等比数列教学设计人教课标版(实用教案)
等比数列教案设计
![等比数列教案设计](https://img.taocdn.com/s3/m/864b7175bceb19e8b9f6ba95.png)
《等比数列》教学设计一、教学内容概述本节课属于人教版教材高中数学必修5第2章第四节“等比数列”的内容,该内容分二个课时,本节课是第一课时,内容是“等比数列”.本节内容先由师生共同分析日常生活中的实际问题来引出等比数列的概念,再由教师引导学生与等差数列类比探索等比数列的通项公式,并将等比数列的通项公式与指数函数进行联系,体会等比数列与指数函数的关系,既让学生感受到等比数列是现实生活中大量存在的数列模型,也让学生经历了从实际问题抽象出数列模型的过程.学生已在前几节课程中学习过了数列的概念,等差数列和等差数列的求和,有了这些基础更便于学生理解和学习等比数列的内容。
在学生以往所做的习题数与数之间的关系的填空,也有利于引出等比数列知识,使得本节课的内容更加通俗易懂。
等比数列在生活中应用十分广泛,体现在生物科学、经济、金融数学等中,应用等比数列的数学模型,可以更好地刻画现实世界中的数量关系,借此可培养学生数学建模的思想和数学应用的意识.二、学生学情分析1、从高二学生的学习特点来看(1)知识基础方面.之前已经学习过“等差数列”的内容,对数列已经有了初步的认识,在此基础上研究讨论等比数列对后继学习产生积极影响.学生可以将等比数列相类比到等差数列中,理解等比数列的通项和其性质,,为学生探索等比数列的性质提供了思维活动空间,进而掌握研究数列性质的一般方法,提升分析问题、解决问题的能力.但在如何求复杂等比数列或者隐含等比数列的通项有一定挑战难度。
(2)思维水平方面.学生已经学习了高中数学必修1-4,具有一定水平的思维,空间想象能力,对数字特征特点性质具有一定的观察概括能力,对于知识点之间的类比推理也有一定程度学习,对于学习等比数列的内容会比较容易。
但在学习如何转变各种复杂公式求出通项的问题还是得具有一定的知识积累。
(3)心理特点方面.。
高中学生善于控制自己,学习意志力较高。
能够控制和约束自己的行动,控制不需要的想法和情绪,使思想集中到学习上来。
《等比数列》教案
![《等比数列》教案](https://img.taocdn.com/s3/m/57dd466e7275a417866fb84ae45c3b3566ecdd7e.png)
《等比数列》教案教案主题:等比数列教学目标:知识目标:了解等比数列的定义及性质,学会计算等比数列的通项公式、求和公式和特殊数列的和;能力目标:能够应用等比数列解决实际问题;情感目标:培养学生对数学的兴趣,锻炼学生的逻辑思维和解决问题的能力。
教学重难点:重点:等比数列的定义及性质,通项公式和求和公式;难点:应用等比数列解决实际问题。
教学过程:一、导入(10分钟)1.引入:请几位同学分别报一下名和前一个同学的名,然后问一下大家的感受。
将同学们的名字按照报名的顺序写在黑板上。
2.提问:同学们,你们注意到什么规律了吗?(学生回答)3.导入:根据同学们的回答,我们可以发现同学们的名字是按一定规律排列的,这就是等比数列的规律。
我们在数学上把这种按照其中一定规律排列的数叫做数列。
那么,你们知道等比数列的定义是什么吗?二、概念解释(15分钟)1.出示等比数列的定义,让学生依次读出来。
2.板书:等比数列的通项公式.3.让学生回答等比数列的通项公式,然后解释通项公式的含义和作用。
三、计算通项公式(15分钟)1.出示一个等比数列的前几项,让学生观察,看出规律。
2.引导学生发现,每一项与前一项的比值是一个常数。
3.板书:等比数列的通项公式。
然后讲解各个符号的含义。
4.计算几个例子,让学生理解和掌握。
四、计算等比数列的前n项和(15分钟)1.引导学生思考等比数列的前n项之和怎么求。
2.板书等比数列的前n项和公式,然后讲解各个符号的含义。
3.计算几个例子,让学生掌握。
五、应用题(25分钟)1.练习题:出示一些等比数列的应用题,要求学生独立解答。
2.课堂讨论,让学生交流解题方法和答案。
3.点拨分析,解释一些重要的解题方法和思路。
六、课堂小结(10分钟)1.总结:回顾本节课的内容,复习等比数列的定义、通项公式和求和公式。
2.出示一道综合应用题,让学生综合运用所学知识进行解答。
七、课后作业(5分钟)1.布置课后作业:完成作业册中的相关练习题。
等比数列教案设计
![等比数列教案设计](https://img.taocdn.com/s3/m/df874a602bf90242a8956bec0975f46527d3a786.png)
等比数列教案设计教案设计:等比数列一、教学目标:1.掌握等比数列的定义及性质;2.理解等比数列的通项公式和求和公式;3.能够应用等比数列解决实际问题。
二、教学重难点:1.理解等比数列的概念和性质;2.掌握等比数列的通项公式和求和公式。
三、教学过程:1.导入(5分钟)教师通过提出以下问题导入课题:A.如何判断一个数列是等比数列?B.等比数列有哪些性质?C.等比数列的通项公式和求和公式分别是多少?2.引入(10分钟)通过举例子引入等比数列的定义和性质,并进行解释。
如:例1:1,2,4,8,16,…例2:-5,10,-20,40,-80,…通过对比这两个例子,我们可以总结出等比数列的定义:从第二项开始,每一个项都等于它前面一个项乘以同一个非零常数r,这个常数r称为等比数列的公比。
3.探究(20分钟)通过让学生观察一些等比数列的计算过程,来引导学生发现等比数列的通项公式和求和公式。
A.观察以下等比数列:2,6,18,54,…1)列出每一项与前一项的比值:3,3,3,…2)列出每一项与第一项的比值:2,6/2=3,18/2=9,54/2=27,…通过观察我们可以发现,每一项与第一项的比值都等于公比的n-1次方,即,在等比数列2,6,18,54,…中,第n项an=2 * 3^(n-1)。
B.通过类似的方式可以引导学生发现等比数列的求和公式。
如:1)观察以下等比数列:1,2,4,8,…2)列出每一项与前一项的比值:2,2,2,…通过观察我们可以发现,前n项和Sn=1*(2^n-1)/(2-1)。
4.巩固(15分钟)通过让学生做一些练习题,来巩固学生对等比数列的掌握程度。
A.选择题:①下列数列是等比数列的是:A.1,1,2,3,5,…B.2,4,8,16,32,…C.1,2,4,8,16,…D.0,1,1,2,3,…②下列等比数列的公比是多少?A.1,2,4,8,…B.1,-2,4,-8,…C.1,-1,1,-1,…D.-1,-2,-4,-8,…B.计算题:③求等比数列3,6,12,24,…的第5项。
《等比数列》教案
![《等比数列》教案](https://img.taocdn.com/s3/m/548f6487cc22bcd126ff0c6b.png)
知识与技能
教学目标
过程与方法
2.通过对等比数列定义和通项公式的探求, 引导学生运用观 察、类比、分析、归纳的推理方法,提高学生的逻辑思维能 力,培养学生良好的思维品质。 1.让学生在探索中初步体验探究的艰辛和成功的乐趣,培 养学生的发现意价值观
2. 培养积极动脑,明辨是非的学习作风,提高学生的逻辑 推理能力; 3.让学生体会通项公式推导过程中的体现出的数学思想方 法,增强学生的应用意识。
教学内容
教师活动
学生活动
设计意图
作业练习
次对折,第 4 次对折 ,… 2,4,8,16,…
对折后的纸的层数可以组成下面的数列: ①
(当对折 28 次后,它的厚度将比世界第一高峰——珠穆郎玛峰还要高一千多米! 对折 38 次,得到的是地球与月亮之间的距离 对折 51 次,得到的是地球与太阳之间的距离) 引例 2、我国古代一些学者提出:“一尺之棰,日取其半,万世不竭。”用现代语言叙述为:一尺 长的木棒,每日取其一半,永远也取不完。如果把“一尺之棰”看成单位“1”,那么,得到的数列 是: 1,
1 1 1 1 , , , ,… 2 4 8 16
②
引例 3:一种计算机病毒可以查找计算机中的地址簿,通过邮件进行传播。如果把病毒制造者 发送病毒称为第一轮,邮件接收者发送病毒称为第二轮,依此类推。假设每一轮每一台计算机 都感染 20 台计算机,那么在不重复的情况下,这种病毒每一轮感染的计算机数构成的数列是: 1,20,202,203,204,… 类比等差数列定义让学生给出等比数列定义 2.等比数列的定义: 等比数列的定义: 文字 语言 符号 语言 等差数列的定义: 一般地, 如果一个数列从第 2 项起, 一般地,如果一个数列从第 2 项起, 每一项与它的前一项的 比 等于同一个 每一项与它的前一项的 差 等于同一个 常数,那么这个数列就叫做等比数列 , 常数,那么这个数列就叫做等差数列 , 这个常数叫做等比数列的公比(q) 。 这个常数叫做等差数列的公差(d). ③ 观察: 请同学们仔细观察一下,看看以上三个数列有什么共同特征?
