变量与函数的练习PPT课件
合集下载
变量与函数-完整版课件
问题2:在上面的4个问题中,是哪一个量随哪一个量的变化而 变化?当一个变量取定一个值时,另一个变量的值是唯一确定 的吗?
问题3:在上面的4个问题中,两个变量之间的对应关系有什么 共同特征?请你再举出一些对应关系具有这种共同特征的例子.
以上四个变化过程中,两个变量之间的对应关系都满足: 对于一个变量取定一个值时,另一个变量就有唯一确定的 值与其对应.
活动六:升华概念
问 我市白天乘坐出租车收费标准如下:乘坐里程不超
题 过3公里,一律收费8元;超过3公里时,超过3公里
探
的部分,每公里加收1.8元;设乘坐出租车的里程为x (公里)(x为整数),相对应的收费为y(元).
究
(1)请分别写出当0<x≤3和x>3时,表示y与x
的关系式,并直接写出当x=2和x=6时对应的y值;
活动四:辨析概念
问
题 问题4:下列曲线中,表示y不是x的函数是( ), 探 怎样改动这条曲线,才能使y是x的函数?
究
y
y
y
O
x
O
x
O
x
O
x
A
B
C
D
选B. 将第一象限或第三象限的曲线去掉等,只要满足“对 于x的每一个确定的值,y都有唯一确定的值与其对应”,都 能使y是x的函数.
活动五:运用概念
问
问题4:如何确定函数值?
作业布置
1.完成教材第75页练习第2题,习题19.1第1~5题及第10、11题.
2. 下列图形中的曲线不表示y是x的函数的是( )
y
y
y
y
O
x
O
x
O
x
O
x
A
B
《19.1 变量与函数》课件(含习题)
这里有变化的量吗?如 果有,是什么?它们之 间有什么关系?
讲授新课
一 函数的相关概念
情景一
想一想,如果你坐 在摩天轮上,随着 时间的变化,你离 开地面的高度是如 何变化的?
下图反映了摩天轮上的一点的高度h (m)与旋转时间t(min) 之间的关系.
(1)根据左图填表:
t/分 0 1 2 3 4 5 … h/米 3 10 37 45 37 11 … (2)对于给定的时间t ,相 应的高度h能确定吗?
方法 区分常量与变量,就是看在某个变化过程中,该 量的值是否可以改变,即是否可以取不同的值.
二 确定两个变量之间的关系
例3 弹簧的长度与所挂重物有关.如果弹簧原长为10cm, 每1千克重物使弹簧伸长0.5cm,试填下表:
重物的质量 1 2 3 4 5 (kg)
弹簧长度 (cm)
10.5 11
11.5 12 12.5
4x 8 0 x 2
(3) y x 3
x 3 0 x 3
(4) y x 1 1 1 x
x 1且 x 1
x 1 0
1 x 0
即 xx
1 1
... -1 0 1
5.我市白天乘坐出租车收费标准如下:乘坐里程不超过3公 里,一律收费8元;超过3公里时,超过3公里的部分,每公里 加收1.8元;设乘坐出租车的里程为x(公里)(x为整数), 相对应的收费为y(元).
4.收音机上的刻度盘的波长和频率分别是用米(m)和 千赫兹(kHz)为单位标刻的.下面是一些对应的数:
波长l(m) 300 500 600 1000 1500 频率 1000 600 500 300 200 f(khz)
你能发现每一组l,f 的值之间的关系吗?并指出变量与 常量.
讲授新课
一 函数的相关概念
情景一
想一想,如果你坐 在摩天轮上,随着 时间的变化,你离 开地面的高度是如 何变化的?
下图反映了摩天轮上的一点的高度h (m)与旋转时间t(min) 之间的关系.
(1)根据左图填表:
t/分 0 1 2 3 4 5 … h/米 3 10 37 45 37 11 … (2)对于给定的时间t ,相 应的高度h能确定吗?
方法 区分常量与变量,就是看在某个变化过程中,该 量的值是否可以改变,即是否可以取不同的值.
二 确定两个变量之间的关系
例3 弹簧的长度与所挂重物有关.如果弹簧原长为10cm, 每1千克重物使弹簧伸长0.5cm,试填下表:
重物的质量 1 2 3 4 5 (kg)
弹簧长度 (cm)
10.5 11
11.5 12 12.5
4x 8 0 x 2
(3) y x 3
x 3 0 x 3
(4) y x 1 1 1 x
x 1且 x 1
x 1 0
1 x 0
即 xx
1 1
... -1 0 1
5.我市白天乘坐出租车收费标准如下:乘坐里程不超过3公 里,一律收费8元;超过3公里时,超过3公里的部分,每公里 加收1.8元;设乘坐出租车的里程为x(公里)(x为整数), 相对应的收费为y(元).
4.收音机上的刻度盘的波长和频率分别是用米(m)和 千赫兹(kHz)为单位标刻的.下面是一些对应的数:
波长l(m) 300 500 600 1000 1500 频率 1000 600 500 300 200 f(khz)
你能发现每一组l,f 的值之间的关系吗?并指出变量与 常量.
人教版八年级数学下册说课课件-19.1.1 变量和函数(共16张PPT)
子表示 y ? y的值随x的值的变化而变化吗?
y = 10x
八年级 数学
第十九章 一次函数
19.1 变量与函数
19.1.1 变 量
活动二 问题(3) lián yī
你见过水中的涟漪吗?圆形水波慢慢地扩大,在这一过程 中,当圆的半径r 分别为10 cm,20 cm,30 cm 时,圆的面积S 分别为多少?S的值随r的值的变化而变化吗?
y= 5-x S = 60t y = 10x S= πr2
活动四:巩固练习
变量:月用水量x吨和月应交水费y元, 常量:自来水价4元/吨。
变量:通话时间t分钟和话费余额w元, 常量:通话费0.2元/分钟和存入话费30元。
变量:半径r和圆周长C 常量:圆周率π及计算公式中的数字2。
变量:第一个抽屉放书量x本和第二个抽屉放书量y本, 常量:书的总数10本。
当r=10cm时,S=400πcm2
当r=30cm时,S=900πcm2
圆面积S= πr2
题目中没有 特别要求时,
要保留π
S的值随r的值变化而变化吗?
