九年级数学竞赛讲座:充满活力的韦达定理

合集下载

九年级数学秋季教材班第8次课 充满活力的韦达定理 定稿

九年级数学秋季教材班第8次课   充满活力的韦达定理  定稿

充满活力的韦达定理姓名 日期【知识要点】1.一元二次方程两根和与两根积和系数的关系: 如果ax 2+bx+c=0(a ≠0)的两个根是x 1,x 2,那么acx x a b x x =-=+2121,,2.一元二次方程的根与系数的关系简化形式:如果把方程()002≠=++a c bx ax 变形为02=++acx a b x ,即x 2+px+q=0的形式,其中acq a b P ==,.从而得出:如果方程 x 2+px+q =0的两个根是x 1,x 2,那么x 1+x 2=-p ,x 1·x 2=q . 3.韦达定理的逆定理:以两个数21,x x 为根的一元二次方程(二次项系数为1)是()021212=++-x x x x x x .一般地,如果有两个数21,x x 满足⎪⎪⎩⎪⎪⎨⎧=-=+a c x x ab x x 2121那么21,x x 必定是一元二次方程02=++c bx ax ()0≠a 的两个实数根. 2.不解方程,判断根的性质与符号:已知一元二次方程02=++c bx ax ()0≠a 有两个根21,x x .(1)方程两根的符号由“a b x x -=+21”,“acx x 21=”确定:①两根同号时, .②两根正号时, 且 . ③两根同负时, 且 . ④两根异号时, .(2)当两根异号时,即 ,利用abx x -=+21判断绝对值 较大的根是正还是负或者是零.①021>+x x 时, 根的绝对值较大; ②021<+x x 时, 根的绝对值较大;③021=+x x 时,两根的 相等,即两根互为 . 【典型例题】例1.下列方程中,两根的和与两根的积各是多少?(1)x 2-2x +1=0;(2)x 2-9x +10=0;(3)2x 2-9x +5=0;例2.判定下列各方程后面的两个数是不是它的两个根例3.已知方程5x 2+kx-6=0的根是2,求它的另一根及k 的值.例5.设x 1,x 2是方程2x 2+4x-3=0的两个根,利用根与系数的关系,求下列各式的值:(1)(x 1+1)(x 2+1) (2)x 12x 2+x 1x 22 (3)(x 1-x 2)2;例6.m 为何值时:(1)方程01342=++-m x x 有两个不相等的正数根? (2)方程()0234122=-+++m mx x m 有一正根、一负根?(3)方程()02152=-+-+m x m x 的两根是相反数?例7.(1)以和为根的一元二次方程 。

韦达定理详细讲解初中

韦达定理详细讲解初中

韦达定理详细讲解初中1. 韦达定理的基本概念嘿,大家好!今天咱们聊聊一个有趣的数学小知识,那就是韦达定理。

你可能会问,韦达是谁呀?其实,他是个很牛的数学家,专门研究方程的。

韦达定理主要是讲关于二次方程的根和系数之间的关系。

简单来说,如果你有一个形如 (ax^2 + bx + c = 0) 的方程,韦达定理告诉我们根的和和根的积是怎么回事。

听起来有点复杂,但别担心,咱们一步一步来,保证你听得明白!1.1. 根的和与根的积首先,咱们来看看根的和。

设这个方程的两个根是 (x_1) 和 (x_2),那么根据韦达定理,它们的和就是 (frac{b{a)。

哦,别以为这就完了!根的积也很重要,两个根的积是(frac{c{a)。

这就像你找朋友聚会,知道总共有多少人(和)和几对情侣(积),就能推算出不少事情来。

1.2. 实际例子来个实际例子,让你更容易理解。

假设我们有个方程 (2x^2 4x + 2 = 0)。

这里 (a = 2),(b = 4),(c = 2)。

根据韦达定理,根的和是 (frac{4{2 = 2),根的积是 (frac{2{2 = 1)。

哇,这样一算,感觉根的关系就像你和你最好的朋友一样,彼此心知肚明呢!2. 韦达定理的应用说到这儿,可能有的小伙伴会想:“这理论有啥用呢?”别急,让我给你讲讲韦达定理在实际生活中的妙用。

其实,这个定理在解决各种实际问题时简直是个好帮手!比如说,你想找出一个水池的水位变化,或者解决一些最优化问题,韦达定理都能派上用场,帮助你理清思路。

2.1. 在几何中的应用不仅如此,韦达定理在几何学里也大显身手哦!想象一下,一个三角形的顶点坐标,你可以用韦达定理来帮助你计算出某些重要的点,简直就是数学界的瑞士军刀,功能强大到不行。

2.2. 数学竞赛中的好帮手另外,韦达定理在数学竞赛中也是一大法宝。

许多题目都能通过它轻松解出,比如求解二次方程的根,甚至能帮助你推导出一些新的数学性质。

初中数学竞赛:韦达定理(附练习题及答案)

初中数学竞赛:韦达定理(附练习题及答案)

初中数学竞赛:韦达定理一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的。

韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在:运用韦达定理,求方程中参数的值;运用韦达定理,求代数式的值;利用韦达定理并结合根的判别式,讨论根的符号特征;利用韦达定理逆定理,构造一元二次方程辅助解题等。

韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路。

韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法。

【例题求解】【例1】 已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 。

思路点拨:所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为(例【例2】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么ba ab +的值为( ) A 、22123 B 、22125或2 C 、22125 D 、22123或2思路点拨:可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件。

注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧:(1)恰当组合;(2)根据根的定义降次;(3)构造对称式。

【例3】 已知关于x 的方程:04)2(22=---m x m x (1)求证:无论m 取什么实数值,这个方程总有两个相异实根。

(2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x 。

思路点拨:对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手。

【例4】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x +有最小值?并求出这个最小值。

初中数学竞赛第三讲充满活力的韦达定理(含答案)

初中数学竞赛第三讲充满活力的韦达定理(含答案)