人教课标版高中数学必修五《等比数列(第1课时)》教案(1)-新版
![人教课标版高中数学必修五《等比数列(第1课时)》教案(1)-新版](https://img.taocdn.com/s3/m/9fa469f7ad51f01dc281f1f4.png)
2.4.1等比数列第一课时一、教学目标1.核心素养通过学习等比数列提高从数学角度发现和提出、分析和解决问题的能力,锻炼数学抽象和逻辑推理能力.2.学习目标(1)由特殊到一般,理解并会判断等比数列.(2)掌握等比数列通项公式及证明.(3)应用等比数列知识解决相应问题.3.学习重点(1)等比数列定义及判断.(2)通项公式的推导.4.学习难点会用等比数列解决相应问题.二、教学设计(一)课前设计1.预习任务任务1阅读教材,思考:什么是等比数列?任务2观察等比数列,总结等比数列的规律,前后两项的比值可以是任意实数吗?任务3结合之前的探索,能写出其通项公式吗?等比数列何时递增,递减,或者变成等差数列?2.预习自测1.数列4,16,64,256…是什么数列?第五项是多少?答案:等比数列;1024.【知识点:等比数列】【解析】等比数列的通项公式是:11n n a a q -=2.在等比数列{}n a 中,472,16,a a ==则n a =________..23-n 答案:【知识点:等比数列通项公式】【解析】等比数列的通项公式是:11n n a a q -=,由题意求出n 和q 3.已知x ,y ,z ∈R ,若-1,x ,y ,z ,-3成等比数列,则xyz 的值为( ) A .-3 B .±3 C .-3 3 D .±3 3 答案:C【解析】∵-1,x,y,z ,-3成等比数列,∴2y =xz =(-1)×(-3)=3,且2x y =->0,即y”的什么条件?有都”是“对任意正整数是公比,则“是首项,等比数列中n n a a n q a q a >>>+111,1,0,.4答案:充分不必要条件.【知识点:等比数列通项公式,充要条件的判断;数学思想:推理论证能力】【解析】充分不必要条件.由q >1,得1n n q q ->,又10a >得111n n a q a q -⋅>⋅即1n a +>n a 反之不然.取11n n a a q -==)21(n-,可得 1n a +>n a ,但1a =21-(二)课堂设计 1.知识回顾 (1)等差数列概念.(2)等差数列通项公式及推导. 2.问题探究问题探究一 借助等差数列的定义,类比得到等比数列定义 ●活动一 回顾旧知,夯实基础.之前我们学习了等差数列,我们是怎样定义并且判断等差数列?如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示. 数学语言表达式:1n n a a d +-= (n ∈N *,d 为常数),或1n n a a d --= (2,n d ≥为常数). ●活动二 探索规律,发现新知. 类比于等差数列,观察以下几个数列2,4,8,16,32…;1,1,1,1,1…;1,-1,1,-1,1,-1…;1,0,1,0,1,0,…;3,9,27,81,243,…;它们都有着怎样的规律 ●活动二 新旧整合,得出结论.结合活动一与活动二,能给出等比数列定义吗?如果一个数列从第2项起,每一项与它的前一项的比等于同一个非0常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (q ≠0)表示.数学语言表达式:1n n a q a -=(2,n ≥q 为非0常数),或1n naq a +=(n ∈N *,q 为非0常数).问题探究二 类比等差数列通项公式及性质,结合等比数列定义得到等比数列通项公式和性质,●活动一 温故知新,迎难而上. 回忆等差数列,写出通项公式.通项公式:()11n a a n d =+-.推广:()n m a a n m d =+-(m,n ∈N *). ●活动二 类比旧知得出新知.在等比数列中,是否只需确定某些量就可以写出通项公式?只需确定首项与公比即可得到通项公式11n n a a q -=.推广: n m n m a a q -=,公比为非0常数.●活动三 思维谨慎,扎实前进. 能否给出通项公式证明?借助定义,a na n -1=q (n ≥2,q 为非0常数),列出n -1个式子,累乘后得到通项公式. ●活动四 夯实基础,勇于探索.等差数列中,公差大于0时,数列递增;反之递减.等比数列也有相似结论吗?请归纳总结.首相大于0,公比大于1时递增;公比大于0小于1时递减;首项小于0时,公比大于0小于1时递增,公比大于1时递减;首项不等于0,公比等于1时,既是等差又是等比;公比小于0时,为摆动数列.问题探究三●活动一 初步运用 基础知识的掌握例1.在等比数列{}n a 中,253618,9,1n a a a a a +=+==,则n =________. 【知识点:等比数列通项公式】 答案:6例2.在等比数列{}n a 中, 1a <0, 若对正整数n 都有1n n a a +<,那么公比q 的取值范围是?【知识点:等比数列通项公式】答案:由1n n a a +<得1111,,01n n n n a q a q q q q --<∴>∴<< ●活动二 能力提升 通项公式性质的运用例1. 数列{}n a 是等差数列,若1351,3,5a a a +++构成公比为q 的等比数列,则q =________.【知识点:等比数列性质】 答案:1.例2.在正项等比数列{}n a 中, 1n n a a +>,28466,5a a a a ⋅=+=,则57a a =( ) A.56 B.65 C.23D.32【知识点:等比数列性质】 答案:D 3.课堂总结 【知识梳理】(1)等比数列定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个非0常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (q ≠0)表示. 数学语言表达式:1n n a q a -= (n ≥2,q 为非0常数),或1n naq a +=(n ∈N *,q 为非0常数).(2)等比数列通项公式: 11n n a a q -=;通项公式的推广: n m n m a a q -=. 【重难点突破】(1)等比数列通项公式运用时为了减少计算量可以尝试使用其推广式. (2)公比0≠q 这是必然的,不存在公比为0的等比数列,还可以理解为等比数列中,不存在数值为0的项,各项不为0的常数列既是等差数列又是等比数列;至于等比数列的增减,则可以从首项与公比的正负及范围,通过列不等式进行确定. (3)等比数列的定义中有“从第二项起”“同一个常数”的描述应与等差数列中的描述理解一致.(4)等比数列的通项公式可以用迭代法累乘法推导,其中累乘法与累加法相似,可做一做比较,便于掌握. 4.随堂检测 一、选择题1.在等比数列{}n a 中,64,852==a a ,则公比q 为( ) A .2 B .3 C .4 D .8 答案:A.解析:【知识点:等比数列的通项公式】 二、解答题1.求下列各等比数列的通项公式: (1)21-=a ,83-=a . (2)51=a ,且12+n a n a 3-=. (3)51=a ,且11+=+n na a n n . 答案:(1)n n n n n n a a )2()2)(2(22)2(11-=--=-=-=--或.(2)1)23(5--⨯=n n a .(3)na n a n 311==.解析:【知识点:等比数列通项公式】 2.求以下等比数列的第4项与第5项: (1)5,-15,45,……. (2)1.2,2.4,4.8,…….(3)213,, (328).答案:(1)1354-=a ,4055=a . (2)6.94=a ,2.195=a . (3)4a =329,5a =12827. 解析:【知识点:等比关系的确定;数学思想:推理论证能力】3.有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数. 答案:这四个数为0, 4, 8, 16或15, 9, 3, 1.解析:【知识点:等比关系的确定;数学思想:推理论证能力】 设四个数依次为x,y,12-y,16-x .依题意,有 x +(12−y )=2y ①()()21612y x y -=-②由①式得x =3y -12 ③将③式代入②式得y (16-3y +12)=(12-y )2,整理得y 2-13y +36=0,解得124,9y y ==,代入③式得120,15x x ==.从而得所求四个数为0,4,8,16或15,9,3,1. 5.(1)已知{}n a 是等比数列,且2435460,225n a a a a a a a >++=, 求53a a +.(2)c a ≠,三数c a ,1,成等差数列,22,1,c a 成等比数列,求22ca ca ++. 答案:(1) 3a +55=a . (2)3122=++c a c a .解析:【知识点:等差数列的性质,等比数列】(1)∵{}n a 是等比数列,∴()224354635225a a a a a a a a ++=+=.又0n a >, ∴355a a +=.(三)课后作业基础型自主突破 一、填空题1.已知等比数列{}n a 的公比为正数,且248522,1,a a a a ⋅==则1a = .答案: 1a =解析:【知识点:等比关系的确定;数学思想:推理论证能力】设等比数列{}n a 的公比为q ,∵ 2482a a a ⋅=211a a ==,∴ 1a =2.设数列{}n a 是首项为1,公比为-3的等比数列12345||||||a a a a a ++++=______. 答案:121.解析:【知识点:等比数列】∵数列{}n a 是首项为1,公比为-3的等比数列,∴()1113n n n a a q --==-,∴123451,3,9,27,81,a a a a a ==-==-=∴则12345||||||1392781121a a a a a ++++=++++=. 3.等比数列{}214n +的公比为 ______ . 答案:16.解析:【知识点:等比数列的通项公式】 等比数列的通项公式是:11n n a a q -=4.若1、a 、b 、c 、9成等比数列,则b = ______ . 答案:3.解析:【知识点:等比数列】利用等比数列通用公式11n n a a q -=求出相应的值421531,9,3a a q a q b ======,3b ∴=5.公比为2的等比数列{}n a 的各项都是正数,且31116,a a =,则210log a = ______ . 答案:5.解析:【知识点:等比数列通项公式,对数的运算性质】∵公比为2的等比数列{}n a 的各项都是正数,且31116,a a =,∴7a =4,∴1a •26=4,解得1a =42-,∴9495101222a a q -==⨯=,∴52102log log 25a ==. 故答案为:5.能力型师生共研 一、选择题1.在数列{}n a 中,1111,,4n n a a a +==则99a =________. A.125504B.2500C.124504D.2401 答案:B解析:【知识点:等比关系的确定;数学思想:推理论证能力】 二、填空题1.设{}n a 为公比1q >的等比数列,若2004a 和2005a 是方程24830x x ++=的两根,则=+20072006a a _________. 答案:-18解析:【知识点:等比数列,根与系数的关系】根据{}n a 为公比q >1的等比数列, 2004a 和2005a 是方程4x 2+8x +3=0的两根,可得2004a =-2005=2006+2007a =-18. 三、证明题1.