第2章平面连杆机构

合集下载

第2章 平面连杆机构

第2章 平面连杆机构

起重机 材料学院
受电弓
15
材料加工机械设计
2.3Байду номын сангаас铰链四杆机构的力学特性
2.3.1 铰链四杆机构曲柄存在条件 2.3.2 急回运动 2.3.3 压力角和传动角 2.3.4 死点位置
16
材料学院
材料加工机械设计
2.3.1 铰链四杆机构曲柄存在条件
通过对铰链四杆机构的三种基本形式的分析可以 看到,三种基本形式的区别在于有无曲柄和有几个曲 柄。观察铰链四杆机构四个杆相对长度对机构类型的 影响的动画,可以观察到,铰链四杆机构的三种基本 形式与机构中四个杆相对长度有关系。那么,铰链四 杆机构在什么情况下有曲柄呢?
个曲柄、两个曲柄或没有曲柄,还需根据取何杆
为机架来判断。
24
材料学院
材料加工机械设计
2.3.1 铰链四杆机构曲柄存在条件
观看动画
进入演示
25
材料学院
材料加工机械设计
2.3.2 急回运动
首先我们看一看曲柄摇杆机构急回特性 在曲柄摇杆机构,AB为曲柄是原动件等角速度转
动,BC为连杆,CD为摇杆,当CD杆处于C1D位置为 初始位置,C2D终止位置,摇杆在两极限位置之间所 夹角度称为, 摇杆的摆角,用 表示。当摇杆CD由C1D摆 动到C2D位置时,所需时间为t1,平均速度为
23
材料学院
材料加工机械设计
2.3.1 铰链四杆机构曲柄存在条件
如果铰链四杆机构中的最短杆与最长杆长度之
和大于其余两杆长度之和,则该机构中不可
能存在曲柄,无论取哪个构件作为机架,都只
能得到双摇杆机构。
由上述分析可知,最短杆和最长杆长度之和小
于或等于其余两杆长度之和是铰链四杆机构曲柄

第2章平面连杆机构

第2章平面连杆机构
2. 双曲柄机构 两连架杆都作整周转动的 铰链四杆机构称为双曲柄机 构
3. 双摇杆机构 两连架杆均为摇杆的铰链四 杆机构称为双摇杆机构。
6
铰链四杆机构基本类型的特性
曲柄摇杆机构
两个连架杆中,一个是曲柄,一个 是摇杆。通常曲柄主动,摇杆从动,但 也有摇杆主动的情况。应用例:牛头刨 床进给机构、雷达调整机构、缝纫机脚 踏机构、复摆式腭式破碎机、钢坯输送 机等。
满足: 最短杆为机架: 双曲柄机构
最短杆为连杆: 双摇杆机构
22
课堂练习
23
24
§2-2 铰链四杆机构的演变
一、曲柄滑块机构
图a 所示的曲柄摇杆机构中,C点的轨 迹位于半径为 的圆周上。显然,若将回转 副D直径增大,再将杆3作成圆环形,C点的 运动规律不变,但机构却演化为曲柄滑块机 构了。若进一步将导路的曲率半径增大趋于 ∞,则得到图c 所示的曲柄滑块机构。
11
行程速比系数K
急回特性常用行程速比系数K(摇杆反、正行程平均速度之 比)来度量。
如图所示,曲柄顺时针匀速转动,摇杆左右摆动(顺时针为 正行程,逆时针为反行程)。我们把摇杆处于两极限位置时 连杆对应位置所夹的锐角称为极位夹角,用θ表示。根据 行程速比系数的定义有:
c1c2
K v2 v1
t2
7
雷达调整机构和缝纫机脚踏机构
8
腭式破碎机
9
钢材输送机
四杆机构运动时,其连杆通常作平面复杂 运动,连杆上每一点的轨迹都是一条封闭的曲 线,我们称之为连杆曲线。图示步进式传送机 构就是连杆曲线的典型应用,当两个曲柄同步 转动时,与两个连杆相连的推杆5沿着红色的 卵形曲线平动,从而实现定时间隙地传送工件。
33
三、给定连架杆的三对对应位置

