密电子秤组成,电子秤上放置盛沙容器.沙子缓慢匀速地从沙漏孔漏到精密电子称上的容器内,可以通过读取电子秤的读数计算时间(假设沙子足够).该实验小组从函数角度进行了如下实验探究:实验观察:实验小组通过观察,每两小时记录一次电子秤读数,得到表1.表1探索发现:(1)建立平面直角坐标系,如图2,横轴表示漏沙时间x,纵坐标表示精密电子称的读数y,描出以表1中的数据为坐标的各点.(2)观察上述各点的分布规律,判断它们是否在同一条直线上,如果在同一条直线上,请你建立适当的函数模型,并求出函数表达式,如果不在同一条直线上,请说明理由.结论应用:应用上述发现的规律估算:(3)若漏沙时间为9小时,精密电子称的读数为多少?(4)若本次实验开始记录的时间是上午7:30,当精密电子秤的读数为72克时是几点钟? 【答案】(1)作图见解析(2)在同一直线上.函数表达式为:66y x =+ (3)漏沙时间为9小时,精密电子称的读数为60克 (4)下午6:30【分析】(1)根据表中各点对应横、纵坐标,描点即可.(2)通过连线可知这些点大致分布在同一直线上,满足一次函数表达式,所以可假设一次函数表达式,利用待定系数法求解函数表达式.(3)根据(2)中的表达式可求出当9x =时,精密电子秤的读数.(4)根据(2)中的表达式可求出当72y =时,漏沙的时间,然后根据起始时间可求出读数为72克的时间. (1) 解:如图所示(2)解:如图所示,连线可得,这些点在同一线上,并且符合一次函数图像. 设一次函数表达式为:y kx b =+将点(0,6),(2,18)代入解析式中可得6218b k b =⎧⎨+=⎩解得66a b =⎧⎨=⎩∴函数表达式为:66y x =+(3)解:由(2)可知函数表达式为:66y x =+ ∴当9x =时,60y =∴漏沙时间为9小时,精密电子称的读数为60克.(4)解:由(2)可知函数表达式为:66y x =+ ∴当72y =时,11x =起始时间是上午7:30∴经过11小时的漏沙时间为下午6:30.【点睛】本题考查一次函数的实际应用,要求掌握描点法画函数图象,待定系数法求解析式,会求函数自变量或函数值是解决本题的关键.平面直角坐标系(提升测评)一、单选题1.如图,小石同学在正方形网格图中建立平面直角坐标系后,点A 的坐标为(1,1)-,点B 的坐标为(2,0),则点C 的坐标为( )A .(1,2)-B .(2,1)-C .(1,2)--D .(1,1)-【答案】A【分析】利用已知点A 、B 的坐标确定平面直角坐标系,进而可得答案. 【详解】解:根据题意,建立如图所示的直角坐标系, ①点C 的坐标为(1,﹣2). 故选:A .【点睛】此题主要考查了点的坐标的确定,属于基本题型,正确得出原点位置是解题关键. 2.如图所示,从小明家到学校要穿过一个居民小区,小区的道路均是北南或西东方向,小明走下面哪条线路最短( )A .(1,3)→(1,2)→(1,1)→(1,0)→(2,0)→(3,0)→(4,0)B .(1,3)→(0,3)→(2,3)→(0,0)→(1,0)→(2,0)→(4,0)C .(1,3)→(1,4)→(2,4)→(3,4)→(4,4)→(4,3)→(4,2)→(4,0)D .以上都不对 【答案】A【分析】要想线路最短,就应从小明家出发向右及向下走,而不能向左或向上走,所以选A . 【详解】解:要想路线最短,就只应向右及向下走, 故选:A【点睛】本题考查了平面直角坐标系的应用以及数学在实际生活的应用,理解线路最短,应始终向着目标靠近,并明白平面直角坐标系中点的坐标的表示是解题关键.3.道路两旁种植行道树,选择行道树的因素有很多,比如:树形要美、树冠要大、存活率要高、落叶要少…现在只考虑树冠大小、存活率高低两个因素,可以用如下方法将实际问题数学化:设树冠直径为d ,存活率为h .如图,在平面直角坐标系中画出点(d ,h ),其中甲树种、乙树种、丙树种对应的坐标分别为A (d 1,h 1)、B (d 2,h 2)、C (d 3,h 3),根据坐标的信息分析,下列说法正确的是( )A .乙树种优于甲树种,甲树种优于丙树种B .乙树种优于丙树种,丙树种优于甲树种C .甲树种优于乙树种,乙树种优于丙树种D .丙树种优于甲树种,甲树种优于乙树种 【答案】B【分析】根据图象,比较A 、B 、C 三点的存活率和树冠直径即可得出答案. 【详解】根据题意和图象可得,213h h h >>,231d d d >>, ①乙树种是最优的,①甲树种的存活率略高于丙树种,基本相等,但丙树种的树冠直径远远大于甲树种的树冠直径, ①丙树种优于甲树种,①乙树种优于丙树种,丙树种优于甲树种, 故选:B .【点睛】本题考查规律型:点的坐标,准确读出坐标中的信息是解题的关键.4.点A 在第二象限,距离x 轴3个单位长度,距离y 轴5个单位长度,则点A 的坐标为( ) A .()5,3- B .()3,5-C .()5,3-D .()3,5-【答案】A【分析】首先确定点的横纵坐标的正负号,再根据距坐标轴的距离确定点的坐标. 【详解】解:①点A 在第二象限, ①点的横坐标为负数,纵坐标为正数,①点距离x 轴3个单位长度,距离y 轴5个单位长度, ①点的坐标为(-5,3). 故选:A .【点睛】此题主要考查了点的坐标,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.5.如图,雷达探测器发现了A ,B ,C ,D ,E ,F 六个目标.目标C ,F 的位置分别表示为C (6,120°),F (5,210°),按照此方法表示目标A ,B ,D ,E 的位置时,其中表示正确的是( )A .A (4,30°)B .B (1,90°)C .D ( 4,240°) D .E (3,60°)【答案】C【分析】按已知可得,表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数,分别写出坐标A (5,30°),B (2,90°),D (4,240°),E (3,300°),即可判断.【详解】解:按已知可得,表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数, 由题意可知A 、B 、D 、E 的坐标可表示为:A (5,30°),故A 不正确;B (2,90°),故B 不正确;D (4,240°),故C 正确;E (3,300°),故D 不正确.故选择:C .【点睛】本题考查新定义坐标问题,仔细分析题中的C 、F 两例,掌握定义的含义,抓住表示一个点,。
平面直角坐标系难题讲解
平面直角坐标系难题讲解引言平面直角坐标系是我们学习数学时经常接触到的一个概念,它是描述平面上点的位置的一种方式。
在解决与平面直角坐标系相关的难题时,我们常常需要运用一些数学技巧和知识。
本文将介绍一些平面直角坐标系的难题,并讲解解题方法和步骤。
什么是平面直角坐标系平面直角坐标系是由两条互相垂直的数轴组成的。
一般情况下,我们将水平的数轴称为x轴,垂直的数轴称为y轴。
这两条轴的交点称为原点O,原点是平面直角坐标系的起点。
通过平行于x轴和y轴的直线,我们可以把平面划分成四个象限,分别为第一象限、第二象限、第三象限和第四象限。