第三讲 充满活力的韦达定理一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的.韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在:运用韦达定理,求方程中参数的值;运用韦达定理,求代数式的值;利用韦达定理并结合根的判别式,讨论根的符号特征;利用韦达定理逆定理,构造一元二次方程辅助解题等.韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路.韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法.【例题求解】【例1】 已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 .思路点拨 所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为(例【例2】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么ba ab +的值为( ) A .22123 B .22125或2 C .22125 D .22123或2 思路点拨 可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件.注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧:(1)恰当组合;(2)根据根的定义降次;(3)构造对称式.【例3】 已知关于x 的方程:04)2(22=---m x m x (1)求证:无论m 取什么实数值,这个方程总有两个相异实根. (2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x . 思路点拨 对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手.【例4】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x +有最小值?并求出这个最小值.思路点拨 利用根与系数关系把待求式用m 的代数式表示,再从配方法入手,应注意本例是在一定约束条件下(△≥0)进行的.注:应用韦达定理的前提条件是一元二次方程有两个实数根,即应用韦达定理解题时,须满足判别式△≥0这一条件,转化是一种重要的数学思想方法,但要注意转化前后问题的等价性.【例5】 已知:四边形ABCD 中,AB ∥CD ,且AB 、CD 的长是关于x 的方程047)21(222=+-+-m mx x 的两个根. (1)当m =2和m>2时,四边形ABCD 分别是哪种四边形?并说明理由.(2)若M 、N 分别是AD 、BC 的中点,线段MN 分别交AC 、BD 于点P ,Q ,PQ =1,且AB<CD ,求AB 、CD 的长.思路点拨 对于(2),易建立含AC 、BD 及m 的关系式,要求出m 值,还需运用与中点相关知识找寻CD 、AB 的另一隐含关系式.注:在处理以线段的长为根的一元二次方程问题时,往往通过韦达定理、几何性质将几何问题从“形”向“数”(方程)转化,既要注意通过根的判别式的检验,又要考虑几何量的非负性.学历训练A 组1.(1)已知1x 和2x 为一元二次方程013222=-+-m x x 的两个实根,并1x 和2x 满足不等式142121<-+x x x x ,则实数m 取值范围是 . (2)已知关于x 的一元二次方程07)1(82=-+++m x m x 有两个负数根,那么实数m 的取值范围是 .2.已知α、β是方程的两个实数根,则代数式2223βαββαα+++的值为 .3.CD 是Rt △ABC 斜边上的高线,AD 、BD 是方程0462=+-x x 的两根,则△ABC 的面积是 .4.设1x 、2x 是关于x 的方程02=++q px x 的两根,1x +1、2x +1是关于x 的方程02=++p qx x 的两根,则p 、q 的值分别等于( )A .1,-3B .1,3C .-1,-3D .-1,35.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程0772=++-c x x 的两根,那么AB 边上的中线长是( )A .23B .25 C .5 D .2 6.方程019972=++px x 恰有两个正整数根1x 、2x ,则)1)(1(21++x x p 的值是( ) A .1 B .-l C .21- D .21 7.若关于x 的一元二次方程的两个实数根满足关系式:)1)(1()1()1(212211++=+++x x x x x x ,判断4)(2≤+b a 是否正确?8.已知关于x 的方程01)32(22=++--k x k x .(1) 当k 是为何值时,此方程有实数根;(2)若此方程的两个实数根1x 、2x 满足:312=+x x ,求k 的值.B 组9.已知方程02=++q px x 的两根均为正整数,且28=+q p ,那么这个方程两根为 .10.已知α、β是方程012=--x x 的两个根,则βα34+的值为 .11.△ABC 的一边长为5,另两边长恰为方程01222=+-m x x 的两根,则m 的取值范围是 .12.两个质数a 、b 恰好是整系数方程的两个根,则b a a b +的值是( ) A .9413 B .1949413 C .999413 D .979413 13.设方程有一个正根1x ,一个负根2x ,则以1x 、2x 为根的一元二次方程为( )A .0232=---m x xB .0232=--+m x xC .02412=---x m xD .02412=+--x m x14.如果方程0)2)(1(2=+--m x x x 的三根可以作为一个三角形的三边之长,那么实数m 的取值范围是( )A .0≤m ≤1B .m ≥43C .143≤<m D .43≤m ≤115.如图,在矩形ABCD 中,对角线AC 的长为10,且AB 、BC(AB>BC)的长是关于x 的方程的两个根.(1)求rn 的值;(2)若E 是AB 上的一点,CF ⊥DE 于F ,求BE 为何值时,△CEF 的面积是△CED 的面积的31,请说明理由.16.设m 是不小于1-的实数,使得关于x 的方程工033)2(222=+-+-+m m x m x 有两个不相等的实数根1x 、2x .(1) 若62221=+x x ,求m 的值.(2)求22212111x mx x mx -+-的最大值.17.如图,已知在△ABC 中,∠ACB=90°,过C 作CD ⊥AB 于D ,且AD =m ,BD=n ,AC 2:BC 2=2:1;又关于x 的方程012)1(24122=-+--m x n x 两实数根的差的平方小于192,求整数m 、n 的值.18.设a 、b 、c 为三个不同的实数,使得方程和012=++ax x 和02=++c bx x 有一个相同的实数根,并且使方程02=++a x x 和02=++b cx x 也有一个相同的实数根,试求c b a ++的值.参考答案。

数学培优竞赛新方法(九年级)-第3讲-充满活力的韦达定理

数学培优竞赛新方法(九年级)-第3讲-充满活力的韦达定理

A.不大于 1
B.大于 1
C.小于 1
D.不小于 1
(2011 年《数学周报杯》全国初中数学竞赛题)
7.若 ab 1 ,且有 5a 2 2001a 9 0及9b2 2001b 5 0,则 a 的值为( ) b
9
A.
5
5
B.
9
C. 2001 5
D . 2001 9
(全国初中数学联赛题)
1
九年级数学培优竞赛辅导讲座
[充满活力的韦达定理] 学历训练
1.已知方程 x 2 px q 0 的两根均为正整数,且 p q 28 ,那么这个方程两根为

(“祖冲之杯”邀请赛)
2.已知整数 p,q 满足 p q 2010, 且关于 x 的一元二次方程 67x 2 px q 0 的两个根均为正整数,
值范围是( )
A. 0 m 1
B. m 3 4
(全国初中数学联赛题)
C. 3 m 1 D. 3 m 1
4
4
思路点拨 设方程的根分别为 1、 x1, x2 ,由三角形三边关系定理、韦达定理建立 m 的不等式组。
例 3.设 x1 、 x2 是方程 2x 2 4mx 2m 2 3m 2 0 的两个实数根,当 m 为何值时, x12 x2 2 有最小值?
九年级数学培优竞赛辅导讲座
第 3 讲 充满活力的韦达定理
知识纵横
一元二次方程的根与系数的关系,通常也称 为韦达定理,这是因为该定理是由 16 世纪法国最杰出 的数学家韦达发现的.
韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在: 运用韦达定理,求方程中参数的值; 运用韦达定理,求代数式的值; 利用韦达定理并结合根的判别式,讨论根的符号特征 ; 利用韦达定理逆定理,构造一元二次方程辅助解题等. 韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路. 韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解 这类问题常用到对称分析、构造等数学思想方法.