第二章 平面连杆机构

第二章 平面连杆机构
条件二:连架杆或机架中最少有一根是最短杆。
2.铰链四杆机构基本类型的判别准则
(1)满足条件一但不满足条件二的是双摇杆机构;
(2)满足条件一而且以最短杆作机架的是双曲柄机构;
(3)满足条件一而且最短杆为连架杆的是曲柄摇杆机构;
(4)不满足条件一是双摇杆机构。
【实训例2-1】 铰链四杆机构ABCD如图2-10所示。请根据基本类型判别准则,说明机构分别以AB、BC、CD、AD各杆为机架时属于何种机构。
四杆机构是否存在止点,取决于从动件是否与连杆共线。例如上述图2-20a)所示的曲柄摇杆机构,如果改摇杆主动为曲柄主动,则摇杆为从动件,因连杆BC与摇杆CD不存在共线的位置,故不存在止点。又例如前述图2-20b)所示的曲柄滑块机构,如果改曲柄为主动,就不存在止点。
(2)双曲柄机构。在铰链四杆机构中,两个连架杆均能做整周的运动,则该机构称为双曲柄机构。如图2-4所示惯性筛的工作机构原理,是双曲柄机构的应用实例。由于从动曲柄3与主动曲柄1的长度不同,故当主动曲柄1匀速回转一周时,从动曲柄3作变速回转一周,机构利用这一特点使筛子6作加速往复运动,提高了工作性能。当两曲柄的长度相等且平行布置时,成了平行双曲柄机构,如图2-5a)所示为正平行双曲柄机构,其特点是两曲柄转向相同和转速相等及连杆作平动,因而应用广泛。火车驱动轮联动机构利用了同向等速的特点;路灯检修车的载人升斗利用了平动的特点,如图2-6a、b)所示。如图2-5b)为逆平行双曲柄机构, 具有两曲柄反向不等速的特点,车 门的启闭机构利用了两曲柄反向转动的特点,如图2-6c)所示。
应该指出,滑块的运动轨迹不仅局限于圆弧和直线,还可以是任意曲线,甚至可以是多种曲线的组合,这就远远超出了铰链四杆机构简单演化的范畴,也使曲柄滑块机构的应用更加灵活、广泛。

02第二章 平面连杆机构

02第二章  平面连杆机构

第二章平面连杆机构及其设计【基本要求】1.了解平面四杆机构的基本型式,掌握其演化方法。

2.掌握平面四杆机构的工作特性。

3.了解连杆机构传动的特点及其功能。

4.掌握平面连杆机构运动分析的方法,学会将复杂的平面连杆机构的运动分析问题转化为可用计算机解决的问题。

5.了解平面连杆机构设计的基本问题,熟练掌握根据具体设计条件及实际需要,选择合适的机构型式和合理的设计方法,解决具体设计问题。

【重点难点】本章内容包括平面连杆机构和空间连杆机构两部分,其中平面连杆机构是本章的重点。

通过本章的学习,最终要求达到:根据实际需求,确定满足此需求的连杆机构类型,选择合适的设计方法设计出此连杆机构。

设计完成后需对所设计的连杆机构进行运动学和动力学分析,校验此机构是否实用,是否满足实际要求。

【学习内容】平面连杆机构是常用的低副机构,其中以由四个构件组成的四杆机构应用最广泛,而且是组成多杆机构的基础。

因此本章着重讨论四杆机构的基本类型、性质及常用设计方法。

2.1 铰链四杆机构的类型及应用2.2 铰链四杆机构的曲柄存在条件2.3 铰链四杆机构的演化2.4 平面四杆机构的基本特性2.5 平面四杆机构的设计平面连杆机构若各运动构件均在相互平行的平面内运动,则称为平面连杆机构。

空间连杆机构若各运动构件不都在相互平行的平面内运动,则称为空间连杆机构。

平面连杆机构较空间连杆机构应用更为广泛,故着重介绍平面连杆机构。

在平面连杆机构中,结构最简单的且应用最广泛的是由4个构件所组成的平面四杆机构,其它多杆机构可看成在此基础上依次增加杆组而组成。

●下面介绍平面四杆机构的基本型式及其演化。

铰链四杆机构所有运动副均为转动副的四杆机构称为铰链四杆机构。

它是平面四杆机构的基本型式。

2.1 铰链四杆机构的类型及应用2.1.1铰链四杆机构的类型由转动副联接四个构件而形成的机构,称为铰链四杆机构,奴图所示。

图中固定不动的构件AD是机架;与机架相连的构件AB、CD称为连架杆;不与机架直接相连的构件BC称为连杆。

机械设计基础第二章

机械设计基础第二章

第2章平面连杆机构2.1平面连杆机构的特点和应用连杆机构是由若干刚性构件用低副连接组成的机构,又称为低副机构。

在连杆机构中,若各运动构件均在相互平行的平面内运动,称为平面连杆机构;若各运动构件不都在相互平行的平面内运动,则称为空间连杆机构。

平面连杆机构被广泛应用在各类机械中,之所以广泛应用,是因为它有较显著的优点:(1)平面连杆机构中的运动副都是低副,其构件间为面接触,传动时压强较小,便于润滑,因而磨损较轻,可承受较大载荷。