平面直角坐标系的难题平面直角坐标系的难题通常涉及到点的坐标、直线的方程和曲线的方程等。
下面将介绍几个常见的难题,并详细讲解解题方法。
难题一:点的坐标问题描述:已知点A的坐标为(3, 4),求点A关于x轴和y轴的对称点的坐标。
解题方法:要求一个点关于x轴和y轴的对称点的坐标,实际上可以通过坐标的变换得到。
对于点A(x, y),它关于x轴的对称点的坐标为(x, -y),关于y轴的对称点的坐标为(-x, y)。
根据这个规律,我们可以得出点A关于x轴和y轴的对称点的坐标分别为(3, -4)和(-3, 4)。
难题二:直线的方程问题描述:已知直线L过点A(2, 3)且斜率为2,求直线L的方程。
解题方法:要求直线L的方程,我们可以先确定斜率k和直线上一点的坐标(x1,y1)。
对于点A(2, 3)和斜率k=2,直线L的方程可以表示为y - y1 = k(x - x1)。
代入点的坐标和斜率的值,得到方程y - 3 = 2(x - 2)。
将方程整理之后,我们可以得到直线L的方程为y = 2x - 1。
难题三:曲线的方程问题描述:已知曲线C的焦点为F(0, 0)、准线为x轴,离心率为2,求曲线C的方程。
解题方法:要求曲线C的方程,我们可以根据焦点、准线和离心率的定义推导。
对于椭圆曲线,离心率e的定义为焦点到准线的距离与焦点到椭圆上任意一点的距离之比。
七年级下册数学专题复习13平面直角坐标系重难点题型
七年级下册数学专题复习13平面直角坐标系重难点题型专题1.3平面直角坐标系重难点题型汇编【考点1象限内点的特征】【方法点拨】掌握第1~4象限内点的坐标符号特点分别是:(+,+)、(-,+)、(-,-)、(+,-).【例1】(2019春•天门校级期中)已知点P(a,b)在第四象限,则点Q(2a﹣b,2b﹣a)在第()象限.A.一B.二C.三D.四【变式1-1】(2019春•信丰县期中)如果P(a+b,ab)在第二象限,那么点Q(﹣a,b)在第()象限.A.一B.二C.三D.四【变式1-2】(2019春•卫辉市期中)若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在第()象限.A.四B.三C.二D.一【变式1-3】(2019春•汉阳区期末)直角坐标系中点P (a+2,a﹣2)不可能所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点2坐标轴上点的特性】【办法点拨】坐标系内点的坐标特性:坐标原点(,)、x轴(x,)、y轴(,y).留意若点在座标轴上,则要分红在x轴、y轴上两种情形来会商.【例2】(2019秋•市北区期中)假如点P(m+3,2m+4)在y轴上,那末点Q(m﹣3,﹣3)的位置在()A.纵轴上B.横轴上C.第三象限D.第四象限【变式2-1】(2019春•邓州市期中)若点A(﹣2,n)在x轴上,则点B(n﹣1,n+1)在第()象限.A.一B.二C.三D.四【变式2-2】(2019春•柳江区期中)若点A(m+2,2m ﹣5)在y轴上,则点A的坐标是()A.(,﹣9)B.(2.5,)C.(2.5,﹣9)D.(﹣9,)【变式2-3】(2018秋•章丘区期末)点A(2x﹣4,x+2)在座标轴上,则x的值即是()A.2或﹣2B.﹣2C.2D.非上述答案【考点3点到坐标轴的间隔】【方法点拨】点到x轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值.【例3】(2019春•兰山区期中)在平面直角坐标系中,点E在x轴上方,y轴的左边,间隔x轴3个单元,间隔y轴4个单元,则E点的坐标为()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)【变式3-1】(2019春•郯城县期中)点P(a+3,b+1)在平面直角坐标系的x轴上,并且点P到y轴的距离为2,则a+b的值为()A.﹣1B.﹣2C.﹣1或﹣6D.﹣2或﹣6【变式3-2】(2018春•新罗区校级期中)若点P(2x,3x+5)在第二象限,且点P到两坐标轴的距离相等,则点Q(﹣x2,2x2+2)的坐标是()A.(1,﹣4)B.(﹣1,﹣4)C.(﹣1,4)D.(1,4)【变式3-3】(2019春•栾城区期中)直线MN垂直于x 轴,若点M的坐标为(﹣5,2),点N距x轴的距离为3个单位,则点N的坐标为()A.(﹣5,3)C.(3,2)【考点4角平分线上点的特征】【办法点拨】象限角中分线上点的坐标特性:第1、3象限中x=y,第2、四象限中x+y=.【例4】(2019春•武平县校级期中)点A(2a+1,5a﹣2)在第1、三象限的角中分线上,点B(2m+7,m﹣1)在2、四象限的角中分线上,则()A.a=1,m=﹣2B.a=1,m=2C.a=﹣1,m=﹣2D.a=﹣1,m=2B.(﹣5,3)或(﹣5,﹣3)D.(3,2)或(﹣3,2)【变式4-1】(2019春•德州期末)若点A(a+1,a﹣2)在第二、四象限的角平分线上,则点B(﹣a,1﹣a)在()A.第一象限B.第二象限C.第三象跟D.第四象限【变式4-2】若A(a,﹣b),B(﹣b,a)透露表现统一个点,那这个点肯定在()A.第二、四象限的角平分线上B.第1、三象限的角中分线上C.平行于x轴的直线上D.平行于y轴的直线上【变式4-3】(2019春•福州校级月考)已知点M(a﹣1,﹣a+3)向右平移3个单位,之后又向下移7个单位,得到点N、若点N恰在第三象限的角平分线上,则a 的值为()A.2B.C.3D.﹣3【考点5点的坐标确定位置】【方法点拨】首先由点的坐标确定坐标系,进而可确定所求位置的坐标.【例5】(2019春•郯城县期中)课间操时,XXX、小军、XXX的位置如图,小军对XXX说,假如我的位置用(,﹣2)透露表现,XXX的位置用(2,)透露表现,那末你的位置能够透露表现为()A.(﹣2,﹣3)B.(﹣3,﹣2)C.(﹣3,﹣4)D.(﹣4,﹣3)【变式5-1】(2019春•蒙阴县期中)如图是中国象棋的一盘残局,假如用(2,﹣3)透露表现“帅”的位置,用(6,4)表示的“炮”位置,那么“将”的位置应表示为()A.(6,4)B.(4,6)C.(1,6)D.(6,1)【变式5-2】(2018春•越秀区期中)如图所示为某战役潜伏敌人防御工亭坐标地图的碎片,一号墙堡的坐标为(4,2),四号墙堡的坐标为(﹣2,4),由原有情报得知:敌军批示部的坐标为(,),你以为敌军指挥部的位置大概()A.A处XXX【变式5-3】(2018春•阳信县期中)如图中的一张脸,XXX说:“如果我用(,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成()A.(,1)B.(2,1)C.(1,)D.(1,﹣1)【考点6坐标与图形的性子】【方法点拨】与坐标轴平行的直线上点的坐标特点:与x 轴平行,纵坐标y相等;与y轴平行,横坐标x相等.【例6】(2019春•海安县期中)已知直线a平行于x轴,点M(﹣2,﹣3)是直线a上的一个点.若点N也是直线a上的一个点,MN=5,则点N的坐标为.【变式6-1】(2018春•繁昌县期中)已知A(﹣3,2)与点B(x,y)在同一条平行于y轴的直线上,且点B到x轴的间隔即是3,则B点的坐标为.