已知:b 是a 与c 的等比中项,且c b a ,,同号,求证:3a b c ++等比数列答案:见解析解析:【知识点:等比数列】 由题设:ac b =2得:22333)3(333ca bc ab bc b ab b c b a abc c b a ++=++=⨯++=⨯++ ∴3,3,3abc ca bc ab c b a ++++也成等比数列.探究型多维突破一、选择题1.已知三角形的三边构成等比数列,它们的公比为q ,则q 的取值范围是( )A .1(0,2+B .C .D .)251,251(++- 答案:D.解析:【知识点:等比关系的确定,解三角形;数学思想:推理论证能力】 设三边:a 、qa 、2q a 、q >0则由三边关系:两短边和大于第三边a +b >c ,即 (1)当q ≥1时a +qa >2q a ,等价于解二次不等式:21q q --<0,由于方程2q q --(2)当q <1时,a 为最大边,qa +2q a >a 即得2q q --⎭故选D . 二、证明题1.设d c b a ,,,均为非零实数,()()0222222=+++-+c b d c a b d b a ,求证:c b a ,,成等比数列且公比为d答案:见解析解析:【知识点:等比关系的确定;数学思想:推理论证能力,运算求解能力,创新意识,应用意识】证明:证一:关于d 的二次方程()()0222222=+++-+c b d c a b d b a 有实根, ∴()()0442222≥+-+=∆b a c a b ,∴()022≥--ac b则必有:02=-ac b ,即ac b =2,∴c b a ,,成等比数列设公比为q ,则aq b =,2aq c =代入()()024********=+++-+q a q a d aq a aq d q a a∵()0122≠+a q ,即0222=+-q qd d ,即≠=q d证二:∵()()0222222=+++-+c b d c a b d b a ∴()()022222222=+-++-c bcd d b b abd d a∴()()022=-+-c bd b ad ,∴b ad =,且c bd =∵d c b a ,,,非零,∴d bca b == 自助餐 一、选择题1.等比数列{}n a 中,6a 和10a 是方程2620x x ++=的两根,则8a =( )A.2±B.答案:C.解析:【知识点:等比数列,根与系数的关系】等比数列{}n a 中,6a 和10a 是方程2620x x ++=的两根, 6106a a +=-,可得261082a a a ⋅==,6a 和10a 都是负数,可得8a =-2..故选:C .2.已知等比数列{}n a 的公比为正数,且248522,1,a a a a ⋅==则1a =( )A. 0.5B. 22答案:C.解析:【知识点:等比数列】设公比为q ,由已知得()22841112a q a q a q ⋅=,即q 2=2,又因为等比数列{}n a 的公比为正数,所以q =2.22=,故选C.2.等比数列{}n a 的首项为1,项数是偶数,所有的奇数项之和为85,所有的偶数项之和为170,则10a =( )A.32 64.B C.512 D.1024 答案:C.解析:【知识点:等比关系的确定;数学思想:推理论证能力】设等比数列的项数为2n ,∵所有的奇数项之和为85,所有的偶数项之和为170, ∴S 奇:S 偶=1:2.∵S 奇=1321...n a a a -+++,S 偶=242...n a a a +++=q S 奇由题意可得,q =2,∴9910112512a a q ==⨯=.故选:C .3.在等比数列{}n a 中, 11,2,32n a q a ===,则n =( )A.5B.6C.7D.8 答案:B.解析:【知识点:等比数列的通项公式】11n n a a q -=,求得n =84.等比数列{}n a 中, 385,2a a ==,则数列{}lg n a 的前10项和等于( )A.2B.5C.1050D.lg答案:B.解析:【知识点:等比数列的通项公式,对数的运算性质】由题意得,等比数列{}n a 中, 385,2a a ==,所以385610,a a a a ⋅=⋅=,由等比数列的性质得, ()551231056...10a a a a a a ⋅⋅⋅=⋅=,所以数列{}lg n a 的前10项和1210l g l g ...l g 5n S a a a =+++=,故选:B . 6.数列{}n a 的首项1,数列{}n b 为等比数列且1n n na b a +=,若10112b b ⋅=,则21a =( ) A.20 B.512 C.1013 D.1024 答案.D.解析:【知识点:等比数列的通项公式】由1n n n a b a +=可知202120232121,,,a a b a a b a a b === ,所以202123122021a a a a a a b b b ⋅⋅⋅=⋅⋅⋅ ,又数列{}n b 为等比数列,所以1202191011b b b b b b ===L ,于是有121102a a =,即110212a a =,又11=a ,所以102421021==a ,故答案选D. 二、填空题1.已知数列{}n a 为等比数列,且5a =4,9a =64,则7a =____________. 答案:16.解析:【知识点:等比数列的通项公式】11n n a a q -=,由已知条件求出通项公式1124n n a -=⋅,所以716a =.2.数列{}n a 中, 112,n n a a a cn +==+(c 是常数,n =1,2,3,…),且123,,a a a 成公比不为1的等比数列.则c 的值是 ______ .答案:2.解析:【知识点:等比数列】∵112,n n a a a cn +==+,∴232,23,a c a c =+=+又∵123,,a a a 成公比不为1的等比数列,∴()()22c 223c +=+,即c 2-2c=0解得c=2,或c=0,故答案为23.若公比不为1的等比数列{}n a 满足()21213•13log a a a ⋯=,等差数列{}n b 满足77b a =,则1213b b b +⋯+的值为 ______ . 答案:26.解析:【知识点:等比数列通项公式,等差数列前n 项和】 ∵公比不为1的等比数列{a n }满足()21213•13log a a a ⋯=,∴()()()13212132727•1313log a a a log a log a ⋯===,解得7772,2,a b a ===,由等差数列的性质可得777121372,2,...1326a b a b b b b ===+++==,故答案为:26 三、解答题1.在等比数列{}n a 中, 5142-=15,-=6a a a a ,求3a 和q . 答案:见解析解析:【知识点:等比数列通项公式】,6=-,15=-}中中在等比数列{2415a a a a a n 答案:.4=,1=时,2=q 当31a a2.设{}n a 是一个公差为d (d ≠0)的等差数列,它的前10项和10110S =且124,,a a a 成等比数列,求数列{}n a 的通项公式. 答案: n a =2n .解析:【知识点:等差数列前n 项和,等比数列】∵124,,a a a 成等比数列,∴2214a a a =又∵{an}是等差数列,∴2141,3a a d a a d =+=+, ∴()()21113a d a a d +=+,即222111123a a d d a a d ++=+,化简可得1a d =,∵101101092110S a d =+⨯=,∴11045110a d +=.又∵1a d =,∴55d =110,∴d =2, ∴()112n a a n d n =+-=3.已知数列{}n a 的奇数项成等差数列,偶数项成等比数列,公差与公比均为2,并且2415798,a a a a a a a +=++=. (1)求数列{}n a 的通项公式;(2)求使得1212m m m m m m a a a a a a ++++⋅⋅=++成立的所有正整数m 的值. 答案:见解析解析:【知识点:等比数列,等比数列通项公式】31517142622,4,6,2,4a a a a a a a a a a =+=+=+==Q 2415798,a a a a a a a +=++=2211212124,2642a a a a a a a a ∴+=+++++=++121,2a a ∴==∴na =⎩⎨⎧为奇数为偶数n n n n,,22; (2)∵1212m m m m m m a a a a a a ++++⋅⋅=++成立, ∴由上面可以知数列{}n a 为:1,2,3,4,5,8,7,16,9,… 当m =1时等式成立,即1+2+3=-6=1×2×3;等式成立. 当m =2时等式成立,即2×3×4≠2+3+4;等式不成立. 当m =3、4时等式不成立; 当m ≥5时,∵12m m m a a a ++⋅⋅为偶数, 12m m m a a a ++++为奇数, ∴可得m 取其它值时,不成立, ∴m =1时成立.。
等比数列教学设计学年高二数学人教版()选择性必修第三册全
![等比数列教学设计学年高二数学人教版()选择性必修第三册全](https://img.taocdn.com/s3/m/6d1e090b001ca300a6c30c22590102020740f2de.png)
可编辑修改精选全文完整版等比数列第一课时教学设计一教分材析:1.教材地位与作用等比数列是人教b版高中数学选择性必修三第五章第三节第一课时的内容。
数列这一章是高中数学的重要内容之一,在整个高中数学领域里占据着重要地位,也时高考的重点。
等比数学数列是在学习等差数列之后的又一特殊数列。
数列是一种特殊的函数,是函数知识的延续。
同时学好等比数列的概念和通项公式,更有利于下一步研究等比数列的性质以及前n 项和公式。
数列在储蓄、分期付款的有关计算等方面有着广泛的实际应用。
数列不但在知识上起着承前启后的作用,还具备现实意义。
学习数列不但可以提高学生的观察、分析、猜想的能力,同时还可以培养学生的数学核心素养。
2.设计理念新课标提出在数学教学中,应该培养学生的数学抽象、数学建模、数学运算、逻辑推理、直观想象、数据分析六大核心素养。
所以本节课课前我利用班级优化大师推送微课视频和习题,让学生预习并做简单课前测试,学生发现问题带着困惑走进课堂,更有针对性地进行学习。
课上我借助微视频多媒体技术进行引入,创造问题情境,让学生们在实际问题中抽象出数学模型,培养学生的数学抽象和数学建模能力。
而在猜想过程中培养学生的逻辑推理能力。
学生边做边学,边学边做,理论联系实际,自己查缺补漏。
以学生为主体的教学方式,发挥学生的主观能动性,教师帮助学生构建知识结构,理清知识脉络,从而实现翻转课堂。
二、学情分析:学生在学习本节内容之前已经学习等差数列的概念,通项公式以及等差数列前n项和的公式,具备一定的数学思想方法,有一定的观察、分析、猜想和归纳的能力。
三教学目标1、知识与技能目标:理解等比数列的概念,掌握等比数列的通项公式。
2、过程与方法目标:培养学生用归纳类比的方法去分析解决问题。
让学生能在具体的情境中,发现等比关系,培养学生们的数学建模能力。
3、情感与态度目标:让学生充分感受到数列是现实生活中的重要模型,提高学生的学习兴趣。
.四、教学重点:理解等比数列的概念,掌握通项公式的推导.五、教学难点:灵活应用等比数列的通项公式和推广公式,熟练的解决相关的数学问题。
等比数列教学设计人教课标版(实用教案)
![等比数列教学设计人教课标版(实用教案)](https://img.taocdn.com/s3/m/96160ca276a20029bc642d02.png)
教学设计案例一《等比数列(第课时)》教学设计提纲:.教学任务分析学情分析教材分析教材地位和作用教学任务和目标教学重点和难点.教材教法和学法分析教材的处理教材的教法和手段教材的学法教学基本流程.教学情境设计等比数列的定义通项公式的推导例题讲解总结与作业布置.板书设计.教学设计反思设计反思教学反思《等比数列(第课时)》.教学任务分析学情分析本节课的授课对象是我校学生,数学水平参差不齐,依赖性强,接受能力一般,灵活性不够。
