《三角函数的诱导公式》(第二课时) 教案

合集下载

高中数学 三角函数的诱导公式(第二课时)导学案 苏教版必修4高一

高中数学 三角函数的诱导公式(第二课时)导学案 苏教版必修4高一

3 ,则 x 的值为_____ 3
cot( ) sin(2 ) 1 _____ ,且 0 ,则 cos( ) tan 3 2
8.化简:
sin 2 (3 ) cos 2 ( ) sin(5 ) cos(3 ) _____ sin(5 ) cos(6 )
师生共用三角函数的诱导公式(第二课时)导学案
年级: 高一 学科: 课时及内容: 三角函数的诱导公式(第二课时) 学习目标:1.借助单位圆,推导出正弦、余弦第五、六组的诱导公式 2.能利用诱导公式求任意角的三角函数值,化简,三角恒等式的证明. 学习重难点:
一.课前准备 姓名

2
角的正弦、余弦诱导公式的推导
3 2
3 2
例 2 已知 sin( 班级

1 x) , 且 0 x ,求 sin( x) 的值. 4 5 2 4
三.当堂检测
1.已知 sin( ) 2.已知 sin
3 ,且 是第三象限的角,则 cos( 2 ) 的值是_____ 5
sin(a 2k ) _______ 公式一: cos(a 2k ) _______ tan(a 2k ) _______ sin( a) _____ 公式三: cos( a) _____ tan( a) _____
sin( a ) _______ 2 cos( a ) _______ 2

2
x) b tan( x) ,若 f (1) 3, 则 f (1) ______ .
5.已知 f ( x)
1 x .若 x ( , ) ,化简 f (cos x) f ( cos x). 2 1 x

三角函数的诱导公式2公开课教案

三角函数的诱导公式2公开课教案
例 1、已知 sin(3 ) 三、归纳小结:先请学生归纳,教师补充完整。
四、布置作业
tan(nπ+ )=tan
过程精简 自带符号 2.思考 2: 利用角 的三角函数值,你还能得到哪些角的三角的函数值?
公式五:
sin( ) cos 2 cos( ) sin 2 sin( ) cos 2 cos( ) sin 2
教 学 过 程
sin( ) sin cos( ) cos tan( ) tan
公式四:
sin( ) sin cos( ) cos tan( ) tan
它们的记忆口诀是:把 看成锐角,函数名不变,符号看象限。 作业讲评
公开课教案
授课教师: 授课课题 授课时间:2015 年月日 1.3 三角函数的诱导公式(2) 1、 通过对诱导公式一、二的统一,培养学生的观察力、分析归纳能力; 2、 经历诱导公式五、六的推导过程,体会数学知识的“发现”过程。能初 步应用公式解决一些简单的问题; 3、领会数学中转化思想的广泛性,了解诱导公式就是具有一定关系的几何 特征关系的代数表示,从而对诱导公式能够达到属性结合的认识高度。 诱导公式五、六的推导探究,诱导公式的应用 发现终边与角 的终边关于直线 y x 对称的角与 之间的数量关系 一、 回顾旧知 复习:我们已经学习了哪些诱导公式? 师引导学生一起回顾三角函数的诱导公式一到公式四,这几个公式分 别体现了角 与角 、 、 之间的关系: 公式一: 公式二: 公式三:
sin(2 k ) sin cos(2 k ) cos tan(2 k ) tan
授课班级:班

《诱导公式(二)》教案

《诱导公式(二)》教案

1.2.4诱导公式(二)一、学习目标1.通过本节内容的教学,使学生掌握α+π1)k +2(,α2π+角的正弦、余弦和正切的诱导公式及其探求思路,并能正确地运用这些公式进行任意角的正弦、余弦和正切值的求解、简单三角函数式的化简与三角恒等式的证明;2.通过公式的应用,培养学生的化归思想,以及信息加工能力、运算推理能力、分析问题和解决问题的能力;二、教学重点、难点重点:四组诱导公式及这四组诱导公式的综合运用.难点:公式(四)的推导和对称变换思想在学生学习过程中的渗透. 三、教学方法先由学生自己看书,在此基础上,可以通过讲授再现概念,通过练习理解概念,完成教学.+-=-=x x9017)cos(9017)sin17 480︒)+cos(-330︒)5.3.2同角三角比的关系(2)诱导公式【教学目标】1.通过本节课的教学,使学生掌握五组诱导公式的推导方法和记忆方法.2.在理解、记忆五组诱导公式的基础上,会运用这些公式求解任意角的三角函数的值,并会进行一般的三角关系式的化简和证明.3.加深理解化归思想,培养学生观察问题、解决问题、抽象概括问题的能力,并注意完善学生的基本数学思想和数学意识.【教学重点】五组诱导公式的记忆、理解、运用。

【教学难点】五组诱导公式的推导教学过程:【情景引入】与6π终边相同角α的集合如何表示?αsin 与6sin π具有怎样的数量关系?与β终边相同角α的集合如何表示?αsin 与βsin 具有怎样的数量关系?βα,其它的五个三角比数量关系又如何呢?【问题探究】诱导公式一:文字叙述:终边相同的角的同一个三角函数的值相等.sin(k·360°+α)=sinα,cos(k·360°+α)=cosα, tan(k·360°+α)=tanα,cot(k·360°+α)=cotα.(k ∈Z )试求出sin 2016°的值.由公式一:sin 2016°=sin(5×360°×216°)=sin 216° 问题二:如何求出进一步sin 216°的值诱导公式二:①同名函数关系;②符号规律:右边符号与180°+α角所在象限(第三象限)角的原三角函数值的符号相同. sin(180°+α)=-sinα, cos(180°+α)=-cosα,tan(180°+α)=tanα, cot(180°+α)=cot α.诱导公式三:①同名函数关系;②符号规律是:右边符号与-α所在的第四象限角的原三角函数值的符号相同.sin(-α)=-sinα,cos(-α)=cosα, tan(-α)=tanα, cot(-α)=-cotα.诱导公式四:sin(180)sin αα-=;cos(180)cos αα-=-. t sin(180)sin αα-=;cos(180)cos αα-=-(1)请学生自行仿上节课的推导方法得出它们的关系。