【变式6-2】(2018春•邹城市期中)已知点M的坐标为(a﹣2,2a﹣3),点N的坐标为(1,5),直线MN ∥x轴,则点M的横坐标为.【变式6-3】(秋•汝州市校级期中)已知点A(b﹣4,3+b),B(3b﹣1,2),AB⊥x轴,则点A的坐标是.【考点7图形在座标系中的平移】【办法点拨】平面直角坐标内点的平移纪律,设a>,b> 【例7】(2019春•番禺区期中)△ABC与△A′B′C′在平面直角坐标系中的位置如图(1)分别写出下列各点的坐标:A′;B′;C′(2)若点P(m,n)是△ABC内部一点,则平移后△A′B′C′内的对应点P′的坐标为.(3)求△XXX的面积.【变式7-1】(2019春•兰陵县期中)△ABC与△A′B′C′在平面直角坐标系中的位置如图所示.(1)分别写出下列各点的坐标:A;B;C;(2)△ABC由△A′B′C′颠末如何的平移获得?答:.(3)若点P(x,y)是△ABC内部一点,则△A'B'C'内部的对应点P'的坐标为;(4)求△XXX的面积.【变式7-2】(2019春•金平区校级期中)已知,△ABC 在平面直角坐标系中的位置如图所示.(1)写出A、B、C三点的坐标.(2)△ABC中任意一点P(x,y)经平移后对应点为P1(x+4,y﹣3),先将△XXX同样的平移得到△A1B1C1,并写出B1、C1的坐标.(3)求△XXX的面积.【变式7-3】(2019春•厦门期末)在平面直角坐标系中,O为坐标原点,将三角形ABC进行平移,平移后点A、B、C的对应点划分是点D、E、F,点A(,a),点B(,b),点D(a,a),点E(m﹣b,a+4).2211(1)若a=1,求m的值;(2)若点C(﹣a,m+3),个中a>.直线CE交y轴于点M,且三角形BEM的面积为1,探索究AF41和XXX的数目干系,并申明来由.【考点8点在座标系内的挪动纪律】【例8】(2019春•博兴县期中)如图,在平面直角坐标系中,从点p1(﹣1,),p2(﹣1,﹣1),p3(1,﹣1),p4(1,1),p5(﹣2,1),p6(﹣2,﹣2),…依次扩展下去,则p2019的坐标为()A.(505,﹣505)B.(﹣505,505)C.(﹣505,504)D.(﹣506,505)【变式8-1】(2018春•武昌区期中)一只跳蚤在第一象限及x、y轴上跳动,第一次它从原点跳到(0.1),然后按图中箭头所示偏向跳动(,)→(,1)→(1,1)→(1,)→……,每次跳一个单元长度,则第2018次跳到点()A.(6,44)B.(7,45)C.(44,7)D.(7,44)【变式8-2】(2019春•武城县期中)如图,在平面直角坐标系中,有多少个横纵坐标划分为整数的点,其顺序为(1,)、(2,)、(2,1)、(1,1)、(1,2)、(2,2)…按照这个纪律,第2019个点的坐标为()。
平面直角坐标系10大必考考点精讲精练
专题1.5平面直角坐标系10大必考考点精讲精练(知识梳理+典例剖析+变式训练【目标导航】【知识梳理】1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
学@科网注意:x轴和y轴上的点,不属于任何象限。
2、点的坐标的概念点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。
3、各象限内点的坐标的特征点P(x,y)在第一象限0,0>>⇔y x 点P(x,y)在第二象限0,0><⇔y x 点P(x,y)在第三象限0,0<<⇔y x 点P(x,y)在第四象限0,0<>⇔y x 4、坐标轴上的点的特征点P(x,y)在x 轴上0=⇔y ,x 为任意实数点P(x,y)在y 轴上0=⇔x ,y 为任意实数点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0)5、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数6、和坐标轴平行的直线上点的坐标的特征位于平行于x 轴的直线上的各点的纵坐标相同。
位于平行于y 轴的直线上的各点的横坐标相同。
7、关于x 轴、y 轴或远点对称的点的坐标的特征点P 与点p’关于x 轴对称⇔横坐标相等,纵坐标互为相反数点P 与点p’关于y 轴对称⇔纵坐标相等,横坐标互为相反数点P 与点p’关于原点对称⇔横、纵坐标均互为相反数8、点到坐标轴及原点的距离(1)点P(x,y)到x 轴的距离等于y(2)点P(x,y)到y 轴的距离等于x(3)点P(x,y)到原点的距离等于22y x +9、点的平移点P(x,y)沿x 轴向右(或向左)平移m 个单位后对应点的坐标是(x ±m ,y );点P(x,y)沿y 轴向上(或向下)平移n 个单位后对应点的坐标是(x,y ±n ).【典例剖析】【考点1】物体位置的确定【例1】((2021秋•龙岗区校级期中)课间操时,小华、小军、小刚的位置如图,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)【变式1.1】(2022·江苏·八年级专题练习)某班级第3组第4排位置可以用数对(3,4)表示,则数对(1,2)表示的位置是()A.第2组第1排B.第1组第1排C.第1组第2排D.第2组第2排【变式1.2】(2022·江苏·八年级专题练习)下列数据中不能确定物体位置的是( )A.电影票上的“5排8号”B.小明住在某小区3号楼7号C.南偏西37°D.东经130°,北纬54°的城市【变式1.3】(2022·江苏·八年级专题练习)贵阳电视塔位于贵阳市云岩区扶风路仙鹤山森林公园内,是贵阳市内海拔最高的标志性建筑物,能在360度旋转观光大厅里俯瞰贵阳全景.小高将位于扶风山麓的阳明祠的位置记为原点建立如图所示的平面直角坐标系,则下列哪个坐标可以表示贵阳电视塔的位置()A.(3,―5)B.(―3,―5)C.(―3,5)D.(3,5)【考点2】点的坐标【例2】(2020•海陵区一模)在平面直角坐标系的第二象限内有一点P,点P到x轴的距离为2,到y轴的距离为3,则点P的坐标是( )A.(﹣3,2)B.(3,﹣2)C.(2,﹣3)D.(﹣2,3)【变式2.1】(2021·江苏·无锡市港下中学八年级阶段练习)若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是()A.(-4,3)B.(4,-3)C.(-3,4)D.(3,-4)【变式2.2】(2021·江苏·南通市启秀中学七年级阶段练习)一个点的横、纵坐标都是整数,并且他们的乘积为6,满足条件的点共有()A.2个B.4个C.8个D.10个【变式2.3】(2019·江苏·南京师大苏州实验学校八年级期中)已知点A的坐标为(a+1,3―a ),下列说法正确的是( )A.若点A在y轴上,则a=3B.若点A在一三象限角平分线上,则a=1C.若点A到x轴的距离是3 ,则a=±6D.若点A在第四象限,则a的值可以为―2【考点3】坐标与图形性质【例3】(2021春•南充期末)在平面直角坐标系中,点A坐标为(﹣3,2),AB∥x轴,且AB=5,则点B的坐标为( )A.(﹣8,2)B.