韦达定理含答案-

韦达定理含答案-

第三讲 充满活力的韦达定理一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的.韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在: 运用韦达定理,求方程中参数的值;运用韦达定理,求代数式的值;利用韦达定理并结合根的判别式,讨论根的符号特征;利用韦达定理逆定理,构造一元二次方程辅助解题等.韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路.韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法.【例题求解】【例1】 已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 .思路点拨 所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为(例【例2】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么ba ab +的值为( ) A .22123 B .22125或2 C .22125 D .22123或2 思路点拨 可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件. 注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧:(1)恰当组合;(2)根据根的定义降次;(3)构造对称式.【例3】 已知关于x 的方程:04)2(22=---m x m x (1)求证:无论m 取什么实数值,这个方程总有两个相异实根. (2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x . 思路点拨 对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手.【例4】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x + 有最小值?并求出这个最小值.思路点拨 利用根与系数关系把待求式用m 的代数式表示,再从配方法入手,应注意本例是在一定约束条件下(△≥0)进行的.注:应用韦达定理的前提条件是一元二次方程有两个实数根,即应用韦达定理解题时,须满足判别式△≥0这一条件,转化是一种重要的数学思想方法,但要注意转化前后问题的等价性.【例5】 已知:四边形ABCD 中,AB ∥CD ,且AB 、CD 的长是关于x 的方程047)21(222=+-+-m mx x 的两个根. (1)当m =2和m>2时,四边形ABCD 分别是哪种四边形?并说明理由.(2)若M 、N 分别是AD 、BC 的中点,线段MN 分别交AC 、BD 于点P ,Q ,PQ =1,且AB<CD ,求AB 、CD 的长.思路点拨 对于(2),易建立含AC 、BD 及m 的关系式,要求出m 值,还需运用与中点相关知识找寻CD 、AB 的另一隐含关系式.注:在处理以线段的长为根的一元二次方程问题时,往往通过韦达定理、几何性质将几何问题从“形”向“数”(方程)转化,既要注意通过根的判别式的检验,又要考虑几何量的非负性.学历训练A 组1.(1)已知1x 和2x 为一元二次方程013222=-+-m x x 的两个实根,并1x 和2x 满足不等式142121<-+x x x x ,则实数m 取值范围是 . (2)已知关于x 的一元二次方程07)1(82=-+++m x m x 有两个负数根,那么实数m 的取值范围是 .2.已知α、β是方程的两个实数根,则代数式2223βαββαα+++的值为 .3.CD 是Rt △ABC 斜边上的高线,AD 、BD 是方程0462=+-x x 的两根,则△ABC 的面积是 .4.设1x 、2x 是关于x 的方程02=++q px x 的两根,1x +1、2x +1是关于x 的方程02=++p qx x 的两根,则p 、q 的值分别等于( )A .1,-3B .1,3C .-1,-3D .-1,35.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程0772=++-c x x 的两根,那么AB 边上的中线长是( )A .23B .25 C .5 D .2 6.方程019972=++px x 恰有两个正整数根1x 、2x ,则)1)(1(21++x x p 的值是( ) A .1 B .-l C .21- D .21 7.若关于x 的一元二次方程的两个实数根满足关系式:)1)(1()1()1(212211++=+++x x x x x x ,判断4)(2≤+b a 是否正确?8.已知关于x 的方程01)32(22=++--k x k x .(1) 当k 是为何值时,此方程有实数根;(2)若此方程的两个实数根1x 、2x 满足:312=+x x ,求k 的值.B 组9.已知方程02=++q px x 的两根均为正整数,且28=+q p ,那么这个方程两根为 .10.已知α、β是方程012=--x x 的两个根,则βα34+的值为 .11.△ABC 的一边长为5,另两边长恰为方程01222=+-m x x 的两根,则m 的取值范围是 .12.两个质数a 、b 恰好是整系数方程的两个根,则b a a b +的值是( ) A .9413 B .1949413 C .999413 D .979413 13.设方程有一个正根1x ,一个负根2x ,则以1x 、2x 为根的一元二次方程为( )A .0232=---m x xB .0232=--+m x xC .02412=---x m xD .02412=+--x m x14.如果方程0)2)(1(2=+--m x x x 的三根可以作为一个三角形的三边之长,那么实数m 的取值范围是( )A .0≤m ≤1B .m ≥43C .143≤<mD .43≤m ≤115.如图,在矩形ABCD 中,对角线AC 的长为10,且AB 、BC(AB>BC)的长是关于x 的方程的两个根.(1)求rn 的值;(2)若E 是AB 上的一点,CF ⊥DE 于F ,求BE 为何值时,△CEF 的面积是△CED 的面积的31,请说明理由.16.设m 是不小于1-的实数,使得关于x 的方程工033)2(222=+-+-+m m x m x 有两个不相等的实数根1x 、2x .(1) 若62221=+x x ,求m 的值.(2)求22212111x mx x mx -+-的最大值.17.如图,已知在△ABC 中,∠ACB=90°,过C 作CD ⊥AB 于D ,且AD =m ,BD=n ,AC 2:BC 2=2:1;又关于x 的方程012)1(24122=-+--m x n x 两实数根的差的平方小于192,求整数m 、n 的值.18.设a 、b 、c 为三个不同的实数,使得方程和012=++ax x 和02=++c bx x 有一个相同的实数根,并且使方程02=++a x x 和02=++b cx x 也有一个相同的实数根,试求c b a ++的值.参考答案。

九年级数学竞赛资料专题(三)——韦达定理的应用上

九年级数学竞赛资料专题(三)——韦达定理的应用上

韦达定理的应用一、典型例题例1:已知关于x 的方程2x -(m +1)x +1-m=0的一个根为4,求另一个根。

解:设另一个根为x 1,则相加,得531-=x例2:已知方程x -5x +8=0的两根为x 1,x 2,求作一个新的一元二次方程,使它的两根分别为和.解:∵ 又 ∴代入得, ∴新方程为例3:判断是不是方程9x -10x -2=0的一个实数根? 解:∵二次实数方程实根共轭,∴若是,则另一根为 ∴,。

∴以为根的一元二次方程即为.例4:解方程组解:设∴.∴A=5. ∴x-y=5 又xy=-6.∴解方程组∴可解得例5:已知Rt ABC中,两直角边长为方程x-(2m+7)x+4m(m-2)=0的两根,且斜边长为13,求S的值解:不妨设斜边为C=13,两条直角边为a,b,则2。