1.3 三角函数的诱导公式(二) 教案+习题

1.3 三角函数的诱导公式(二) 教案+习题

§1.3 三角函数的诱导公式(二)学习目标 1.掌握诱导公式五、六的推导(难点).2.能够应用三角函数的诱导公式解决简单的求值、化简与证明问题(重点).预习教材P26完成下面问题: 知识点 诱导公式五、六 1.诱导公式五、六2.公式五和公式六的语言概括(1)函数名称:π2±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值.(2)符号:函数值前面加上一个把α看成锐角时原函数值的符号.(3)作用:利用诱导公式五或六,可以实现正弦函数与余弦函数的相互转化. 【预习评价】 (正确的打“√”,错误的打“×”) (1)诱导公式五、六中的角α只能是锐角.( )(2)诱导公式五、六与诱导公式一~四的区别在于函数名称要改变.( ) (3)sin(k π2-α)=±cos α.( )提示 (1)×,诱导公式五、六中的角α是任意角. (2)√,由诱导公式一~六可知其正确.(3)×,当k =2时,sin(k π2-α)=sin(π-α)=sin α.题型一 利用诱导公式化简、求值【例1】 (1)已知cos ⎝⎛⎭⎫α+π6=35,π2≤α≤3π2,求sin ⎝⎛⎭⎫α+2π3的值; 解 ∵α+2π3=⎝⎛⎭⎫α+π6+π2,∴sin(α+2π3)=sin ⎣⎡⎦⎤⎝⎛⎭⎫α+π6+π2=cos ⎝⎛⎭⎫α+π6=35. (2)化简:sin (2π+α)cos (π-α)cos (π2-α)cos (7π2-α)cos (π-α)sin (3π-α)sin (-π+α)sin (5π2+α).解 原式=sin α·(-cos α)·sin α·(-sin α)(-cos α)·sin α·(-sin α)·cos α=tan α.规律方法 求值问题中角的转化方法 任意负角的三角函数――→用公式一或三任意正角的三角函数――→用公式一0~2π的角的三角函数――→用公式二或四、或五或六锐角三角函数【训练1】 已知cos(π6-α)=23,求下列各式的值:(1)sin(π3+α);(2)sin(α-2π3).解 (1)sin(π3+α)=sin[π2-(π6-α)]=cos(π6-α)=23.(2)sin(α-2π3)=sin[-π2-(π6-α)]=-sin[π2+(π6-α)] =-cos(π6-α)=-23.题型二 利用诱导公式证明恒等式【例2】 求证:tan (2π-α)sin (-2π-α)cos (6π-α)sin ⎝⎛⎭⎫α+3π2cos ⎝⎛⎭⎫α+3π2=-tan α.证明 左边=tan (-α)·sin (-α)·cos (-α)sin ⎣⎡⎦⎤2π-⎝⎛⎭⎫π2-α·cos ⎣⎡⎦⎤2π-⎝⎛⎭⎫π2-α=(-tan α)·(-sin α)·cos αsin ⎣⎡⎦⎤-⎝⎛⎭⎫π2-αcos ⎣⎡⎦⎤-⎝⎛⎭⎫π2-α=sin 2α-sin ⎝⎛⎭⎫π2-αcos ⎝⎛⎭⎫π2-α=sin 2α-cos α·sin α=-sin αcos α=-tan α=右边.∴原等式成立.规律方法 证明等式的常用方法利用诱导公式证明等式问题,关键在于公式的灵活应用,其证明的常用方法有: (1)从一边开始,使得它等于另一边,一般由繁到简. (2)左右归一法:即证明左右两边都等于同一个式子.(3)针对题设与结论间的差异,有针对性地进行变形,以消除差异. 【训练2】 求证:2sin ⎝⎛⎭⎫θ-3π2cos ⎝⎛⎭⎫θ+π2-11-2sin 2(π+θ)=tan (9π+θ)+1tan (π+θ)-1. 证明 左边=-2sin ⎝⎛⎭⎫3π2-θ·(-sin θ)-11-2sin 2θ=2sin ⎣⎡⎦⎤π+⎝⎛⎭⎫π2-θsin θ-11-2sin 2θ=-2sin ⎝⎛⎭⎫π2-θsin θ-11-2sin 2θ=-2cos θsin θ-1cos 2θ+sin 2θ-2sin 2θ =(sin θ+cos θ)2sin 2θ-cos 2θ=sin θ+cos θsin θ-cos θ. 右边=tan θ+1tan θ-1=sin θ+cos θsin θ-cos θ.∴左边=右边,故原等式成立.【例3】 已知cos α=-45,且α为第三象限角.(1)求sin α的值;(2)求f (α)=tan (π-α)·sin (π-α)·sin (π2-α)cos (π+α)的值.解 (1)因为α为第三象限角,所以sin α=-1-cos 2α=-35.(2)f (α)=(-tan α)·sin α·cos α-cos α=tan α·sin α=sin αcos α·sin α =sin 2αcos α=(-35)2×(-54)=-920. 【迁移1】 本例条件不变,求f (α) =sin (5π-α)cos (7π2-α)tan (-π+α)-tan (-19π-α)sin (-α)的值.解 f (α)=sin α·(-sin α)·tan αtan α·(-sin α)=sin α=-35.【迁移2】 本例条件中“cos α=-45”改为“α的终边与单位圆交于点P (m ,154)”,“第三象限”改为“第二象限”,试求sin (α-π2)sin (π+α)-sin (3π2-α)+1的值.解 由题意知m 2+(154)2=1, 解得m 2=116,因为α为第二象限角,故m <0, 所以m =-14,所以sin α=154,cos α=-14. 原式=-cos α(-sin α)-(-cos α)+1=14-154-14+1=-3+156.规律方法 用诱导公式化简求值的方法(1)对于三角函数式的化简求值问题,一般遵循诱导公式先行的原则,即先用诱导公式化简变形,达到角的统一,再进行切化弦,以保证三角函数名最少.(2)对于π±α和π2±α这两套诱导公式,切记运用前一套公式不变名,而运用后一套公式必须变名.课堂达标1.sin 165°等于( ) A .-sin 15° B .cos 15° C .sin 75°D .cos 75°解析 sin 165°=sin(90°+75°)=cos 75°. 答案 D2.已知sin(α+π4)=13,则cos(π4-α)的值为( )A .223B .-223C .13D .-13解析 cos(π4-α)=cos[π2-(α+π4)]=sin(α+π4)=13.答案 C3.代数式sin 2(A +45°)+sin 2(A -45°)的化简结果是________. 解析 原式=sin 2(A +45°)+sin 2(45°-A ) =sin 2(A +45°)+cos 2(A +45°)=1. 答案 14.若cos α=15,且α是第四象限角,则cos(α+5π2)=________.解析 由题意得sin α=-1-cos 2α=-265,所以cos(α+5π2)=-sin α=265.答案2655.已知sin(5π-θ)+sin ⎝⎛⎭⎫52π-θ=72,求sin 4⎝⎛⎭⎫π2-θ+cos 4⎝⎛⎭⎫32π+θ的值. 解 ∵sin(5π-θ)+sin ⎝⎛⎭⎫52π-θ =sin(π-θ)+sin ⎝⎛⎭⎫π2-θ =sin θ+cos θ=72,∴sin θcos θ=12[(sin θ+cos θ)2-1]=12⎣⎡⎦⎤⎝⎛⎭⎫722-1=38, ∴sin 4⎝⎛⎭⎫π2-θ+cos 4⎝⎛⎭⎫32π+θ=cos 4θ+sin 4θ =(sin 2θ+cos 2θ)2-2sin 2θcos 2θ =1-2×⎝⎛⎭⎫382=2332.课堂小结1.学习了本节知识后,连同前面的诱导公式可以统一概括为“k ·π2±α(k ∈Z )”的诱导公式.当k 为偶数时,得α的同名函数值;当k 为奇数时,得α的异名函数值,然后前面加一个把α看成锐角时原函数值的符号.2.诱导公式反映了各种不同形式的角的三角函数之间的相互关系,并具有一定的规律性,“奇变偶不变,符号看象限”,是记住这些公式的有效方法.3.诱导公式是三角变换的基本公式,其中角α可以是一个单角,也可以是一个复角,应用时要注意整体把握、灵活变通.基础过关1.已知sin α=14,则cos(α+π2)=( )A .14B .-14C .154D .-154解析 cos(α+π2)=-sin α=-14.答案 B2.若sin(180°+α)+cos(90°+α)=-a ,则cos(270°-α)+2sin(360°-α)的值是( ) A .-23aB .-32aC .23aD .32a解析 由条件得-sin α-sin α=-a ,故sin α=a2,原式=-sin α-2sin α=-3sin α=-32a .答案 B3.已知cos(π2+φ)=32,且|φ|<π2,则tan φ等于( )A .-33B .33C .- 3D . 3解析 由cos(π2+φ)=-sin φ=32,得sin φ=-32,又∵|φ|<π2,∴φ=-π3,∴tan φ=-3.答案 C4.若sin(α+π12)=13,则cos(α+7π12)=________.解析 cos(α+7π12)=cos[π2+(α+π12)]=-sin(α+π12)=-13.答案 -135.化简sin ⎝⎛⎭⎫15π2+αcos ⎝⎛⎭⎫α-π2sin ⎝⎛⎭⎫9π2-αcos ⎝⎛⎭⎫3π2+α=________.解析 原式=sin (32π+α)·cos (π2-α)sin (π2-α)sin α=(-cos α)·sin αcos α·sin α=-1.答案 -16.已知sin α是方程5x 2-7x -6=0的根,且α为第三象限角,求 sin ⎝⎛⎭⎫α+3π2·sin ⎝⎛⎭⎫3π2-α·tan 2(2π-α)·tan (π-α)cos ⎝⎛⎭⎫π2-α·cos ⎝⎛⎭⎫π2+α的值.解 因为5x 2-7x -6=0的两根为x =2或x =-35,所以sin α=-35,又因为α为第三象限角,所以cos α=-1-sin 2α=-45.所以tan α=34.故原式=(-cos α)·(-cos α)·tan 2α·(-tan α)sin α·(-sin α)=tan α=34.7.设tan ⎝⎛⎭⎫α+8π7=m . 求证:sin ⎝⎛⎭⎫α+15π7+3cos ⎝⎛⎭⎫α-13π7sin ⎝⎛⎭⎫-α+20π7-cos ⎝⎛⎭⎫α+22π7=m +3m +1.证明 左边=sin ⎣⎡⎦⎤π+⎝⎛⎭⎫α+8π7+3cos ⎣⎡⎦⎤⎝⎛⎭⎫α+8π7-3πsin ⎣⎡⎦⎤4π-⎝⎛⎭⎫α+8π7-cos ⎣⎡⎦⎤2π+⎝⎛⎭⎫α+8π7=-sin ⎝⎛⎭⎫α+8π7-3cos ⎝⎛⎭⎫α+8π7-sin ⎝⎛⎭⎫α+8π7-cos ⎝⎛⎭⎫α+8π7=tan ⎝⎛⎭⎫α+8π7+3tan ⎝⎛⎭⎫α+8π7+1=m +3m +1=右边. ∴原等式成立.能力提升8.若f (sin x )=3-cos 2x ,则f (cos x )等于( ) A .3-cos 2x B .3-sin 2x C .3+cos 2xD .3+sin 2x解析 f (cos x )=f (sin(π2-x ))=3-cos 2(π2-x )=3-cos(π-2x )=3+cos 2x .答案 C9.α为锐角,2tan(π-α)-3cos ⎝⎛⎭⎫π2+β=-5,tan(π+α)+6sin(π+β)=1,则sin α=( ) A .355B .377C .31010D .13解析 由条件可知-2tan α+3sin β=-5①,tan α-6sin β=1②, ①式×2+②式可得tan α=3, 即sin α=3cos α,又sin 2α+cos 2α=1,α为锐角, 故可解得sin α=31010.答案 C10.已知tan(3π+α)=2,则sin (α-3π)+cos (π-α)+sin (π2-α)-2cos (π2+α)-sin (-α)+cos (π+α)=________.解析 ∵tan(3π+α)=2,∴tan α=2, ∴原式=sin αsin α-cos α=tan αtan α-1=22-1=2. 答案 211.定义:角θ与φ都是任意角,若满足θ+φ=90°,则称θ与φ“广义互余”.已知sin(π+α)=-14,下列角β中,可能与角α“广义互余”的是________(填上所有符合的序号).①sin β=154;②cos(π+β)=14;③tan β=15; ④tan β=155. 解析 ∵sin(π+α)=-sin α, ∴sin α=14,若α+β=90°,则β=90°-α,故sin β=sin(90°-α)=cos α=±154,故①满足; ③中tan β=15,即sin β=15cos β,又sin 2β+cos 2β=1,故sin β=±154,即③满足,而②④不满足. 答案 ①③12.是否存在角α,β,α∈⎝⎛⎭⎫-π2,π2,β∈(0,π),使等式 ⎩⎪⎨⎪⎧sin (3π-α)=2cos ⎝⎛⎭⎫π2-β,3cos (-α)=-2cos (π+β)同时成立.若存在,求出α,β的值;若不存在,说明理由.解 由条件,得⎩⎪⎨⎪⎧sin α=2sin β, ①3cos α=2cos β. ②①2+②2,得sin 2α+3cos 2α=2, ③ 又因为sin 2α+cos 2α=1,④由③④得sin 2α=12,即sin α=±22,因为α∈⎝⎛⎭⎫-π2,π2,所以α=π4或α=-π4. 当α=π4时,代入②得cos β=32,又β∈(0,π),所以β=π6,代入①可知符合.当α=-π4时,代入②得cos β=32,又β∈(0,π),所以β=π6,代入①可知不符合.综上所述,存在α=π4,β=π6满足条件.13.(选做题)已知sin ⎝⎛⎭⎫-π2-α·cos ⎝⎛⎭⎫-5π2-α=60169,且π4<α<π2,求sin α与cos α的值. 解 sin ⎝⎛⎭⎫-π2-α=-cos α, cos ⎝⎛⎭⎫-5π2-α=cos ⎝⎛⎭⎫2π+π2+α=-sin α. ∴sin α·cos α=60169,即2sin α·cos α=120169.① 又∵sin 2α+cos 2α=1,②①+②得(sin α+cos α)2=289169,②-①得(sin α-cos α)2=49169.又∵α∈⎝⎛⎭⎫π4,π2,∴sin α>cos α>0, 即sin α+cos α>0,sin α-cos α>0, ∴sin α+cos α=1713,③ sin α-cos α=713,④③+④得sin α=1213,③-④得cos α=513.。

1.3三角函数的诱导公式(二)

1.3三角函数的诱导公式(二)

课 题:1.3正弦、余弦的诱导公式(二)教学目的:学会关于90︒ k ± α两套诱导公式,并能应用,进行简单的三角函数式的化简及论证。

教学重点:诱导公式教学难点:诱导公式的灵活应用授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、讲解新课:诱导公式5:(课件1.3.7)sin(90︒ -α) = cos α, cos(90︒ -α) = sin α.tan(90︒ -α) = cot α, cot(90︒ -α) = tan α. sec(90︒ -α) = csc α, csc(90︒ -α) = sec α诱导公式6:(课件1.3.8) sin(90︒ +α) = cos α, cos(90︒ +α) = -sin α.tan(90︒ +α) = -cot α, cot(90︒ +α) = -tan α. sec(90︒ +α) = -csc α, csc(90︒+α) = sec α如图所示 sin(90︒ +α) = M’P’ = OM = cos αcos(90︒ +α) = OM’ = PM = -MP = -sin α或由6式:sin(90︒ +α) = sin[180︒- (90︒ -α)] = sin(90︒ -α) = cos αcos(90︒ +α) = cos[180︒- (90︒ -α)] = -sin(90︒ -α) = -cos α二、讲解范例: 例1)2cos()5cos()2sin()4sin()cot()2tan()23cos()2sin(απαπαπαπαπαπαπαπ+-+--=+-+---+k k k 求证: 证:α-ααα=α+α-α+α=sin cos cos sin cot tan sin cos 左边 α-ααα=α+α-αα-=s i n c o s c o s s i n s i n c o s c o s s i n 右边 左边 = 右边 ∴等式成立例2的值。

1.3 三角函数的诱导公式(第2课时) 精品教案

1.3 三角函数的诱导公式(第2课时) 精品教案

1.1.1 诱导公式(二)
【课题】:诱导公式(二) 【教学三维目标】: 一、知识与技能 1、借助单位圆推导诱导公式,特别是学习从单位圆的对称性鱼任意角终边的对称性中发现问题(任意角α的三角函数值与
2
π
α-,
2
π
α+等三角函数值之间有内在联系),提出研究方法(利用坐标的对称性,从
三角函数定义得出相应的关系式);
2、能正确运用诱导公式求任意角的三角函数值,以及进行简单三角函数式的化简与恒等式证明,并从中体会未知到已知、复杂到简单的转化过程; 二、过程与方法
1、理解诱导公式的推导方法;
2、掌握诱导公式并运用之进行三角函数式的求值、化简以及简单三角恒等式的证明;
3、培养学生化归、转化的能力; 三、情感态度与价值观
通过诱导公式的应用,使学生认识到转化“矛盾”是解决问题的一条行之有效的途径. 【教学重点】:诱导公式的探究,运用诱导公式进行求值、化简、证明,提高数学内部联系的认识. 【教学难点】:发现圆的几何性质(特别是对称性)与三角函数性质的联系,特别是直角坐标系内关于直线y x =对称的点得性质与(
2
π
α±)的诱导公式的关系。

【课前准备】:三角板、圆规、多媒体. 【教学过程设计】:
2
π。

1.3.2 三角函数的诱导公式(二)教案

1.3.2 三角函数的诱导公式(二)教案

湖 南 省 娄 底 市 双 峰 县 第 五 中 学 集 体 备 课 教 案高 一 年 级 数 学 组- 1 -教学环节设计 知识点解析、师生互动 教学后记课题:1.3.2 三角函数的诱导公式(二) 教学目标:1.进一步理解和掌握六组正弦、余弦和正切的诱导公式,并能正确地运用这些公式进行任意角的正弦、余弦和正切值的求解、简单三角函数式的化简与三角恒等式的证明;2.通过公式的应用,培养学生的化归思想,运算推理能力、分析问题和解决问题的能力.教学重点:诱导公式及诱导公式的综合运用.教学难点:公式的推导和对称变换思想在学生学习过程中的渗透. 教学过程:(导入→自学→展示→探讨→展示→讲解点拨→评价小结→练习总结) 一、导入新课 角2π-α与角α终边之间有怎样的对称关系,能否从任意角三角函数的定义出发利用这一对称关系探求角2π-α与角α的三角函数值之间的关系呢? 二、自主学习 自学任务:课本P26—P27,独立完成导学案。