(﹣8,2)或(2,2)C.(﹣3,7)D.(﹣3,7)或(﹣3,﹣3)【变式3.1】(2020·江苏苏州·八年级期中)在平面直角坐标系中,点A的坐标为(―4,3),AB∥y轴,AB=5,则点B的坐标为()A.(1,3)B.(―4,8)C.(1,3)或(―9,3)D.(―4,8)或(―4,―2)【变式3.2】(2021·江苏·西安交大苏州附中八年级阶段练习)如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为MN的长为半径画弧,两弧在第二象限交于点P,若点P的坐标为(6a,圆心,大于122b﹣1),则a与b的数量关系为( )A.6a﹣2b=1B.6a+2b=1C.6a﹣b=1D.6a+b=1【变式3.3】(2020·江苏苏州·八年级阶段练习)在平面直角坐标系xOy中,已知点A(3,3),若y轴上存在点P,使△OAP为等腰三角形(其中O为坐标原点),则符合条件的点P有()A.2个B.3个C.4个D.5个【考点4】点的变化规律【例4】(2020春•崇川区期末)如图,在平面直角坐标系xOy中,点P(1,0).点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位至点P3,第4次向右跳动3个单位至点P4,第5次又向上跳动1个单位至点P5,第6次向左跳动4个单位至点P6,….照此规律,点P第100次跳动至点P100的坐标是( )A.(﹣26,50)B.(﹣25,50)C.(26,50)D.(25,50)【变式4.1】(2022·江苏·仪征市实验中学东区校九年级阶段练习)如图,在平面直角坐标系中,A(﹣1,1),B(﹣1,﹣2),C(3,﹣2),D(3,1),一只瓢虫从点A出发以2个单位长度/秒的速度沿A→B→C→D→A循环爬行,问第2022秒瓢虫在()处.A.(3,1)B.(1,1)C.(1,﹣2)D.(3,﹣2)【变式4.2】(2022·江苏·八年级课时练习)如图,将边长为1的正三角形OAP沿x轴方向连续翻转若干次,点P依次落在点P1,P2,P3,…,P2021的位置,则点P2021的横坐标为()A.2016B.2017C.2018D.2020【变式4.3】(2022·江苏·八年级单元测试)如图所示,在平面直角坐标系中,A(0,0),B (2,0),△AP I B是等腰直角三角形且∠P1=90°,把△AP I B绕点B顺时针旋转180°,得到△BP2C,把△BP2C绕点C顺时针旋转180°,得到△CP3D,依此类推,得到的等腰直角三角形的直角顶点P2022的坐标为()A.(4043,-1)B.(4043,1)C.(2022,-1)D.(2022,1)【考点5】关于坐标轴对称的点的坐标【例5】(2020秋•天宁区校级期中)点A(6,﹣8)在第 象限,点A到x轴的距离为 ,点A关于x轴的对称点为 ,点A到原点的距离为 .【变式5.1】(2021·江苏·西安交大苏州附中八年级阶段练习)已知点P1(a,3)和P2(2,b)关于x轴对称,则(a+b)2021的值是( )A.0B.﹣1C.1D.52021【变式5.2】(2020·江苏苏州·八年级阶段练习)已知点P(x,y)在第四象限,且x2=4,|y|=3,则点P关于y轴对称的点P1的坐标是()A.(2,3)B.(-2,3)C.(-2,-3)D.(2,-3)【变式5.3】(2022·江苏·八年级课时练习)已知有序数对(a,b)及常数k,我们称有序数对(ka+b,a―b)为有序数对(a,b)的“k阶结伴数对”.如(3,2)的“1阶结伴数”对为(1×3+2,3―2)即(5,1).若有序数对(a,b)(b≠0)与它的“k阶结伴数对”关于y轴对称,则此时k的值为()A.-2B.―32C.0D.―12【考点6】坐标与平移【例6】(2021春•城阳区期中)如图,A,B两点的坐标分别为(4,0),(0,2),将线段AB平移到线段A1B1的位置.若A1,B1两点的坐标分别为(b,2),(2,a),则a+b的值为( )A.4B.6C.8D.10【变式6.1】(2022·江苏·姜堰区实验初中八年级)在平面直角坐标系中,已知线段AB的两个端点分别是A(―4,―1),B(1,1),将线段AB平移后得到线段A′B′,如点A′的坐标为(―2,2),则点B′坐标为( )A.(4,3)B.(3,4)C.(―1,―2)D.(―2,―1)【变式6.2】(2022·江苏南通·七年级期中)三角形ABC在经过某次平移后,顶点A(﹣1,m+2)的对应点为A(2,m﹣3),若此三角形内任意一点P(a,b)经过此次平移后对应点P1(c,d).则a+b﹣c﹣d的值为()A.8+m B.﹣8+m C.2D.﹣2【变式6.3】(2022·江苏·八年级专题练习)如图,面积为3的等腰△ABC,AB=AC,点B、点C在x轴上,且B(1,0)、C(3,0),规定把△ABC“先沿y轴翻折,再向下平移1个单位”为一次变换,这样连续经过2021次变换后,△ABC顶点A的坐标为()A.(―2,―2018)B.(2,―2018)C.(2,―2019)D.(―2,―2019)【考点7】坐标的性质综合问题【例7】(2020春•广丰区校级期末)已知点P(a﹣2,2a+8),分别根据下列条件求出点P 的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.【变式7.1】(2022·江苏·八年级单元测试)已知点P(2a―2,a+5),回答下列问题:(1)点P在y轴上,求出点P的坐标;(2)点P在第二象限,且它到x轴、y轴的距离相等,求a2022+2022的值【变式7.2】(2022·江苏·八年级单元测试)在平面直角坐标系中,已知点M(m+1,2m-5).(1)若点M在第四象限内,求m的取值范围;(2)若点M在过点A(2,-4)且与x轴平行的直线上,求此时点M的坐标.【变式7.3】(2022·江苏·苏州中学八年级期中)已知点A―3,2a―1,点B―a,a―3.(1)若点A在第二、四象限角平分线上,求点A关于y轴的对称点A′的坐标.(2)若线段AB∥x轴,求线段AB的长度.(3)若点B到x轴的距离是到y轴距离的2倍,求点B的坐标.【考点8】平面直角坐标系【例8】(2021秋•姑苏区期中)如图,方格纸中每个小方格都是边长为1个单位的正方形,学校位置坐标为A(2,1),图书馆位置坐标为B(﹣1,﹣2),解答下列问题:(1)在图中建立平面直角坐标系,并标出坐标原点O;(2)若体育馆位置坐标为C(1,3),请在坐标系中标出体育馆的位置C;(3)点C绕原点顺时针旋转90°得到点D,直接写出点D的坐标;(4)顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.【变式8.1】(2022·江苏·景山中学八年级期中)已知:A(1,0),B(0,4),C(4,2).(1)在坐标系中描出各点(小正方形网格的长度为单位1),画出△ABC;(2)若△A1B1C1与△ABC关于y轴对称,请在图中画出△A1B1C1;(3)点Q是x轴上的一动点,直接写出QB+QC的最小值 .