又a,b为方程两根。

∴ab=4m(m-2)∴S但a,b为实数且∴∴∴m=5或6 当m=6时,∴m=5 ∴S.例6:M 为何值时,方程8x -(m -1)x +m -7=0的两根① 均为正数 ②均为负数 ③一个正数,一个负数 ④一根为零 ⑤互为倒数解:①∵ ⎪⎩⎪⎨⎧+≥∆02121>>x x xx ∴m>7 ②∵∴不存在这样的情况。

③∴m<7 ④∴m=7 ⑤∴m=15.但使∴不存在这种情况【模拟试题】(答题时间:30分钟)1. 设n为方程x+mx+n=0(n≠0)的一个根,则m+n等于2. 已知方程x+px-q=0的一个根为-2+,可求得p= ,q=3. 若方程x+mx+4=0的两根之差的平方为48,则m的值为()A.±8 B.8 C.-8 D.±44. 已知两个数的和比a少5,这两个数的积比a多3,则a为何值时,这两个数相等?5. 已知方程(a+3)x+1=ax有负数根,求a的取值范围。

6. 已知方程组的两组解分别为,,求代数式a1b2+a2b1的值。

7. ABC中,AB=AC, A,B,C的对边分别为a,b,c,已知a=3,b和c是关于x 的方程x+mx+2-m=0的两个实数根,求ABC的周长。

【九年级】九年级数学竞赛充满活力的韦达定理知识讲座

【九年级】九年级数学竞赛充满活力的韦达定理知识讲座

【九年级】九年级数学竞赛充满活力的韦达定理知识讲座一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的.魏达定理的简单形式包含着丰富的数学内容,应用广泛,主要体现在:运用韦达定理,求方程中参数的值;利用魏达定理求代数公式的值;利用韦达定理并结合根的判别式,讨论根的符号特征;利用魏达定理和逆定理,我们构造了一个单变量的二次方程来辅助求解问题韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路.吠陀的定理充满活力。

它可以与代数和几何中的许多知识有机结合,生成丰富多彩的数学问题。

解决这类问题常用于数学思维方法,如对称分析和构造【例题求解】[例1]如果已知这是方程的两个实根,则代数公式的值为思路点拨所求代数式为、的非对称式,通过根的定义、一元二次方程的变形转化为(例[例2]如果和是素数,而,,是()a.b.或2c.d.或2这两个方程可以相减得到和之间的关系。

由于这两个方程具有相同的结构,它们可以被视为方程的两个实根,这为应用根和系数之间的关系创造了条件注:应用韦达定理的代数式的值,一般是关于、的对称式,这类问题可通过变形用+、表示求解,而非对称式的求值常用到以下技巧:(1)适当组合;(2)根据根的定义降次;(3)构造一个对称公式【例3】已知关于的方程:(1)证明:不管m取什么实值,方程总是有两个不同的实根(2)若这个方程的两个实根、满足,求m的值及相应的、.对于(2),首先确定和的符号特征,并从分类讨论开始【例4】设、是方程的两个实数根,当m为何值时,有最小值?并求出这个最小值.利用根和系数之间的关系,将要求解的公式表示为M的代数公式,然后从匹配方法开始,需要注意的是,该示例是在某些约束条件下执行的(△ ≥ 0)注:应用韦达定理的前提条件是一元二次方程有两个实数根,即应用韦达定理解题时,须满足判别式△≥0这一条件,转化是一种重要的数学思想方法,但要注意转化前后问题的等价性.【例5】已知在四边形ABCD中,ab‖CD,以及ab和CD的长度是关于(1)当m=2和m>2时,四边形abcd分别是哪种四边形?并说明理由.(2)如果M和N分别是AD和BC的中点,则线段Mn在点P、Q、PQ=1和ab处与AC和BD相交思路点拨对于(2),易建立含ac、bd及m的关系式,要求出m值,还需运用与中点相关知识找寻cd、ab的另一隐含关系式.注:在处理以线段长度为根的一元二次方程问题时,几何问题往往通过魏达定理和几何性质从“形”转化为“数”(方程)。

九年级数学尖子生培优竞赛专题辅导第三讲 韦达定理及其应用(含答案)

九年级数学尖子生培优竞赛专题辅导第三讲 韦达定理及其应用(含答案)

第三讲 韦达定理及其应用趣题引路】韦达,1540年出生于法国的波亚图,早年学习法律,但他对数学有浓厚的兴趣;常利用业余时间钻研数学.韦达是第一个有意识地、系统地使用字母的人,他把符号系统引入代数学对数学的发展发挥了巨大的作用,使人类的认识产生了飞跃。

人们为了纪念他在代数学上的功绩,称他为“代生之父”历史上流传着一个有关韦达的趣事:有一次,荷兰派到法国的一位使者告诉法国国王,比利时的数学家罗门提出了一个45次的方程向各国数学家挑战.国王于是把这个问题交给韦达,韦达当即得出一正数解,回去后很快又得出了另外的22个正数解(他舍弃了另外的22个负数解).消息传开,数学界为之震惊.同时,韦达也回敬了罗门一个问题,罗门一时不得其解,冥思苦想了好多天才把它解出来。

韦达研究了方程根与系数的关系,在一元二次方程中就有一个根与系数之间关系的韦达定理,你能利用韦达定理解决下面的问题吗?已知:①a 2+2a -1=0,②b 4-2b 2-1=0日1-ab 2≠0.求2220041()ab b a++的值。

解析 由①知211120a a +-= .即211()210a a +-=,③由②知(b 2)2-2b 2-1=0,④ 由韦达定理,得22112,1b b a a+=⋅=- , ∴()200422220042004211()21ab b b b a aa ⎡⎤++⎛⎫=++=-⎢⎥ ⎪⎝⎭⎣⎦62为一元二次方程²-2x -1=0的两根。

点评 本题的关键是构造一元二次方程x 2-2x -1=0,利用韦达定理求解,难点是将①变形成③,易错点是忽视条件1-ab ²≠0,而把a ,-b 2看作方程x 2+2x -1=0的两根来求解.知识延伸】例1 已知关于x 的二次方程2x 2+ax -2a +1=0的两个实根的平方和为174 ,求a 的值.解析 设方程的两实根为x 1,x 2,根据韦达定理,有 12122212a x x a x x ⎧+=-⎪⎪⎨-+⎪⋅=⎪⎩ 于是,x 12+x 22=(x 1+x 2)2-2x 1x 2 =221222a a -+⎛⎫--⋅ ⎪⎝⎭=14(a 2+8a -4) 依题设,得14 (a 2+8a -4)=174,解得a =-11或3.注意到x 1,x 2,为方程的两个实数根,则△≥0,但a =-11时,△=(-11)2+16×(-11)-8=-63<0;a =3时,△=32-4×2×(-6+1)=49>0,故a =3.点评 韦达定理应用的前提是方程有解,即判别式△=0,本题容易忽视的就是求出a 的值后,没有考虑a 的值满足△≥0这一前提条件。