八年级 数学
19.1 函数
第十九章 一次函数
19.1.1 变 量
活动二 问题(4)
用10 m 长的绳子围成一个长方形,当长方形的一边长x分
别为 3m,3.5m,4m,4.5m时,它的邻边长y分别为多少?y的值
随x
的值的变化而变化吗? 矩形的周长=(长+宽)×2
已知周长,如何去求长或宽呢?
矩形的宽=周长÷2-长
当x=3m时,y=2m 当x=3.5m时,y=1.5m
当x=4m时,y=1m
y= 5-x
活动二:创设情境-----新知探究
问题1:分别指出思考(1)~(4)的变化过程中所涉及的量, 在这些量中哪些量是发生了变化的?哪些量是始终不变的?
《变量与函数》一次函数PPT课件
悬挂重 物的质 量m(Kg) 弹簧长 度L(cm)
1
10.5
2
11
3
11.5
4
12பைடு நூலகம்
5
12.5
L=10+0.5m
问题3
每张电影票的售价为10元,如果早场售出票150张,日场 售出票205张,晚场售出票310张,三场电影的票房收入各 多少元?设一场电影售出票 x 张,票房收入为y元,怎样用 含x 的式子表示 y?
t和s
,变量是
(2)“弹簧伸长问题”, L=10+0.5m , 变量是 ;常量是 0.5和10 m和L
(3)“票房收入问题”中y=10x,常量是 10 是 x 和y ; ,变量
如果一辆汽车从甲地驶向相距120千米的乙 地,那么它行驶的时间(t)与速度(v)之 间有什么样的关系呢?
tv=120
变量为:时间、速度 常量为:路程
(2)给定变量x的一个值,相应的变量y的值唯一确 定吗? (3)怎样用关于x的代数式来表示y?
Y=2x
练习2:下图是体检时的心电图.其中图上点的横坐标
x表示时间,纵坐标y•表示心脏部位的生物电流,它们是 两个变量.在心电图中,对于x的每一个确定的值,y都 有唯一确定的对应值吗?
y
o
x
练习3:在下面的我国人口数统计表中,年份与人口 数可以记作两个变量x与y,•对于表中每一个确定的 年份(x),都对应着一个确定的人口数(y)吗?
这些是否是函数?如果是请写出它们的自变量的 取值范围,如果不是请说明理由。
(1)|y|=x+1; 整式:全体实数.
(2)Y=x2+4x+12
(3)y2=x
自变量在分母位置:使分母不等于0.
x ( 4) y x 1
1
10.5
2
11
3
11.5
4
12பைடு நூலகம்
5
12.5
L=10+0.5m
问题3
每张电影票的售价为10元,如果早场售出票150张,日场 售出票205张,晚场售出票310张,三场电影的票房收入各 多少元?设一场电影售出票 x 张,票房收入为y元,怎样用 含x 的式子表示 y?
t和s
,变量是
(2)“弹簧伸长问题”, L=10+0.5m , 变量是 ;常量是 0.5和10 m和L
(3)“票房收入问题”中y=10x,常量是 10 是 x 和y ; ,变量
如果一辆汽车从甲地驶向相距120千米的乙 地,那么它行驶的时间(t)与速度(v)之 间有什么样的关系呢?
tv=120
变量为:时间、速度 常量为:路程
(2)给定变量x的一个值,相应的变量y的值唯一确 定吗? (3)怎样用关于x的代数式来表示y?
Y=2x
练习2:下图是体检时的心电图.其中图上点的横坐标
x表示时间,纵坐标y•表示心脏部位的生物电流,它们是 两个变量.在心电图中,对于x的每一个确定的值,y都 有唯一确定的对应值吗?
y
o
x
练习3:在下面的我国人口数统计表中,年份与人口 数可以记作两个变量x与y,•对于表中每一个确定的 年份(x),都对应着一个确定的人口数(y)吗?
这些是否是函数?如果是请写出它们的自变量的 取值范围,如果不是请说明理由。
(1)|y|=x+1; 整式:全体实数.
(2)Y=x2+4x+12
(3)y2=x
自变量在分母位置:使分母不等于0.
x ( 4) y x 1
19.1.1 变量与函数(第2课时)课件
(1)汽车以60 km/h 的速度匀速行驶,行驶的时 间为 t(单位:h),行驶的路程为 s(单位:km);
(2)多边形的边数为 n,内角和的度数为 y.
问题(1)中,t 取-2 有实际意义吗? 问题(2)中,n 取2 有意义吗?
根据刚才问题的思考,你认为函数的自变量可 以取任意值吗?
在实际问题中,函数的自变量取值范围往往是 有限制的,在限制的范围内,函数才有实际意义; 超出这个范围,函数没有实际意义,我们把这种自 变量可以取的数值范围叫函数的自变量取值范围.
例3:下列函数中自变量x的取值范围是什么?
(1)y 3x 1
(2)y 1 x2
x取全体实数
x 2x0-2
使函数解析式有意 义的自变量的全体.
(3)y x 5
x 5x05
(4) y x 2 x 1
x 2且x 1
x 1 0
x20
即 xx
1 2
... -2 -1 0
自变量的取值范围的求法
3.油箱中有油30L,油从管道中匀速流出,1h流完,则
油箱中剩余油量Q(L)与流出时间t(min)之间的
函数关系式是
Q
30
1 2
t
,自变量t的取值范围
是 0 t 60 .
4.某市乘坐出租车收费标准如下:乘坐里程不超 过3千米,收费8元;超过3千米时,超过3千米的 部分,每千米加收1.8元.设乘坐出租车的里程为x(公 里)(x为整数),相对应的收费为y(元). (1)请分别写出当0<x ≤3和x>3时,表示y与x 的关系式,并直接写出当x=2和x=6时对应的y值;
解:当0<x ≤3时,y=8; 当x>3时,y=8+1.8(x-3)=1.8x+2.6. 当x=2时,y=8;x=6时,y=1.8×6+2.6=13.4.
八年级数学下册第19章一次函数19.1变量与函数19.1.1变量与函数课件(新版)新人教版
例2 下列变量间的关系是函数关系的是
.
①长方形的长与面积;②圆的面积与半径;
③y=± x ;④S= 1 ah中的S与h.
2
解析 ①因为长方形的长、宽、面积都不确定,有三个变量,所以长方
形的长与面积不是函数关系.②因为圆的面积公式为S=πr2,当半径r取一
个确定的值时,面积S就唯一确定,所以圆的面积与半径是函数关系.③当
解析 (1)根据函数的定义可知,对于底面半径的每个值,都有一个确定 的体积的值按照一定的法则与之相对应,所以自变量是底面半径,因变 量是体积. (2)体积增加了(π×102-π×12)×3=297π cm3.