三、展示评价 (学生展示导学案答案、教师评价解析) 四、小组探讨 (分组讨论、解答探究案) 五、展示评价 (分组展示探究案答案、教师评价解析) 六、课堂小结 七、检测反馈 (学生独立完成练习案、教师巡查点拨) 一、导学案答案解析二、探究案答案解析例1 13. 例2 略例3 5716. 三、检测案答案解析1.A 2.A 3.C 4.C 5.-13 6.892 7.2 8.解 原式=-cos θcos θ(-cos θ-1)+cos θ-cos θ·cos θ+cos θ =1cos θ+1+11-cos θ=21-cos 2θ=2sin 2θ. ∵sin θ=33,∴原式=6. 9.解 由条件,得⎩⎨⎧ sin α=2sin β,3cos α=2cos β.①② ①2+②2,得sin 2α+3cos 2α=2,③ 又因为sin 2α+cos 2α=1,④由③④得sin 2α=12,即sin α=±22, 因为α∈⎝⎛⎭⎫-π2,π2,所以α=π4或α=-π4. 当α=π4时,代入②得cos β=32,又β∈(0,π),所以β=π6,代入①可知符合. 当α=-π4时,代入②得cos β=32,又β∈(0,π),所以β=π6,代入①可知不符合. 综上所述,存在α=π4,β=π6满足条件.。

《1.2.3三角函数的诱导公式二》教学案

《1.2.3三角函数的诱导公式二》教学案

《1.2.3三角函数的诱导公式(二)》教学案●三维目标1.知识与技能(1)能够推导公式五、六.(2)能够应用公式五、六解决一些三角函数求值、化简和证明问题.2.过程与方法(1)借助于单位圆,利用对称性,推导公式五、六.(2)观察公式五、六的结构特征,统一为“函数名改变,符号看象限”.(3)特别注意公式的使用中,三角函数值的符号变化问题.3.情感、态度与价值观用联系的观点,发现并证明诱导公式,体会把未知问题化归为已知问题的数学思想方法.●重点难点重点:诱导公式五、六的推导.难点:灵活运用诱导公式进行化简、求值、证明.教学方案设计●教学建议关于诱导公式五、六的教学,建议教师注重公式的推导过程,特别突出关于直线y=x对称的两点的坐标关系,这是理解和记忆公式的关键.另外要向学生讲清这组公式与诱导公式一、二、三、四的区别,利用适当的训练题加以巩固这几组诱导公式的关系及应用.●教学流程创设问题情境,引导学生推导出诱导公式五、六.⇒引导学生探究诱导公式五、六的特征以及与诱导公式一~四的区别,并总结诱导公式五、六的记忆口诀“函数名改变,符号看象限”.⇒通过例1及其互动探究,使学生掌握利用诱导公式五、六解决给值求值问题的方法.⇒通过完成例2及其变式训练,使学生掌握利用诱导公式解决化简求值问题的方法.⇒完成例3及其变式训练,总结利用诱导公式证明三角恒等式的方法.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.课前自主导学【问题导思】 若α为锐角,sin (π2-α)与cos α,cos (π2-α)与sin α有何关系? 【提示】 sin (π2-α)=cos α,cos (π2-α)=sin α. 终边关于直线y =x 对称的角的诱导公式(公式五) sin (π2-α)=cos _α;cos (π2-α)=sin _α.【问题导思】 利用公式二和公式五,能否确定sin (π2+α)与cos α,cos (π2+α)与sin α的关系?【提示】 sin (π2+α)=sin [π2-(-α)]=cos (-α)=cos α,cos (π2+α)=cos [π2-(-α)]=sin (-α)=-sin α.π2+α型诱导公式(公式六) sin (π2+α)=cos _α; cos (π2+α)=-sin _α. 当堂双基达标例1 (1)已知sin (π+A)=-12,则cos (32π-A)的值是________. (2)已知sin (π3-α)=12,则cos (π6+α)的值是________.【思路探究】 (1)先化简sin (π+A)=-12得sin A =12,再利用诱导公式化简cos (3π2-A)即可.(2)探索已知角π3-α与π6+α之间的关系,根据诱导公式将cos (π6+α)化为π3-α的三角函数求解.【自主解答】 (1)sin (π+A)=-sin A =-12,∴sin A =12,cos (3π2-A)=cos (π+π2-A)=-cos (π2-A)=-sin A =-12. (2)∵(π3-α)+(π6+α)=π2, ∴π6+α=π2-(π3-α),∴cos (π6+α)=cos [π2-(π3-α)]=sin (π3-α)=12. 【答案】 (1)-12 (2)12 规律方法1.给值求值型问题,若已知条件或待求式较复杂,有必要根据诱导公式化到最简,再确定相关的值.2.巧用相关角的关系会简化解题过程.常见的互余关系有π3-α,π6+α;π3+α,π6-α;π4+α,π4-α等.常见的互补关系有π3+θ,2π3-θ;π4+θ,3π4-θ等. 互动探究若本例(2)中条件不变,如何求cos (56π-α)的值? 【解】 ∵(5π6-α)-(π3-α)=π2, ∴5π6-α=π2+(π3-α),∵cos (5π6-α)=cos [π2+(π3-α)]=-sin (π3-α)=-12.化简问题例2 化简: sin3π2-α·cos 3π-α·tan π-αcos -α-π·cos α-π2. 【思路探究】 解决本题的关键是熟练地应用三角函数诱导公式. 【自主解答】 原式=sin[π+π2-α]·cos π-α·-tan αcos π+αcos π2-α =-sin π2-α·-cos α·-tan α-cos α·sin α =-cos 2α·tan α-cos α·sin α=cos α·sin αcos αsin α=1. 规律方法用诱导公式化简求值的方法:(1)对于三角函数式的化简求值问题,一般遵循诱导公式先行的原则,即先用诱导公式化简变形,达到角的统一,再进行切化弦,以保证三角函数名最少.(2)对于kπ±α和π2±α这两套诱导公式,切记运用前一套公式不变名,而后一套公式必须变名. 变式训练 化简:sin θ-5πcos -π2-θcos 8π-θsin θ-3π2sin -θ-4π. 【解】 原式=sin[-6π+π+θ]cos[-π2+θ]cos -θsin[-2π+π2+θ]sin -θ =sin π+θcos π2+θcos θsin π2+θ-sin θ =-sin θ-sin θcos θcos θ-sin θ=-sin θ.证明三角恒等式例3 求证:2sin θ-32πcos θ+π2-11-2sin 2θ= tan 9π+θ+1tan π+θ-1.【思路探究】 考虑到等式左、右两边形式都很复杂,可以使用左右归一法证明,即证明等式的左、右两边都等于同一个式子.【自主解答】 左边=2sin[-32π-θ]cos π2+θ-11-2sin 2θ =-2cos θ·sin θ-11-2sin 2θ=1+2sin θcos θ2sin 2θ-sin 2θ+cos 2θ =sin θ+cos θ2sin 2θ-cos 2θ=sin θ+cos θsin θ-cos θ=tan θ+1tan θ-1.右边=tan 8π+π+θ+1tan θ-1=tan π+θ+1tan θ-1=tan θ+1tan θ-1. ∴左边=右边,原式成立. 规律方法三角恒等式的证明策略:(1)遵循的原则:在证明时一般从左边到右边,或从右边到左边,或左右归一,总之,应遵循化繁为简的原则.(2)常用的方法:定义法、化弦法、拆项拆角法、公式变形法、“1”的代换法.变式训练求证:tan 2π-αcos 3π2-αcos 6π-αsin α+3π2cos α+3π2=-tan α. 【证明】 左边=tan -α·cos[π+π2-α]cos -αsin[π+π2+α]cos[π+π2+α] =-tan α·[-cos π2-α]·cos α-sin π2+α·[-cos π2+α] =tan αsin αcos α-cos α·sin α=-tan α=右边. ∴原等式成立. 思想方法技巧三角函数问题中的方程思想典例 (14分)是否存在角α,β,α∈(-π2,π2),β∈(0,π),使⎩⎨⎧ sin 3π-α=2cosπ2-β,3cos -α=-2cos π+β同时成立?若存在,求出角α,β;若不存在,请说明理由.【思路点拨】 先利用三角函数的诱导公式化简已知条件,再利用方程思想和同角三角函数的基本关系式求解.【规范解答】 将已知方程组化 为{ sin α=2sin β, ①3cos α=2cos β, ②2分①2+②2得sin 2α+3cos 2α=2,∴cos 2α=12. 4分∵α∈(-π2,π2),∴cos α=22,∴α=π4或-π4, 6分将α=π4代入②得cos β=32,8分 ∵β∈(0,π),∴β=π6.将α=π4,β=π6代入①,符合条件.10分 将α=-π4代入②得cos β=32, ∵β∈(0,π),∴β=π6.12分将α=-π4,β=π6代入①,不符合条件,舍去. 综上可知存在满足条件的角α,β,α=π4,β=π6. 14分首先利用已知条件得出关于cos α的方程,再利用平方关系式sin 2α+cos 2α=1,求出cos α的值,进而求出相应的角.建立方程是解题的关键.1.π2±α的正弦(余弦)函数值,等于α的余弦(正弦)函数值,前面加上把α看成锐角时原函数值的符号.记忆口诀为“函数名改变,符号看象限”.2.利用公式五或公式六,可以实现正弦函数与余弦函数的相互转化.3.k ·π2+α(k ∈Z )的三角函数值,当k 为偶数时,得α的同名函数值;当k 为奇数时,得α的异名函数值,然后在前面加上把α看成锐角时原函数值的符号.概括为“奇变偶不变,符号看象限”,这里的奇偶是指k 的取值是奇数还是偶数. 当堂双基达标1.sin 95°+cos 175°=________.【解析】 ∵sin 95°=sin (90°+5°)=cos 5°,cos 175°=cos (180°-5°)=-cos 5°, ∴sin 95°+cos 175°=0. 【答案】 02.化简sin (π+α)cos (3π2+α)+sin (π2+α)cos (π+α)=________. 【解析】 原式=-sin αsin α+cos α(-cos α) =-sin 2α-cos 2α=-1. 【答案】 -13.已知tan θ=2,则sin π2+θ-cos π-θsin π2-θ-sin π-θ=________. 【解析】 原式=cos θ--cos θcos θ-sin θ=2cos θcos θ-sin θ=21-tan θ=21-2=-2. 【答案】 -24.求证:cos α-π2sin 5π2+αsin (α-π)cos (2π-α)=-sin 2α. 【证明】 ∵左边=-cos π2-αsin π2+αsin αcos (-α)=-sin αcos αsin αc os α=-sin 2α=右边,∴原等式成立. 课后知能检测 一、填空题1.sin 480°的值为________.【解析】 sin 480°=sin (360°+120°)=sin 120°=sin (90°+30°)=cos 30°=32.【答案】 322.如果cos α=15,且α是第四象限角,那么cos (α+π2)=________. 【解析】 由已知得,sin α=-1-152=-265.所以cos (α+π2)=-sin α=-(-265)=265. 【答案】 2653.若sin (θ+3π2)>0,cos (π2-θ)>0,则角θ的终边位于第________象限.【解析】 sin (θ+3π2)=-cos θ>0,∴cos θ<0,cos (π2-θ)=sin θ>0,∴θ为第二象限角. 【答案】 二4.若f (sin x )=3-cos 2x ,则f (cos 30°)=________.【解析】 f (cos 30°)=f (sin 60°)=3-cos 120°=3+cos 60°=72或f (cos 30°)=f (sin 120°)=3-cos 240°=3-cos 120°=72. 【答案】 725.(2013·宁波高一检测)已知sin (α-π4)=13,则cos (π4+α)=________. 【解析】 ∵(π4+α)-(α-π4)=π2,∴cos (π4+α)=cos [π2+(α-π4)]=-sin (α-π4)=-13. 【答案】 -136.若角A ,B ,C 是△ABC 的三个内角,则下列等式中一定成立的是________. ①cos (A +B)=cos C ;②sin (A +B)=-sin C ; ③cos (A 2+C)=cos B ;④sin B +C 2=cos A2.【解析】 ∵A +B +C =π,∴A +B =π-C ,∴cos (A +B)=-cos C ,sin (A +B)=sin C ,所以①②都不正确;同理B +C =π-A ,所以sin B +C 2=sin (π2-A 2)=cos A2,所以④是正确的. 【答案】 ④7.(2013·徐州高一检测)已知cos (π2+φ)=32,且|φ|<π2,则tan φ=________.【解析】 cos (π2+φ)=-sin φ=32,sin φ=-32, 又∵|φ|<π2,∴cos φ=12,故tan φ=- 3. 【答案】 - 38.已知cos α=13,且-π2<α<0, 则cos -α-πsin 2π+αtan 2π-αsin 3π2-αcosπ2+α=________.【解析】 原式=-cos α·sin α·-tan α-cos α·-sin α=tan α,∵cos α=13 ,-π2<α<0, ∴sin α=-1-cos 2α=-223,∴tan α=sin αcos α=-2 2.【答案】 -2 2 二、解答题9.已知cos (75°+x )=13,其中x 为第三象限角,求cos (105°-x )-2cos (x -15°)的值. 【解】 由条件,得cos (105°-x )=cos (180°-75°-x )=-cos (75°+x )=-13, cos (x -15°)=cos (-90°+75°+x )=sin (75°+x ). 又x 为第三象限角,cos (75°+x )>0, 所以x +75°为第四象限角. 所以sin (75°+x )=-223. 于是原式=-13-2×(-223)=1. 10.已知sinα是方程5x 2-7x -6=0的根,求sin α+3π2sin 3π2-αtan 22π-αtan π-αcos π2-αcos π2+α的值. 【解】 由于方程5x 2-7x -6=0的两根为2和-35,所以sin α=-35,再由sin 2α+cos 2α=1,得cos α=±1-sin 2α=±45,所以tan α=±34,所以原式=-cos α-cos α·tan 2α-tan αsin α·-sin α=tan α=±34.11.已知角α的终边经过点P (45,-35). (1)求sin α的值;(2)求sin π2-αtan α-πsin α+πcos 3π-α的值. 【解】 (1)∵P (45,-35),|OP |=1, ∴sin α=-35.(2)sin π2-αtan α-πsin α+πcos 3π-α=cos αtan α-sin α-cos α=1cos α,由三角函数定义知cos α=45,故所求式子的值为54. 教师备课资源备选例题 已知f (α)=sinα-3πcos 2π-αsin -α+3π2cos -π-αsin -π-α. (1)化简f (α);(2)若α是第三象限角,且cos (α-3π2)=15,求f (α)的值; (3)若α=-31π3,求f (α)的值.【思路探究】 利用诱导公式化简,根据题中所给条件求值. 【自主解答】 (1)f (α)=-sin αcos α-cos α-cos αsin α=-cos α. (2)∵cos (α-3π2)=-sin α=15,∴sin α=-15, 又α是第三象限角,∴cos α=-52-15=-256, ∴f (α)=25 6.(3)∵-31π3=-5×2π-π3,∴f (-31π3)=-cos (-31π3)=-cos (-5×2π-π3)=-cos (-π3)=-cos π3=-12. 规律方法此类题目是关于三角函数式的化简与求值.解决此类问题时,可先用诱导公式化简变形,将三角函数的角度统一后再用同角三角函数关系式变形求解. 备选变式 已知f (θ)=cos θ-3π2·sin 7π2+θsin -θ-π. (1)化简f (θ);(2)若f (θ)=13,求tan θ的值;(3)若f (π6-θ)=13,求f (5π6+θ)的值.【解】 (1)f (θ)=cos 3π2-θ·sin 3π2+θ-sin π+θ=-sin θ·-cos θsin θ=cos θ. (2)由题意得f (θ)=cos θ=13>0,故θ为第一或第四象限角.当θ为第一象限角时,sin θ=1-cos 2θ=223,tan θ=sin θcos θ=22; 当θ为第四象限角时,sin θ=-1-cos 2θ=-223,tan θ=sin θcos θ=-2 2. (3)由题意得f (π6-θ)=cos (π6-θ)=13,∴f (5π6+θ)=cos (5π6+θ)=cos [π-(π6-θ)]=-cos (π6-θ)=-13.。