(2)平面连杆机构中的运动副中的构件几何形状简单(圆柱面或平面),易于加工。

且构件间的接触是靠本身的几何约束来保持的,所以构件工作可靠。

(3)平面连杆机构中的连杆曲线丰富,改变各构件的相对长度,便可使从动件满足不同运动规律的要求。

另外可实现远距离传动。

平面连杆机构也存在一定的局限性,其主要缺点如下:(1)根据从动件所需要的运动规律或轨迹设计连杆机构比较复杂,精度不高。

(2)运动时产生的惯性力难以平衡,不适用于高速的场合。

(3)机构中具有较多的构件和运动副,则运动副的间隙和各构件的尺寸误差使机构存在累积误差,影响机构的运动精度,机械效率降低。

所以不能用于高速精密的场合。

平面连杆机构具有上述特点,所以广泛应用于机床、动力机械、工程机械等各种机械和仪表中。

如鹤式起重机传动机构(图2-1),摇头风扇传动机构(图2-2)以及缝纫机、颚式破碎机、拖拉机等机器设备中的传动、操纵机构等都采用连杆机构。

图2-1鹤式起重机图2-2 摇头风扇传动机构2.2平面连杆机构的类型及其演化2.2.1 平面四杆机构的基本形式全部用转动副组成的平面四杆机构称为铰链四杆机构,如图2-3所示。

机构的固定件4称为机架;与机架相联接的杆1和杆3称为连架杆;不与机架直接联接的杆2称为连杆。

能作整周转动的连架杆,称为曲柄。

仅能在某一角度摆动的连架杆,称为摇杆。

按照连架杆的运动形式,将铰链四杆机构分为三种基本型式:曲柄摇杆机构、双曲柄机构和双摇杆机构。

第2章平面连杆机构

第2章平面连杆机构

把铰销B扩大,使其包含A,这时曲柄演化为一几何中心不与回转中 心相重合的圆盘,此盘称为偏心轮,两中心间距称偏心距,等于曲柄之 长,这种机构称为偏心轮机构。 该结构可避免在较短的曲柄两端设两个转动副而引起的结构设计上 的困难, 且盘状构件在强度上比杆状高得多,所以多用于载荷较大或AB较短的 场合。 2、 转动副转化成移动副
例:设计一曲柄摇杆机构,已知摇杆长C及摆角ψ,行程速度变化 系数K。 步骤:①计算 ②按已知条件画C1D、C2D ③连C1C2作∠ C1C2P=90°— ∠ C2C1P=90° ④作C1.C2.P的外接园 ⑤延长C1D、C2D与园交于C1′、C2′ ⑥在或上任取一点即可作A ⑦ AC1=b-a θ。说明此为曲柄与连杆共线的两位置) AC2=b+a 而AD即为机架长度d 由上述知A是可任选的,∴有无数解,若另有其他辅助条件,加给 定d或min或给定a等,则A点便可确定了。 若为曲柄滑块机构:则可由e在园上定A。 若为摆动导杆机构:由 在ψ角平分线上由d→A→B 3、按给定两连架杆对应位置设计(解析法、实验法) 例已知两连架杆AB和CD对应位置 取坐标系如图示,各构件长度在x、y轴上投影,得如下关系式
连杆曲线,用缩放仪求出图谱中的曲线与要求轨迹的相差倍数,将机构 尺寸作相应缩放,从而求得所需的四杆机构尺寸。 这种方法可使设计过程大为简化,适合于工厂和设计单位使用。
几组机构错位安装。 则用死点:例飞机起落架机构 连杆与从动件CD位于一直线上,机构处于死点。机轮着地时产生的 巨大冲击力不致使从动件CD转动,从而保持支撑状态。 又例如机床夹具。见22页图2-6 对其他四杆机构应会用同样方法分析以上四个特性。
§2-4 平面四杆机构的设计
基本问题:按给定的运动条件————确定运动简图的尺寸参数。 给定运动规律(位置、速度、加速度) 已知条件 给定运动轨迹 图解法: 直观 设计方法 解折法: 精确 应根据已知条件和机构具体情况选用 某 实验法: 简便 某种方法 一、按给定的运动规律设计四杆机构 1、按给定的连杆位置设计四杆机构(找圆心法) 已知连杆长度b及两位置B1C1、B2C2,设计该铰链四杆机构(定A、 D点)分析铰链四杆机构ABCD知: B1、B2、B3……应位于园弧k A上 C1、C2、C3……就位于园弧 k c上 作B1B2、B2 B3垂直平分线A C1C2、C2C3垂直平分成D 当给定两个位置时,只能得B1B2、C1C2,分别作其垂直平分线b12、 C12 A点可在b12上任选一点 ∴有无数解 D点可在C12上任选一点 在多解的情况下,可添加一些辅助条件,如满足有曲柄,紧凑的尺 寸,较好的传动角,固定铰链的位置等,从中选取满足附加条件的机 构。(如要求A、D水平) 当给定连杆三个位置时: 作B1B2中垂线 交点为A 作B2 B3中垂线 有唯一解ABCD 作C1C2中垂线 交点为D 作C2C3中垂线 2、按给定的行程速度变化系数K设计(三点共园法)