2.(2018湖北咸宁咸安模拟)若函数y=
x
2
2(
x
2),
则当函数值y=8时,自
答案 B 把h=2代入T=21-6h,得T=21-6×2=9.故选B.
5.在函数y=3x+4中,当x=1时,函数值为 为10.
,当x=
时,函数值
答案 7;2
解析 当x=1时,y=3x+4=3×1+4=7.当函数值为10时,3x+4=10,解得x=2.
知识点三 自变量的取值范围
6.(2018江苏宿迁中考)函数y= 1 中,自变量x的取值范围是( )
知识点一 常量与变量 1.(2017河北唐山乐亭期中)一辆汽车以50 km/h的速度行驶,行驶的路程 s(km)与行驶的时间t(h)之间的关系式为s=50t,其中变量是 ( ) A.速度与路程 B.速度与时间 C.路程与时间 D.三者均为变量
答案 C 在s=50t中路程随时间的变化而变化,所以行驶时间是自变 量,行驶路程是因变量,速度为50 km/h,是常量.故选C.
人教初中数学八下 19.1.1 变量与函数课件4 【经典初中数学课件汇编】
汽车行驶里程随行驶时间而变化
问题一
汽车以60千米/时的速度匀速行驶,行驶里程 为 s 千米,行驶时间为 t 小时,填下面的表:
60 120 180 240 300 说说你是如何得到的:路程 = 速度×时间
S = 60t 试用含t的 式子表示 s
问题二
每张电影票的售价为10元,如果早场售出票150张, 日场售出205张,晚场售出310张,三场电影票的票房 收入各多少元?
A HE B
O DF
C
说一说
•这节课我的收获是……
1、用一个变量表示另一个变量。 2、变量、常量和函数的概念。 3、自变量的取值范围和函数值。
教学反思:
• 用一个变量表示另一个变量。 自变量的取值范围和函数值。
19.1.1 变量与函数
人教实验版
行星在宇宙中的位置随时间而变化
气温随海拔而变化
例如x和y,对于x的每一个值,y都有惟一的值与 之对应,我们就说x是自变量,y是因变量,此时 也称y是x的函数.
300000
(1) 解析法 如问题3中的f = ,
问题4中的S=πr2,这些表达式称为函数的
关系式.
(2) 列表法
波长l(m) 300 500 600 1000 1500
频率 1000 600 500 300 200 f(khz)
时,重叠部分的面积是多少?
解 :设重叠部分面积为
y cm2,MA长为x cm
y与x之间的函数关系式为
当x=y1=时12,yx=21 12 1
2
2
1 答:MA=1cm时,重叠部分的面积是2 cm2
1.分别写出下列各问题中的函数关系式及自变量的取 值范围: (1).某市民用电费标准为每度0.50元,求电费
19.1.1变量与函数.1.1常量与变量ppt公开课课件
(注:变量和常量是相对的)
2.若1吨民用自来水的价格为3.2元,则所交水费金额y(元)
与使用自来水的数量x(吨)之间的关系为_y__=__3_._2_x__,其 中变量是__y_,__x___,常量是__3_._2___.
知识点1:常量与变量判别
1、在面积S一定的ABC,若它的底边是a, 底边上的高是h,则在三角形的面积公式
a和h S 1 ah中,变量是 2
,常量是 1 和s 2
2、圆的周长公式C 2r(其中C为周长,r为半径)中,变量是
常量是 2和
r和c,
3、常量和变量是在“某一过程中”来研究、确定的,以S vt为例,若速度v固定,
v 则常量是
,变量是 s和h
想一想: 常量和变量是对某一变化过程来说的,
所挂重物
1
2
(kg)
受力后的弹
簧长度L 10.5 11
(cm)
3
4
5
11.5 12 12.5
m
10+0.5m
2.试用含m的式子表示L: L=_1__0_+_0__.5__m___
1.某市的自来水价为4元/t,现要抽取若干户居民调查水费支出 情况,记某户每月用水量为X t,月应交水费为y元。
y=4x
V 400h 高h(单位:cm)之间关系式__________
4.某种报纸的价格是每份0.4元,买x份报纸的总价为y元,先填写下表,再用 含x的式子表示y.
份数/份 1
2
3
4…
总价/元 0.4 0.8 1.2 1.6 …
x与y之间的关系式为__y_=___0__._4_x__.这个问题中,_0__._4是常量,x__,___y__是变量.
2.若1吨民用自来水的价格为3.2元,则所交水费金额y(元)
与使用自来水的数量x(吨)之间的关系为_y__=__3_._2_x__,其 中变量是__y_,__x___,常量是__3_._2___.
知识点1:常量与变量判别
1、在面积S一定的ABC,若它的底边是a, 底边上的高是h,则在三角形的面积公式
a和h S 1 ah中,变量是 2
,常量是 1 和s 2
2、圆的周长公式C 2r(其中C为周长,r为半径)中,变量是
常量是 2和
r和c,
3、常量和变量是在“某一过程中”来研究、确定的,以S vt为例,若速度v固定,
v 则常量是
,变量是 s和h
想一想: 常量和变量是对某一变化过程来说的,
所挂重物
1
2
(kg)
受力后的弹
簧长度L 10.5 11
(cm)
3
4
5
11.5 12 12.5
m
10+0.5m
2.试用含m的式子表示L: L=_1__0_+_0__.5__m___
1.某市的自来水价为4元/t,现要抽取若干户居民调查水费支出 情况,记某户每月用水量为X t,月应交水费为y元。
y=4x
V 400h 高h(单位:cm)之间关系式__________
4.某种报纸的价格是每份0.4元,买x份报纸的总价为y元,先填写下表,再用 含x的式子表示y.
份数/份 1
2
3
4…
总价/元 0.4 0.8 1.2 1.6 …
x与y之间的关系式为__y_=___0__._4_x__.这个问题中,_0__._4是常量,x__,___y__是变量.
19.1.1 变量与函数 课件(共16张PPT) 人教版初中数学八年级下册
(2)用关系式表示你猜想的变化规律,并指出关系式中的常量. 变化规律满足:y=280-x,关系式中的常量是:数字280.