高中数学1.3三角函数的诱导公式(第2课时)优秀教案

高中数学1.3三角函数的诱导公式(第2课时)优秀教案

1.3三角函数的诱导公式〔第2课时〕导学案【课前要点梳理】1.诱导公式〔奇变偶不变,符号看象限〕2.同角三角函数的根本关系式(1)平方关系:sin 2α+cos 2α= 〔α为任意角〕. (2)商数关系: =sin αcos α ⎝ ⎛⎭⎪⎫α≠k π+π2,k ∈Z .【课堂互动探究】题型一 整体代换,利用角之间的关系求值典例1 〔1〕计算54cos53cos 52cos5cosππππ+++= . (2)假设534sin =+)(πθ,则)4(cos πθ-= . (3)316cos =-)(απ,求)(απαπ-⋅+32sin )65(cos 的值.小结:对于一些给值(式)求值问题,要注意角与未知角的关系,即发现它们之间是否满足互余或互补,假设满足,则可以进行整体代换,用诱导公式求解. (1)常见的互余关系:π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等. (2)常见的互补关系:π3+α与23π-α;π4+α与34π-α等. 【针对训练1】1.213sin =-)(απ,则)6(cos απ+= .2.3175cos =+)(。

α,则)(。

αα-+105cos )15-sin(的值是〔 〕 A.31 B.32 C. 31- D.32-【思考诊断】典例1〔2〕中,534sin =+)(πθ,求得)4(cos πθ-=.假设534sin =+)(πθ,且α为第四象限角,则)4(tan πθ-= .题型二 诱导公式与同角三角函数关系的综合应用 典例2 〔1〕假设21sin =+)(απ,)0,2(πα-∈,则)(απ-tan = . 变式:假设21sin =+)(απ,则)(απ-tan = .〔2〕+。

1sin 2+。

2sin 2+。

3sin 2。

89sin 2+ = .小结:解决与诱导公式有关的三角函数式的化简或者求值问题,关键是正确地应用诱导公式把不同角问题转化为同角问题来处理,再利用同角三角函数关系进行化简或者求值.〔统一角,统一函数名〕【针对训练2】1.+。

《诱导公式(二)》教案

《诱导公式(二)》教案

1.2.4诱导公式(二)一、学习目标1.通过本节内容的教学,使学生掌握α+π1)k +2(,α2π+角的正弦、余弦和正切的诱导公式及其探求思路,并能正确地运用这些公式进行任意角的正弦、余弦和正切值的求解、简单三角函数式的化简与三角恒等式的证明;2.通过公式的应用,培养学生的化归思想,以及信息加工能力、运算推理能力、分析问题和解决问题的能力;二、教学重点、难点重点:四组诱导公式及这四组诱导公式的综合运用.难点:公式(四)的推导和对称变换思想在学生学习过程中的渗透. 三、教学方法先由学生自己看书,在此基础上,可以通过讲授再现概念,通过练习理解概念,完成教学.+-=-=x x9017)cos(9017)sin17 480︒)+cos(-330︒)5.3.2同角三角比的关系(2)诱导公式【教学目标】1.通过本节课的教学,使学生掌握五组诱导公式的推导方法和记忆方法.2.在理解、记忆五组诱导公式的基础上,会运用这些公式求解任意角的三角函数的值,并会进行一般的三角关系式的化简和证明.3.加深理解化归思想,培养学生观察问题、解决问题、抽象概括问题的能力,并注意完善学生的基本数学思想和数学意识.【教学重点】五组诱导公式的记忆、理解、运用。

【教学难点】五组诱导公式的推导教学过程:【情景引入】与6π终边相同角α的集合如何表示?αsin 与6sin π具有怎样的数量关系?与β终边相同角α的集合如何表示?αsin 与βsin 具有怎样的数量关系?βα,其它的五个三角比数量关系又如何呢?【问题探究】诱导公式一:文字叙述:终边相同的角的同一个三角函数的值相等.sin(k·360°+α)=sinα,cos(k·360°+α)=cosα, tan(k·360°+α)=tanα,cot(k·360°+α)=cotα.(k ∈Z )试求出sin 2016°的值.由公式一:sin 2016°=sin(5×360°×216°)=sin 216° 问题二:如何求出进一步sin 216°的值诱导公式二:①同名函数关系;②符号规律:右边符号与180°+α角所在象限(第三象限)角的原三角函数值的符号相同. sin(180°+α)=-sinα, cos(180°+α)=-cosα,tan(180°+α)=tanα, cot(180°+α)=cot α.诱导公式三:①同名函数关系;②符号规律是:右边符号与-α所在的第四象限角的原三角函数值的符号相同.sin(-α)=-sinα,cos(-α)=cosα, tan(-α)=tanα, cot(-α)=-cotα.诱导公式四:sin(180)sin αα-=;cos(180)cos αα-=-. t sin(180)sin αα-=;cos(180)cos αα-=-(1)请学生自行仿上节课的推导方法得出它们的关系。