机械设计基础(专科)第2章平面连杆机构

机械设计基础(专科)第2章平面连杆机构

缝纫机踏板机构动画
缝纫机动画(3D)
缝纫机跳线机构动画
缝纫机刺布机构动画(3D)
搅拌机动画
雷达天线俯仰机构动画
双曲柄机构动画
惯性筛动画
升降台动画(3D)
正平行四边形动画
机车车轮动画(3D)
机车车轮联动机构动画
反平行四边形动画
车门启闭机构动画
车门启闭动画(3D)
3、双摇杆机构:两个连架杆都是摇杆。
右图中的局部自由度 经上述处理后,则机构 自由度:
F 3n 2P P 3 2 2 2 1 1 L H
局部自由度动画
(3) 虚约束:
对机构运动实际上不起约束作用的约束 称为虚约束。 1)转动副轴线重合的虚约束
转动副轴线重合的虚约束动画
2)移动副导路平行的虚约束 当两构件在多处形成移动副,并且各 移动副的导路互相平行,则其中只有一个 移动副起实际的约束作用,而其余移动副 均为虚约束。
解:1)分析运动,确定构 件的类型和数量
进气阀3

2)确定运动副的类型和 数目
3)选择视图平面
活塞2
排气阀4
顶杆8
气缸体1
4)选取比例尺,根据机 连杆5 构运动尺寸,定出各运动副 间的相对位置 曲轴6
5)画出各运动副和机构 符号,并表示出各构件
齿轮10
凸轮7
内燃机的机构运动简图
内燃机凸轮动画
2.2.4
机构运动简图绘制 1.分析机械的结构和动作原理,确定构件 的数目。 2.分析构件间的相对运动,确定运动副的 数目和类型。 3.选定视图投影面及比例尺μL=实际尺寸/ 图上尺寸(m/mm),顺序确定转动副和移动 副导路的位置,根据原动件的位置及各杆 长等绘出各构件,得到机构运动简图。

第2章 平面连杆机构

第2章 平面连杆机构

第2章平面连杆机构平面连杆机构是由若干构件通过低副联接而成的平面机构,也称平面低副机构。

平面连杆机构广泛应用于各种机械和仪表中,其主要优点是:(1)由于运动副是低副,面接触,传力时压强小,磨损较轻,承载能力较高;(2)构件的形状简单,易于加工,构件之间的接触由构件本身的几何约束来保持,故工作可靠;(3)可实现多种运动形式及其转换,满足多种运动规律的要求;(4)利用平面连杆机构中的连杆可满足多种运动轨迹的要求。

主要缺点有:(1)由于低副中存在间隙,机构不可避免地存在着运动误差,精度不高,(2)主动构件匀速运动时,从动件通常为变速运动,故存在惯性力,不适用于高速场合。

平面机构常以其组成的构件(杆)数来命名,如由四个构件通过低副联接而成的机构称为四杆机构,而五杆或五杆以上的平面连杆机构称为多杆机构。

四个机构是平面连杆机构中最常见的形式,也是多杆机构的基础。

1.1 四杆机构的基本形式及其演化1.1.1 四杆机构的基本形式构件间的运动副均为转动副联接的四杆机构,是四杆机构的基本形式,称为铰链四杆机构,如图1-1所示。

由三个活动构件和一个固定构件(即机架)组成。

其中,AD杆是机架,与机架相对的杆(BC杆)称为连杆,与机架相联的构件(AB杆和CD杆)称为连架杆,能绕机架作360°回转的连架杆称为曲柄,只能在小图1-1于360°范围内摆动的连架杆称为摇杆。

根据两连架杆的运动形式的不同,铰链四杆机构可分为三种基本形式并以其连架杆的名称组合来命名。

(1)曲柄摇杆机构两连架杆中一个为曲柄另一个为摇杆的四杆机构,称为曲柄摇杆机构。

曲柄摇杆机构中,当以曲柄为原动件时,可将曲柄的匀速转动变为从动件的摆动。

如图1-2所示的雷达天线机构,当原动件曲柄1转动时,通过连杆2,使与摇杆3固结的抛物面天线作一定角度的摆动,以调整天线的俯仰角度。

图1-3为汽车前窗的刮雨器,当主动曲柄AB回转时,从动摇杆作往复摆动,利用摇杆的延长部分实现刮雨动作。

《机械设计基础》第2章_平面连杆机构解析

《机械设计基础》第2章_平面连杆机构解析
0 0
由上式可知,机构的急回程度取决于极位夹
角θ的大小。θ角越大,K值越大,机构的急回程
度也越高,但机构运动的平稳性就越差。反之反 然。 一般机械中1≤K≤2。
5.连杆机构具有急回特性的条件
⑴ 输入件等速整周转动;
⑵ 输出件往复运动;
⑶ 极位夹角
。 0
6.常见具有急回特性的四杆机构
二、平面连杆机构的特点及应用
1.平面连杆机构的特点
⑴寿命长 低副联接,接触表面为平面或圆柱面,
压力小;便于润滑,磨损较小。
⑵易于制造 连杆机构以杆件为主,结构简单。 ⑶可实现远距离操纵控制 因连杆易于作成较长
的构件。
⑷可实现比较复杂的运动规律 ⑸设计计算较繁复,当机构复杂时累计误差较大,
2、双曲柄机构
具有两个曲柄的铰链四杆机构。
⑴平行四边形机构:连杆与机架的长度相等,且曲
柄的转向相同长度也相等的双曲柄机构。 这种机构两曲柄的角速度始终保持相等,且连杆 始终做平动,故应用较广。
运动的不确定性
有辅助构件的重复机构
有辅助构件的错列机构
⑵逆平行四边形机构:连杆与机架的长度相等,两
含有两个移动副的四杆机构应用实例
2.3 平面四杆机构的基本特性
一、铰链四杆机构存在曲柄的条件
设 AB 为曲柄,
由 △BCD :
且 a <d .
b+c>f 、 b+f >c 、 c+f >b
以 fmax = a + d , fmin = d - a b+c >a+d 、 b+d >a+c 、 c+d >a+b 化简后得: a<b 、 a<c 、 a< d 若 d <a d<a、d<b、d<c 代入并整理得:

第二章 平面连杆机构

第二章 平面连杆机构
2.双曲柄机构 在铰链四杆机构中,两个连架杆都作为曲柄。 3.双摇杆机构 在铰链四杆机构中,两个连架杆都作为摇杆。
自卸载货汽车
机车主动轮联动 装置
(三)铰链四杆机构基本类型的判别
1.当a+d≤c+b时: a为最短杆;d为最长杆
B
b
C
c
D
a
A
与最短杆相邻的杆AD固定,此时为: 曲柄摇杆机构
2.已知四杆机构如图所示。四根杆的长度分别为LCD=500mm, LAD=240mm,LAB=600mm,LBC=400mm,试证明当取杆LAB 为机 架时有否曲柄存在?若分别以LBC和LAD为机架时各得到什么 机构?
4-2含有一个移动副的四杆机构
一、曲柄滑块机构 曲柄滑块机构是由曲柄摇杆机构演化而来的
其中AD、BC均为摇杆
26
3.已知在四杆机构中,机架长40mm,两连架杆长度分别 为18mm和45mm,则当连杆的长度在什么范围内,该 机构为曲柄摇杆机构?
分析:1.连杆的长度不可能是最短杆,否则的话为 双摇杆机构; 2.根据分析1确定18mm为最短杆;
3.说明连杆要么是最长杆,要么45mm的杆为最长杆;
应用:牛头刨床、往复式运输机等。都是为了提高生产效率, 将机构的工作行程安排在摇杆平均速度较低的行程,而将机 构的空回行程安排在摇杆平均速度较高的行程。
曲柄滑块机构: 当θ >0°时,偏置曲柄滑块机构可实现急 回运动。对心曲柄滑块机构。 由于θ =0° ,没有急回特 慢行程 C C 性。
1 1 2
2.死点位置
•对于曲柄摇杆机构,如以摇杆3为原动件,而曲柄1为从动件, •则当摇杆摆到极限位置C1D和C2D)时,连杆2与曲柄1共线。若 •不计各杆的质量,则这时连杆加给曲柄的力将通过铰链中心A。 •此力对A点不产生力矩,因此不能使曲柄转动。机构的这种位置 •称为死点位置。

0 第2章 (1-6) 平面连杆机构

0 第2章 (1-6) 平面连杆机构
增大从动件的质量、利用惯性度过死点位置
平面四杆机构的基本特性 3. 度过死点位置的方法
采用错位排列地方式顺利地通过死点位置
增大从动件的质量、利用惯性度过死点位置
平面多杆机构简介
前面我们学了基本机构 ,可以根据基本机构的功能, 进行组合以及机构的演化及变异原理创新设计出丰富多彩 的多杆机构。 1. 扩大从动件的行程 冷床运输机就是一个六 杆机构。它用于把热轧 钢料在运输过程中冷却, 因此要求增大行程,该 机构由曲柄摇杆机构 ABCD和杆EF、滑块6所 组成。显然滑块6的行程 S比曲柄摇杆机构ABCD 中C点的行程要大的多。
铰链四杆机构的基本形式及其演化
2. 取不同的构件为机架
当以不同的构件作为机 架时,将得到不同类型 的机构。
以构件1为机架时, 为曲柄滑块机构。
以构件2为机架时, 为回转导杆机构。
以构件3为机架时, 为摇块机构。
以构件4为机架时, 为移动导杆机构。
铰链四杆机构的基本形式及其演化 手摇唧筒
铰链四杆机构的基本形式及其演化
➢ 本章主要介绍平面四杆机构的类型及应用、特性、设 计方法。
铰链四杆机构的基本形式及其演化
一、四杆机构的基本型式
根据连架杆运动形式的不同,可分为三种基本形式:
1. 曲柄摇杆机构—在两连架杆中,一个为曲柄,另一个为
摇杆。
➢ 运动特点:
一般曲柄主动,将连 续转动转换为摇杆的 摆动,也可摇杆主动, 曲柄从动。
铰链四杆机构的基本形式及其演化 平行双曲柄机构
应用:应用于从动件需要和主动件保持同步的场合。 举例:机车车轮的联动机构
机车车轮联动机构
铰链四杆机构的基本形式及其演化 3. 双摇杆机构—两连杆架均为摇杆的四杆机构