【变式8.2】(2022·广西·南宁市第四十七中学八年级期中)如图1,在平面直角坐标系中,点A0,a―2,B b,0,C b―6,―b,且a,b满足(a―b)2+(b―8)2=0,连接AB、AC,AC交x轴于D点.(1)求C点的坐标;(2)求证:AB=BC;(3)如图2,点E在线段AB上,作EG⊥y轴于G点,交AC于F点,若EG=AO,求证:EF=OD +AG.【变式8.3】(2022·福建省厦门第六中学八年级期中)如图,平面直角坐标系中有点A(―1,0)和y轴上一动点B(0,a),(1)当a=2时,以AB为其中一边作等腰直角△ABC,请画出图形,并直接写出C点的坐标;(2)动点B在运动的过程中,若2<a<4,以AB为斜边,在第二象限作等腰直角△ABC,设点C 的坐标为(x ,y ),试写出x 与y 之间的数量关系以及x 的取值范围,并说明理由.【考点9】有关坐标新定义问题【例9】(2020春•海安市期中)阅读材料并回答下列问题:当m ,n 都是实数,且满足2m =8+n ,就称点P (m ﹣1,n 22)为“爱心点”.(1)判断点A (5,3),B (4,8)哪个点为“爱心点”,并说明理由;(2)若点A (a ,﹣4)是“爱心点”,请求出a 的值;(3)已知p ,q 为有理数,且关于x ,y 的方程组x +y +q x ―y =―3q 解为坐标的点B (x ,y )是“爱心点”,求p ,q 的值.【变式9.1】(2022·北京市西城外国语学校八年级期中)在平面直角坐标系xOy 中,对于任意图形G 及直线l 1,l 2,给出如下定义:将图形G 先沿直线l 1翻折得到图形G 1,再将图形G 1沿直线l 2翻折得到图形G 2,则称图形G 2是图形G 的[l 1,l 2]伴随图形.例如:点P (2,1)的[x 轴,y 轴]伴随图形是点P ′(―2,―1).(1)点Q (―3,―2)的[x 轴,y 轴]伴随图形点Q ′的坐标为 .(2)已知A (t ,1),B (t ―3,1),C (t ,3),直线m 经过点(1,1).①当t =―1,且直线m 与y 轴平行时,点A 的[x 轴,m ]伴随图形点A 的坐标为 ;②当直线m 经过原点时,若△ABC 的[x 轴,m ]伴随图形上只存在两个与x 轴的距离为0.5的点,直接写出t 的取值范围.【变式9.2】(2022·江苏·如皋市石庄镇初级中学七年级阶段练习)对于平面直角坐标系xOy 中的点A ,给出如下定义:若存在点B (不与点A 重合,且直线AB 不与坐标轴平行或重合),过点A 作直线m∥x 轴,过点B 作直线n∥y 轴,直线m ,n 相交于点C .当线段AC ,BC 的长度相等时,称点B 为点A 的等距点,称△ABC 的面积为点A 的等距面积.例如:如图,点A (―2,1),点(―5,4),因为AC =BC =3,所以点B 为点A 的等距点,此时点A 的等距面积为92.(1)点A的坐标是(0,1),在点D(―1,2),E(3,―2),F(―1,―1)中,点A的等距点是 .(2)点A的坐标是(―3,1),点A的等距点B(m,n)在第三象限,①若点A的等距面积为2,求此时点B的坐标;②若点B的坐标是(―4.5,―0.5),求此时点A的等距面积;,直接写出m的取值范围.③若点A的等距面积不小于98【变式9.3】(2022·北京·八年级期中)在平面直角坐标系xOy中,直线l为一、三象限角平分线,点P关于y轴的对称点称为P的一次反射点,记作P1;P1关于直线l的对称点称为点P的二次反射点,记作P2.例如,点(―2,5)的一次反射点为(2,5),二次反射点为(5,2).根据定义,回答下列问题:(1)点(3,4)的一次反射点为 ,二次反射点为 ;(2)当点A在第三象限时,点M(―4,1),N(3,―1),Q(―1,―5)中可以是点A的二次反射点的是 ;(3)若点A在第二象限,点A1,A2分别是点A的一次、二次反射点,∠A1OA2=50°,求射线OA 与x轴所夹锐角的度数;(4)若点A在y轴左侧,点A1,A2分别是点A的一次、二次反射点,△AA1A2是等腰直角三角形,请直接写出点A在平面直角坐标系xOy中的位置.【考点10】两点间的距离公式【例10】(2021秋•泰宁县期中)先阅读一段文字,再回答下列问题:已知在平面内两点坐标P1(x1,y1),P2(x2,y2),其两点间距离公式为P1P2=,同时,当两点所在的直线在坐标轴上或平行于x轴或垂直于x轴,距离公式可简化成|x2﹣x1|或|y2﹣y1|.(1)已知A(3,5),B(﹣2,﹣1),试求A,B两点的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A,B两点的距离.(3)已知一个三角形各顶点坐标为A(0,6),B(﹣3,2),C(3,2),你能断定此三角形的形状吗?说明理由.【变式10.1】(2022·山东济宁·七年级期中)先阅读下列文字,再回答后面的问题:已知在平面直角坐标系内有两点P1(x1,y1),P(x2,y2),其两点间的距离可用公式P1P2=同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间的距离公式可简化为|x1―x2|或|y1―y2|.(1)已知A(2,4),B(―3,8),试求A,B两点间的距离;(2)已知A,B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为―1,试求A,B两点间的距离.【变式10.2】(2020·陕西西安·八年级期中)如图所示,点A(a,b),B(c,d)是平面直角坐标系中的两个点,且AC⊥x轴于点C,BD⊥x轴于点D,填写下空:(1)|CD|=_______,|DB|―|CA|=______(用含a,b,c,d的式子表示请注意字母a的正负号)(2)请构造直角三角形,利用勾股定理计算A、B两点之间的距离的平方为__________________.(用含a,b,c,d的式子表示)(3)若E(―4,5),F(4,―10),求E、F两点之间的距离.【变式10.3】(2022·福建宁德·八年级期中)小亮在网上搜索到下面的文字材料:在x轴上有两个点它们的坐标分别为a,0和c,0.则这两个点所成的线段的长为|a―c|;同样,若在y轴上的两点坐标分别为0,b和0,d,则这两个点所成的线段的长为|b―d|.如图1,在直角坐标系中的任意两点P1,P2,其坐标分别为a,b和c,d,分别过这两个点作两坐标轴的平行线,构成一个直角三角形,其中直角边P1Q=|a―c|,P2Q=|b―d|,利用勾股定理可得:线段P1P2根据上面材料,回答下面的问题:(1)在平面直角坐标系中,已知A(2,2),B(6,5),则线段AB的长为______;(2)若点C在y轴上,点D的坐标是―3,0,且CD=6,则点C的坐标是______;(3)如图2,在直角坐标系中,点A,B的坐标分别为(1,3))和(3,0),点C是y轴上的一个动点,且A,B,C三点不在同一条直线上,求△ABC周长的最小值.。
七年级下数学培训资料《平面直角坐标系》基础与延伸