初中数学竞赛韦达定理及其应用(含答案)

初中数学竞赛韦达定理及其应用(含答案)

韦达定理及其应用设一元二次方程有二实数根,则,。

这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。

其逆命题也成立。

韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。

本讲重点介绍它在五个方面的应用。

1.求代数式的值应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。

例1若a,b为实数,且,,求的值。

思路注意a,b为方程的二实根;(隐含)。

解(1)当a=b时,;(2)当时,由已知及根的定义可知,a,b分别是方程的两根,由韦达定理得, ab=1.说明此题易漏解a=b的情况。

根的对称多项式,,等都可以用方程的系数表达出来。

一般地,设,为方程的二根,,则有递推关系。

其中n为自然数。

由此关系可解一批竞赛题。

附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。

例2若,且,试求代数式的值。

思路此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。

解:因为,由根的定义知m,n为方程的二不等实根,再由韦达定理,得,∴2.构造一元二次方程如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。

例3设一元二次方程的二实根为和。

(1)试求以和为根的一元二次方程;(2)若以和为根的一元二次方程仍为。

求所有这样的一元二次方程。

解(1)由韦达定理知,。

,。

所以,所求方程为。

(2)由已知条件可得解之可得由②得,分别讨论(p,q)=(0,0),(1,0),(1-)。

-,1)或(0, 1-,0),(0,1),(2,1),(2于是,得以下七个方程,,,,,-,其中0x2=11x2=+无实数根,舍去。

其余六个方程均为所求。

x2=+,01x2+3.证明等式或不等式根据韦达定理(或逆定理)及判别式,可以证明某些恒等式或不等式。

例4已知a,b,c为实数,且满足条件:,,求证a=b。

证明由已知得,。

充满活力的韦达定理

充满活力的韦达定理

- x 2 ) , �x 1 - x 2 �等 代数 式的值. 这类 代数 式, 有一个特点: 互换两个字母 x 1 , x 2 后 , 原 式不变. 我们称它为一元二次方程的根的对 称式. 解这类问题的关键在于熟练地将已知 的根的对称式变形 , 使它含有 x 1 + x 2 和 x 1x 2 ( 基本对称式 ) 的式子 . 这就 涉及到整式、 分 式、 根式的恒等变形等知识 . 例 1 已知 方程 ( x - 1 ) ( x 2 + 8x - 3) = 0 的 三 个实 数 根为 x 1 , x 2 , x 3 , 则 代数 式 ( ) x 1 x 2 + x 2 x 3+ x 3x 1 的值为 (A ) - 1 (B ) 2 (C ) 5 (D ) - 11
x1 x2 x1 x2 x1 x2 x1 x2 x1
( 绍兴市 2000 年中考题 ) 解 很显然, 已知方程有一根为 1. 若 x 1 = 1, 则 x 2, x 3 是方程 x 2 + 8x - 3= 0 的两根 , 所求代数式就是 x 2 x 3 + x 2 + x 3 , 由韦达定理 易知 x 2 + x 3 = - 8, x 2x 3 = - 3, 故所求代数式 的值为- 8- 3= - 11, 选 D. 例 2 若 m , n 是关于 x 的方程 x 2 + ( p - 2) x + 1= 0 的两实根 , 则代数式 (m 2 + mp + 1) ( n 2 + np + 1) 的值等于 . ( 绍兴市 1999 年中考题 ) 分析 代数式 (m 2 + mp + 1) ( n 2 + np + 1) 是关于 m , n 的根的对称式 , 且含有待定系 数 p , 比较复杂 . 对于这个对称式 , 变形是一 个难点 . 下面介绍三种不同的解法 , 请读者加 以比较 . 解法 1 将代数式展开 , 并进行整理: 由韦达定理知: m + n = 2- p , m n = 1. ∴ (m 2 + mp + 1) (n 2+ np + 1) = (m n ) 2+ p 2m n + pm n (m + n ) - 2m n + (m + n ) 2+ p (m + n ) + 1 = 1+ p 2+ p ( 2- p ) - 2+ ( 2- p ) 2 + p ( 2 - p ) + 1= 4. 这个方法 , 计算量大, 极易出错 . 但多数 同学会这样解. 解法 2 ∵m , n 是已知方程的两根 , 由 根的定义知: m 2 + (p - 2 )m + 1= 0, n 2 + ( p 2 ) n + 1 = 0 , 进而可得: m 2 + m p + 1 = 2m , n 2 +