第2章 平面连杆机构

第2章 平面连杆机构

曲 柄 摇 杆 机 构
急回特性 摇杆在空回行程中的平均速度大于工作行程的 平均速度的特性。 平均速度的特性。 行程速度变化系数K(或称行程速比系数) 行程速度变化系数 (或称行程速比系数) 从动件在空回行程中的平均速度与工作行程中 的平均速度之比值。 的平均速度之比值。
K −1 θ = 180 K +1
缝纫机踏板机构
2.双曲柄机构 双曲柄机构
具有两个曲柄的铰链四杆机构称为双曲柄机构。 具有两个曲柄的铰链四杆机构称为双曲柄机构。 两个曲柄的铰链四杆机构称为双曲柄机构
原动件: 原动件 匀速转动) 主动曲柄 (匀速转动 匀速转动 从动件: 从动件 变速转动) 从动曲柄 (变速转动 变速转动
应用实例: 应用实例
当以最短杆的相邻杆为机架时, 当以最短杆的相邻杆为机架时,必为曲柄摇 杆机构; 杆机构; 当以最短杆为机架时,必为双曲柄机构; 当以最短杆为机架时,必为双曲柄机构; 当以最短杆的对面杆为机架( 当以最短杆的对面杆为机架(最短杆为连 必为双摇杆机构。 杆) 时,必为双摇杆机构。
实验与思考
平面四杆机构的演化
死点
消除死点位置的不利影响的措施 安装飞轮,加大从动件惯性; 安装飞轮,加大从动件惯性; 采用错列机构。 采用错列机构。
飞 轮
错列机构
死点
死点位置的利用
飞机起落架机构
2.4 平面四杆机构的运动设计
两类基本问题 按给定从动件的运动规律设计四杆机构 按给定运动轨迹设计四杆机构 三种设计方法 图解法 实验法 解析法
曲柄移动导杆机构
双滑块机构
曲柄移动导杆机构(正弦机构) 曲柄移动导杆机构(正弦机构)的演化 (2)双滑块机构 (2)双滑块机构 应用实例
椭 圆 仪

第2章平面连杆机构教案(精选5篇)

第2章平面连杆机构教案(精选5篇)

第2章平面连杆机构教案(精选5篇)第一篇:第2章平面连杆机构教案第2章平面连杆机构平面连杆机构——由若干个构件通过平面低副(转动副和移动副)联接而构成的平面机构,也叫平面低副机构平面连杆机构具有承载能力大、结构简单、制造方便等优点,用它可以实现多种运动规律和运动轨迹,但只能近似地实现所要求的运动。

最简单的平面连杆机构由四个构件组成,简称平面四杆机构。

是组成多杆机构的基础只介绍四杆机构§2-1 平面四杆机构的基本类型及其应用一,铰链四杆机构铰链四杆机构——全部由回转副组成的平面四杆机构,它是平面四杆机构最基本的形态。

如图2-1a所示,铰链四杆机构由机架4、连架杆(与机架相连的 1、3两杆)和连杆(与机架不相联的中间杆2)组成。

如图所示曲柄——能绕机架上的转动副作整周回转的连架杆。

摇杆——只能在某一角度范围(小于360°)内摆动的连架杆。

铰链四杆机构按照连架杆是曲柄还是摇杆分为曲柄摇杆机构、双曲柄机构、双摇杆机构三种基本型式。

1、曲柄摇杆机构曲柄摇杆机构——两连架杆中一个是曲柄,一个是摇杆的铰链四杆机构。

当曲柄为原动件时,可将曲柄的连续转动,转变为摇杆的往复摆动。

应用:雷达调整机构2、双曲柄机构两连架杆均为曲柄的铰链四杆机构称为双曲柄机构。

当原动曲柄连续转动时,从动曲柄也作连续转动如图所示在双曲柄机构中,若其相对两杆相互平行如右图所示,则成为或平行四边形机构(平行双曲柄机构)。

如图所示当平行四边形机构的四个铰链中心处于同一条直线上时,将出现运动不确定状态,一般采用相同机构错位排列的方法,来消除这种运动不确定状态。

如图所示应用:在机车车轮联动机构中,则是利用第三个平行曲柄来消除平行四边形机构在这种死点位置的运动不确定性。

3、双摇杆机构两连架杆均为摇杆的铰链四杆机构称为双摇杆机构应用:飞机起落架通过用移动副取代转动副、变更杆件长度、变更机架和扩大转动副等途径,可以得到铰链四杆机构的其他演化型式二,含一个移动副的四杆机构 1,曲柄滑块机构通过将摇杆改变为滑块,摇杆长度增至无穷大,可得到曲柄滑块机构,如图所示对心曲柄滑块机构与偏置曲柄滑块机构曲柄滑块机构应用于活塞式内燃机2、导杆机构在图所示曲柄滑块机构中,若改取杆1为固定构件,即得导杆机构。