因此本节课采用低起点,由浅到深,由易到难逐步推进,热情地启发学生的思维,让学生在欢愉的气氛中获取知识和运用知识的能力。
教材分析教材地位和作用所用的教材是人教版《必修》,教材通过日常生活中的实例,讲解等比数列的概念,特别地要体现它是一种特殊函数,通过列表,图像,通项公式来表达等比数列,把数列融于函数之中,体现了数列的本质和内涵。
等比数列的定义与通项不仅是本章的重点和难点,也是高中阶段培养学生逻辑推理的重要载体之一,为培养学生思维的灵活性和创造性打下坚实的基础。
同时本节课是在学生已经系统地学习了一种常用数列,即等差数列的概念、通项公式和前项和公式的基础上,开始学习另一种常用数列,即等比数列的相应知识,我认为本节教材对于进—步渗透数学思想,发展逻辑思维能力,提高学生的品质素养均有较好作用。
众所周知,数列是中学数学的重点内容之一,也是高考的考查重点之一,其中等差数列和等比数列尤为重要,有关数列的问题,大多数都是归结为这两种基本数列加以解决的:而且这两途中数列在实际问题中有着广泛的应用,这说要求教学中高度重视,并有新的突破,拓展和引深。
教学任务和目标教学任务分析:通过观察、归纳、猜想、类比等思维品质,正确理解等比数列的定义、等比数列通项公式。
以及具体的知识运用及实际应用。
本堂课内容的编者按:首先注意前后知识的区别与联系,加强对比和类比,展示等比数列概念的形成和和指数函数的对应等深化过程,使得后进生部有发言权,优生也不乏味,从而达到面向全体的目的,激发学生学习数学兴趣。
等比数列优秀课程教案及教学设计
![等比数列优秀课程教案及教学设计](https://img.taocdn.com/s3/m/b0cffd6cf11dc281e53a580216fc700abb685202.png)
等比数列优秀课程教案及教学设计引言等比数列是数学中非常重要的一种数列,掌握等比数列的概念和性质对于学生的数学研究具有重要意义。
本文档旨在为教师提供一份优秀的等比数列课程教案及教学设计,帮助教师有效地引导学生理解和掌握等比数列的相关知识。
教学目标- 了解等比数列的定义和基本性质;- 能够判断数列是否为等比数列,并计算等比数列的通项公式;- 掌握等比数列的求和公式,并能够应用于解决实际问题;- 培养学生的逻辑思维和数学推理能力。
教学内容- 等比数列的定义和特点;- 判断数列是否为等比数列的方法;- 等比数列的通项公式及其推导过程;- 等比数列的求和公式及其应用。
教学流程步骤一:导入(5分钟)教师简要介绍等比数列的概念和重要性,激发学生对等比数列的兴趣和好奇心。
步骤二:讲解定义和特点(10分钟)教师引导学生回顾数列的概念和基本性质,然后介绍等比数列的定义和特点,包括相邻项的比值相等、首项不为零等。
步骤三:判断等比数列(15分钟)教师提供若干数列给学生进行观察和判断,帮助学生掌握判断数列是否为等比数列的方法和技巧。
步骤四:推导通项公式(20分钟)教师引导学生思考等比数列的通项公式的推导过程,通过讲解和示例演算,帮助学生理解通项公式的意义和使用方法。
步骤五:求和公式及应用(25分钟)教师讲解等比数列的求和公式及其推导过程,然后通过例题和实际问题分析,帮助学生掌握求和公式的使用技巧和应用方法。
步骤六:练与巩固(15分钟)教师组织学生进行一些练题,巩固他们对等比数列的理解和应用能力。
步骤七:总结与拓展(10分钟)教师对本节课所学内容进行总结,并提供一些拓展性的问题,引导学生进一步深入探究等比数列的相关知识。
教学资源- 教师课件:包括等比数列的定义、性质、通项公式和求和公式的讲解和示例;- 学生练册:包括一些用于巩固和深化学生对等比数列理解和应用的练题。
教学评估通过课堂练和师生互动,教师可以对学生在等比数列方面的理解和应用能力进行评估。
等比数列教案设计
![等比数列教案设计](https://img.taocdn.com/s3/m/5b865164bfd5b9f3f90f76c66137ee06eef94e51.png)
一、教学目标1. 知识与技能:理解等比数列的定义,掌握等比数列的通项公式和求和公式,能够运用等比数列解决实际问题。
2. 过程与方法:通过探究等比数列的性质,培养学生的逻辑思维能力和运算能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。
二、教学重点与难点1. 教学重点:等比数列的定义,通项公式和求和公式。
2. 教学难点:等比数列求和公式的推导和应用。
三、教学准备1. 教具准备:黑板、粉笔、多媒体课件。
2. 学具准备:笔记本、笔。
四、教学过程1. 导入新课:利用多媒体课件展示等比数列的实例,引导学生观察、思考,引出等比数列的概念。
2. 自主学习:学生自主探究等比数列的定义,教师巡回指导,解答学生疑问。
3. 课堂讲解:讲解等比数列的通项公式和求和公式,并通过例题演示如何运用这些公式解决问题。
4. 课堂练习:布置练习题,让学生独立完成,教师选取部分学生的作业进行点评。
5. 小组讨论:学生分组讨论等比数列的性质,总结规律,教师参与讨论,给予指导。
6. 课堂小结:总结本节课的主要内容,强调等比数列的定义、通项公式和求和公式的运用。
7. 课后作业:布置课后作业,巩固本节课所学内容。
五、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高教学效果。
关注学生在学习过程中遇到的困难和问题,及时给予解答和指导。
六、教学目标1. 知识与技能:理解等比数列的性质,包括公比的概念,能够判断一个数列是否为等比数列。
2. 过程与方法:通过探究等比数列的性质,培养学生的逻辑思维能力和运算能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。
七、教学重点与难点1. 教学重点:等比数列的性质,公比的概念。
2. 教学难点:判断一个数列是否为等比数列的方法。
八、教学准备1. 教具准备:黑板、粉笔、多媒体课件。
4 等比数列(第一课时)一等奖创新教案
![4 等比数列(第一课时)一等奖创新教案](https://img.taocdn.com/s3/m/d31109675b8102d276a20029bd64783e09127d9d.png)
4 等比数列(第一课时)一等奖创新教案《等比数列》第一课时教学设计【教学内容】人教A版高中数学必修5第2章第四节【教学对象】高一年级(下)理科平行班学生【课时安排】一课时【教材分析】1.内容简析本节内容先由师生共同分析一系列日常生活中的实际问题,提炼出其中存在的特殊数列来引出等比数列的概念,再由教师引导学生与等差数列类比探索等比数列的通项公式,并将等比数列的通项公式与指数函数进行联系,体会等比数列与指数函数的关系,既让学生感受到等比数列是现实生活中大量存在的数列模型,也让学生经历了从实际问题抽象出数列模型的过程。
在研究过程中体现了由特殊到一般的数学思想、函数思想和方程思想。
2.教材的地位与作用本节内容在教材中起到承上启下的作用。
一方面,学法的承上,本节课之前学习了等差数列,而等比数列和等差数列具有相似性,可以让学生从已有的学习经验出发,将研究等差数列的方法类比到等比数列,促进学生在数学学习活动中获得更扎实的基本技能和基本思想;另一方面,为后续进一步研究等比数列的性质、等比数列前项和公式,求一般数列通项公式做好准备。
3.教学目标确定从知识结构来看,本节核心内容是等比数列的概念及通项公式,可从等比数列的“等比”的特点入手,结合具体的例子来学习等比数列的概念。
从而可以确定如下教学目标(三维目标):(1)知识与技能:理解等比数列、等比中项的概念,掌握等比数列的通项公式及公式的推导,并学会用定义法证明等比数列(2)过程与方法:在教学过程中渗透方程、函数、特殊到一般等数学思想,提高学生观察、归纳、猜想、证明等逻辑思维能力以及计算能力(3)情感、态度与价值观:通过对等比数列通项公式的推导,培养学生发现意识、创新意识4.教学重点与难点重点:等比数列的定义及通项公式及其应用难点:通项公式的推导和应用5.学情分析学生在之前已经学习过“等差数列”的内容,对数列已经有了初步的认识,并且具有一定的的观察、分析、归纳能力,和类比思想。
人教版数学必修五《等比数列》教学设计
![人教版数学必修五《等比数列》教学设计](https://img.taocdn.com/s3/m/0f4c573fa9114431b90d6c85ec3a87c240288a37.png)
人教版数学必修五《等比数列》教学设计等比数列(第一课时)教学设计教材分析:等比数列是一种特殊的数列,它有着非常广泛的实际应用:如存款利息、购房贷款、资产折旧等一些计算问题.教材将等比数列安排在等差数列之后,有承前启后的作用.一方面与等差数列有密切联系,另一方面为进一步学习数列求和等有关内容做好准备.学情分析:学生已经学习了等差数列,对特殊数列的定义及性质研究方法有一定的基础和研究能力,但对等比数列变化规律还不了解。
从教学经验上看,学生在等比数列的计算上能力欠缺。
设计理念:长期以来的课堂教学太过于重视结论,轻视过程.为了应付考试,为了使公式定理应用达到所谓“熟能生巧”,教学中不惜花大量的时间采用题海战术来进行强化.在概念公式的教学中往往采用的所谓“掐头去尾烧中段”的方法,到头来把学生强化成只会套用公式的解题机器,这样的学生面对新问题就束手无策.数学是思维的体操,是培养学生分析问题,解决问题的能力及创造能力的载体,新课程倡导:强调过程,强调学生探索新知识的经历和获得新知的体验,不能再让教学脱离学生的内心感受,必须让学生有追求过程的体验.基于以上原因,在设计本节课时,我考虑的不是简单地告诉学生等比数列的定义及其通项公式,而是将内容按照“问题情境——学生活动——数学建构——数学运用——回顾反思”的顺序展开,通过列举生活中的大量实例,给出等比数列的实际背景,让学生自己去发现,去探索其意义,公式.从发现等比数列定义及通项公式的过程中让学生体会到:有些看似陌生的知识并不都是高不可攀的事情,通过我们的努力,也可以做一些看似数学家才能完成的事.在这个过程中,学生在课堂上的主体地位得到充分发挥,极大地激发了学生的学习兴趣,也提高了他们提出问题,解决问题的能力,培养了他们的创新能力,这正是新课程所倡导的教学理念.教学目标:A.知识目标:理解等比数列的概念,推导并掌握通项公式.B.能力目标:(1)通过公式的探索,发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力.(2)通过通项公式的探求过程,培养学生用不完全归纳法去发现并解决问题的能力.C.情感目标:(1)公式的发现反映了普遍性寓于特征性之中,从而使学生受到辨证唯物主义思想的熏陶.(2)通过对等比数列概念的归纳,进一步培养学生严密的思维习惯以及实事求是的科学态度.(3)培养学生勇于探索、善于猜想的学习态度,调动学生主动参与课堂教学的积极性,增强学生学好数学的心理体验,产生热爱数学的情感.教学重点、难点:等比数列的定义、通项公式的推导;通项公式的初步应用.教学方法:发现式教学法,类比分析法.教学过程:一、问题情境首先请同学们看以下几个事例:(电脑显示)情境1:国王奖赏国际象棋发明者的事例,发明者要求:在第1个方格放1颗麦粒,在第2个方格上放2颗麦粒,在第3个方格上放4颗麦粒,在第4个方格上放8颗麦粒,依此类推,直到第64个方格子.国王能否满足他的要求呢?情境2:“一尺之棰,日取其半,万世不竭.”情境3:某轿车的售价约36万元,年折旧率约为10%(就是说这辆车每年减少它的价值的10%),那么该车从购买当年算起,逐年的价格依次为多少?问题1:上述例子可以转化为什么样的数学问题?问题2:上述例子有何共同特点?二、学生活动通过观察、联想,发现:1、上述例子可以与数列联系起来.(有了等差数列的学习作基础)2、得到以下3个数列:①1,2, 22,, 632②111,,,24, 12n,③36,36×0.9, 36×0.92,, 36×0.9n,通过讨论,得到这些情境的共同特点是从第二项起,每一项与它前面一项的比都相等(等于同一个常数).三、数学建构1、问题:①②③这样的数列和等差数列一样是一类重要的数列,谁能试着给这样的数列取个名字?(学生通过联想、尝试得出最恰当的命名)等比数列2、归纳总结,形成等比数列的概念.一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫等比数列,这个常数叫做等比数列的公比.(引导学生经过类比等差数列的定义得出)评注:对于等比数列,你想对它作些什么研究呢?问题是怎样产生的?这是数学教学中的一个重要问题。