九年级数学竞赛题:韦达定理

九年级数学竞赛题:韦达定理

九年级数学竞赛题:韦达定理一元二次方程)0(02=/=++a c bx ax 求根公式是:1x =1x a ba b a ac b b ac b b x x -=-=---+-+-=+2224)(42221ac a ac a ac b b x x ==---=⋅2222221444)4()(这表明一元二次方程两根的和与积,可用一元二次方程系数表示,“acx x a b x x =-=+2121,”被称为一元二次方程的根与系数的关系,常常被称为韦达定理,这是因为该定理是16世纪最杰出的数学家韦达发现的.韦达定理简单的形式里包含了丰富的数学内容,在以下方面有广泛的应用: (1)求代数式的值;(2)确定方程中参数的值;(3)结合根的判别式,讨论根的符号特征; (4)逆用构造一元二次方程辅助解题等.例1 (1)若方程042=+-c x x 的一个根为2_______,c =______. (2)已知方程0532=-+x x 的两根为x 1、x 2,则=+2221x x _________.(3)已知α、β是方程0522=-+x x 的两个实数根,则ααβα22++的值为__________.例2 若关于x 的一元二次方程013222=-+-m x x 的两个实数根为x 1、x 2,且42121-+>x x x x ,则实数m 的取值范围是( ).A 、35->m B 、21≤m C 、35-<m D 、2135≤<-m 例3 已知关于x 的方程0122=-+-m mx x 的两个实数根的平方和为23,求m 的值. 例4已知关于x 的一元二次方程)0(02=/=-+a a x ax (1)求证:对于任意非零实数a ,该方程恒有不等两实根; (2)设x 1、x 2 是该方程的两个根,若a x x 求,4||||21=+的值.例5(1)△ABC 的一边长为5,另两边长恰为01222=+-m x x 的两根,求m 的取值范围. (2)已知1≠xy ,且有yxy y x x 求,0520019,092001522=++=++的值. (3)已知x 、y 均为实数,且满足17=++y x xy ,6622=+xy y x ,求432234y xy y x y x x ++++的值.1.若x 1、x 2是方程0132=+-x x 的两个实数根,则2111x x +的值是____________. 2.已知关于x 的方程032=+-m x x 的一个根是另一个根的2倍,则m 的值为___________. 3.已知关于x 的方程02)(2=-++-ab x b a x ,x 1、x 2是此方程的两个实数根,现给出三个结论:(1)21x x =/,(2)ab x x >21,(3)222221b a x x +>+,则正确结论的序号是__________. (在横线上填上所有正确结论的序号).4.已知x 1、x 2是方程032=--x x 的两根,那么2221x x +的值是( ). A .1 B .5 C .7 D .7495.已知α、β是关于x 的一元二次方程0)32(22=+++m x m x 的两个不相等的实数根,且满足111-=+βα,则m 的值是( ).A .3或-1B .3C .1D .-3或16.在Rt △ABC 中c b a C 、、,90 =∠分别是∠ A 、∠ B 、∠ C 的对边,b a 、是关于x 的方程0772=++-c x x 的两根,那么AB 边上的中线长为( ). A .23 B .25C .5D .2 7.已知关于x 的一元二次方程01)1(22=-++-k x k kx 有两个不相等的实数根x 1、x 2 . (1)求k 的取值范围; (2)是否存在实数k ,使11121=+x x 成立?若存在,请求出k 的值;若不存在,请说明理由.8.已知关于x 的一元二次方程0241)2(22=-++-m x m x . (1)当m 为何值时,这个方程有两个相等的实数根;(2)如果这个方程的两个实数根x 1、x 2 满足182221=+x x ,求m 的值.9.若整数m 使方程020062=++-m mx x 的根为非零数,则这样的整数m 的个数为___________.10.设x 1、x 2是方程02)1(222=+++-k x k x 的两个实数根,且8)1)(1(21=++x x ,则k 的值是___________.11.已知1=/ab 且 有08199552=++a a 及05199582=++b b ,则=ba___________. 12.已知实数b a =/,且满足22)1(3)1(3),1(33)1(+-=++-=+b b a a ,则baaa b b +的值为( ).A .23B .-23C .-2D .-1313.如果方程0)2)(1(2=+--m x x x 的三根可以作为一个三角形的三边之长,那么实数m 的取值范围是( ). A .10≤≤m B .43≥m C .143≤<m D .143≤≤m14.若一元二次方程02=++q Px x 的两个根为p 、q ,则pq 等于( ). A .0 B .1 C .0或-2 D .0或115.已知关于x 的方程0122=++px x 的两个实数根一个大于1,另一个小于1,求实数p 的取值范围.16.已知x 、y 是正整数,并且的值求2222,120,23y x xy y x y x xy +=+=++.17.已知四边形ABCD 中,P 是对角线BD 上的一点,过P 作D EF AD MN C //,//,分别交AB 、CD 、AD 、BC 于点M 、N 、E 、F ,设PF PN b PE PM a ⋅=⋅=,解答下列问题:(1)当四边形ABCD 是矩形时,见图1,请判断a 与b 的大小关系,并说明理由; (2)当四边形ABCD 是平行四边形,且∠ A 为锐角时,见图2,(1)中的结论是否成立?并说明理由;(3)在(2)的条件下,设,k PDBP=是否存在这样的实数k ,使得94ABD PEAM =∆S S 平行四边形? 若存在,请求出满足条件的所有是的值;若不存在,请说明理由.。