第2章 平面连杆机构

第2章 平面连杆机构

若组成平行四边形机构,则主、从动件转速 若组成平行四边形机构,则主、 时时相等,连杆作平动, 时时相等,连杆作平动,如机车车轮连动机构 )。再见 (见图2-11)。再见图3-11,在共线位置时, )。再见图 ,在共线位置时, 从动件可能发生变向转动,应设法避免。 从动件可能发生变向转动,应设法避免。 如图3-12,反平行四边形机构,原动件等速 ,反平行四边形机构, 转动,从动件反向变速转动。 转动,从动件反向变速转动。图3-13所示为窗 所示为窗 门启闭机构。 门启闭机构。
3. 几个特性
(1) 急回运动
见图3-5 ,曲柄为原动件,曲柄 曲柄为原动件, 见图 与连杆共线时, 与连杆共线时,摇杆处于两个 极限位置, 极限位置,Φ1>Φ2 ,但Ψ不变 Φ 但 V1=C1C2/t1 < V2= C1C2 /t2 摇杆急回,急回运动。 摇杆急回,急回运动。 行程速比系数: 行程速比系数: K=V2 / V1=t1 / t2= Φ1 /Φ2 Φ =(180°+θ) /(180°-θ) ° ° θ为极位夹角, 为极位夹角, 为极位夹角 θ=180º(K-1)/(K+1) =180º( =180º 缩短非生产时间( 缩短非生产时间(如牛头刨 ),根据 值设计四杆机构。 根据K值设计四杆机构 床),根据 值设计四杆机构。
(3) 双摇杆机构
若铰链四杆机构中的两连架杆均为摇杆, 若铰链四杆机构中的两连架杆均为摇杆, 则称为双摇杆机构, 则称为双摇杆机构,图3-14所示为鹤式起重 所示为鹤式起重 机机构。 机机构。 若两摇杆长度相等,则成为等腰梯形机 若两摇杆长度相等,则成为等腰梯形机 构,此机构两摇杆的摆角不等。图3-15所示 此机构两摇杆的摆角不等。 所示 为车辆前轮转向机构。 为车辆前轮转向机构。

第二章 平面连杆机构(基础)

第二章 平面连杆机构(基础)
连杆机构的缺点: 低副中存在间隙,数目较多的低副会引起运动 积累误差;而且它的设计比较复杂,不易精确 地实现复杂的运动规律。 最简单的平面连杆机构是由四个构件组成的,称为平面四杆 机构。它的应用非常广泛,而且是组成多杆机构的基础。
本章着重介绍平面四杆机构的基本类型、特性及其常用的设计方法。
铰链四杆机构:
1.压力角 不计摩擦时,作用在从动件上的驱动力F与该力作用点绝对速度Vc 之间所夹的锐角α称为压力角。 有效分力: Ft=Fcosα
即压力角α↓→有效分力Ft↑ 故压力角可作为判断机构传动性 能的标志。
1.压力角
2.传动角γ 压力角的余角γ (即连杆和从动摇杆之间所夹的锐角)。
因γ=90°-α,所以α↓→γ↑ 机构传力性能越好; 反之,α↑→γ↓,机构传力越费劲, 转动效率越低。 机构运转时,传动角γ是变化的,为了保证机构正常工作, 必须规定最小传动角γmin的下限。 一般机械:γmin≥40°;
§2-4 平面四杆机构的设计
一、按照给定的行程速度变化系数设计四杆机构 第三步:求曲柄转轴A的位置 (1)连接C1和C2,并作C1M垂直于C1C2。
(2)作∠ClC2N=90°-θ,C2N与C1M 相交于P点,由图可见,∠C1PC2=θ。
(3)作△PC1C2的外接圆,在此圆周(C1C2和GF除外)上任取一点A作 为曲柄的固定铰链中心。 连AC1和AC2,因同一圆弧的圆周角相等,故 ∠C1AC2=∠C1PC2=θ。
2.死点位置 对曲柄摇杆机构,以摇杆3为原动件, 曲柄1为从动件,则摇杆摆到极限位置 C1D和C2D时,连杆2与曲柄1共线。 若不计各杆的质量,则连杆加给曲柄 的力将过铰链中心A。此力对A点不产 生力矩,不能使曲柄转动。 机构的这种位置称为死点位置。