三角函数诱导公式教案2

三角函数诱导公式教案2

三角函数诱导公式教案21 教材分析1.1 教材的地位与作用本节课教学内容“诱导公式(二)、(三)”是人教版《高中代数》上册第二章§2.6节内容.它既是学生已学习过的三角函数定义、诱导公式(一)等知识的延续和拓展,又是推导诱导公式(四)、(五)的理论依据.是本章“任意角的三角函数”一节及全章中起着承上启下作用的重要纽带.求三角函数值是三角函数中的重要内容.诱导公式是求三角函数值的基本方法.诱导公式的重要作用是把求任意角的三角函数值问题转化为求0°~90”角的三角函数值问题,诱导公式的推导过程,体现了数学的数形结合和归纳转化思想方法,反映了从特殊到一般的数学归纳思维形式.这对培养学生的创新意识、发展学生的思维能力、掌握数学的思想方法具有重大的意义1.2 教学重点与难点1.2.1 教学重点诱导公式的推导及应用1.2.2 教学难点相关角终边的几何对称关系及诱导公式结构特征的认识.2 目标分析根据教学大纲的要求和教学内容的结构特征,依据学生学习的心理规律和素质教育的要求,结合学生的实际水平,本节课的教学目标如下2.1 知识目标1)识记诱导公式.2)理解和掌握公式的内涵及结构特征,会初步运用诱导公式求三角函数的值,并进行简单三角函数式的化简和证明.2.2 能力目标1)通过诱导公式的推导,培养学生的观察力、分析归纳能力,领会数学的归纳转化思想方法.2)通过诱导公式的推导、分析公式的结构特征,使学生体验和理解从特殊到一般的数学归纳推理思维方式.3)通过基础训练题组和能力训练题组的练习,提高学生分析问题和解决问题的实践能力.2.3 情感目标1)通过诱导公式的推导,培养学生主动探索、勇于发现的科学精神,培养学生的创新意识和创新精神.2)通过归纳思维的训练,培养学生踏实细致、严谨科学的学习习惯,渗透从特殊到一般、把未知转化为已知的辨证唯物主义思想.3 过程分析3.1 创设问题情境,引导学生观察、联想,导入课题1)提问:三角函数定义、诱导公式(一)及其结构特征.2)板书:诱导公式(一).sin(k·360°+α)=sinα,cos(k·360°+α)=cosα.tan(k·360°+α)=tanα,cot(k·360°+α)=cotα(k∈Z)结构特征:①终边相同的角的同一三角函数值相等.②把求任意角的三角函数值问题转化为求0°~360°角的三角函数值问题.教学设想通过提问让学生温习、重视已有相关知识,为学生学习新知识作铺垫.3)学生练习:试求下列三角函数值sin1110°,sin1290°.教学设想由已有知识导出新的问题,为学习新知识创设问题情境,以引起学生学习需要和学习兴趣,激发学生的求知欲,启迪学生思维的火花.4)介绍单位圆概念后,引导学生观察演示(一)并思考下列问题:①210°能否用(180°+α)的形式表达(0°<α<90°)?(210°=180°+30°)②210°与30°角的终边位置关系如何?(互为反向延长线或关于原点对称)③设210°,30°角的终边分别交单位圆于点P,P',则点P与P'的位置关系如何?(关于原点对称)④设点P(x,y),则点P'的坐标怎样表示?[P'(-x,-y)]⑤sin210°与sin30°的值的关系如何?教学设想通过微机动态演示,引导学生发现210°与30°角的终边及其与单位圆交点关于原点对称关系,借助三角函数定义,寻找sin210°与sin30°值的关系,达到转化为求0°~90°角三角函数值的目的.学生通过主动探索、发现解决问题的途径,体验和领会数形结合与归纳转化的数学思想方法.5)导入课题对于任意角α,sinα与sin(180°+α)的关系如何呢?试说出你的猜想.3.2 运用迁移规律,引导学生联想、类比、归纳、推导公式1)引导学生观察演示(二)并思考下列问题:①α与(180°+α)角的终边关系如何?(互为反向延长线或关于原点对称)②设α与(180°+α)角的终边分别交单位圆于点P,P',则点P与P'位置关系如何?(关于原点对称)③设点P(x,y),那么点P'的坐标怎样表示?[P'(-x,-y)]④sinα与sin(180°+α),cosα与cos(180°+α)关系如何?⑤tanα与tan(180°+α),cotα与cot(180°+α)关系如何?⑥经过探索,你能把上述结论归纳成公式吗?其公式特征如何?2)板书诱导公式sin(180°+α)=-sinα,cos(180°+α)=-cosα,tan(180°+α)=tanα,cot(180°+α)=cotα.结构特征:①函数名不变,符号看象限(把α看作锐角时).②把求(180°+α)的三角函数值转化为求α的三角函数值.教学设想激发学生做出猜想后,启发学生把特殊问题(求sin210°值)与一般问题进行类比,实现方法迁移,引导学生观察演示,发现角α与(180°+α)的终边及其与单位圆交点关于原点的对称关系,把求角(180°+α)的三角函数值转化为求α的三角函数值.对学生进行归纳思维训练,培养学生归纳思维能力.微机的动态演示,使学生对“α为任意角”有准确的认识,初步体验从特殊到一般的归纳推理形式,领会数学的归纳转化思想和方法.3)基础训练题组一求下列各三角函数值(可查表):②试求sin[180°+(-210°)]的值分析:对于问题②学生可能出现的情况为:sin[180°+(-210°)]=-sin(-210°),或sin[180°+(-210°)]=sin(-30°).(至此,大多数学生已无法再运算)教学设想在新的知识的基础上又导出新的未知,又一次创设问题情境,把学生的学习兴趣进一步推向高潮,激励学生要敢于迎接挑战、战胜困难、不断追求、陶冶情操、锻炼意志.4)引导学生观察演示(三),并思考下列问题:①30°与(-30°)角的终边位置关系如何?(关于x轴对称)②设30°与(-30°)角的终边分别交单位圆于点P,P',则点P与P'的位置关系如何?(关于x轴对称)③设点P(x,y),则点P'的坐标怎样表示?[P'(x,-y)]④sin(-30°)与sin30°的值关系如何?教学设想引导学生把求sin210°问题与sin(-30°)进行类比,实现方法迁移.通过微机动态演示,发现-30°与30°角的终边及其与单位圆交点关于x轴对称的关系.借助三角函数定义,寻找sin(-30°)与sin30°值的关系,达到转化为求0°~90°角三角函数的值的目的.5)导入新问题:对于任意角α,sinα与sin(-α)的关系如何呢?试说出你的猜想?6)引导学生观察演示(四)并思考下列问题:(设α为任意角)①α与(-α)角的终边位置关系如何?(关于x轴对称)②设α与(-α)角的终边分别交单位圆于点P,P',则点P与P'位置关系如何?(关于x轴对称)③设点P(x,y),则点P'的坐标怎样表示?[P'(x,-y)]④sinα与sin(-α),cosα与cos(-α)关系如何?⑤tanα与tan(-α),cotα与cot(-α)的关系如何?7)学生分组讨论,尝试推导公式,教师巡视,及时反馈、矫正、讲评.8)板书诱导公式sin(-α)=-sinα,cos(-α)=cosα.tan(-α)=-tanα,cot(-α)=-cotα.结构特征:函数名不变,符号看象限(把α看作锐角)把求(-α)的三角函数值转化为求α的三角函数值.9)基础训练题组(二):求下列各三角函数值(可查表)③cos(-240°12');④cot(-400°).3.3 构建知识系统、掌握方法、强化能力课堂小结:(以提问、填空形式让学生自己完成)1)诱导公式:sin(k·360°+α)=sinα.cos(k·360°+α)=cosα.tan(k·360°+α)=tanα.cot(k·360°+α)=cotα.(k∈Z)sin(180°+α)=-sinα.cos(180°+α)=-cosα.tan(180°+α)=tanα.cot(180°+α)=cotα.sin(-α)=-sinα.cos(-α)=cosα.tan(-α)=-tanα.cot(-α)=-cotα.2)公式的结构特征:函数名不变,符号看象限(把α看作锐角时)3)方法及步骤:教学设想通过提问、填空的形式,引导学生概括归纳已有知识,形成知识系统,发现知识规律及其结构特征,深化对诱导公式内涵和实质的理解,强化记忆.挖掘知识系统体现数学的归纳转化思想方法,培养学生的概括抽象能力,形成知识网络和方法网络.4)能力训练题组:(检测学生综合运用知识能力)5)课外思考题.①求下列各三角函数值:6)作业与课外思考题作业:P162习题十三(1)—(6)教学设想通过能力训练题组和课外思考题检测学生综合运用知识的能力,培养学生的创造性思维能力,提高学生分析问题和解决问题的实践能力.为学生课外留下“余音”,培养学生养成自觉学习、积极探索的良好学习习惯,为下一节课学习诱导公式(四)、(五)作准备.4 教法分析根据教学内容的结构特征和学生学习数学的心理规律,本节课采用了“问题、类比、发现、归纳”探究式思维训练教学方法.4.1 利用已有知识导出新的问题,创设问题情境,引起学生学习兴趣,激发学生的求知欲,达到以旧拓新的目的.4.2 由(180°+30°)与30°,(-30°)与30°终边对称关系的特殊例子,利用多媒体动态演示,学生对“α为任意角”的认识更具完备性,通过联想,引导学生进行问题类比、方法迁移,发现任意角α与(180°+α),-α终边的对称关系,进行从特殊到一般的归纳推理训练,学生的归纳思维更具客观性、严密性和深刻性,培养学生的创新能力.4.3 采用问题设疑,观察演示,步步深入,层层引发,引导联想类比,进而发现、归纳的探究式思维训练教学方法.旨在让学生充分感受和理解知识的产生和发展过程.在教师适时的启发点拨下,学生在类比、归纳的过程中积极主动地去探索、发现数学规律(公式),培养学生的创新意识和创新精神,培养学生的思维能力.4.4 通过能力训练题组和课外思考题,把诱导公式(一)、(二)、(三)的应用进一步拓广,为演绎推导诱导公式(四)、(五)做好理论依据准备,把归纳推理和演绎推理有机结合起来,发展学生的思维能力.5 评价分析本节课教学过程中通过问题设疑,引导学生循序渐进的从特殊到一般进行联想、类比、归纳,发现数学公式,体现以教师为主导,学生为主体,积极思维的学习过程.在问题类比、方法迁移、归纳推理的思维训练过程中,师生的信息交流畅通,反馈及时,评价及时,矫正及时,学生思维活跃,教学活动始终处于教师期望控制中.5 教案设计说明5.1 关于本节课教学指导思想归纳推理是发现和获得知识的基本思维形式,拉普拉斯曾说:“发现真理的主要工具也是归纳和类比”.归纳思维在形成创新意识中具有特殊的重要的地位,归纳思维往往获得的是开拓性的创造(再创造).三角函数求值是三角函数中重要问题之一,诱导公式是解决此类问题的基本方法.教学过程中,通过问题设疑、多媒体动态演示等教学措施,创设问题情境,引导学生从特殊的、个别的属性,通过联想、类比、归纳出具有普遍的、一般的整体性质.体现了学生充分感受和理解知识的产生和发展过程,促使学生积极思维主动探索,勇于发现,敢于创新.通过从特殊到一般的归纳思维训练,学生主动地获得新的知识,并在获得知识的过程中,形成良好的思维品质,发展学生的思维能力.5.2 关于教学过程的设计1)重现已有相关知识,为学习新知识作好铺垫.2)思维总是从问题开始的,在sin1290°的求值过程中,从已知到未知,引发新的问题,营造氛围,引起学生学习需要和学习兴趣,激发学生的求知欲.3)数学的思想方法是数学素质的核心,由sin210°的求值过程,把未知转化为已知,引导学生发现推导诱导公式的方法和途径,领会数学的归纳转化思想方法.4)通过多媒体直观动态的演示,从特殊到一般完成所有情况的分类,引导学生联想,进行问题类比、方法迁移、归纳推理出具有普遍性的结论,形成公式,进行归纳思维训练.5)通过分析诱导公式的结构特征,强化对诱导公式的理解和记忆,深刻领会诱导公式的内涵和实质.构建知识系统,培养学生的概括抽象能力.6)通过基础训练题组和课外思考题的练习,掌握解决问题的方法,形成技能,提高学生分析问题和解决问题的能力.。

诱导公式(第二课时)教案

诱导公式(第二课时)教案
思考1
当锐角 与锐角 互余时,它们的正、余弦值有什么关系?
解:设 , ,则

借助直角三角形
得到互余两锐角
正、余弦的关系
诱导公式
5
进一步,我们思考对任意的角 与 ,设 ,是否总有 ,
对任意的角

聚焦目标
形成概念
诱导公式
6
探寻 与 的三角函数的关系
代数上:
几何上:
数和形两方面
加深对 的
诱导公式的理解
诱导公式
1. 在上节课中,我们学到了哪些诱导公式 ?
2. 它们是如何得到的 ?
3. 如何利用这些公式求特殊角的三角函数值 ?
4. 诱导公式有哪些功能?
整理学习成果
熟悉已有公式
类比已有公式
生成过程
有助于发现
新的公式
为方法迁移
做准备
情境
如果已知 ,你能用 表示 吗?
解:如图所示,
借助直角三角形
得到互余两锐角
正、余弦的关系
三角函数值
2. 寻找题目中的角的关系.
总结提升
画龙点睛
基础性
作业
1. 证明: ,
2. 化简:
(1)
(2)
熟悉本节课的
主要公式
发展性
作业
1. 对任意的 ,角 与 的终边
有何关系
2. 对任意的 ,角 与 的正、余弦值
之间有何关系
体会首先关注
角的关系
再探究三角
函数值的关系
的思维方式
诱导公式(第二课时)教案
教学基本信息
课题
诱导公式(第二课时)
学科
数学
学段:高中
年级
高一
教材

7.2.4诱导公式(第2课时)教案-2021-2022学年高一下学期数学人教B版(2019)必修三

7.2.4诱导公式(第2课时)教案-2021-2022学年高一下学期数学人教B版(2019)必修三

7.2.4诱导公式第二课时教案1、学生能根据前面学习的前四组诱导公式,并利用三角函数线的对称性推导的诱导公式⑤;2、学生能利用已掌握的诱导公式①~⑤,自选方法推导的诱导公式⑥;3、学生能利用已掌握的诱导公式①~⑥,自主推导的诱导公式⑦⑧;在初中,我们已经知道两个锐角之和为时正弦和余弦之间的关系.例如,那这一关系式对任意角是否也成立呢?本节课我们一起来探究这个问题.问题1、对于任意一个角来说,与的终边有什么关系,你能得出它们的正弦、余弦之间的关系吗?如图所示,设和的终边与单位圆分别交于P和,则,,又由角和角的终边关于角的终边所在的直线(即y=x)对称,因此得到诱导公式⑤.这一结论也可以从和的三角函数线之间的关系得出以下三角函数间的关系式.点评学生的最终结论,与学生一起分析诱导公式⑤.利用GGB软件动态展示诱导公式结论依据,通过GGB动态展示提醒学生,公式中的角可以是任意角,也可以是角的表达式,从而解决情境中的疑问.问题2、你能利用前面研究的诱导公式结果得到角和角的正弦、余弦之间的关系吗?由诱导公式②⑤可得,从而得到诱导公式⑥.实物投影展示学生的推导过程,并与学生一起分析诱导公式③结论依据,提醒学生,公式中的角可以是任意角,也可以是角的表达式.(1)解(1)(2)(3).问题3、你能利用前面研究的诱导公式结果得到角和角的正弦、余弦之间的关系吗?由诱导公式④⑥可得,从而得到诱导公式⑦.法一:由诱导公式②⑦可得,从而得到诱导公式⑧法二:如图所示,设和的终边与单位圆分别交于P和,则,,又由角和角的终边关于对称,因此与学生一起分析诱导公式⑦⑧结论依据,提醒学生,公式中的角可以是任意角,也可以是角的表达式.联系:若将角看作是锐角,同样分别代表第一、二、三、四象限的角,符合口诀“符号看象限”.例如:.本环节是想留有时间让学生思考、讨论、归纳,引导学生建立各组公式与相应图形的联系,并对各个公式的异同进行比较,以此加深理解公式.前面学生在推导诱导公式时已对诱导公式有了基本的理解,那在理解的基础上再加强记忆.事实上,所有的诱导公式可概括为“的各三角函数值”.当k 为偶数时,得的同名三角函数值;当k为奇数时,得的余名三角函数值,然后在前面加上把看成锐角时原函数值的符号,为了便于记忆,可编成一句口诀:“奇变偶不变,符号看象限”.计算的值.化简.解:原式=1化简.。