新课标九年级数学竞赛培训第03讲:韦达定理

新课标九年级数学竞赛培训第03讲:韦达定理

韦达定理一、填空题(共7小题,每小题3分,满分21分)1.(3分)已知α、β是方程x2﹣x﹣1=0的两个实数根,则代数式α2+α(β2﹣2)的值为_________.6.(3分)(1)已知x1和x2为一元二次方程2x2﹣2x+3m﹣1=0的两个实根,并x1和x2满足不等式,则实数m取值范围是_________;(2)已知关于x的一元二次方程8x2+(m+1)x+m﹣7=0有两个负数根,那么实数m的取值范围是_________.7.(3分)已知α、β是关于x的方程x2+px+q=0的两个不相等的实数根,且α3﹣α2β﹣αβ2+β3=0,求证:p=0,q<0.8.(3分)(2003•金华)CD是Rt△ABC斜边上的高线,AD、BD是方程x2﹣6x+4=0的两根,则△ABC的面积为_________.14.(3分)已知方程x2+px+q=0的两根均为正整数,且p+q=28,那么这个方程两根为_________.15.(3分)已知α、β是方程x2﹣x﹣1=0的两个根,则α4+3β的值为_________.16.(3分)△ABC的一边为5,另外两边的长恰好是方程2x2﹣12x+m=0的两个根,则m的取值范围_________.二、选择题(共7小题,每小题4分,满分28分)2.(4分)如果a,b为质数,且a2﹣13a+m=0,b2﹣13b+m=0,那么的值为().或2 C D.或29.(4分)(2003•杭州)设x1,x2是关于x的方程x2+px+q=0的两根,x1+1,x2+1是关于x的方程x2+qx+p=0的两10.(4分)(2000•河北)在Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,a、b是关于x的方2.C11.(4分)方程x2+px+1997=0恰有两个正整数根x1、x2,则的值是()D.17.(4分)两个质数a、b恰好是整系数方程x2﹣99x+m=0的两个根,则的值是()C D.D.<m≤1 D.≤m≤13.(10分)(2002•苏州)已知关于x的方程(1)求证:无论m取什么实数,这个方程总有两个相异的实数根;(2)若这个方程的两个实数根x1,x2满足|x2|=|x1|+2,求m的值及相应的x1、x2.4.(6分)设x1、x2是方程2x2﹣4mx+2m2+3m﹣2=0的两个实根,当m为何值时,x12+x22有最小值,并求这个最小值.5.(10分)(2003•哈尔滨)已知:四边形ABCD中,AB∥CD,且AB、CD的长是关于x的方程x2﹣2mx+(m﹣)2+=0的两个根.(1)当m=2和m>2时,四边形ABCD分别是哪种四边形并说明理由.(2)若M、N分别是AD、BC的中点,线段MN分别交AC、BD于点P、Q,PQ=1,且AB<CD,求AB、CD的长;(3)在(2)的条件下,AD=BC=2,求一个一元二次方程,使它的两个根分别是tan∠BDC和tan∠BCD.12.(5分)若关于x的一元二次方程3x2+3(a+b)x+4ab=0的两个实数根满足关系式:x1(x1+1)+x2(x2+1)=(x1+1)(x2+1),判断(a+b)2≤4是否正确?13.(8分)(2003•福州)已知关于x的方程x2﹣(k+1)x+k2+1=0(1)k取什么值时,方程有两个实数根;(2)如果方程的两个实数根x1、x2满足|x1|=x2,求k的值.15.(12分)设m是不小于﹣1的实数,关于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1、x2,(1)若x12+x22=6,求m值;(2)求的最大值.20.(8分)如图,在矩形ABCD中,对角线AC的长为10,且AB、BC(AB>BC)的长是关于x的方程x2+2(1﹣m)x+6m=0的两个根.(1)求m的值;(2)若E是AB上的一点,CF⊥DE于F,求BE为何值时,△CEF的面积是△CED的面积的,请说明理由.21.(6分)(1999•北京)如图,已知△ABC中,∠ACB=90°,过C点作CD⊥AB,垂足为D,且AD=m,BD=n,AC2:BC2=2:1,又关于x的方程x2﹣2(n﹣1)x+m2﹣12=0两实数根的差的平方小于192,求:m,n为整数时,一次函数y=mx+n的解析式.22.(6分)设a、b、c为三个不同的实数,使得方程x2+ax+1=0和x2+bx+c=0有一个相同的实数根,并且使方程x2+x+a=0和x2+cx+b=0也有一个相同的实数根,试求a+b+c的值.新课标九年级数学竞赛培训第03讲:韦达定理参考答案与试题解析一、填空题(共7小题,每小题3分,满分21分)1.(3分)已知α、β是方程x2﹣x﹣1=0的两个实数根,则代数式α2+α(β2﹣2)的值为0.6.(3分)(1)已知x1和x2为一元二次方程2x2﹣2x+3m﹣1=0的两个实根,并x1和x2满足不等式,则实数m取值范围是﹣<m≤;(2)已知关于x的一元二次方程8x2+(m+1)x+m﹣7=0有两个负数根,那么实数m的取值范围是m>7.,代入.=>﹣.<;故答案为﹣≤7.(3分)已知α、β是关于x的方程x2+px+q=0的两个不相等的实数根,且α3﹣α2β﹣αβ2+β3=0,求证:p=0,q <0.8.(3分)(2003•金华)CD是Rt△ABC斜边上的高线,AD、BD是方程x2﹣6x+4=0的两根,则△ABC的面积为6.==2=14.(3分)已知方程x2+px+q=0的两根均为正整数,且p+q=28,那么这个方程两根为x1=30,x2=2.15.(3分)已知α、β是方程x2﹣x﹣1=0的两个根,则α4+3β的值为5.16.(3分)△ABC的一边为5,另外两边的长恰好是方程2x2﹣12x+m=0的两个根,则m的取值范围<m≤18.,;<二、选择题(共7小题,每小题4分,满分28分)2.(4分)如果a,b为质数,且a2﹣13a+m=0,b2﹣13b+m=0,那么的值为().或2 C D.或2,则.9.(4分)(2003•杭州)设x1,x2是关于x的方程x2+px+q=0的两根,x1+1,x2+1是关于x的方程x2+qx+p=0的两解得10.(4分)(2000•河北)在Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,a、b是关于x的方程x2﹣7x+c+7=0的两根,那么AB边上的中线长是().C.边上的中线长是.11.(4分)方程x2+px+1997=0恰有两个正整数根x1、x2,则的值是()D.=﹣17.(4分)两个质数a、b恰好是整系数方程x2﹣99x+m=0的两个根,则的值是()C D.+D.>>2<m≤1 D.≤m≤1三、解答题(共9小题,满分71分)3.(10分)(2002•苏州)已知关于x的方程(1)求证:无论m取什么实数,这个方程总有两个相异的实数根;(2)若这个方程的两个实数根x1,x2满足|x2|=|x1|+2,求m的值及相应的x1、x2.c=﹣﹣﹣=1+4.(6分)设x1、x2是方程2x2﹣4mx+2m2+3m﹣2=0的两个实根,当m为何值时,x12+x22有最小值,并求这个最小值.,+=2≥﹣时,×+=5.(10分)(2003•哈尔滨)已知:四边形ABCD中,AB∥CD,且AB、CD的长是关于x的方程x2﹣2mx+(m﹣)2+=0的两个根.(1)当m=2和m>2时,四边形ABCD分别是哪种四边形并说明理由.(2)若M、N分别是AD、BC的中点,线段MN分别交AC、BD于点P、Q,PQ=1,且AB<CD,求AB、CD 的长;(3)在(2)的条件下,AD=BC=2,求一个一元二次方程,使它的两个根分别是tan∠BDC和tan∠BCD.)>BCD=12.(5分)若关于x的一元二次方程3x2+3(a+b)x+4ab=0的两个实数根满足关系式:x1(x1+1)+x2(x2+1)=(x1+1)(x2+1),判断(a+b)2≤4是否正确?≥13.(8分)(2003•福州)已知关于x的方程x2﹣(k+1)x+k2+1=0(1)k取什么值时,方程有两个实数根;(2)如果方程的两个实数根x1、x2满足|x1|=x2,求k的值.k,时,方程有两个实数根;.时,有>符合条件;≥.;15.(12分)设m是不小于﹣1的实数,关于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1、x2,(1)若x12+x22=6,求m值;(2)求的最大值.=来化简代数式的值.20.(8分)如图,在矩形ABCD中,对角线AC的长为10,且AB、BC(AB>BC)的长是关于x的方程x2+2(1﹣m)x+6m=0的两个根.(1)求m的值;(2)若E是AB上的一点,CF⊥DE于F,求BE为何值时,△CEF的面积是△CED的面积的,请说明理由.的面积的===×,的面积的21.(6分)(1999•北京)如图,已知△ABC中,∠ACB=90°,过C点作CD⊥AB,垂足为D,且AD=m,BD=n,AC2:BC2=2:1,又关于x的方程x2﹣2(n﹣1)x+m2﹣12=0两实数根的差的平方小于192,求:m,n为整数时,一次函数y=mx+n的解析式.=,,∴,∴的方程x××的方程x>得22.(6分)设a、b、c为三个不同的实数,使得方程x2+ax+1=0和x2+bx+c=0有一个相同的实数根,并且使方程x2+x+a=0和x2+cx+b=0也有一个相同的实数根,试求a+b+c的值.=((,是方程参与本试卷答题和审题的老师有:WWF;Liuzhx;lanchong;ZJX;MMCH;CJX;mrlin;345624;bjy;zhqd;zhehe;392901;zzz;zhjh;kuaile;dbz1018;HLing;zhangCF(排名不分先后)菁优网2013年12月30日。