第二章平面连杆机构

第二章平面连杆机构

§2-1 平面四杆机构的基本类型
a曲柄摇杆机构 b双曲柄机构
c曲柄摇杆机构 d双摇杆机构
曲柄摇杆机构 平面四杆机构基本型式: 双曲柄机构
双摇杆机构
§2-1 平面四杆机构的基本类型
(一)曲柄摇杆机构(a、c图) 两连架杆中,一个为曲柄,而另一个为摇杆。
曲柄摇杆机构
例:牛头刨床横向进给机构1
§2-1 平面四杆机构的基本类型
回转式油泵
曲柄滑块泵
简易冲床
双滑块机构
摆动式油缸
刨床机构
§2-1 平面四杆机构的基本类型
一、铰链四杆机构基本类型
连接两连 架杆的杆
与机架相 连的杆
固定不动 的杆
曲柄—能绕机架整周回转的连架杆;
摇杆—只能在一定角度范围内绕机架摆动的连架杆;
周转副(整转副)—能作360 相对回转的运动副; 摆转副—只能作有限角度摆动的运动副。
搅拌器1
剖光机
刮雨器
C 2 3 B1 4 D A
缝纫机脚踏板机构1
飞剪
雷达调整机构
§2-1 平面四杆机构的基本类型
(二)双曲柄机构(b图)
两连架杆均为曲柄。
双曲柄机构
平行双曲柄机构
反平行四边形机构
§2-1 平面四杆机构的基本类型
例:旋转式水泵
机车驱动联动机构1 3
公共汽车车门启闭机构
惯性筛
§2-1 平面四杆机构的基本类型
四、死点
C1 F A C2 D
F B1 γ=0
B2
γ=0
曲柄摇杆机构中,以摇杆为原动件,摇杆处在 两极限位置时(当曲柄与连杆共线时),γ=0,这 时通过连杆传给从动件曲柄的力恰好通过其回转中 心,使机构出现“顶死”现象。该位置称死点位置。

第2章平面连杆机构

第2章平面连杆机构
M
B A C E
设计目标: 就是要确定一组 杆长参数, 使连杆上某点的 轨迹满足设计要求。
N
D
C B
A D
连杆曲线生成器
连杆曲线图谱
本章重点: 1.四杆机构的基本形式、演化及应用; 2.曲柄存在条件、传动角γ、压力角α、死点、 急回特性:极位夹角和行程速比系数等物理含 义,并熟练掌握其确定方法; 3.掌握按连杆二组位置、三组位置、行程速比 系数设计四杆机构的原理与方法。
φ=θ
D
3) 曲柄滑块机构 已知K,滑块行程H,偏 距e,设计此机构 。 ①计算: θ=180°(K-1)/(K+1); ②作C1 C2 =H
H C1
90°-θ 90°-θ
C2
A
E

e
o
③作射线C1O 使∠C2C1O=90°-θ, 作射线C2O使∠C1C2 O=90°-θ。 ④以O为圆心,C1O为半径作圆。 ⑤作偏距线e,交圆弧于A,即为所求。 ⑥以A为圆心,A C1为半径作弧交于E,得: l2 = A C2-EC2/ 2 l1 =EC2/ 2
∠C2C1P=90°-θ,交于P; ④作△P C1C2外接圆,A点必在此圆上。 ⑤选定A,设曲柄为l1 ,连杆为l2 ,则:
P A
E
θ φ θ D
90°-θ
A C1= l1+l2 ,A C2=l2- l1 => l1 =( A C1-A C2)/ 2
⑥以A为圆心,A C2为半径作弧交于E,得: l1 =EC1/ 2 l2 = A C1-EC1/ 2
A A
AB = CD BC = AD
B BB
CC
D D C C
A A
D D
耕地 耕地
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章 平面连杆机构
1、图示铰链四杆机构,已知:l BC =50mm ,l CD =35mm ,l AB =30mm ,AD 为机架,
(1)若此机构为曲柄摇杆机械,且AB 为曲柄,求l AB 的最大值:
(2)若此机构为双曲柄机构,求l AB 的范围;
(3)若此机构为双摇杆机构,求l AB 的范围。

2、图示两种曲柄滑块机构,若已知a =120mm ,b =600mm ,对心时e =0及偏置时e =120mm ,求此两机构的极位夹角θ及行程速比系数K 。

又在对心曲柄滑块机构中,若连杆BC 为二力杆件,则滑块的压力角将在什么范围内变化?
a ) (b)
题2图
3、 图示六杆机构,已知(单位mm ):l 1=20,l 2=53,l 3=35,l 4=40,l 5=20,l 6=60,试确定:
1)构件AB 能否整周回转?
2)滑块行程h ;
3)滑块的行程速度变化系数K ;
4)机构DEF 中的最大压力角αmax 。

4、 已知图示平面四杆机构的连杆和连架杆AB 的两组对应位置及固定铰链D 的位置,并l AB =25mm ,l AD =50mm ,试设计此平面四杆机构。

题1图
5、图示为一飞机起落架机构,实线为落下时的死点位置,虚线为收起的位置,已知l BC=520mm,l FE=340mm,且FE1在垂直位置(即α=90°);θ=10°,β=60°,试求l BD、l DE的长度。

题5图
6、设计一偏置曲柄滑块机构,已知滑块的行程速度变化系数K=1.5,滑块的冲程l C1C2=50mm,导路的偏距e=20mm,求曲柄长度l AB和连杆长度l BC。

题6图。

相关文档
最新文档