当堂检测
指出下列问题中的变量和常量: (1)购买一些铅笔,单价为0.2元/支,记某同学购买铅笔 的数量为x支,应付的总价为y元;关系式为 y=0.2x 。 其中的变量是 x、y ,常量是 0.2 。
例3、根据销售记录,某型号的服装每天的售价x(元/件 )与当日的销售量y(件)的变化关系如下表:
每天的销售价 x(元/件) 200 190 180 170 160 150 140 …
每天的销售量 y(件) 80 90 100 110 120 130 140 …
(1)在这个变化过程中,有哪些变量?是哪一个量随 哪一个量的变化而变化?并指出其中的常量. 变量有:服装每天的售价x(元/件)和当日的销售量y(件), 当日的销售量y随服装每天的售价x的变化而变化.
t/h s/km
1 2345 60 120 180 240 300
在这个变化的过程中,行驶的 速度 60km/h 是固
定不变的,行驶的 路程s和时间t
是不断变化的.
路程s 着 时间t 的变化而变化.
试用含t的式子表示s 是__s_=6_0_t____
探究 (2)电影票售价为10元/张,第一场售出150张票,第二场售出205 张票,第三场售出310张票,三场电影的票房收入各多少元?设一场 电影售出x张票,票房收入y元. y的值随x的值的变化而变化吗?
x
a
图1
图2
瓶子或罐头盒等物体常如下图那样堆放,试确定瓶子总数 y与层数x之间的关系式.
x1 2 3 …
x
y 1 1+2 1+2+3 … 1+2+3+ …+x
当堂检测
指出下列问题中的变量和常量: (1)购买一些铅笔,单价为0.2元/支,记某同学购买铅笔 的数量为x支,应付的总价为y元;关系式为 y=0.2x 。 其中的变量是 x、y ,常量是 0.2 。
例3、根据销售记录,某型号的服装每天的售价x(元/件 )与当日的销售量y(件)的变化关系如下表:
每天的销售价 x(元/件) 200 190 180 170 160 150 140 …
每天的销售量 y(件) 80 90 100 110 120 130 140 …
(1)在这个变化过程中,有哪些变量?是哪一个量随 哪一个量的变化而变化?并指出其中的常量. 变量有:服装每天的售价x(元/件)和当日的销售量y(件), 当日的销售量y随服装每天的售价x的变化而变化.
t/h s/km
1 2345 60 120 180 240 300
在这个变化的过程中,行驶的 速度 60km/h 是固
定不变的,行驶的 路程s和时间t
是不断变化的.
路程s 着 时间t 的变化而变化.
试用含t的式子表示s 是__s_=6_0_t____
探究 (2)电影票售价为10元/张,第一场售出150张票,第二场售出205 张票,第三场售出310张票,三场电影的票房收入各多少元?设一场 电影售出x张票,票房收入y元. y的值随x的值的变化而变化吗?
x
a
图1
图2
瓶子或罐头盒等物体常如下图那样堆放,试确定瓶子总数 y与层数x之间的关系式.
x1 2 3 …
x
y 1 1+2 1+2+3 … 1+2+3+ …+x
人教版八年级下册数学第十九章《 19.1变量与函数》优课件(共28张PPT)
在问题三中,是否各有两个变量?同一 个问题中的变量之 间有什么联系?
问题三
在一根弹簧的下端挂重物,改变并记录重物的质量, 观察并记录弹簧长度的变化,探索它们的变化规律。如 果弹簧长原长为10cm,每1千克重物使弹簧伸长0.5cm,
怎样用含重物质量x(单位:kg)的式子表示受力后的
弹簧长度 L(单位:cm)?
八年级 数学
第十九章 一次函数
19.1.1变量与函数
解:∵花盆图案形如三角形,每边花有n个,总共有3n个, 其中重复了算3个。
∴ s 与 n 的函数关系式为: s = 3n-3
八年级 数学
第十九章 一次函数
19.1.1变量与函数 课堂练习(备用)
4、节约资源是当前最热门的话题,我市居民每月用电 不超过100度时,按0.57元/度计算;超过100度电时,其中不 超过100度部分按0.57元/度计算,超过部分按0.8元/度计算.
常量:在一个变化过程中,数值始终不变的量为常量。
请指出上面各个变化过程中的常量、变量。
八年级 数学
第十九章 一次函数
19.1 .1 变量与函数
探究:指出下列关系式中的变量与常量:
(1) y = 5x -6
6
(2) y= x
(3) y= 4x2+5x-7 (4) S = Лr2
巩固练习
• 填空:
• 1、计划购买50元的乒乓球,所能购买的总数
2.圆的周长公式C2r,这里的变量是 r和C ,常量
是 2 。
3.下列表格是王辉从4岁到10岁的体重情况
年龄(岁) 4 5 6 7 8 9
10 …
体重(千克)15.4 16.7 18.0 19.6 21.5 23.2 25.2 …
一次函数复习 课件(共30张PPT)
当k<0时,图象过二、四象限;y随x的增大而减少。
y=kx
5、有下列函数:①y=2x+1, ②y=-3x+4,③y=0.5x,④y=x-6; 其中过原点的直线是___③_____; 函数y随x的增大而增大的是___①___④____; 函数y随x的增大而减小的是____②_______; 图象在第一、二、三象限的是___①_____ 。
x 50 y 250
60 70 80 … 200 150 100 …
《一次函数》复习
三、正比例函数
1、形如 y=kx (k是常数,k≠0)的函数,叫做正比例函数, 其中k叫比例函数。 2、(1)正比例函数y=kx( k是常数,k≠0)的图象是一条经 过 原点的直线,也称它为 直线y=kx ;
(2)画y=kx的图象时,一般选 原 点和_(__1_,__k)
往往需要复杂的计算才能得出。
《一次函数》复习 巩固练习
1、甲车速度为20米/秒,乙车速度为25米/ 秒.现甲车在乙车前面500米,设x秒后两车之间的 距离为y米.求y随x(0≤x≤100)变化的函数解析 式,并画出函数图象.
解:由题意可知: y=500-5x 0≤x≤100 用描点法画图:
x … 10 20 30 40 y … 450 400 350 300
9、若函数y=(2m+6)x2+(1-m)x是正比例函数,则其解
析式是 y=4x ,该图象经过第一、三象限,y随x
的增大而 增大 ,当x1<x2时,则y1与y2的关
是 y1<y2
。
解:∵函数y=(2m+6)x2+(1-m)x是正比例函数
∴2m+6=0,1-m≠0 ∴m=-3
y
变量与函数-PPT课件全文
(2)在求自变量的取值范围时,要从两个方面来考虑: ①代数式要有意义;②要符合实际.