《诱导公式》第2课时参考教案

《诱导公式》第2课时参考教案

《诱导公式》第二课时诱导公式的重要作用是把求任意角的三角函数值问题转化为求0,2π⎡⎫⎪⎢⎣⎭角的三角函数值问题.诱导公式中的公式五的推导过程,使学生学会用联系的观点,把单位圆的性质与三角函数联系起来,体现了数学的数形结合和归纳转化思想方法,反映了从特殊到一般的数学归纳思维形式,而公式六的推导过程,使学生能用已有公式二至五,运用角的变换进行演绎推演,使培养学生逻辑推理、数学运算核心素养落到实处.1.在诱导公式二至四推导方法的基础上,启发学生探索发现诱导公式五并能借助公式推演得到公式六;2.借助单位圆中的对称关系及三角函数定义的应用,培养学生形数结合,归纳转化的思想方法;同时借助公式的结构特点培养学生从未知到已知、复杂到简单的化归思想;3.通过对公式的推导过程,以及通过理解并掌握正弦、余弦、正切的诱导公式,并能应用这些公式解决一些求值、化简、证明等问题, 培养学生逻辑推理、数学运算素养.教学重点: 诱导公式五、六的推导探究,诱导公式的应用;教学难点: 发现终边与角α的终边关于直线y x =对称的角与α之间的数量关系.1. 教学问题: (1)如何把角α终边关于直线y x =对称的角的终边几何对称关系与角的数量关系对应起来是一个教学问题,处理这个问题主要利用信息技术,引导学生归纳不同象限角的情况,再以第一象限角为例发现角的关系,此过程强调归纳转化思想和逻辑推理素养;(2)应用诱导公式解决相关三角函数值的求解、化简、证明等是一个教学问题,处理这个问题主要是引导学生在理解公式的基础上适量典型例题的推演.◆教材分析 ◆教学目标 ◆教学重难点◆ ◆课前准备◆2. 教学支持条件(1)诱导公式一至四推导方法和公式本身是本节诱导公式的重要基础和铺垫.(2)充分利用“智慧课堂”教学系统,及时了解学生思维信息,根据学生的思维状态生成教学过程,充分利用智慧课堂的作业平台,及时反馈检测信息.【问题1】上节课学习了三角函数的诱导公式二到公式四,大家还记得是哪几个公式吗?【设计意图】复习回顾三角函数的诱导公式二到公式四,让学生进一步体会这几个公式分别体现了πα+,α-,πα-与角α之间的关系:【预设师生活动】(1)引导学生回想公式记忆规律,同时上传公式二至四;(2)引导学生回想公式推导方法,同时上传单位圆几何图示(两个角的终边特殊的对称关系:1)终边关于原点对称;2)终边关于x 轴对称;3)终边关于y 轴对称)【问题2】能画出角α关于直线y x =对称的角的终边吗?与角α关于直线y x =对称的角怎样表示?这两个角的终边上点12P ,P 的坐标具有什么关系?【设计意图】 在问题1的基础上,提出问题,调动学生探索问题的积极性.让学生经历由几何直观发现数量关系的学习过程,体验如何把角的终边具有的特定位置关系转化为三角函数值之间的关系.【预设师生活动】(1)引导学生探究:角α在不同象限关于直线y x =对称的角的终边情况;归纳讨论出角α关于直线y x =对称的角的终边是2πα-;要求学生作图上传展示角α在第一象限的情况,并共同得出点12P ,P 的坐标的关系.(2)引导学生思考:角α关于直线y x =对称的角的终边是2πα-上点P,P '的坐标关系已知,角α与2πα-的三角函数值有什么关系?学生拍照上传解答过程与结论.◆教学过程设1(,)P x y ,则2(,)Py x ,有三角函数的定义得: 得诱导公式五: 【问题3】能否用已有公式得出2πα+的正弦、余弦与α的正弦、余弦之间的关系式?能否用公式五的方法推导出以上关系式?【设计意图】引导学生从公式的适用条件(任意角)出发,根据角的结构特点,构造特殊性解决问题,体会演绎推理的过程,培养了逻辑推理素养;另外两个角的终边看成两次对称,再利用点的坐标关系得出三角函数值的关系,进一步体会形数结合思想.【预设师生活动】(1)学生讨论并将推演结果上传(可能不同作法):(公式六)2)引导学生尝试把角2πα+与角α终边看成两次对称,研究点的坐标关系推导出公式六,学生上传推导过程和方法.角α终边与单位圆交点(,)P x y ,则2πα-终边与单位圆交点1(,)P y x ,又2πα+的终边与2πα-的终边关于y 轴对称,故2πα+终边与单位圆交点2(,)P y x -,于是sin()2cos()2tan()2x y x y παπαπα-=-=-=sin()sin[()]sin()cos 222cos()cos[()]sin()cos 222πππαπαααπππαπααα+=--=-=+=--=--=-sin cos tan yxy x ααα===sin()cos ;2cos()sin ;2tan()cot 2πααπααπαα-=-=-=(公式六)【问题4】你能总结公式五与六的记忆规律吗?你能概况公式五与六的研究思路吗?【设计意图】引导学生学习概括,逐步养成自我总结规律,反思数学思想方法的习惯.【预设师生活动】学生讨论概括,教师再总结:上面的公式五与六也称为三角函数的诱导公式;记忆规律: 2πα±的三角函数值,等于α的互余函数值,前面加上一个把α看成锐角时原函数值的符号.概括:函数名变余,符号看象限.【问题5】 诱导公式的应用研究例1(1)求证:33sin()cos ;cos()sin 22ππαααα-=--=- (2)化简:11sin(2)cos()cos()cos()229cos()sin(3)sin()sin()2πππαπαααππαπαπαα-++-----+ 【设计意图】这是三角函数值的证明与化简,需要综合运用公式的题目类型,让学生熟悉公式,通过练习加深印象,逐步达到准确、熟练、灵活应用.【预设师生活动】学生演练并上传结果,同时讨论归纳应用诱导公式的注意事项.例2 已知f (α)=sin (α-3π)cos (2π-α)sin ⎝⎛⎭⎫-α+3π2cos (-π-α)sin (-π-α). (1)化简f (α);(2)若α是第三象限角,且cos ⎝⎛⎭⎫α-3π2=15,求f (α)的值. 【设计意图】这是综合运用诱导公式和同角公式的题目类型,让学生熟悉公式,通过练习加深印象,逐步达到熟练、正确地应用.【预设师生活动】学生演练并上传结果,同时讨论归纳方法:sin()cos 2cos()sin 2x y πααπαα+==+=-=-[解] (1)f (α)=sin (α-3π)cos (2π-α)sin (-α+3π2)cos (-π-α)sin (-π-α)=(-sin α)·cos α·(-cos α)(-cos α)·sin α=-cos α. (2)因为cos ⎝⎛⎭⎫α-3π2=-sin α,所以sin α=-15, 又α是第三象限角,所以cos α=-1-⎝⎛⎭⎫-152=-256. 所以f (α)=256. 【问题6】 课堂小结,提高认识【设计意图】引导学生对本课内容进行归纳小结,同时对六个诱导公式进一步概括.【预设师生活动】引导学生从知识方法、思维思想进行总结,学生讨论,共同归纳:(1)诱导公式一~六揭示了终边具有某种对称关系的两个角的三角函数之间的关系.(2)这六组诱导公式可归纳为“k ·90°±α(k ∈Z )”的三角函数值与α的三角函数值之间的关系.当k 为偶数时得角α的同名三角函数值,当k 为奇数时得角α的互余三角函数值.然后在前面加上一个把角α看成锐角时原三角函数值的符号.可简记为“奇变偶不变,符号看象限”.(3)简述数学的化归思想:数形结合,由特殊到一般,化未知为已知等思想方法. 习题检测【检测1】课本对应习题.【检测2】请完成本节对应的同步练习.。

三角函数的诱导公式第二课时学案

三角函数的诱导公式第二课时学案

1.3诱导公式(一)教学目标(一)知识与技能目标⑴理解正弦、余弦的诱导公式.⑵培养学生化归、转化的能力.(二)过程与能力目标(1)能运用公式一、二、三的推导公式四、五.(2)掌握诱导公式并运用之进行三角函数式的求值、化简以及简单三角恒等式的证明.教学重点掌握诱导公式四、五的推导,能观察分析公式的特点,明确公式用途,熟练驾驭公式.教学难点运用诱导公式对三角函数式的求值、化简以及简单三角恒等式的证明.一、复习:诱导公式(一)tan )360tan(cos )360(cos sin )360sin(αααααα=+︒=+︒=+︒k k k 诱导公式(二)tan )180tan(cos )180cos( sin )180sin(αααααα=+︒-=+︒-=+︒ 诱导公式(三)tan )tan(cos )cos( sin )sin(αααααα-=-=--=-诱导公式(四)tan )180tan(cos )180cos( sin )180sin(αααααα-=-︒-=-︒=-︒ 对于五组诱导公式的理解 :①可以是任意角;公式中的α②这四组诱导公式可以概括为:符号。

看成锐角时原函数值的前面加上一个把三角函数值,的同名的三角函数值,等于它ααπαπααπ ,, , ),Z (2-+-∈+k k总结为一句话:函数名不变,符号看象限练习1:P27作业1、2、3、4。

2:P25的例2:化简 二、新课讲授: 1、诱导公式(五) sin )2cos( cos )2sin(ααπααπ=-=- 2、诱导公式(六) sin )2cos( cos )2sin(ααπααπ-=+=+ 总结为一句话:例1.将下列三角函数转化为锐角三角函数:).317sin()4( ,519cos )3( ,3631sin )2( ,53tan )1(πππ-︒例2.证明:(1)ααπcos )23sin(-=-(2)ααπsin )23cos(-=-例3.化简:.)29sin()sin()3sin()cos()211cos()2cos()cos()2sin(αππααπαπαπαπαπαπ+-----++-的值。

三角函数诱导公式2教案111

三角函数诱导公式2教案111

1.2.5 三角函数的诱导公式(二)教学目标1、知识技能目标:公式的推导、记忆和运用.2、过程方法目标:培养学生的观察能力,加深学生的化归思想.3、情感态度价值观目标:通过对公式的选择、运用,让学生感受到方法、多样性和统一性.教学重点 诱导公式的推导及应用.教学难点 角与角之间的关系及公式的恰当选择.教学过程一、问题情境:1、利用角απαπα+--、、的终边与角α的终边对称,推出了诱导公式二、三、四,那么角απ-2的终边与角α的终边是否也有对称关系呢?如果有,也能推导出什么公式吗?二、数学理论:2、 2π-α的诱导公式思考1:sin (90°-60°)与sin60°的值相等吗?相反吗?(不相等也不相反)思考2:sin (90°-60°)与cos60°,cos (90°-60°)与sin60°的值分别有什么关系?据此,你有什么猜想?(相等,sin(2π-α)=cosα ,cos(2π-α)=sinα.)思考3:若α为一个任意给定的角,那么2π-α的终边与角α的终边有什么对称关系?思考4:点P 1(x ,y )关于直线y=x 对称的点P 2的坐标如何?(点P 2的坐标为(y,x ))思考5:设角α的终边与单位圆的交点为P 1(x ,y ),则2π-α的终边与单位圆的交点为P 2(y ,x ),根据三角函数的定义,你能获得哪些结论?公式五:sin(2π-α)=cosα ,cos(2π-α)=sinα 3、 2π+α的诱导公式思考1:sin (90°+60°)与cos60°,cos (90°+60°)与sin60°的值分别有什么关系?据此,你有什么猜想?(Sin(2π+α)=cosα,cos(2π+α)= -sinα.) 思考2:2π+α与2π-α有什么内在联系?( ) 思考3:根据相关诱导公式推导,Sin(2π+α),cos(2π+α)分别等于什么? 公式六: Sin(2π+α)=cos α,cos(2π+α)=-sin α 思考4:根据相关诱导公式,sin(23π-α);cos(23π-α);sin(23π+α);cos(23π+α)分别等于什么? . 4、公式的记忆:奇变偶不变,符号看象限)(αππαπ--=+22(公式中的角都可写成απ±⋅2k 的形式.当k 为偶数时,函数名不变,当k 为奇数时,函数名改变;符号是把α看作锐角时απ±⋅2k 的原三角函数的符号)三、数学应用:5、求值: )25cos()1(απ- )211s i n ()2(απ- π411c o s )3( π67s i n )4(6、已知2cos()63πα-=, 求)32sin(απ-的值 点评:(1)当两个角的和或差是2π的整数倍时,它们的三角函数值可通过诱导公式联系起来.(2)化简已知与所求,然后探求联系,这是解决问题的重要思想方法.7、化简:)29sin()sin()3sin()cos()211cos()2cos()cos()2sin(απαπαπαπαπαπαπαπ+-----++- 分析:观察题目中的角,哪些是可以利用公式二—四的,哪些是可以利用公式五、六的.认真应用诱导公式,达到化简的目的.8、已知1sin (30)3α-=,求 1cos(60)tan (30)1sin (60)ααα++-++ 的值.备:已知:cos α=13-,α是第三象限的角,且sin (α+β)=1,求cos (2α+β)的值。