人教版高中数学必修《等比数列》教学设计
![人教版高中数学必修《等比数列》教学设计](https://img.taocdn.com/s3/m/dff161612a160b4e767f5acfa1c7aa00b52a9d8a.png)
等比数列(第一课时)【教材分析与学情分析】1.教材的地位和作用:《等比数列》是人教A版高中数学教材必修模块五第二章第四节的第一课时.。
其主要内容是等比数列的概念、通项公式和性质。
有利于进一步提高学生对数列的通项公式的认识,加强对数学规律性的探讨,从而提高学生观察、分析、猜想、归纳的综合思维能力。
2.教材的处理:高二上学期的学生,已经具有学习高中数学的基本思路和方法,根据本节内容,我将《等比数列》安排了2节课时。
本节课是第一课时。
根据目前学生的知识结构状况,为激发学生的学习热情,提高学生的学习效率,我从问题出发引出本节课要探究的问题,之后,再由学生自学、互学、交流和练习巩固等,由浅入深,由低到高地设置了不同层次的问题,逐步加深学生对等比数列及其通项公式的理解,初步掌握等比数列的常规问题的解答思路和技巧。
为此,我对教材的例题、练习做了适当的补充和修改。
3.学情分析:知识结构:学生在前两节已经学习了数列的概念、通项公式、等差数列的概念、通项公式的性质和等差数列的前n项和等,具备了这节课的预备知识。
能力方面:已具有研究数列问题的基本思路和方法,并有找数列的通项公式经验,这种经验完全可以迁移到对等比数列的研究中,在教师的指导下能力目标不难达到。
情感方面:这级学生高二上学期已具备较强的数学参与意识、自主探究意识,对表现自身价值的学习素材比较感兴趣。
【课型】新授课【教学准备】多媒体设备,纪录片“九个孩子的学校”片段,四封信件【教学重点】等比数列的定义、通项公式和等比中项。
解决的办法是:归纳类比。
【教学难点】等比数列的定义及通项公式的深刻理解。
要突破这个难点,关键在于紧扣定义、类比等差数列的相关知识,来发现等比数列的一些性质。
【教学方法】自主探究,合作探究【教学目标】1、通过实例,理解等比数列的概念通过从丰富实例中抽象出等比数列的模型,使学生认识到这一类型数列也是现实世界中大量存在的数列模型;同时经历由发现几个具体数列的等比关系,归纳等比数列的定义的过程。
《等比数列》教学设计
![《等比数列》教学设计](https://img.taocdn.com/s3/m/030b254127284b73f242505b.png)
《等比数列》教学设计一.教学内容分析本节课是人教版高中数学必修5第二章第二节的内容,《数列》是高中数学的重要内容。
在此之前学生已经学习了等差数列的概念、通项公式以及前n项和。
本节课是在等差数列的基础上用类比等差数列的概念、通项公式来推导等比数列的概念和通项公式。
《等比数列》既联系着函数和方程的有关知识,又为以后进一步学习数列的前n项和打下基础,具有承上启下的重要作用。
《等比数列》作为《数列》这一章中两个重要的数列之一,它的研究和解决集中体现了研究《数列》问题的思想和方法。
对提高学生分析、猜想、概括、归纳的综合思维能力有着重要的作用。
教学重点:等比数列的概念以及通项公式的推导过程及应用。
二.学情分析1.已有基础:学生已学习函数知识,以及等差数列的有关知识,已具备一定的分析、概括、自主探究的能力。
2、必要的认知基础:等比数列的定义以及通项公式的探究与推导需要学生具备观察、归纳、猜想、证明等能力,3、存在问题:学生容易把本节内容与等差数列的概念、通项公式的形成、推导方法进行类比,在一定程度上有助于知识的迁移。
但由于等比数列的概念、通项公式、等比中项的推导方法等与等差数列有所不同,学生思维定势容易使其陷入负迁移。
4、教学难点:对等比数列概念以及通项公式的深刻理解以及等比数列与指数函数之间的联系。
三、教学目标:1.理解等比数列的概念,掌握等比数列的通项公式及公式的推导2.在教学过程中渗透方程、函数、特殊到一般等数学思想,使学生进一步体会类比、归纳的数学方法,提高学生观察、归纳、猜想、概括、证明等逻辑思维能力。
3.通过对等比数列通项公式的推导,培养学生创新思维以及严谨的科学态度。
五、教学过程(一)导入1.复习旧知(1)等差数列的概念。
(强调公差可等于0)(2)等差数列的通项公式及其主要推导方法。
(归纳法、累加法)2.问题导入师:今天,我们来学习一种新的数列,在学习新的数列之前,我们先回答两个数学问题。
问题1::一个细胞进行分裂,每隔一分钟后一分为二,前1-5分钟各有几个细胞?问题2:庄子的“一尺之锤,日取其半,万世不竭”请以数列的形式写出上述问题的结果并说出这两个数列的数与数之间各有什么特点?生:2,4,8,16,32,. . .师引导学生通过观察得出第一组数列后一项与前一项的比是一个常数2,第二组数列的后一项与前一项的比是常数1/2。
人教版高中数学《等比数列1》教学设计
![人教版高中数学《等比数列1》教学设计](https://img.taocdn.com/s3/m/dc9b7e1d8bd63186bdebbc32.png)
课题:2.4等比数列(1)第课时总序第个教案课型:新授课编写时时间:年月日执行时间:年月日教学目标:知识与技能:掌握等比数列的定义;理解等比数列的通项公式及推导;过程与方法:通过实例,理解等比数列的概念;探索并掌握等比数列的通项公式、性质,能在具体的问题情境中,发现数列的等比关系,提高数学建模能力;体会等比数列与指数函数的关系。
情感态度与价值观:充分感受数列是反映现实生活的模型,体会数学是于现实生活,并应用于现实生活的,数学是丰富多彩的而不是枯燥无味的,提高学习的兴趣。
批注教学重点:等比数列的定义及通项公式教学难点:灵活应用定义式及通项公式解决相关问题教学用具:投影仪教学方法:探索并掌握等比数列的通项公式、性质,能在具体的问题情境中,发现数列的等比关系,提高数学建模能力教学过程:Ⅰ.课题导入复习:等差数列的定义:na-1-na=d ,(n≥2,n∈N+)①1,2,4,8,16,…②1,12,14,18,116,…③1,20,220,320,420,…④10000 1.0198⨯,210000 1.0198⨯,310000 1.0198⨯,410000 1.0198⨯,510000 1.0198⨯,……观察:请同学们仔细观察一下,看看以上①、②、③、④四个数列有什么共同特征?共同特点:从第二项起,第一项与前一项的比都等于同一个常数。
Ⅱ.讲授新课1.等比数列:一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q表示(q≠0),即:1-nnaa=q(q≠0)1︒“从第二项起”与“前一项”之比为常数(q)。
《等比数列》教案
![《等比数列》教案](https://img.taocdn.com/s3/m/511c50dbafaad1f34693daef5ef7ba0d4b736d55.png)
《等比数列》教案《《等比数列》教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!教学内容分析这节课是在等差数列的基础上,运用同样的研究方法和研究步骤,研究另一种特殊数列———等比数列.重点是等比数列的定义和通项公式的发现过程及应用,难点是应用. 教学目标1. 熟练掌握等比数列的定义、通项公式等基本知识,并熟练加以运用.2. 进一步培养学生的类比、推理、抽象、概括、归纳、猜想能力.3. 感受等比数列丰富的现实背景,进一步培养学生对数学学习的积极情感. 任务分析这节内容由于是在等差数列的基础上,运用同样的方法和步骤,研究类似的问题,学生接受起来较为容易,所以应多放手让学生思考,并注意运用类比思想,这样不仅有利于学生分清等差和等比数列的区别,而且可以锻炼学生从多角度、多层次分析和解决问题的能力.另外,与等差数列相比等比数列须要注意的细节较多,如没有零项、q≠0等,在教学中应注意加以比较. 教学设计一、问题情景在前面我们学习了等差数列,在现实生活中,我们还会遇到下面的特殊数列:1. 在现实生活中,经常会遇到下面一类特殊数列.下图是某种细胞分裂的模型.细胞分裂个数可以组成下面的数列:1,2,4,8,…2. 一种计算机病毒可以查找计算机中的地址薄,通过电子函件进行传播.如果把病毒制造者发送病毒称为第一轮,函件接收者发送病毒称为第二轮,依此类推.假设每一轮每一台计算机都感染20台计算机,那么,在不重复的情况下,这种病毒每一轮感染的计算机数构成的数列是1,20,202,203,…(3)除了单利,银行还有一种支付利息的方式———复利,即把前一期的利息和本金加在一起算作本金,再计算下一期的利息,也就是通常说的“利滚利”.按照复利计算本利和的公式是本利和=本金×(1+利率)存期例如,现在存入银行10000元钱,年利率是1.98%,那么按照复利,5年内各年末得到的本利和分别是(计算时精确到小数点后2位):表47-1时间年初本金(元)年末本利和(元)第1年1000010000×1.0198第2年10000×1.019810000×1.01982第3年10000×1.0198210000×1.01983第4年10000×1.0198310000×1.01984第5年10000×1.0198410000×1.01985各年末的本利和(单位:元)组成了下面的数列:10000×10198,10000×101982,10000×101983,10000×101984,10000×101985.问题:回忆等差数列的研究方法,我们对这些数列应作如何研究?二、建立模型结合等差数列的研究方法,引导学生运用从特殊到一般的思想方法分析和探究,发现这些数列的共同特点,从而归纳出等比数列的定义及符号表示:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫作等比数列,这个常数叫作等比数列的公比,公比通常用字母q表示(q≠0).即〔问题〕1. q可以为0吗?有没有既是等差,又是等比的数列?2. 运用类比的思想可以发现,等比数列的定义是把等差数列的定义中的“差”换成了“比”,同样,你能类比得出等比数列的通项公式吗?如果能得出,试用以上例子加以检验.对于2,引导学生运用类比的方法:等差数列通项公式为an=a1+(n-1)d,即a1与(n-1)个d的和,等比数列的通项公式应为an等于a1与(n-1)个q的乘积,即an=a1qn-1.上面的几个例子都满足通项公式.3. 你如何论证上述公式的正确性.证法1:同等差数列———归纳法.证法2:类比等差数列,累乘可得,即各式相乘,得an=a1qn-1.归纳特点:(1)an是关于n的指数形式.(2)和等差数列类似,通项公式中有an,a1,q,n四个量,知道其中三个量可求另一个量. 三、解释应用〔例题〕1. 某种放射性物质不断衰变为其他物质,每经过一年剩留的这种物质是原来的84%,问:这种物质的半衰期为多长?解:设这种物质最初的质量是1,经过n年,剩留量是an.由已知条件,得数列{an}是一个等比数列,其中a1=0.84,q=0.84.设an=0.5,则0.84n=0.5.两边取对数,得nlg0.84=lg0.5.用计算器计算,得n≈4.