1、下列关系中,y不是x函数的是( D )
A. y x B. y x2 C. y x D. y x
2
2、求出下列函数中自变量的取值范围
(1)y=x-3 (2) y 1 x (3) y 3 2 x
(4)
大千世界万物皆变
行星在宇宙中的位置随时间而变化; 人体细胞的个数随年龄而变化; 气温随海拔而变化; 汽车行驶里程随行驶时间而变化;
……
这种一个量随另一个量的变化而变化的现象大量存在。
大千世界处在不停的运动变化之 中,如何来研究这些运动变化并寻找 规律呢?
数学上常用变量与函数 来刻画各种运动变化。
如果当x=a时y=b,那么b叫做当自 变量x的值为a时y的函数值。
t
1 2 3 4 ……
S
60 120 180 240 ……
思考下列问题?
(1)y 2x 中的y是x的函数吗 是
(2)一天中的气温是时刻的函数吗? 是
(3) y x 不是
判断是不是函数,我们可以看它的两个变量之间 是否满足函数的定义
例1求出下列函数中自变量的取值范围
(1)y=2x
(2)
y 3 x2
(3)m n 1 (4)y 3 x 1
(5) h 1 k
k 1
(7) y x 1 x 1
(6) y x2 1
确定函数自变量取值范围的条件:
(1)分母不等于0;【1a(a≠ 0】
(2)开偶数次方中的被开方数必须大
于等于0。【 a(a≥0】
(2)若教室座位共安排15排,座位总数
将达到多少个?
(1)m=25+n-1=n+24, p 25 24 n • n 1 n(n 49)
1、下列关系中,y不是x函数的是( D )
A. y x B. y x2 C. y x D. y x
2
2、求出下列函数中自变量的取值范围
(1)y=x-3 (2) y 1 x (3) y 3 2 x
(4)
大千世界万物皆变
行星在宇宙中的位置随时间而变化; 人体细胞的个数随年龄而变化; 气温随海拔而变化; 汽车行驶里程随行驶时间而变化;
……
这种一个量随另一个量的变化而变化的现象大量存在。
大千世界处在不停的运动变化之 中,如何来研究这些运动变化并寻找 规律呢?
数学上常用变量与函数 来刻画各种运动变化。
如果当x=a时y=b,那么b叫做当自 变量x的值为a时y的函数值。
t
1 2 3 4 ……
S
60 120 180 240 ……
思考下列问题?
(1)y 2x 中的y是x的函数吗 是
(2)一天中的气温是时刻的函数吗? 是
(3) y x 不是
判断是不是函数,我们可以看它的两个变量之间 是否满足函数的定义
例1求出下列函数中自变量的取值范围
(1)y=2x
(2)
y 3 x2
(3)m n 1 (4)y 3 x 1
(5) h 1 k
k 1
(7) y x 1 x 1
(6) y x2 1
确定函数自变量取值范围的条件:
(1)分母不等于0;【1a(a≠ 0】
(2)开偶数次方中的被开方数必须大
于等于0。【 a(a≥0】
(2)若教室座位共安排15排,座位总数
将达到多少个?
(1)m=25+n-1=n+24, p 25 24 n • n 1 n(n 49)
好用《变量与函数》ppt课件
. 1、平行四边形的哪些性质? 平行四边形的两组对边分别平行且相等; 平行四边形的两组对角分别相等;
平行四边形的对角线互相平分。 A
O
D C
B
平行四边形的判定方法(记住)
1、两组对边分别平行的四边形是平行四边形 从边来判定 2、两组对边分别相等的四边形是平行四边形 3、一组对边平行且相等的四边形是平行四边形
1 x y=+2x 2和-2
4 8和-8
9
16
18和-18 32和-32
(1)对于x的每一个值,y都有唯一的值
与之对应吗?
答:不是
(2)y是x的函数吗?为什么?
答:不是,因为x每取一个值时对应的y值 不是唯一的。
巩固提高
汽车由武汉驶往相距1200千米外的北 京,它的平均速度是100 千米/小时,试 写出汽车距北京的的距离s(千米)与行 驶时间t(小时)的函数关系式。
,
是自变量,
1.请同学们找出这些函数的常量、变量、自变量 和函数: (1) y =3000-300x (2) y=x (3) S= πr2
解:(1)常量是3000,-300;变量是x,y;自变量是 x;y是x的函数。 (2)常量是1;变量是x,y;自变量是x;y是x的函数。 (3)常量是π;变量是r,s;自变量是r;s是r的函数。
探究: 2011年深圳大运会主火炬手刘 翔 以 3米/秒的速度跑步前进传递火炬,传递路
程为S米,传递时间为t秒。 1.请同学们根据题意填写下表:
t(秒) s(米) 1
3
2
6
3
9
4
12
2.在以上这个过程中,变化的量是 路程s与时间t . 没变化的量是 速度3米/秒 . S=3t 3.试用含t的式子表示s.
平行四边形的对角线互相平分。 A
O
D C
B
平行四边形的判定方法(记住)
1、两组对边分别平行的四边形是平行四边形 从边来判定 2、两组对边分别相等的四边形是平行四边形 3、一组对边平行且相等的四边形是平行四边形
1 x y=+2x 2和-2
4 8和-8
9
16
18和-18 32和-32
(1)对于x的每一个值,y都有唯一的值
与之对应吗?
答:不是
(2)y是x的函数吗?为什么?
答:不是,因为x每取一个值时对应的y值 不是唯一的。
巩固提高
汽车由武汉驶往相距1200千米外的北 京,它的平均速度是100 千米/小时,试 写出汽车距北京的的距离s(千米)与行 驶时间t(小时)的函数关系式。
,
是自变量,
1.请同学们找出这些函数的常量、变量、自变量 和函数: (1) y =3000-300x (2) y=x (3) S= πr2
解:(1)常量是3000,-300;变量是x,y;自变量是 x;y是x的函数。 (2)常量是1;变量是x,y;自变量是x;y是x的函数。 (3)常量是π;变量是r,s;自变量是r;s是r的函数。
探究: 2011年深圳大运会主火炬手刘 翔 以 3米/秒的速度跑步前进传递火炬,传递路
程为S米,传递时间为t秒。 1.请同学们根据题意填写下表:
t(秒) s(米) 1
3
2
6
3
9
4
12
2.在以上这个过程中,变化的量是 路程s与时间t . 没变化的量是 速度3米/秒 . S=3t 3.试用含t的式子表示s.