三角函数诱导公式教案

三角函数诱导公式教案

《三角函数的诱导公式》的教案教学要求:掌握π+α、-α、π-α三组诱导公式,并能熟练运用进行化简与求值.教学重点:应用诱导公式.教学难点:理解诱导公式推导.教学过程:第一课时,诱导公式二、三、四[教学设计]① 讨论:利用诱导公式(一),将任意范围内的角的三角函数值转化到0~2π后,又将如何将0~2π间的角转化到0~2π呢? 方法:设0°≤α≤90°, (写成β的分段函数)则90°~180°间角,可写成180°-α;180°~270°间的角,可写成180°+α;270°~360°间的角,可写成360°-α.② 推导π+α的诱导公式:复习单位圆:以原点为圆心,单位长为半径的圆.思考:角α的终边与单位圆交于点P (x , y ),则sin α=?cos α=?讨论:α与π+α终边有何关系?设交单位圆于P (x , y )、P ’,则P ’坐标怎样?计算sin(π+α)、cos(π+α)、tan(π+α),并与sin α、cos α、tan α比较.提出诱导公式二.③ 仿上面的步骤推导-α、π-α的诱导公式.讨论:如何由π+α、-α的诱导公式得到π-α的诱导公式? 变角:π-α=π+(-α)列表比较四组诱导公式,观察符号情况? 口诀:函数名不变,符号看象限. (“符号”是把任意角α看成锐角时,2()k k Z πα±∈所在象限的三角函数值的符号.)引入新课:先让同学们思考单位圆的对称性并举出一些特殊的对称轴和对称中心,如x 轴,y 轴,y x =,原点.这些对称性对三角函数的性质有什么影响呢?先思考阅读教科书第26页的“探究”.1、角的对称关系:给定一个角α,发现:1)终边与角α的终边关于原点对称的角可以表示为π+α;同样,让学生探究问题(2) ,(3)不难发现.2)终边与角α的终边关于x 轴对称的角可以表示为α-(或2π-α);3)终边与角α的终边关于y 轴对称的角可以表示为:π-α;4)终边与角α的终边关于直线y =x 对称的角可以表示为π2α-. 2、三角函数的关系诱导公式二:以问题(1)为例,引导学生去思考,角的对称关系怎样得出三角函数的关系?角α————π+α终边与单位圆交点(,)P x y ————(,)P x y '-sin y α= ————sin(π+)=-y α∴sin(π+)=-sin αα π+α 同理,cos(π-)x α=-, cos x α=,cos(π-)cos αα=-tan(π+)=tan y xαα=∴tan(π+)=tan αα 诱导公式二: sin(π)sin αα+=-cos(π+)cos αα=-tan(π)tan αα+=请同学们自己完成公式三、四的推导:诱导公式三:sin()sin αα-=-cos()cos αα-=tan()tan αα-=-诱导公式四:sin(π)sin αα-=cos(π)cos αα-=-tan(π)tan αα-=-让学生把探究诱导公式二、三、四的思想方法总结概括,引导学生得出:圆的对称性____________角的终边的对称性对称点的数量关系 角的数量关系三角函数关系即诱导公式总结规律,引导学生记忆学过的四组公式,即:22πk α+(Z)k ∈ , α-, πα±的三角函数值,等于α角的同名三角函数值,前面加上一个把α角看成锐角时的原函数的符号.P 28 例1,例2.思考:诱导公式有什么作用?负角→正角大角→小角→锐角三角函数即所有的角的三角函数值都可转化成锐角三角函数来求.上述步骤体现了未知转化为已知的化归思想.2. 教学例题:① 出示例1:求值:sin225°、 cos 43π、sin(-3π)、cos (-76π)、tan (-200°) 分析角的特点→学生口答. 小结:运用诱导公式的格式;注意符号.② 出示例2:化简sin(180)cos(720)cos(180)sin(180)αααα︒+︒+--︒-︒- 师生共练→小结:公式运用② 练习:已知cos(π+x )=0.5,求cos(2π-x )的值;思考:求cos(π-x )的值.③ 讨论:四组诱导公式的作用? (分别化哪个范围的角到哪个范围?[小结]本节课我们学习了诱导公式二、三、四,并运用诱导公式求任意角的三角函数值及化简,在学习过程中逐步学习化归思想,要注意诱导公式中符号的确定.[作业] P 33 A 组 2,3,4.化简:1、2π4πsin(2π)cos(4π)33++2、sin(π)sin(π)sin(π)cos(π)n n n n αααα++-+- 3. 求证:tan(2)sin(2)cos(6)cos()sin(5)παπαπααππα-----+=tan α4. 化简:sin 250cos790︒+︒第二课时:1.3 三角函数的诱导公式(二)教学要求:掌握2πα、2π+α两组诱导公式,能熟练运用六组诱导公式进行求值、化简、证明.教学重点:熟练运用诱导公式.教学难点:诱导公式的推导.教学过程:一、复习准备:1. 默写关于2k π+α、π+α、-α、π-α的四组诱导公式2. 推导2π-α的诱导公式.二、讲授新课:1. 教学诱导公式推导:① 讨论:2π-α的终边与α的终边有何关系? (关于直线y =x 对称) ② 讨论:2π-α的诱导公式怎样? ③ 讨论:如何由前面的诱导公式得到2π+α的诱导公式? 比较:两组诱导公式的记忆 ④ 讨论:如何利用诱导公式,将任意角转化为锐角的三角函数?(转化思想)⑤ 比较:六组诱导公式的记忆. (六组诱导公式都可统一为“()2k k Z πα±∈”的形式,记忆的口诀为“奇变偶不变,符号看象限”. 符号看象限是把α看成锐角时原三角函数值的符号)2. 教学例题:① 出示例1:求下列各角的三个三角函数的值.56π、 43π、 74π、 1050°、 -514π (示范-514π的求值;其余学生试练,四人板演;订正;小结:诱导公式的运用) ② 出示例2:求证cos()sin(5)sin(4)sin(7)cot()παπαπαπααπ---+--=1 (学生分析公式运用→试练→订正→小结:公式运用. )③ 练习: 列表写出0~2π间所有特殊角的三个三角函数的值.3. 小结:诱导公式的记忆是重中之重;利用诱导公式,将任意角的三角函数值转化为求锐角三角函数的值,这是学习诱导公式的主要目的;注意公式之间的相互联系和变形使用公式.三、巩固练习:1. 化简:tan(150)cos(210)cos(420)cot(600)sin(1050)-︒-︒-︒-︒-︒ )2. 已知tan(π+α)=4, 则sin(π+α)cos(π-α)= .3. 化简:sin()sin()sin()cos()k k k k πααπαπαπ++-+- (k ∈Z )4. 求函数y =.。

三角函数的诱导公式第二课时

三角函数的诱导公式第二课时

1.3 三角函数的诱导公式第二课时一、教学目标:1.通过学生的探究,明了三角函数的诱导公式的来龙去脉,理解诱导公式的推导过程;培养学生的逻辑推理能力及运算能力,渗透转化及分类讨论的思想. 2.通过诱导公式的具体运用,熟练正确地运用公式解决一些三角函数的求值、化简和证明问题,体会数式变形在数学中的作用.3.进一步领悟把未知问题化归为已知问题的数学思想,通过一题多解,一题多变,多题归一,提高分析问题和解决问题的能力.二、重点难点:教学重点:异名诱导公式的推导和六组诱导公式的灵活运用,三角函数式的求值、化简等.教学难点:六组诱导公式的灵活运用.三、课时安排:一课时四、教学过程:问题提出:1.诱导公式一、二、三、四分别反映了2k π+α(k ∈Z )、π+α、-α、 π-α与α的三角函数之间的关系,这四组公式的共同特点是什么?(函数名不变,符号(正负)看象限)2.对形如π-α、π+α的角的三角函数可以转化为α角的三角函数,对形如2π-α 、2π+α的角的三角函数与α角的三角函数,是否也存在着某种关系,需要我们作进一步的探究.引出课题:异名三角函数的诱导公式知识探究(一): 2π-α的诱导公式思考1:sin (90°-60°)与sin60°的值相等吗?相反吗?(不相等也不相反) 思考2:sin (90°-60°)与cos60°,cos (90°-60°)与sin60°的值分别有什么关系?据此,你有什么猜想?(相等,sin(2π-α)=cos α ,cos(2π-α)=sin α.)思考3:若α为一个任意给定的角,那么2π-α的终边与角α的终边有什么对称关系?思考4:点P 1(x ,y )关于直线y=x 对称的点P 2的坐标如何?(点P 2的坐标为(y,x ))思考5:设角α的终边与单位圆的交点为P 1(x ,y ),则2π-α的终边与单位圆的交点为P 2(y ,x ),根据三角函数的定义,你能获得哪些结论?公式五:sin(2π-α)=cosα ,cos(2π-α)=sinα知识探究(二):2π+α的诱导公式思考1:sin (90°+60°)与cos60°,cos (90°+60°)与sin60°的值分别有什么关系?据此,你有什么猜想?(Sin(2π+α)=cosα,cos(2π+α)= -sinα.)思考2:2π+α与2π-α有什么内在联系?( )思考3:根据相关诱导公式推导,Sin(2π+α),cos(2π+α)分别等于什么?公式六: Sin(2π+α)=cos α,cos(2π+α)=-sin α.思考4:你能概括一下公式五、六的共同特点和规律吗?公式五:sin(2π-α)=cosα ,cos(2π-α)=sinα公式六: Sin(2π+α)=cosα , cos(2π+α)=-sinα.(函数名改变,正负看象限. ) 思考5:诱导公式1~6可统一为k (k Z )2πα±∈的三角函数与α的三角函数之间的关系,你有什么办法记住这些公式?(奇变偶不变,正负看象限.) 意义:思考6:根据相关诱导公式推导,sin(2-α);cos(2-α);sin(2+α);cos(23π+α)分别等于什么?例1 求值:例2 化简: )(αππαπ--=+225(1)cos 2πα⎛⎫- ⎪⎝⎭11(2)sin 2πα⎛⎫- ⎪⎝⎭()(3)sin 5πα+0(4)tan(1560)-11(5)cos4π7(6)sin6π11sin(2-)cos()cos()cos(-)229cos(-)sin(3-)sin(--)sin()2πππαπαααππαπαπαα+++活动:仔细观察题目中的角,哪些是可以利用公式二—四的,哪些是可以利用公式五、六的.认真应用诱导公式,达到化简的目的.解:原式=)]2(4sin[)]sin()[sin()cos ()]2(5cos[)sin )(cos )(sin (a a a a a a a a +++----+---ππππππ =)2sin()]sin ([sin )cos ()]2cos([cos sin2a a a a a a a +------ππ=aa cos sin -=-tanα.例3 已知2cos()63πα-=, 求sin(32π-α)的值 解:∵32π-α-(6π-α)=2π,∴32π-α=2π+(6π-α).∴sin(32π-α)=sin [2π+(6π-α)]=2cos()63πα-=点评:(1)当两个角的和或差是2π的整数倍时,它们的三角函数值可通过诱导公式联系起来.(2)化简已知与所求,然后探求联系,这是解决问题的重要思想方法. 例4 已知1sin (30)3α-=,求1cos(60)tan (30)1sin (60)ααα++-++的值.课堂小结:1.诱导公式反映了各种不同形式的角的三角函数之间的相互关系,并具有一定的规律性,“奇变偶不变,正负看象限”,是记住这些公式的有效方法.2.诱导公式是三角变换的基本公式,其中角α可以是一个单角,也可以是一个复角,应用时要注意整体把握、灵活变通.课后作业: P29习题1.3 A 组:3. B 组:1,2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课 题:1.2.3三角函数的诱导公式(二)教学目的:能熟练掌握诱导公式一至五,并运用求任意角的三角函数值,并能应用,进行简单的三角函数式的化简及论证。