答:这种物质的半衰期大约为4年.2. 一个等比数列的第3项和第4项分别是12和18,求它的第1项与第2项.解:设这个等比数列的第1项是a1,公比是q,那么注:例1、例2体现了方程思想的应用,这也是有关等差、等比数列运算中常用的思想方法.3. 已知数列{an},{bn}是项数相同的等比数列,那么{anbn}是否为等比数列?如果是,证明你的结论;如果不是,说明理由.解:可以得到:如果{an},{bn}是项数相同的等比数列,那么{an·bn}也是等比数列.证明如下:设数列{an}的公比为p,{bn}的公比为q,那么数列{an·bn}的第n项与第n+1项分别为a1pn-1·b1qn-1与a1pn·b1qn,即a1b1(pq)n-1与a1b1(pq)n.两项相比,得显然,它是一个与n无关的常数,所以{an·bn}是一个以pq为公比的等比数列.特别地,如果{an}是等比数列,c是不等于0的常数,那么数列{c·an}也是等比数列.〔练习〕1. 在等比数列{an}中,(1)a5=4,a7=6,求a9.(2)a5-a1=15,a4-a2=6,求a3.2. 设{an}是正项等比数列,问:是等比数列吗?为什么?3. 三个数成等比数列,并且它们的和等于14,它们的积等于64,求这三个数.4. 设等比数列{an},{bn}的公比分别是p,q.(1)如果p=q,那么{an+bn}是等比数列吗?(2)如果p≠q,那么{an+bn}是等比数列吗? 四、拓展延伸引导学生分析思考如下三个问题:(1)如果三个数a,G,b成等比数列,则G叫作a,b的等比中项,那么如何用a,b表示G呢?这个式子是三个数a,G,b成等比数列的什么条件?(2)在直角坐标系中,画出通项公式为an=2n的数列的图像和函数y=2x-1的图像.对比一下,你发现了什么?(3)已知数列{an}满足an-an-1=2n(n≥2),数列{bn}满足,你会求它们的通项公式吗? 五、回顾反思1. 在这节课上,你有哪些收获?2. 你能用几个概念、几个公式来概括等比数列的有关内容吗?试试看. 点评这是一节典型的类比教学的案例,这节课的内容与等差数列的内容和研究方法非常相似,但设计者从类比入手,让学生亲自去发现,猜想,解决,无论从问题的提出,还是在解决方式、细节的处理上,和上节均有较大不同.相信这节课除了使学生可以更加熟练地掌握等差数列、等比数列的有关知识及常用的解题思想方法外,对类比思想的运用还会有所感悟和体会.美中不足的是,等比数列的现实模型比较多,而这篇案例在对比方面的运用略显单薄.《等比数列》教案这篇文章共7789字。
人教版数学必修五《等比数列》教学设计
![人教版数学必修五《等比数列》教学设计](https://img.taocdn.com/s3/m/7bcdc162a8956bec0975e350.png)
等比数列(第一课时)教学设计教材分析:等比数列是一种特殊的数列,它有着非常广泛的实际应用:如存款利息、购房贷款、资产折旧等一些计算问题.教材将等比数列安排在等差数列之后,有承前启后的作用.一方面与等差数列有密切联系,另一方面为进一步学习数列求和等有关内容做好准备.学情分析:学生已经学习了等差数列,对特殊数列的定义及性质研究方法有一定的基础和研究能力,但对等比数列变化规律还不了解。
从教学经验上看,学生在等比数列的计算上能力欠缺。
设计理念:长期以来的课堂教学太过于重视结论,轻视过程.为了应付考试,为了使公式定理应用达到所谓“熟能生巧”,教学中不惜花大量的时间采用题海战术来进行强化.在概念公式的教学中往往采用的所谓“掐头去尾烧中段”的方法,到头来把学生强化成只会套用公式的解题机器,这样的学生面对新问题就束手无策.数学是思维的体操,是培养学生分析问题,解决问题的能力及创造能力的载体,新课程倡导:强调过程,强调学生探索新知识的经历和获得新知的体验,不能再让教学脱离学生的内心感受,必须让学生有追求过程的体验.基于以上原因,在设计本节课时,我考虑的不是简单地告诉学生等比数列的定义及其通项公式,而是将内容按照“问题情境——学生活动——数学建构——数学运用——回顾反思”的顺序展开,通过列举生活中的大量实例,给出等比数列的实际背景,让学生自己去发现,去探索其意义,公式.从发现等比数列定义及通项公式的过程中让学生体会到:有些看似陌生的知识并不都是高不可攀的事情,通过我们的努力,也可以做一些看似数学家才能完成的事.在这个过程中,学生在课堂上的主体地位得到充分发挥,极大地激发了学生的学习兴趣,也提高了他们提出问题,解决问题的能力,培养了他们的创新能力,这正是新课程所倡导的教学理念.教学目标:A.知识目标:理解等比数列的概念,推导并掌握通项公式.B.能力目标:(1)通过公式的探索,发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力.(2)通过通项公式的探求过程,培养学生用不完全归纳法去发现并解决问题的能力.C.情感目标:(1)公式的发现反映了普遍性寓于特征性之中,从而使学生受到辨证唯物主义思想的熏陶.(2)通过对等比数列概念的归纳,进一步培养学生严密的思维习惯以及实事求是的科学态度.(3)培养学生勇于探索、善于猜想的学习态度,调动学生主动参与课堂教学的积极性,增强学生学好数学的心理体验,产生热爱数学的情感.教学重点、难点:等比数列的定义、通项公式的推导;通项公式的初步应用.教学方法:发现式教学法,类比分析法.教学过程:一、问题情境首先请同学们看以下几个事例:(电脑显示)情境1:国王奖赏国际象棋发明者的事例,发明者要求:在第1个方格放1颗麦粒,在第2个方格上放2颗麦粒,在第3个方格上放4颗麦粒,在第4个方格上放8颗麦粒,依此类推,直到第64个方格子.国王能否满足他的要求呢?情境2:“一尺之棰,日取其半,万世不竭.”情境3:某轿车的售价约36万元,年折旧率约为10%(就是说这辆车每年减少它的价值的10%),那么该车从购买当年算起,逐年的价格依次为多少?问题1:上述例子可以转化为什么样的数学问题?问题2:上述例子有何共同特点?二、学生活动通过观察、联想,发现:1、上述例子可以与数列联系起来.(有了等差数列的学习作基础)2、得到以下3个数列:①1,2, 22,⋅⋅⋅, 632②111,,,24⋅⋅⋅, 12n⎛⎫⎪⎝⎭,⋅⋅⋅③36,36×0.9, 36×0.92,⋅⋅⋅, 36×0.9n,⋅⋅⋅通过讨论,得到这些情境的共同特点是从第二项起,每一项与它前面一项的比都相等(等于同一个常数).三、数学建构1、问题:①②③这样的数列和等差数列一样是一类重要的数列,谁能试着给这样的数列取个名字?(学生通过联想、尝试得出最恰当的命名)等比数列2、归纳总结,形成等比数列的概念.一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫等比数列,这个常数叫做等比数列的公比.(引导学生经过类比等差数列的定义得出)评注:对于等比数列,你想对它作些什么研究呢?问题是怎样产生的?这是数学教学中的一个重要问题。
等比数列的基本性质及其应用教学设计人教课标版(优秀教案)
![等比数列的基本性质及其应用教学设计人教课标版(优秀教案)](https://img.taocdn.com/s3/m/6f2c02d6b0717fd5370cdc4c.png)
教学设计等比数列的基本性质及其应用从容说课这节课师生将进一步探究等比数列的知识,以教材练习中提供的问题作为基本材料,认识等比数列的一些基本性质及内在的联系,理解并掌握一些常见结论,进一步能用来解决一些实际问题.通过一些问题的探究与解决,渗透重要的数学思想方法.如类比思想、归纳思想、数形结合思想、算法思想、方程思想以及一般到特殊的思想方法等教学中以师生合作探究为主要形式,充分调动学生的学习积极性教学重点.探究等比数列更多的性质.解决生活实际中的等比数列的问题教学难点渗透重要的数学思想教具准备多媒体课件、投影胶片、投影仪等三维目标一、知识与技能.了解等比数列更多的性质.能将学过的知识和思想方法运用于对等比数列性质的进一步思考和有关等比数列的实际问题的解决中.能在生活实际的问题情境中,抽象出等比数列关系,并能用有关的知识解决相应的实际问题二、过程与方法.继续采用观察、思考、类比、归纳、探究、得出结论的方法进行教学.对生活实际中的问题采用合作交流的方法,发挥学生的主体作用,引导学生探究问题的解决方法,经历解决问题的全过程.当好学生学习的合作者的角色三、情感态度与价值观.通过对等比数列更多性质的探究,培养学生的良好的思维品质和思维习惯,激发学生对知识的探究精神和严肃认真的科学态度,培养学生的类比、归纳的能力.通过生活实际中有关问题的分析和解决,培养学生认识社会、了解社会的意识,更多地知道数学的社会价值和应用价值教学过程导入新课师教材中第页练习第题、第题,请学生课外进行活动探究,现在请同学们把你们的探究结果展示一下生由学习小组汇报探究结果师对各组的汇报给予评价师出示多媒体幻灯片一:第题、第题详细解答:第题解答:()将数列{}的前项去掉,剩余的数列为,,….令则数列,…,可视为,因为q a a b b ik i k i i 11(≥),所以,{}是等比数列,即,,…是等比数列(){}中每隔项取出一项组成的数列是,…,则109101101121111......q a a a a a a k k 所以数列,…是以为首项,为公比的等比数列猜想:在数列{}中每隔(是一个正整数)取出一项,组成一个新数列,这个数列是以为首项、为公比的等比数列◇本题可以让学生认识到,等比数列中下标为等差数列的子数列也构成等比数列,可以让学生再探究几种由原等比数列构成的新等比数列的方法第题解答:()设{}的公比是,则而所以同理()用上面的方法不难证明·(>).由此得出,是和的等比中项,同理可证·(>>)是和的等比中项(>>师和等差数列一样,等比数列中蕴涵着许多的性质,如果我们想知道的更多,就要对它作进一步的探究推进新课[合作探究]师出示投影胶片例题(教材组第题)就任一等差数列{},计算,和,,你发现了什么一般规律,能把你发现的规律用一般化的推广吗?从等差数列和函数之间的联系的角度来分析这个问题.在等比数列中会有怎样的类似结论?师注意题目中“就任一等差数列{}”,你打算用一个什么样的等差数列来计算?生用等差数列,,,师很好,这个数列最便于计算,那么发现了什么样的一般规律呢?生在等差数列{}中,若(∈*),则师题目要我们“从等差数列与函数之间的联系的角度来分析这个问题”,如何做?生思考、讨论、交流师出示多媒体课件一:等差数列与函数之间的联系[教师精讲]师从等差数列与函数之间的联系的角度来分析这个问题:由等差数列{}的图象,可以看出qsa a p ka a q s p k ,根据等式的性质,有1q p sk a a a a q p s k 所以师在等比数列中会有怎样的类似结论?生猜想对于等比数列{},类似的性质为:(∈*),则师让学生给出上述猜想的证明证明:设等比数列{}公比为,则有··1q t因为所以有师指出:经过上述猜想和证明的过程,已经得到了等比数列的一个新的性质即等比数列{}中,若(∈*),则有师下面有两个结论:()与首末两项等距离的两项之积等于首末两项的积;()与某一项距离相等的两项之积等于这一项的平方你能将这两个结论与上述性质联系起来吗?生思考、列式、合作交流,得到:结论()就是上述性质中()()时的情形;结论()就是上述性质中()()时的情形师引导学生思考,得出上述联系,并给予肯定的评价师上述性质有着广泛的应用师出示投影胶片:例题例题()在等比数列{}中,已知9a,求()在等比数列{}中,,求该数列前七项之积;()在等比数列{}中,,求.例题三个小题由师生合作交流完成,充分让学生思考,展示将问题与所学的性质联系到一起的思维过程解答:()在等比数列{}中,已知,9a ,求解:∵1a 9a ,∴51001109a a a ()在等比数列{}中,,求该数列前七项之积解:∵,∴前七项之积()在等比数列{}中,,,求解:.