人教版变量与函数免费课件
展
1.阅读课本71页.找出下面问题中的常量和变量: (1)汽油的价格是7.4元/升,加油 x L,车主加油付油费 y 元. (2)小明看一本200 页的小说,看完这本小说需要t 天,平均每天所看的页数 为 n页. (3)用长为40 cm 的绳子围矩形,围成的矩形一边长为 x cm,其面积为 S cm2 . (4)圆形水波慢慢地扩大,在这一过程中,当圆的半径r,圆的面积S cm2 .
•
2.该 类 题 目 考 察学 生对文 本的理 解,在 一定程 度上是 在考察 学生对 这类题 型答题 思路。 因此一 定要将 这些答 题技巧 熟记于 心,才 能自如 运用。
•
3. 结 合 实 际 , 结合 原文, 根据知 识库存 ,发散 思维, 大胆想 象。由 文章内 容延伸 到现实 生活, 对现实 生活中 相关现 象进行 解释。 对人类 关注的 环境问 题等提 出解决 的方法 ,这种 题考查 的是学 生的综 合能力 ,考查 的是学 生对生 活的关 注情况 。
感谢观看,欢迎指导!
•
6.另 外 , 木 质 材料 受温度 、湿度 的影响 比较大 ,榫卯 同质同 构的链 接方式 使得连 接的两 端共同 收缩或 舒张, 整体结 构更加 牢固。 而铁钉 等金属 构件与 木质材 料在同 样的热 力感应 下,因 膨胀系 数的不 同,从 而在连 接处引 起松动 ,影响 整体的 使用寿 命。
•
4.做 好 这 类 题 首先 要让学 生对所 给材料 有准确 的把握 ,然后 充分调 动已有 的知识 和经验 再迁移 到文段 中来。 开放性 试题, 虽然没 有规定 唯一的 答案, 可以各 抒已见 ,但在 答题时 要就材 料内容 来回答 问题。
•
5.木 质 材 料 由 纵向 纤维构 成,只 在纵向 上具备 强度和 韧性, 横向容 易折断 。榫卯 通过变 换其受 力方式 ,使受 力点作 用于纵 向,避 弱就强 。
人教版八年级数学下册19.1.1变量与函数(2) 课件
等号右边是开偶次方的式子,自变量的取值
范围是使根号下的式子的值大于或等于0的实数,例如:
= − 3.
④.零次型
等号右边是自变量的零次幂或负整数次幂,
自变量的取值范围是使幂的底数不为0的实数,例如:
= 0.
新知探究
例5 汽车的油箱中有汽油50L,如果不再加油,那么油箱中的
油量y(单位:L)随行驶里程x(单位:km)的增加而减少,
的函数. 例如,问题1中的s=3t,问题2中的S=x(5-x)
如果当x=a时y=b,那么b叫做当自变量的值为a时
的函数值.
新知小结
2.判断一个关系是否是函数关系的方法
①看是否在一个变化过程中;
②看是否存在两个变量;
3个条件
缺一不可
③看每当变量确定一个值时,另外一个变量是否都有唯一
确定的值与之相对应.
平均耗油量为0.1L/km.
(1)写出表示y与x的函数关系的式子;
叫做函数的解析式
解:函数关系式为: y = 50-0.1x.
0.1x表示的意义是什么?
新知探究
(2)指出自变量x的取值范围;
解: 由x≥0及50-0.1x ≥0得
0 ≤ x ≤ 500.
汽车行驶里程,油箱中
的油量均不能为负数!
∴自变量的取值范围是
化;当一个变量确定时,另一个变量也随之确定.
新知探究
奥运会火炬手以3米/秒的速度
跑步前进传递火炬,传递路程为s
米,传递时间为t秒,怎样用含t的
式子表示 s?
新知探究
知识点 1
函数的有关概念
问题1 全运会火炬手以3米/秒的速度跑步前进传递火炬,传
递路程为s米,传递时间为t秒,填写下表:
第1课时 变量与函数(1)PPT课件
运用新知
1.常量和变量在研究“某一变化过程中”时是 确定的,以s=vt为例(t为时间, _______;
②若时间t固定,则常量是_______,变量是 _______.
分析:①速度v固定,即在这个变化过程中 v的取值保持不变,此时s随t的变化而变化, 可以取不同的数值,故v为常量,s和t为变 量;②t固定,即为常量,此时s和v可以取 不同的数值,是变量.
解 如图能发现涂黑的格子成一条直线.
如果把这些涂黑的
格子横向的加数用
x表示,纵向的加 数用y 表示,试写 出y 与x 的函数关
系式.
函数关系式:
y=10-x
图 17.1.2
例1
y x
试写出等腰三角形中顶角的度
数y与底角的度数x之间的函数
关系式.
解 : y与x的函数关系式:
y=180-2x.
例2
试写出重叠部分面积ycm2与MA长 度x cm之间的函数关系式.
5.下列说法不正确的是( A ) A.公式V=4/3πr3中,4/3是常量,r是变量,V 是πr的函数 B.公式V=4/3πr3中,V是r的函数 C.公式v=s/t中,v可以是变量,也可以是常量 D.圆的面积S是半径r的函数
填写如图所示的加法表,然后把所有填 有10的格子涂黑,看看你能发现什么?
对应的函数y 的值y=10-3=7 ,则把7做
这个函数当x=3时的函数值
例1 求下列函数中自变量x的取值范围:
1 y 3x 1 2 y 2x2 7 3 y 1
x2
4 y x 2
⑴ 函数的解析式是整式时,自变 量可取全体实数;
⑵ 函数的解析式分母中含有字母 时,自变量的取值应使分母≠0;
2.6cm、3.2cm时圆的面积,并将结果填入下表:
《变量与函数》ppt完美课件
2
自变量x的取值范围 2<x≤5
《变量与函数》完美实用课件(PPT优 秀课件 )
解:时间T是自变量,水量V是T的函数 函数解析式为 V=10-0.05T
《变量与函数》完美实用课件(PPT优 秀课件 )
《变量与函数》完美实用课件(PPT优 秀课件 )
归纳
小结
1、一般地,在一个变化过程中,如果有两__个__
变量x和y,并且对于x
的
每一个确定的值
,y都有
_唯__一__确__定__的__值__与其对应,那么我们就说x
新课讲解
下列问题中哪些量是自变量?哪些量是自变量的 函数?试写出函数的解析式. (1)改变正方形的边长x,正方形的面积s随之 改变。
解:边长x是自变量 ,面积S是x的函数 函数解析式为 s=x2
(2)每分向一水池注水0.1m3,注水量y(单位: m3)随注水时间x(单位:min)的变化而变化。
解:时间x是自变量, 水量y是x的函数 函数解析式为 y=0.1x
(3) 汽车行驶200㎞时,油箱中还有多少汽油?