《平面直角坐标系》基础与延伸一、选择题1.在平面直角坐标系中,若m为实数,则点(﹣2,m2+1)在()A.第一象限B.第二象限C.第三象限D.第四象限2.已知点A(1,0)B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标为()A.(-4,0)B.(6,0)C.(-4,0)或(6,0)D.(0,12)或(0,-8)3.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①f(a,b)=(a-,b).如,f(1,3)=(1-,3);②g(a,b)=(b,a).如,g(1,3)=(3,1);③h(a,b)=(a-,b-).如,h(1,3)=(1-,3-).按照以上变换有:f(g(h(2,3-)))=f(g(2-,3))=f(3,2-)=(3-,2-),那么f(g(h(3-,5)))等于()A.(5-,3-)B.(5,3)C.(5,3-)D.(5-,3)4.点M在y轴的左侧,到x轴、y轴的距离分别是3和5,则点M的坐标是()A. (-5,3)B. (-5,-3)C. (5,3)或(-5,3)D. (-5,3)或(-5,-3)5.已知坐标平面内点M(a,b)在第三象限,那么点N(b,-a)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6.如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,P1,P2,P3,…均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,-1),P5(-1,-1),P6(-1,2),…,根据这个规律,点P2 017的坐标为()A. (-504,-504)B. (-505,-504)C. (504,-504)D. (-504,505)第6题图第7题图第9题图7.如图所示,若在象棋盘上建立平面直角坐标系,使“将”位于点(1,-2),“象”位于点(3,-2),则“炮”位于点()A. (1,3)B. (-2,0)C. (-1,2)D. (-2,2)8.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是()A. (2,5)B. (-8,5)C. (-8,-1)D. (2,-1)9.如图,线段AB经过平移得到线段A1B1,其中点A,B的对应点分别为点A1,B1,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A1B1上的对应点P′的坐标为()A. (a-2,b+3)B. (a-2,b-3)C. (a+2,b+3)D. (a+2,b-3)10.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2 018次运动后,动点P的坐标是()A. (2018,0)B. (2018,1)C. (2018,2)D. (2017,0)11.点P(m,m+1)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限12.已知平面直角坐标系内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a 的值为()A.-3 B.-5 C.1或-3 D.1或-513.把点A(-2,3)平移到点A′(1,5),平移方式正确的为()A.先向右平移3个单位长度,再向下平移2个单位长度B.先向左平移3个单位长度,再向上平移2个单位长度C.先向左平移3个单位长度,再向下平移2个单位长度D.先向右平移3个单位长度,再向上平移2个单位长度14.如图5,一个粒子在第一象限内及x轴、y轴上运动,在第一分钟,它从原点运动到点(1,0),第二分钟,它从点(1,0)运动到点(1,1),而后它接着按图中箭头所示在与x 轴,y轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在第2019分钟时,这个粒子所在位置的坐标是()图5A.(44,5) B.(5,44) C.(44,6) D.(6,44)15、在平面直角坐标系中o为坐标原点,点A的坐标为(2,2),M为x轴上一点,且△MOA为等腰三角形,则满足条件的点M的个数为个17.已知点P(2a﹣6,a+1),若点P在坐标轴上,则点P的坐标为.18.将点P(-3,y)向下平移2个单位,向左平移3个单位后得到点Q(x,-1),则xy=_________.19.如图,正方形ABCD的边长为4,点A的坐标为(-1,1),AB平行于X轴,则点C 的坐标为___.20.如图8,三角形ABC的顶点坐标分别是A(3,6),B(1,3),C(4,2).如果将三角形ABC平移,使点A与点A′重合,得到三角形A′B′C′,那么点B的对应点B′的坐标是__________.图821.如图,线段OB,OC,OA的长度分别是1,2,3,且OC平分∠AO B.若将A点表示为(3,30°),B点表示为(1,120°),则C点可表示为.22.在平面直角坐标系中,点A的坐标为(-1,3),线段AB∥x轴,且AB=4,则点B的坐标为.23.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则a= .24.如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则点A2 017的坐标为.三、解答题25、如图所示,在直角坐标系中,四边形ABCD各个顶点的坐标分别是A(0,0),B(3,6),C(14,8),D(16,0),确定这个四边形的面积.imp-新导入1-83如图,在平面直角坐标系中,已知A(0,a)、B(b,0)、C(3,c)26、三点,其中a、b、c满足关系式|a-2|+(b-3)2 =0,(c-4)2≤0,(1)求a、b、c的值;(2)如果在第二象限内有一点,请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标;若不存在,请说明理由。
平面直角坐标系难题(难)
第六章平面直角坐标系一、基础知识1:有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对(ordered pair),记作(a,b)利用有序数对,可以很准确地表示出一个位置.常见的确定平面上的点位置常用的方法(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置. (2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置.2:直线上点的位置:在一条直线上规定了原点,正方向和单位长度,就得到一个数轴,这时,数轴上的点就可以用一个数表示,这个数叫做点的坐标。
3:平面直角坐标系:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系(rectangular coordinate system).水平的数轴称为x轴(x-axis)或横轴,习惯上取向右为正方向;竖直的数轴为y轴(y-axis)或纵轴,取向上方向为正方向;两个坐标轴的交点为平面直角坐标系的原点。