∵是与的等比中项,∴∴另解:·2545425a a [合作探究]师判断一个数列是否成等比数列的方法:、定义法;、中项法;、通项公式法例题:已知{}{}是两个项数相同的等比数列,仿照下表中的例子填写表格.从中你能得出什么结论?证明你的结论·判断{·}是否是等比数列例n )32(3×1)34(10n 是自选自选师请同学们自己完成上面的表师根据这个表格,我们可以得到什么样的结论?如何证明?生得到:如果{}、{}是两个项数相同的等比数列,那么{·}也是等比数列证明如下:设数列{}的公比是,{}公比是,那么数列{·}的第项与第+项分别为与,因为pqqb p a qb p a b a b a n n nn n n n n 11111111它是一个与无关的常数,所以{·}是一个以为公比的等比数列[教师精讲]除了上面的证法外,我们还可以考虑如下证明思路:证法二:设数列{}的公比是,{}公比是,那么数列{·}的第项、第项与第+项(>∈*)分别为、与,因为()()()() ()(·)(·)()()()()()即有()(·)(·)(>∈*所以{·}是一个等比数列师根据对等比数列的认识,我们还可以直接对数列的通项公式考察:证法三:设数列{}的公比是,{}公比是,那么数列{·}的通项公式为设,则所以{·}是一个等比数列课堂小结本节学习了如下内容:.等比数列的性质的探究.证明等比数列的常用方法布置作业课本第页习题组第题、组第题板书设计等比数列的基本性质及其应用例例例习题详解(课本第页习题)组()设等比数列{}的公比是②①.6)1(,15)1(61521412415qq a q a a a a a ②÷①,整理得解方程得或21q由,得(),③所以,当时,由③得,当21q 时,由③得.设年后,需退耕,则{}是一个等比数列,其中.那么年需退耕()()(万公顷.若{}是各项均为正数的等比数列,则首项和公比都是正数,由,得121121111)(n n n n q a q a q a a ,所以数列{}是以为首项,21q 为公比的等比数列.这张报纸的厚度为,对折一次后厚度为×,再对折后厚度为×22mm ,再对折后厚度为×23,设,对折次后报纸的厚度为,则{}是一个等比数列,公比,对折次后,报纸的厚度为这时报纸的厚度已经超过地球和月球之间的平均距离(约×108),所以能够在地球和月球之间建一座桥.设年平均增长率为,=,年后空气质量为良的天数为,则{}是一个等比数列,由,得()(),解得105240.由已知条件,知2ba A ab ,且2)(222b a ab b a ab b a G A ≥,所以有≥,等号成立的条件是.而是互异正数,所以一定有>.()±.略组.证明略.()设生物死亡时,体内每克组织中的碳的含量为,每年的衰变率为,年后的残留量为,则{}是一个等比数列,由碳的半衰期为,则21,解得57301)21(q ()设动物约在距今年前死亡,由,得解得≈ ,所以动物约在距今年前死亡.略备课资料备用例题.已知无穷数列5010,5110,5210,…, 5110n 求证:()这个数列成等比数列;()这个数列中的任一项是它后面第五项的101;()这个数列的任意两项的积仍在这个数列中证明:()101101010154511n n n n a a (常数),∴该数列成等比数列()101101010154515n n n na a ,即:5101n n a a ()525151101010q p q p ,∵∈,∴∴≥且()∈.∴5210q p ∈5110n (第项.设均为非零实数,求证:成等比数列且公比为证法一:关于的二次方程()()有实根,∴Δ()()()≥.∴()≥.∴则必有:,即,∴成等比数列设公比为,则代入∵()≠,∴,即证法二:∵∴∴()().∴,且∵非零,∴d b c a b .∴成等比数列且公比为学习是一件增长知识的工作,在茫茫的学海中,或许我们困苦过,在艰难的竞争中,或许我们疲劳过,在失败的阴影中,或许我们失望过。
《等比数列》教学设计
![《等比数列》教学设计](https://img.taocdn.com/s3/m/7fe546eafab069dc5022019e.png)
《等比数列》教学设计一、教材分析:1、内容简析:本节主要内容是等比数列的概念及通项公式,它是继等差数列后有一个特殊数列,是研究数列的重要载体,与实际生活有密切的联系,如细胞分裂、银行贷款问题等都要用等比数列的知识来解决,在研究过程中体现了由特殊到一般的数学思想、函数思想和方程思想,在高考中占有重要地位。
2、教学目标确定:从知识结构来看,本节核心内容是等比数列的概念及通项公式,可从等比数列的“等比”的特点入手,结合具体的例子来学习等比数列的概念,同时,还要注意“比”的特性。
在学习等比数列的定义的基础上,导出等比数列的通项公式以及一些常用的性质(1)理解等比数列的概念,掌握等比数列的通项公式及公式的推导(2)在教学过程中渗透方程、函数、特殊到一般等数学思想,提高学生观察、归纳、猜想、证明等逻辑思维能力(3)通过对等比数列通项公式的推导,培养学生发现意识、创新意识念,掌握等比数列的性质(2)运用等比数列的定义及通项公式解决问题,增强学生的应用3、教学重点与难点:重点:等比数列的定义及通项公式难点:应用等比数列的定义及通项公式,解决相关简单问题二、学情分析:从整个中学数学教材体系安排分析,前面已安排了函数知识的学习,以及等差数列的有关知识的学习,但是对于国际象棋故事中的问题,学生还是不能解决,存在疑问。
本课正是由此入手来引发学生的认知冲突,产生求知的欲望。
而矛盾解决的关键依然依赖于学生原有的认知结构──在研究等差数列中用到的思想方法,于是从几个特殊的对应观察、分析、归纳、概括得出等比数列的定义及通项公式。
本节教学设计一方面遵循从特殊到一般的认知规律,另一方面也加强观察、分析、归纳、概括能力培养。
多数学生愿意积极参与,积极思考,表现自我。
所以教师可以把尽可能多的时间、空间让给学生,让学生在参与的过程中,学习的自信心和学习热情等个性心理品质得到很好的培养。
这也体现了教学工作中学生的主体作用。
三、教法选择与学法指导:由于等比数列与等差数列仅一字之差,在知识内容上是平行的,可用比较法来学习等比数列的相关知识。
等比数列教案(精选7篇)
![等比数列教案(精选7篇)](https://img.taocdn.com/s3/m/2a7ea4e60408763231126edb6f1aff00bed570a0.png)
等比数列教案等比数列教案什么是教案?教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。
等比数列教案(精选7篇)作为一名辛苦耕耘的教育工作者,很有必要精心设计一份教案,教案是教学活动的总的组织纲领和行动方案。
那么优秀的教案是什么样的呢?下面是小编为大家收集的等比数列教案(精选7篇),希望能够帮助到大家。
等比数列教案1教学目标1.理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题.(1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比中项的概念;(2)正确认识使用等比数列的表示法,能灵活运用通项公式求等比数列的首项、公比、项数及指定的项;(3)通过通项公式认识等比数列的性质,能解决某些实际问题.2.通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质.3.通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度.教材分析(1)知识结构等比数列是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用.(2)重点、难点分析教学重点是等比数列的定义和对通项公式的认识与应用,教学难点在于等比数列通项公式的推导和运用.①与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点.②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的推导是难点.③对等差数列、等比数列的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点.教学建议(1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用.(2)等比数列概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义.也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义.(3)根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解.(4)对比等差数列的表示法,由学生归纳等比数列的各种表示法. 启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象.(5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现.(6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用. 等比数列教案2教学目标1.通过教学使学生理解等比数列的概念,推导并掌握通项公式.2.使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力.3.培养学生勤于思考,实事求是的精神,及严谨的科学态度.教学重点,难点重点、难点是等比数列的定义的归纳及通项公式的推导.教学用具投影仪,多媒体软件,电脑.教学方法讨论、谈话法.教学过程一、提出问题给出以下几组数列,将它们分类,说出分类标准.(幻灯片)①-2,1,4,7,10,13,16,19,②8,16,32,64,128,256,③1,1,1,1,1,1,1,④-243,81,27,9,3,1,,,⑤31,29,27,25,23,21,19,⑥1,-1,1,-1,1,-1,1,-1,⑦1,-10,100,-1000,10000,-100000,⑧0,0,0,0,0,0,0,由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列).二、讲解新课请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数。
《等比数列》教学设计
![《等比数列》教学设计](https://img.taocdn.com/s3/m/283e1bde0342a8956bec0975f46527d3240ca66a.png)
《等比数列》教学设计第一篇:《等比数列》教学设计《等比数列》教学设计一、目的要求1.理解等比数列的概念。
2.掌握等比数列的通项公式,并会根据它进行有关计算。
二、内容分析1.等比数列与等差数列在内容上是完全平行的,包括定义、性质(等差还是等比)、通项公式、前n项和的公式、两个数的等差(等比)中项、两种数列在函数角度下的解释、具体问题里成等差(等比)数列的三个数的设法等。
因此在教学与复习时可用对比方法,以便于弄清它们之间的联系与区别。
这里指出,如果一个数列既是等差数列又是等比数列,其充要条件是它为非0的常数列。
事实上,由等比数列的定义可知这个数列是非0数列。
取这个数列中的任意连续3项,由题设知这个数列是非0的常数列。
2.数列的学习中,等差数列与等比数列是两种最重要的数列模型。
事实上,等差数列描述的是一种绝对均匀的变化,等比数列描述的是一种相对均匀的变化。
因为非均匀变化通常要转化或近似成均匀变化来进行研究,所以本章里重点研究等差数列和等比数列。
3.从函数的角度看,如果说等差数列可以与一次函数联系起来,那么等比数列则可以与指数函数联系起来。
事实上,由等比数列的通项公式可得,当q>0,且q≠1时,是一个指数函数,而上式则是一个不为0的常数与指数函数的积,因此等比数列{}的图象是函数的图象上的一些孤立点。