教学重点:诱导公式教学难点:诱导公式的灵活应用授课类型:新授课课时安排:2课时教 具:多媒体、实物投影仪教学过程:一、复习引入:诱导公式一(其中Z ∈k ): 用弧度制可写成ααsin )360sin(=︒⋅+k απαsin )2sin(=+kααcos )360cos(=︒⋅+k απαcos )2cos(=+kααtan )360tan(=︒⋅+k απαtan )2tan(=+k公式二: 用弧度制可表示如下:αα-sin 180sin(=+︒) ααπ-sin sin(=+)αα-cos 180cos(=+︒) ααπ-cos cos(=+)ααtan 180tan(=+︒) ααπtan tan(=+)公式三: αα-sin sin(=-)ααcos cos(=-)ααtan tan(-=-)公式四: 用弧度制可表示如下:ααsin 180sin(=-︒) ααπsin sin(=-)αα-cos 180cos(=-︒) ααπ-cos cos(=-)ααtan 180tan(-=-︒) ααπtan tan(-=-)公式五: 用弧度制可表示如下:αα-sin 360sin(=-︒) ααπ-sin 2sin(=-)ααcos 360cos(=-︒) ααπcos 2cos(=-)ααtan 360tan(-=-︒) ααπtan 2tan(-=-)二、讲解范例:例1.求下列三角函数的值(1) sin240º; (2)45cos π;(3) cos(-252º);(4) sin (-67π) 解:(1)sin240º=sin(180º+60º)=-sin60º=23-(2) 45cos π=cos ⎪⎭⎫ ⎝⎛+4ππ=4cos π-=22-; (3) cos(-252º)=cos252º= cos(180º+72º)=-cos72º=-0.3090;(4) sin (-67π)=-sin 67π=-sin ⎪⎭⎫ ⎝⎛+6ππ=sin 6π=21 说明:本题是诱导公式二、三的直接应用.通过本题的求解,使学生在利用公式二、三求三角函数的值方面得到基本的、初步的训练.本例中的(3)可使用计算器或查三角函数表.例2.求下列三角函数的值(1)sin(-119º45′);(2)cos 35π;(3)cos(-150º);(4)sin 47π. 解:(1)sin(-119º45′)=-sin119º45′=-sin(180º-60º15′)= -sin60º15′=-0.8682 (2)cos 35π=cos(32ππ-)=cos 3π=21 (3)cos(-150º)=cos150º=cos(180º-30º) =-cos30º=23-; (4)sin 47π=sin(42ππ-)=-sin 4π=22-. 说明:本题是公式四、五的直接应用,通过本题的求解,使学生在利用公式四、五求三角函数的值方面得到基本的、初步的训练.本题中的(1)可使用计算器或查三角函数表.例3.求值:sin ⎪⎭⎫ ⎝⎛-631π-cos ⎪⎭⎫ ⎝⎛-310π-sin 1011π 略解:原式=-sin ⎪⎭⎫ ⎝⎛+674ππ-cos ⎪⎭⎫ ⎝⎛+342ππ-sin 1011π =-sin ⎪⎭⎫ ⎝⎛+6ππ-cos ⎪⎭⎫ ⎝⎛+3ππ+sin 10π =sin 6π+cos 3π+sin 10π =21+21+0.3090=1.3090 . 说明:本题考查了诱导公式一、二、三的应用,弧度制与角度制的换算,是一道比例1略难的小综合题.利用公式求解时,应注意符号.例4.求值:sin(-1200º)·cos1290º+cos(-1020º)·sin(-1050º)+tan855º.解:原式=-sin(120º+3·360º)cos(210º+3·360º)+cos(300º+2·360º)[-sin(330º+2·360º)]+tan(135º+2·360º)=-sin120º·cos210º-cos300º·sin330º+tan135º=-sin(180º-60º)·cos(180º+30º)- cos(360º-60º)·sin(360º-30º)+)45180cos()45180sin(︒-︒︒-︒ =sin60º·cos30º+cos60º·sin30º-tan45º=23·23+21·21-1=0 说明:本题的求解涉及了诱导公式一、二、三、四、五以及同角三角函数的关系.与前面各例比较,更具有综合性.通过本题的求解训练,可使学生进一步熟练诱导公式在求值中的应用.例5.化简:)sin()5cos()4cos()3sin(αππαπααπ--⋅---⋅+. 略解:原式=)]sin([)cos(cos )sin(απαπααπ+-⋅+⋅+=ααcos cos =1. 说明:化简三角函数式是诱导公式的又一应用,应当熟悉这种题型.例6.化简:)()2cos()2sin(])12([sin 2])12([sin Z n n n n n ∈--+-⋅+++⋅αππαπαπα 解:原式=)2cos()2sin(]2)sin[(2]2)sin[(αππαππαπαπ----+++n n n n =ααπααπcos sin )sin(2)sin(-++ =ααααcos sin sin 2sin -- =αcos 3-. 说明:本题可视为例5的姐妹题,相比之下,难度略大于例5.求解时应注意从所涉及的角中分离出2π的整数倍才能利用诱导公式一.例7.求证:)sin()cos()2cos()4sin()tan()sin()cos()4cos()3sin(πααπαπαππαπαπαπαπα++---=-----+- 证明:左边=)cos()sin()sin()cos(cos ]4)sin[(απαπαπαπαπαπ-------+-+ =ααααααπcos sin sin cos cos )sin(-++ =ααααααcos sin sin cos sin cos 22⋅--=()()ααααααααsin cos sin cos cos sin )sin (cos -+⋅- =ααααcos sin cos sin +⋅, 右边=ααααsin cos cos sin --⋅-=ααααcos sin cos sin +⋅, 所以,原式成立.例8.求证ααααα3tan )360sin()540sin(1)180cos()cos(1=-︒+-︒+︒+- 证明:左边=ααααααααsin sin 1cos cos 1sin )180sin(1cos cos 1--=--︒- =αααααααα2222cos cos sin sin sin sin 1cos cos 1=--=tan 3α=右边, 所以,原式成立.说明:例7和例8是诱导公式及同角三角函数的基本关系式在证明三角恒等式中的又一应用,具有一定的综合性.尽管问题是以证明的形式出现的,但其本质是等号左、右两边三角式的化简.例9.已知παπαπ22321)cos(<<-=+,.求:)2sin(απ-的值. 解:已知条件即21cos =α, 又παπ223<<, 所以:)cos 1(sin )2sin(2αααπ---=-=-=23)21(12=- 说明:本题是在约束条件下三角函数式的求值问题.由于给出了角α的范围,因此,α的三角函数的符号是一定的,求解时既要注意诱导公式本身所涉及的符号,又要注意根据α的范围确定三角函数的符号.例10.已知223)360tan(1)720tan(1+=︒--︒++θθ,求: )2(cos 1)](sin 2)cos()sin()([cos 222πθπθθπθπθπ--⋅-+-⋅++-的值. 解:由223)360tan(1)720tan(1+=︒--︒++θθ,得 222tan )224+=+θ(, 所以22224222tan =++=θ故 )2(cos 1)](sin 2)cos()sin()([cos 222πθπθθπθπθπ--⋅-+-⋅++- =θθθθθ222cos 1]sin 2cos sin [cos ⋅++ =1+tan θ+2tan 2θ =1+2)22(222⋅+222+=. 说明:本题也是有约束条件的三角函数式的求值问题,但比例9要复杂一些.它对于学生熟练诱导公式及同角三角函数关系式的应用.提高运算能力等都能起到较好的作用.例11.已知)32tan()0()3cos(326αππαπαπ-≠=+<<,求,m m 的值. 解:因为)(332παπαπ+-=-, 所以:)]3(cos[)32cos(παπαπ+-=-=)3cos(πα+-=-m 由于,326παπ<<所以,2320παπ<-< 于是:)32(cos 1)32sin(2απαπ--=-=21m -, 所以:tan()32cos()32sin()32(απαπαπ--=-=m m 21-- . 说明:通过观察,获得角3πα+与角απ-32之间的关系式απ-32=π-(3πα+),为顺利利用诱导公式求cos(απ-32)的值奠定了基础,这是求解本题的关键,我们应当善于引导学生观察,充分挖掘的隐含条件,努力为解决问题寻找突破口,本题求解中一个鲜明的特点是诱导公式中角的结构要由我们通过对已知式和欲求之式中角的观察分析后自己构造出来,在思维和技能上显然都有较高的要求,给我们全新的感觉,它对于培养学生思维能力、创新意识,训练学生素质有着很好的作用.例12.已知cos 32=β,角βα-的终边在y 轴的非负半轴上,求cos ()βα32-的值. 解:因为角βα-的终边在y 轴的非负半轴上,所以:βα-=)(22Z k k ∈+ππ,于是 2(βα-)=)(4πππ∈+k k从而 ,)(432Z k k ∈++-=-ππββα所以 ]4)cos[()32cos(πβπβαk +-=-=)cos(βπ-=βcos -=32- 说明:本题求解中,通过对角βα-的终边在y 轴的非负半轴上的分析而得的βα-=)(22Z k k ∈+ππ,还不能马上将未知与已知沟通起来.然而,当我们通过观察,分析角βα32-的结构特征,并将它表示为2(βα-)β-后,再将βα-=ππk 22+代入,那么未知和已知之间随即架起了一座桥梁,它为利用诱导公式迅速求值扫清了障碍.通过本题的求解训练,对于培养学生的观察分析能力以及思维的灵活性和创造性必将大有裨益.三、课堂练习:1.已知sin(α+π)= -21,则)7cos(1πα+-的值是( ) (A )332 (B) -2 (C)-332 (D)±332 2.式子)690sin(630sin )585cos(︒-+︒︒-的值是 ( ) (A )22 (B)2 (C)32 (D)- 32 3.α,β,γ是一个三角形的三个内角,则下列各式中始终表示常数的是( )(A )sin(α+β)+sin γ (B)cos(β+γ)- cos α(C)sin(α+γ)-cos(-β)tan β(D)cos(2β+γ)+ cos2α 4.已知:集合⎭⎬⎫⎩⎨⎧∈-==Z k k x x P ,3)3(sin |π,集合 ⎭⎬⎫⎩⎨⎧∈--==Z k k y y Q ,3)21(sin |π,则P 与Q 的关系是 ( ). (A )P ⊂Q(B)P ⊃Q (C)P=Q (D)P ∩Q=φ 5.已知ααπααπsin )2cos(,cos )2sin(=-=-对任意角α均成立.若f (sin x )=cos2x ,则f (cos x )等于( ).(A )-cos2x (B)cos2x (C) -sin2x (D)sin2x6.已知923)cos()cos(31=----θθπ,则)5sin()3cos(πθθπ+--的值等于 . 7.54cos 53cos 52cos 5cos ππππ+++= . 8.化简:)360cos()180cos()360tan()900sin()sin(︒---+︒-︒--︒--ααααα所得的结果是 . 9.求证ααααα3cot )360cos()540cos(1)180sin()sin(1=-︒+-︒+︒--. 10.设f(x )=)(])12[(cos )(sin )(cos 222Z n x n x n x n ∈-+-⋅+πππ, 求f (6π)的值. 答案与提示1.D 2.B 3.C 4.C 5.A 6.±43 7.0 8.-2cos α 9.提示:左边利用诱导公式及平方关系,得αα33sin cos ,右边利用倒数关系和商数关系,得αα33sin cos ,所以左边=右边.10.41.提示:分n=2k ,n=2k+1(k ∈z)两种情况讨论,均求得f (x )=sin 2x .故f (6π)=41. 四、小结应用诱导公式化简三角函数的一般步骤:1︒用“- α”公式化为正角的三角函数;2︒用“2k π + α”公式化为[0,2π]角的三角函数;3︒用“π±α”或“2π - α”公式化为锐角的三角函数五、课后作业:六、板书设计(略)七、、课后记:。

相关文档
最新文档