点的坐标:我们用一对有序数对表示平面上的点,这对数叫坐标.表示方法为(a,b)。
a是点对应横轴上的数值,b是点在纵轴上对应的数值。
建立平面直角坐标系后,平面被坐标轴分成四部分,分别叫第一象限,第二象限,第三象限和第四象限。
4.由坐标确定点的方法:要确定由坐标(a,b)所表示的点P的位置,先在x轴上找到表示a的点,过这点做x轴的垂线,再在y轴上找到表示b的点,过这点作y轴的垂线,两条垂线的交点为P。
5由点求坐标的方法:先由已知点P分别向x轴和y轴作垂线,设垂足分别为A和B,再求出A在x轴上的坐标a和B在y轴上的坐标b,则P的坐标为P(a,b).6关于x轴,y轴,原点对称的点的坐标:关于x轴对称的点,其横坐标相同,纵坐标互为相反数;关于y轴对称的点,其横坐标互为相反数,纵坐标相同;关于原点对称的点,其横坐标,纵坐标均互为相反数。
七年级下数学培训资料《平面直角坐标系》拔高与竞赛
《平面直角坐标系》拔高与竞赛一.回顾与尝试1.对称与坐标已知点P(a,b) (1)关于x 轴的对称点 ,(2)关于y 轴的对称点(3)关于原点的对称点 ;(4)关于直线x=m (m ≠a)的对称点(5)关于直线y=n(n ≠b)的对称点 (6)关于直线y=x 的对称点(7)关于直线y=-x 的对称点 。
2.坐标与距离(1)已知点P(a,b),它与x 轴的距离为 它与y 轴的距离为(2)点P(a,b)与直线直线x=m (m ≠a)的距离为 ,它与直线y=n(n ≠b)的距离为3.尝试一组(1)在平面直角坐标系中,点(-1,m 2+1)一定在( )A 第一象限B 第二象限C 第三象限D 第四象限(2)已知点A (a+2,b-3),若P 在x 轴上,则a 、b 满足的条件是 若P 在y 轴上,则a 、b 满足的条件是 。
(3)M )1||,(2+-b a ,下列说法正确的是( )A 点M 在x 轴正半轴上;B 点M 在x 轴负半轴上;C 点M 在y 轴正半轴上;D 点M 在y 轴负半轴上。
(4)点P (2m-5,m-1),问一:当m 为何值时,点P 在第二、四象限的平分线上?问二:当m 为何值时,点P 在第一、三象限的平分线上?(5)已知两点A(-3,m),B(n,4),若AB||x 轴,求m 的值,并确定n 的取值范围。
二、精讲精练(一)面积问题例1.已知A(-3,1)B(1,-3)C(3,4),求三角形ABC 的面积。
例2.平面直角坐标系中,四边形OABC 各顶点坐标是O (0,0),A(-4,10),B(-12,8),C(-14,0)。
求四边形OABC 的面积【练习一组】如图,A (-1,0),C (1,4),点B 在x 轴上,且AB=3.(1)求点B 的坐标;(2)求△ABC 的面积;(3)在y 轴上是否存在点P ,使以A 、B 、P 三点为顶点的三角形的面积为10,若存在,请直接写出点P 的坐标;若不存在,请说明理由.2.已知点A (-4,0),B (6,0),C (3,m ),如果三角形ABC 的面积是12,求m 的值。
专题05 平面直角坐标系五大重难点知识讲义(原卷版)
专题05 平面直角坐标系五大重难点知识讲义【典例解析】题型一、有序数对及其规律性探究【例1】(2021·山东烟台市期末)如图是雷达探测到的6个目标,若目标C用(40,120°)表示,目标D用(50,210°)表示,则(30,240°)表示的目标是()A.目标A B.目标B C.目标F D.目标E【变式1-1】(2020·哈尔滨月考)张明同学的座位位于第2列第5排,李丽同学的座位位于第4排第3列,若张明的座位用有序数对表示为(2,5),则李丽的座位用的有序数对表示为()A.B.3,4C.D.【例2】(2020·浙江宁波月考)如图,在正方形网格中,若点,A B的坐标分别是(1,1),(2,0),则C点的坐标为()A.B.C.D.【变式2-1】(2020·广东河源月考)根据下列表述,能确定具体位置的是()A.实验中学东B.南偏西30°C.东经120°D.会议室第7排,第5座【例3】(2021·河南三门峡期末)一组正整数1,2,3,4,5…,按下面的方法进行排列:若正整数2的位置记为,正整数10的位置记为,则正整数2020的位置可记为()A.B.C.D.【变式3-1】如图,平面直角坐标系中,已知点A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2),动点P 从点A 出发,以每秒2个单位的速度按逆时针方向沿四边形ABCD 的边做环绕运动;另一动点Q 从点C 出发,以每秒3个单位的速度按顺时针方向沿四边形CBAD 的边做环绕运动,则第2019次相遇点的坐标是( )A .(﹣1,﹣1)B .(1,﹣1)C .(﹣2,2)D .(1,2)【例4-1】(2021·四川省内江市月考)在平面直角坐标系中,对于平面内任意一点(x ,y ),若规定以下两种变换:①f (x ,y )=(y ,x ).如f (2,3)=(3,2);②g (x ,y )=(﹣x ,﹣y ),如g (2,3)=(﹣2,﹣3).按照以上变换有:f (g (2,3))=f (﹣2,﹣3)=(﹣3,﹣2),那么g (f (﹣6,7))等于( ) A .(7,6)B .(7,﹣6)C .(﹣7,6)D .(﹣7,﹣6)【例4-2】(2021·重庆渝中区月考)如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第一次从原点O 运动到点P 1(1,1),第二次运动到点P 2(2,0),第三次运动到P 3(3,﹣2),第四次运动到P 4(4,0),第五运动到P 5(5,2),第六次运动到P 6(6,0),…,按这样的运动规律,第2019次运动后,动点P 2019的纵坐标是( ) A .1B .2C .﹣2D .0【变式4-1】如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点,第2次接着运动到点,第3次接着运动到点,…,按这样的运动规律,经过第2021次运动后,动点P 的坐标是( ) A .B .C .D .【例5】在平面直角坐标系中,如果点(,)P x y 经过某种变换后得到点(1,3)P y x '--,我们把点(1,3)P y x '--叫做点(,)P x y 的终结点.已知点P 的终结点为1P ,点1P 的终结点为2P ,点2P 的终结点为3P ,点3P 的终结点为4P ,这样依次得到1P ,2P ,3P ,4P ,…,n P .若点P 的坐标为(1,0),则点2021P 的坐标为( ) A .(1,0)B .C .(1,4)D .(3,2)题型二、求点的坐标或参数【例6】(2021·北京海淀区月考)若x 轴上的点P 到y 轴的距离为3,则点P 的坐标为( ). A .B .或C .D .或【变式6-1】(2021·广东深圳市期末)在平面直角坐标系中,下列说法正确的是( ) A .点P (3,2)到x 轴的距离是3 B .若ab =0,则点P (a ,b )表示原点C .若A (2,﹣2)、B (2,2),则直线AB ∥x 轴D .第三象限内点的坐标,横纵坐标同号【例7】(2020·广东广州市期末)若点(2,3)A a -在x 轴上,则a =________ . 