4.本课内容的重点是等比数列的概念及其通项公式。
与等差数列一样,在讲等比数列的概念时,关键是要讲清“等比”的意义,即数列中任一项与前一项的比是同一个常数。
等比数列的定义,是我们判断一个数列是否为等比数列的基本方法。
与等差数列一样,等比数列也具有一种对称性。
对于等差数列来说,与数列中任一项等距离的两项之和等于该项的2倍。
类似地,对于等比数列来说,与数列中任一项等距离的两项之积等于该项的平方。
利用上面的性质,常可使一些问题变得简便。
例如在具体问题里设成等差数列的3个数时,常设成a-d,a,a+d;三、教学过程1.提出教科书中的数列①、②、③,让学生观察其特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学设计案例一《等比数列(第课时)》教学设计提纲:.教学任务分析学情分析教材分析教材地位和作用教学任务和目标教学重点和难点.教材教法和学法分析教材的处理教材的教法和手段教材的学法教学基本流程.教学情境设计等比数列的定义通项公式的推导例题讲解总结与作业布置.板书设计.教学设计反思设计反思教学反思《等比数列(第课时)》.教学任务分析学情分析本节课的授课对象是我校学生,数学水平参差不齐,依赖性强,接受能力一般,灵活性不够。
因此本节课采用低起点,由浅到深,由易到难逐步推进,热情地启发学生的思维,让学生在欢愉的气氛中获取知识和运用知识的能力。
教材分析教材地位和作用所用的教材是人教版《必修》,教材通过日常生活中的实例,讲解等比数列的概念,特别地要体现它是一种特殊函数,通过列表,图像,通项公式来表达等比数列,把数列融于函数之中,体现了数列的本质和内涵。
等比数列的定义与通项不仅是本章的重点和难点,也是高中阶段培养学生逻辑推理的重要载体之一,为培养学生思维的灵活性和创造性打下坚实的基础。
同时本节课是在学生已经系统地学习了一种常用数列,即等差数列的概念、通项公式和前项和公式的基础上,开始学习另一种常用数列,即等比数列的相应知识,我认为本节教材对于进—步渗透数学思想,发展逻辑思维能力,提高学生的品质素养均有较好作用。
众所周知,数列是中学数学的重点内容之一,也是高考的考查重点之一,其中等差数列和等比数列尤为重要,有关数列的问题,大多数都是归结为这两种基本数列加以解决的:而且这两途中数列在实际问题中有着广泛的应用,这说要求教学中高度重视,并有新的突破,拓展和引深。
教学任务和目标教学任务分析:通过观察、归纳、猜想、类比等思维品质,正确理解等比数列的定义、等比数列通项公式。
以及具体的知识运用及实际应用。
本堂课内容的编者按:首先注意前后知识的区别与联系,加强对比和类比,展示等比数列概念的形成和和指数函数的对应等深化过程,使得后进生部有发言权,优生也不乏味,从而达到面向全体的目的,激发学生学习数学兴趣。
其次体会研究等比数列通项公式简单归纳方法:特殊→一般,重温数学家发现数学概念和数学公式的思维活动过程,沿着数学家寻求真理的足迹,再现与前人类似的创造过程。
教学目标:知识目标:理解并掌握等比数列的定义和通项公式,并加以初步应用。
能力目标:通过慨念、公式和例题的教学,渗透类比思想、方程思想、函数思想以及从特殊到—般等数学思想,着重培养学生观察、比较、概括、归纳、演绎等方面的思维能力,并进—步培养运算能力,分析问题和解决问题的能力,增强应用意识。
品质素养目标:在传授知识培养能力的同时,培养学生勇于探求,敢于创新的精神,同时帮助学生树立克服困难的信心,培养学生良好的学习习惯意志品质。
教学重点和难点教学重点:等比数列、等比中项的概念的形成与深化;等比数列通项公式的推导及应用。
教学难点是:等比数列概念深化:体现它是一种特殊函数,等比数列的判定、证明及初步应用。
.教材教法和学法分析教材的处理鉴于学生已基本上掌握数列概念,等差数列概念及通项公式(有利因素),但于由学生对教师,书本对于依赖,独立探索的信心和能力尚显不足(不利因素),故应稀释、放大、拉长等比数列概念的形成,展示深代过程和通项公式的推导过程,体现过程教学法。
讲完课本例、例,例,把等比中项的概念安排到第二课时教学。
本节着重体现等比数列概念形成的过程及通项公式的推导与运用。
教材的教法和手段教材教法:遵循“教为主导,学为主体,练为主线”的教育思想,我所采用的教学方法主要是启发引导探究法,并以讨论法,讲授法相佐。
具体表现为:教师边展示,边讲解,边提问;学生边观察,边思考,边回答,整堂课既要充分体现教师的主导作用,“导演”出一台引人入胜的“好戏”,更要最大限度地发挥学生的主体作用,使“演员” 能充分展示出自己的“表演才华” ,激发学生的兴趣;培养学生的学习热情,发挥学生的主动性和创造性。
教学手段充分利用电化教学手段,采用多媒体和投影仪,加大课堂容量,有效地利用时间,提高课堂教学质量,使教学过程更直观,更紧凑。
教材的学法其一,要使学生领会和初步熟悉研究数学概念的方法和探求数学概念的一般步骤:展直观,引入概念;抓本质,理解概念;挖内涵,掌握概念;破难点,强化概念;强训练,巩固概念;拓外延,深化概念。
其二,由于等比数列与等差数列在内容上是完全平行的,故应引导学生将它们对比起来学习,以构建起自己对这两种基本数列的正确理解。
教学基本流程创设情境,由实例引入等比数列自主探索等比数列的通项公式类比等差数列,探求通项公式的推广创设问题,指出与指数函数的关系分析实际问题,解决相应问题回顾终结,作业布置.教学情境设计意图:这节课我努力尝试将数学教学作为思维活动教学,在思路教学实践中采取三条途径:深钻教才,追踪数学家的思路;模拟发现,稚化教师的思路;激励探索,激活学生的思路。
使学生学得有情、有趣、有味。
具体教学过程分为复习引新、新课教学、练习反馈与总结提高三个阶段。
、复习引新问题问题设计意图师生互动、回答等差数列的定义温故而知新,承上启下师:提出问题,引导回忆、回答等差数列的通项公式生:思考并回答。
意图:在复习上节等差数列概念及其通项公式的基础上,紧接着让学生观察三个特殊数列,分析特点,通过类比得出等比数列概念,由此引入新课,这样既复习了前面知识,又对学生进行方法论教育,从而揭开了这堂课研究等比数列的序幕。
新课教学等比数列概念的教学具体分为六个环节㈠展直观,引入概念教师:观察数列:(),,,⋯⋯(),,,⋯⋯1 1 1(),,,,⋯⋯2 4 8引导学生归纳其共同特点:学生:发现从第项起,每一项与它前一项的比都等于同一个常数,分别、1、1。
5 2意图:从而很自然的引出等比数列的概念,这里应让学生自行给出等比数列的定义,它与等差炸毁列定义仅一个关键字之差。
教师:由学生讲,教师板书,写出等比数列的定义。
㈡抓本质,理解概念意图:在等比数列概念中特别要对学生指出:()等比数列实质上是“比相等”的数列,但公比是指后一项与它前一项的比值,而不是前一项与它后一项的比值。
()要正确理解常数的含义,这个常数是相对于项数而言的,也就是说这个常数与项数无关。
教师:举例:已知数列a n的通项公式 a n 3 2n8()计算az,a3,a4,a5a1a2a3a4()计算an1a n()这个数列是不是等比数列?()这个数列与什么函数类似?关系是什么?学生:第(),()的答案都是,()根据定义,该数列是等比数列。
()与指数函数相似,是函数 f ( x) 3 2x的图像上自变量从开始的自然数的一系列点。
8㈢挖内涵,掌握概念意图:对一个数学概念除了要充分地理解和搞清这个概念的引入,本质意义,定义式等基本要素外,还必须挖掘其更深的内涵,特别要澄清一些迷惑点和易错点。
教师:例:已知等比数列a n() a1能不能是零?()公比能不能是零。
意图:造成上述问题迷惑的根本原因是没有真正理解和掌握等比数列的概念。
所以在教学中,教师应综观教学过程全局,把握数学概念的本质,既要正面阐述,又要反面纠错,既要居高临下,还要明察秋毫,既要防漏,更要补缺,使学生切实掌握概念。
学生:经过思考,回答首项与公比均不能为零。
㈣破难点强化概念意图:等比数列的判定和证明是一个难点,因此,通过问题的训练和辨析可以突破难点。
教师:举例:数列3,3,,,⋯ 3 2n 3⋯是否为等比数列,如时是其公比其公比是多少?4 2若数列 a 的通项为 a n 3 2n3 ,求证 an是等比数列。
n学生:是等比数列,公比为1 ,依照定义证明:当 n 2时,a n 1 ,所以是等比数列。
2 a n 1 2㈤强训练,巩固概念意图:数学概念只有经过学生的一定练习,不断辨析,反复纠错,才能真正理解,领会、掌握和巩固。
教师:思考:判断—列哪些说法是正确的:() 如果—个公比为等比数列的各项均改为它本身的相反数,所得到的数列是否成等比数列? ()如果—个等比数列的各项均改为它本身的倒数,所得到的数列是否成等比数列?() 如果一个等比列的各项均改为它本身的平方,所得到的数列是否成等比数列?()如果把二个项数相同的公比不同分别为q1 , q2等比数列的对应项相乘,所得到的数列是否成等比数列 ?学生:()是,公比为()是,公比为1;()是,公比为 q 2;()是,公比为q1q2。
q㈥拓外廷·深化概念意图:许多数学慨念既有本质不同的一面,又有内在联系的一面。
既要挖掘某一概念的本身内涵,又要拓展概念的外延,对相近、相似、相关慨念采用找联系,抓区别的方法,进一步揭示概念的内涵,循序渐进,使概念掌握更加深化、精确、透切。
例如等差列、等比数列,是二个既有区别又有联系的数学概念。
通过问题的训练和辩析,可以达到等比数列等概念的进一步强化、深化、活化。
教师:思考题:()常数列是等比数列,对吗 ?()非零常数列既是等差列又是等比数列。
学生:()不对,常数为零的不是等比数列,非零常数列既是等差数列又是等比数列。
()对,公差为,公比为 .效果:这样使在教学中,重点突出,难点分散。
这里突出了方法论的教育,教师的主导作用也充分本现,同时使课堂上做到人人参与,个个争答,眼瞄齐用,气氛热烈,于是造成学生积极思维的气氛,形成—个有利于概念教学,启发思维的课堂情境,达到本课堂的第一次高潮。
等比数列通项公式的推导观察,归纳,猜想。
意图:通项公式是定义的自然延伸,老师及时引导并启发:在—个等比数列里,从第二项起,每一项与它的前一项的比都等于公式,所以每一项都等于它的前一项乘以公比。
让学生从首项起,写出,,⋯,让学生进行观察、归纳,猜想出等比数列的通项公式。
真正做到授之鱼不如授之以渔。
教师:如果一个等比数列的首项为,公比为,请写出这个数列的前项,且归纳出其通项公式。
学生:等比数列,,,⋯的公比为,那么a3a2q (a1q) a1q2a4a3 q (a1q2 ) a1q3,等比数列 a n的通项公式是 a n a1q n 1教师:以上的方法是不完全归纳法,证法是不严密的,只能适用于探究与猜想,不能作为证明的根据。
能否用严密的推理来论证呢?意图:刺激学生的求知欲。
演绎推理论证意图:这时教师要鼓励学生根据问题的起因和内部联系的条件,自由思考,大胆设想别的推导方法,例如,可引导学生围绕等比数列的基本概念,从等比数列的定义出发,运用各式相乘,来导出公式(演绎法),有时学生难以想到的路,教师可以为学生架座桥,当然也可以直接让学生完成。
教师:设,,⋯是公比为的等比数列,则由定义得:a2q ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()a1a3q ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()a2⋯⋯⋯⋯⋯a nq ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()a n 1问:结合求等差数列的通项公式的方法,如何求得等比数列的通项公式?学生:以上各式相乘得a n q n1,即 a n a1q n 1a1教师: ()问等比数列中任意两项a m , a n之间的关系式是什么?能否得到更一般的通项公式?意图:乘胜追击,直捣黄龙。