解:(1)y与x的函数关系式为y=_5_0_-_0_._1_x__
(2)因为x代表的实际意义为行驶路程,所以x不能
取 负数 .且行驶中的耗油量为 0.1x ,它不能超过油
箱中现有汽油量的值50,即
0.1x≤50
因此,自变量x
的取值范围是___0_≤___x__≤___5_0__
是
自变量
,y是x的 函数 。
2、如果当x=a时,y=b,那么 a 叫做当自变
量的值为 b 时的函数值.
3、用关于
自变量的式子 表示_变__量_____
之间的关系,这种式子叫做函数的解析式.
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
那么弹簧总长y(cm)与所挂物体质量x
(kg)之间的函数关系式为____y__0_.5_x__1_2__.
2020/12/9
14
二、填空题
15、若函数 y2x4中,x的取值范围是1x3
,则函数值y的范围是___2____y___2_.
2020/12/9
15
二、填空题
16.由地理知识可知,各地气温的差异受 海拔高度的影响明显,海拔每升高100m, 气温就下降0.6℃,现已知重庆的海拔高度 为260m,峨眉山的海拔高度为3099m,则 当__重__庆_1_气1_℃_温__为_2.8(℃结时果,保峨留眉两山位的有气效温数为字)
x 2 1 0 1 2 3 4
y 3 0 1 0 3 8 15
(1)根据函数定义判断y是x的函数吗?
(2)x是y的函数吗?为什么?
答(2)y每确定一个值,x不是都有惟一
确定的值与它对应,例如当y=0时x=±1所
以 x不是y的函数;
2020/12/9
21
21.求下列函数当 x 7 时的函数值:
(1) y2x5 (2) y x2 4
(3) y 3 x 1 5x
(4)
y
x3 2x 4
.
2020/12/9
22
22.某市电力公司为了鼓励居民用电,采用分段 计费的方法计算电费:每月用电不超过100度时, 按每度0.57元计费;每月用电超过100度时,其中 的100度按原标准收费;超过部分按每度0.50元计 费.
(1)设用电x度时,应交电费y元,当x ≤100和x> 100时,分别写出y关于x的函数关系式;
(A) 1 0 (B) 2 2
(C) 2.3 (D) 6
2020/12/9
7
选择题
7.甲、乙两地相距50千米,若一辆汽车以 50千米/时的速度从甲地到乙地,则汽车距 乙地的路程s(千米)与行驶的时间t(时) 之间的函数解析式是( C )
(A)s50t50t0
(B) s50tt0
(C) s5050t0t1
变量与函数测试讲析
2020/12/9
1
选择题
1.在y轴上到点A(0,4)的距离为5的点B 的坐标为( D )
(A)(0,9). (B)(0,-1)
(C)(9,0)或(-1,0)
(D)(0,9)或( 0,-1)
2020/12/9
2
选择题 2.如果点P(a,3)与点Q( -2,b)关于 x轴对称,那么a,b的值分别为( C )
积.
2020/12/9
19
20.x、y之间的对应关系如下表所示:
x 2 1 0 1 2 3 4
y 3 0 1 0 3 8 15
根据函数定义判断y是x的函数吗?x是y的 函数吗?为什么?
答:x每确定一个值,y都有惟一确定的值与
它对应,所以y是x的函数;
2020/12/9
20
20.x、y之间的对应关系如下表所示:
函数关系式为___y___0_._5_x______.
11.一个周长为20cm的长方形,它的面积S (cm2)与它的一边长x(cm)之间的函数
关系式是____S___1_0_x___x_2__.
2020/12/9
12
二、填空题
12.生活用水每吨2.10元,每月排污费 1.60元.则小明家七月份水费y(元)与 这个月用水x(吨)之间的函数关系式为
2020/12/9
16
三、解答题
17.指出下列变化过程中的变量与常量:
(1)y2x4 (2)圆的周长公式 C2R
.
2020/12/9
17Biblioteka 18.求下列函数中自变量x的取值范围:
(1) .y 2x2 3 (2) y 5x 2
(3) y x 1 x2
(4) y 2 x 1
.
x2
2020/12/9
A、 -2与3 B、2与-3 C、 -2与-3 D、 2与3
2020/12/9
3
选择题 3.在下列各式中,y不是x的函数的是( D )
(A) y x 2 (B) y x2 (C) y 2 x (D) y 2x
2020/12/9
4
选择题
4.下列函数中,与函数 y x 表示同
一函数的是( C) (A) y x 2
(2)小王家第一季度交纳电费情况如下:
月份
一月份
交费金额 76元
x
(B) y
2
x
(C) y 3 x 3 .
(D) y x 2
2020/12/9
5
选择题 5.函数 y 3x x3 的自变量x的取值范
围是( C )
(A) x 3
(B) x 3
(C) x 3
(D)全体实数.
2020/12/9
6
选择题
6、当 x 2 时,函数 y 122x 的值为(B )
18
19.分别写出下列各问题中的函数关系 式,并指出式中的自变量的取值范围.
(1)寄一封重量在20克以内的市内平信, 需邮资0.50元,求寄n封这样的信所需邮资y (元)与n之间的函数关系式.
(2)长方形的周长为12cm,求它的面积S
(cm2)与它的一边长x(cm)间的函数关
系式,并求出当一边长为2cm时长方形的面
(D)以上都不对.
2020/12/9
8
选择题
8、已知,函数 y5x2,当自变量增加m时,
相应的函数值增加( B )
(A) 5m 2. (B) 5 m
m (C)
(D)5m 2
2020/12/9
9
二、填空题
9.现有笔记本500本分给学生,每人5本, 则余下的本数y和学生数x之间的函数解析式 为_________________,自变量x的取值范 围是______________.
2020/12/9
10
二、填空题 9.现有笔记本500本分给学生,每人5本, 则余下的本数y和学生数x之间的函数解析式
为____y____5__0_0_____5_x,自变量x的取值范
围是__0_≤_x_≤_1_0_0_的_自__然__数____.