【变式7-1】(2020·浙江杭州市期末)若点A (21,14a a --)在y 轴上,则点A 的坐标为____________.【例8】(2020·深圳期末)已知平面直角坐标系有一点P (x ,x +2),无论x 取何值,点P 不可能在( ) A .第一象限B .第二象限C .第三象限D .第四象限【变式8-1】(2021·西安市期末)在平面直角坐标系中,点一定在( ) A .第一象限B .第二象限C .第三象限D .第四象限【例9】(2021·北京海淀区月考)若点M 在第一、三象限的角平分线上,且点M 到x 轴的距离为2,则点M 的坐标是( ). A .B .C .或D .或【变式9-1】(2019·珠海市期中)点31,25()P m m +-到两坐标轴的距离相等,则m =________.【例10】(2021·北京月考)点()1,2A m m -+在x 轴上,则此点坐标为____________;点在二、四象限的角分线上,则此点坐标为____________;点C 在x 轴下方,距离x 轴2个单位长度,距离y 轴3个单位长度,则此点的坐标为____________.【变式10-1】(2021·山东烟台市·七年级期末)已知点.(1)若点P在y轴上,P点的坐标为______.(2)若点P的纵坐标比横坐标大6,则点P在第______象限.(3)若点P在过点且与x轴平行的直线上,则点P的坐标为______.(4)点P到x轴、y轴的距离相等,则点P的坐标为______.题型三、动点与面积【例11】(2020·北京期末)在平面直角坐标系xOy 中,点A (﹣2,0),点B (0,3),点C 在坐标轴上,若三角形ABC 的面积为6,则符合题意的点C 有( ) A .1个B .2个C .3个D .4个【变式11-1】(2020·广东佛山市月考)在平面直角坐标系中,已知(0,1)A ,(2,0)B ,(4,3)C .(1)在给出的平面直角坐标系中画出ABC ∆;(2)已知P 为x 轴上一点,若ABP ∆的面积为2,求点P 的坐标.【例12】(2020·石家庄市期中)如图,在平面直角坐标系中,已知A(0,a),B(b,0),其中a,b满足|a﹣2|+(b﹣3)2=0.(1)a=,b=;(2)如果在第二象限内有一点M(m,1),请用含m的式子表示四边形ABOM的面积;(3)在(2)条件下,当m=﹣32时,在坐标轴的负半轴上求点N(的坐标),使得△ABN的面积与四边形ABOM的面积相等.(直接写出答案)【变式12-1】(2020·北京市月考)如图,在平面直角坐标系中,已知点 (0, 3)A ,(5,0)B ,(5,4)C 三点.(1)在平面直角坐标中画出ABC ∆,求ABC ∆的面积(2)在x 轴上是否存在一点M 使得BCM ∆的面积等于ABC ∆的面积?若存在,求出点M 坐标;若不存在,说明理由.(3)如果在第二象限内有一点(, 1)P a ,用含a 的式子表示四边形ABOP 的面积; (4)且四边形ABOP 的面积是ABC ∆的面积的三倍,是否存在点P ,若存在,求出满足条件的P 点坐标;若不存在,请说明理由.【例13】(2020·四川成都期中)如图在直角坐标系中,已知(0, ), (, 0) (3, )A a B b C c 三点,若, , a b c 满足关系式:. (1)求, , a b c 的值; (2)求四边形AOBC 的面积;(3)是否存在点(,)2xP x ,使AOP 的面积为四边形AOBC 的面积的两倍?若存在,求出点P 的坐标,若不存在,请说明理由.【变式13-1】(2019·湖北宜昌月考)在平面直角坐标系中,已知三点,其中,,a b c 满足关系式()2230,2a b c b a -+-==-; (1)求,,a b c 的值;(2)如果在第二象限内有一点,请用含m 的式子表示四边形ABOP 的面积;若四边形ABOP 的面积与ABC 的面积相等,请求出点P 的坐标.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品文档
1、平面内,四条线段AB 、BC 、CD 、DA 首尾顺次相接,∠ABC =24°,∠ADC = 42°. ⑴∠BAD 和∠BCD 的角平分线交于点M (如图1),求∠AMC 的大小;
⑵ 点E 在BA 的延长线上,∠DAE 的平分线和∠BCD 的平分线交于点N (如图2),则∠ANC =______.
M D
C
B
A
图1
N
D
C
B
A
图2
E
1、在直角坐标系中,△ABC 的顶点A (—2,0),B (2,4),C (5,0)。
(1)求△ABC 的面积
(2)点D 为y 负半轴上一动点,连BD 交x 轴于E ,是否存在点D 使得ADE BCE S S ∆∆=?若存在,请求出点D 的坐标;若不存在,请说明理由.
(3)点F (5,n )是第一象限内一点,,连BF ,CF ,G 是x 轴上一点,若△ABG 的面积等于四边形ABDC 的面积,
2、如图,在平面直角坐标系中,△AOB 是直角三角形,∠AOB=90°,斜边AB 与y 轴交于点C. (1)若∠A=∠AOC ,求
证:∠B=∠BOC ;
(2)延长AB 交x 轴于点E ,过O 作OD ⊥AB ,且∠DOB=∠EOB ,∠OAE=∠OEA ,求∠A
(3)如图,OF 平分∠AOM ,∠BCO 的平分线交FO 的延长线于点P.当△ABO 绕O 点旋转时(斜边AB 与y 轴正半轴始终相
交于点C ),在(2)的条件下,试问∠P
M
(5.23).如图,A、B两点坐标分别为A(a,4),B(b,0)
,且a,b满足0
9
2
)8
2
(2=
-
+
+
+
-b
a
b
a,E是y轴正半轴上一点。
(1)求A、B两点坐标
(2)若C为y轴上一点且S△AOC=
5
1S
△AOB
,求C点的坐标
(3)过B作BD∥y轴,∠DBF=
3
1
∠DBA,∠EOF=
3
1
∠EOA,求∠F与∠A间的数量关系
1、已知:如图,在△ABC中,A(a,0),B(b,0),C(0,c),且a、b、c满足
b=2
-
-
+
-a
c
c
a,BD⊥AC于D,交y轴于E.(1)如图1,求E点的坐标;
(2)如图2,过A点作AG⊥BC于G,若∠BCO=30°,求证:AG+GC=CB+BO.
(3)如图3,P为第一象限任意一点,连接PA作PQ⊥PA交y轴于Q点,在射线PQ上截取PH=PA,连接CH,F为CH 的中点,连接OP,当P点运动时(PQ不过点C), ∠OPF的大小是否发生变化,若不变,求其度数,若变化,求其变化范围.
1、在Rt△ABC中,∠ACB=90°,∠ABC=45°,点E在线段BC上,射线ED⊥AB于点D.(1)如图,点F在线段DEA上,过点F作MN∥BC,分别交AB、AC于点M、N,点G在线段AF上,且∠GFN=∠GNF,∠GDF=∠GFD.
①试判断线段DG与NG有怎样的位置关系,直接写出你的结论;②求证:∠1=∠2;
(2)如图2,点F在线段ED的延长线上,过F作FN∥BC,分别交AB、AC于点M、N,点G在线段AF上,且∠GFN=∠GNF,∠GDF=∠GFD.探究线段DG与NG的位置关系,并说明理由.
图1 图2 图3
精品文档。