2020/12/9
11
二、填空题 10.C是线段AB上一点,AC、BC的中点分 别为M、N,则MN的长y与AB的长x之间的
_y__2._1_x_1..6如果七月份小明家水费为10.00
元,那么小明家这个月用水____4___吨.
13.当x
_1__5__时,函数 y
2 的函数值 x1
y4
2020/12/9
13
14.弹簧挂上物体后会伸长,测得弹簧的 长度y(cm)与所挂物体的质量x(kg)关 系如下:
x012345678 y 12 12.5 13 13.5 14 14.5 15 15.5 16
(kg)之间的函数关系式为____y__0_.5_x__1_2__.
2020/12/9
14
二、填空题
15、若函数 y2x4中,x的取值范围是1x3
,则函数值y的范围是___2____y___2_.
2020/12/9
15
二、填空题
16.由地理知识可知,各地气温的差异受 海拔高度的影响明显,海拔每升高100m, 气温就下降0.6℃,现已知重庆的海拔高度 为260m,峨眉山的海拔高度为3099m,则 当__重__庆_1_气1_℃_温__为_2.8(℃结时果,保峨留眉两山位的有气效温数为字)
x 2 1 0 1 2 3 4
y 3 0 1 0 3 8 15
(1)根据函数定义判断y是x的函数吗?
(2)x是y的函数吗?为什么?
答(2)y每确定一个值,x不是都有惟一
确定的值与它对应,例如当y=0时x=±1所
以 x不是y的函数;
2020/12/9
21
21.求下列函数当 x 7 时的函数值:
(1) y2x5 (2) y x2 4
(3) y 3 x 1 5x
(4)
y
x3 2x 4
.
2020/12/9
22
22.某市电力公司为了鼓励居民用电,采用分段 计费的方法计算电费:每月用电不超过100度时, 按每度0.57元计费;每月用电超过100度时,其中 的100度按原标准收费;超过部分按每度0.50元计 费.
(1)设用电x度时,应交电费y元,当x ≤100和x> 100时,分别写出y关于x的函数关系式;
(A) 1 0 (B) 2 2
(C) 2.3 (D) 6
2020/12/9
7
选择题
7.甲、乙两地相距50千米,若一辆汽车以 50千米/时的速度从甲地到乙地,则汽车距 乙地的路程s(千米)与行驶的时间t(时) 之间的函数解析式是( C )
(A)s50t50t0
(B) s50tt0
(C) s5050t0t1
变量与函数测试讲析
2020/12/9
1
选择题
1.在y轴上到点A(0,4)的距离为5的点B 的坐标为( D )
(A)(0,9). (B)(0,-1)
(C)(9,0)或(-1,0)
(D)(0,9)或( 0,-1)
2020/12/9
2
选择题 2.如果点P(a,3)与点Q( -2,b)关于 x轴对称,那么a,b的值分别为( C )
积.
2020/12/9
19
20.x、y之间的对应关系如下表所示:
x 2 1 0 1 2 3 4
y 3 0 1 0 3 8 15
根据函数定义判断y是x的函数吗?x是y的 函数吗?为什么?
答:x每确定一个值,y都有惟一确定的值与
它对应,所以y是x的函数;
2020/12/9
20
20.x、y之间的对应关系如下表所示:
函数关系式为___y___0_._5_x______.
11.一个周长为20cm的长方形,它的面积S (cm2)与它的一边长x(cm)之间的函数
关系式是____S___1_0_x___x_2__.
2020/12/9
12
二、填空题
12.生活用水每吨2.10元,每月排污费 1.60元.则小明家七月份水费y(元)与 这个月用水x(吨)之间的函数关系式为
2020/12/9
16
三、解答题
17.指出下列变化过程中的变量与常量:
(1)y2x4 (2)圆的周长公式 C2R
.
2020/12/9
17Biblioteka 18.求下列函数中自变量x的取值范围:
(1) .y 2x2 3 (2) y 5x 2
(3) y x 1 x2
(4) y 2 x 1
.
x2
2020/12/9
A、 -2与3 B、2与-3 C、 -2与-3 D、 2与3
2020/12/9
3
选择题 3.在下列各式中,y不是x的函数的是( D )
(A) y x 2 (B) y x2 (C) y 2 x (D) y 2x
2020/12/9
4
选择题
4.下列函数中,与函数 y x 表示同
一函数的是( C) (A) y x 2
(2)小王家第一季度交纳电费情况如下:
月份
一月份
交费金额 76元
x
(B) y
2
x
(C) y 3 x 3 .
(D) y x 2
2020/12/9
5
选择题 5.函数 y 3x x3 的自变量x的取值范
围是( C )
(A) x 3
(B) x 3
(C) x 3
(D)全体实数.
2020/12/9
6
选择题
6、当 x 2 时,函数 y 122x 的值为(B )
18
19.分别写出下列各问题中的函数关系 式,并指出式中的自变量的取值范围.
(1)寄一封重量在20克以内的市内平信, 需邮资0.50元,求寄n封这样的信所需邮资y (元)与n之间的函数关系式.
(2)长方形的周长为12cm,求它的面积S
(cm2)与它的一边长x(cm)间的函数关
系式,并求出当一边长为2cm时长方形的面
(D)以上都不对.
2020/12/9
8
选择题
8、已知,函数 y5x2,当自变量增加m时,
相应的函数值增加( B )
(A) 5m 2. (B) 5 m
m (C)
(D)5m 2
2020/12/9
9
二、填空题
9.现有笔记本500本分给学生,每人5本, 则余下的本数y和学生数x之间的函数解析式 为_________________,自变量x的取值范 围是______________.
2020/12/9
10
二、填空题 9.现有笔记本500本分给学生,每人5本, 则余下的本数y和学生数x之间的函数解析式
为____y____5__0_0_____5_x,自变量x的取值范
围是__0_≤_x_≤_1_0_0_的_自__然__数____.
2020/12/9
11
二、填空题 10.C是线段AB上一点,AC、BC的中点分 别为M、N,则MN的长y与AB的长x之间的
_y__2._1_x_1..6如果七月份小明家水费为10.00
元,那么小明家这个月用水____4___吨.
13.当x
_1__5__时,函数 y
2 的函数值 x1
y4
2020/12/9
13
14.弹簧挂上物体后会伸长,测得弹簧的 长度y(cm)与所挂物体的质量x(kg)关 系如下:
x012345678 y 12 12.5 13 13.5 14 14.5 15 15.5 16