初中数学的韦达定理

初中数学的韦达定理

初中数学的韦达定理一、韦达定理的内容1. 对于一元二次方程ax^2+bx + c = 0(a≠0),设它的两个根为x_{1},x_{2}。

- 韦达定理指出:x_{1}+x_{2}=-(b)/(a),x_{1}x_{2}=(c)/(a)。

二、韦达定理的推导1. 由一元二次方程ax^2+bx + c = 0(a≠0),根据求根公式x=frac{-b±√(b^2)-4ac}{2a},设方程的两个根为x_{1}=frac{-b + √(b^2)-4ac}{2a},x_{2}=frac{-b-√(b^2)-4ac}{2a}。

2. 计算x_{1}+x_{2}:- x_{1}+x_{2}=frac{-b + √(b^2)-4ac}{2a}+frac{-b-√(b^2)-4ac}{2a}- 通分得到x_{1}+x_{2}=frac{-b+√(b^2)-4ac-b - √(b^2)-4ac}{2a}- 化简后x_{1}+x_{2}=-(b)/(a)。

3. 计算x_{1}x_{2}:- x_{1}x_{2}=frac{-b + √(b^2)-4ac}{2a}×frac{-b-√(b^2)-4ac}{2a}- 根据平方差公式(a + b)(a - b)=a^2-b^2,这里a=-b,b=√(b^2)-4ac,则x_{1}x_{2}=frac{(-b)^2-(√(b^2)-4ac)^2}{4a^2}- 进一步化简x_{1}x_{2}=frac{b^2-(b^2-4ac)}{4a^2}=(4ac)/(4a^2)=(c)/(a)。

三、韦达定理的应用1. 已知方程的一个根,求另一个根- 例如,已知方程x^2-3x - 4 = 0的一个根为x_{1}=4,设另一个根为x_{2}。

- 对于方程x^2-3x - 4 = 0,这里a = 1,b=-3,c=-4。

- 根据韦达定理x_{1}+x_{2}=-(b)/(a)=3,因为x_{1}=4,所以x_{2}=3 - 4=-1。

初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页

初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页

初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页初中奥数辅导讲义培优计划(星空课堂)第一讲走进追问求根公式第二讲判别式——二次方程根的检测器第三讲充满活力的韦达定理第四讲明快简捷—构造方程的妙用第五讲一元二次方程的整数整数解第六讲转化—可化为一元二次方程的方程第七讲化归—解方程组的基本思想第八讲由常量数学到变量数学第九讲坐标平面上的直线第十讲抛物线第十一讲双曲线第十二讲方程与函数第十三讲怎样求最值第十四讲图表信息问题第十五讲统计的思想方法第十六讲锐角三角函数第十七讲解直角三角形第十八讲圆的基本性质第十九讲转化灵活的圆中角2第二十讲直线与圆第二十一讲从三角形的内切圆谈起第二十二讲园幂定理第二十三讲圆与圆第二十四讲几何的定值与最值第二十五讲辅助圆第二十六讲开放性问题评说第二十七讲动态几何问题透视第二十八讲避免漏解的奥秘第二十九讲由正难则反切入第三十讲从创新构造入手3第一讲走进追问求根公式形如a某2b某c0(a0)的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。

而公式法是解一元二次方程的最普遍、最具有一般性的方法。

求根公式某1,2bb24ac内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了2a一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。

降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。

解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。

【例题求解】【例1】满足(n2n1)n21的整数n有个。

思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。

【例2】设某1、某2是二次方程某2某30的两个根,那么某134某2219的值等于()A、一4B、8C、6D、0思路点拨:求出某1、某2的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如某123某1,某223某2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学竞赛讲座:充满活力的韦达定理
一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的.
韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在: 运用韦达定理,求方程中参数的值; 运用韦达定理,求代数式的值;
利用韦达定理并结合根的判别式,讨论根的符号特征; 利用韦达定理逆定理,构造一元二次方程辅助解题等.
韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路.
韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法. 【例题求解】
【例1】 已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 .
思路点拨 所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为(例
【例2】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么b
a a b
+的值为( ) A .
22123 B .22
125
或2 C .
22125 D .22
123
或2
思路点拨 可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程
0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件.
注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、
1x 2x 表示求解,而非对称式的求值常用到以下技巧:
(1)恰当组合; (2)根据根的定义降次; (3)构造对称式.
【例3】 已知关于x 的方程:04
)2(2
2
=---m x m x
(1)求证:无论m 取什么实数值,这个方程总有两个相异实根.
(2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x . 思路点拨 对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手.
【例4】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x +有最小值?并求出这个最小值.
思路点拨 利用根与系数关系把待求式用m 的代数式表示,再从配方法入手,应注意本例是在一定约束条件下(△≥0)进行的.
注:应用韦达定理的前提条件是一元二次方程有两个实数根,即应用韦达定理解题时,须满足判别式△≥0这一条件,转化是一种重要的数学思想方法,但要注意转化前后问题的等价性. 【例5】 已知:四边形ABCD 中,AB ∥CD,且AB 、CD 的长是关于x 的方程0
4
7)2
1
(222=+-+-m mx x
的两个根.
(1)当m =2和m>2时,四边形ABCD 分别是哪种四边形?并说明理由.
(2)若M 、N 分别是AD 、BC 的中点,线段MN 分别交AC 、BD 于点P,Q,PQ =1,且AB<CD,求AB 、CD 的长. (2003年哈尔滨市中考题)
思路点拨 对于(2),易建立含AC 、BD 及m 的关系式,要求出m 值,还需运用与中点相关知识找寻C D 、AB 的另一隐含关系式.
注:在处理以线段的长为根的一元二次方程问题时,往往通过韦达定理、几何性质将几何问题从“形”向“数”(方程)转化,既要注意通过根的判别式的检验,又要考虑几何量的非负性.
学历训练
1.(1)已知1x 和2x 为一元二次方程013222=-+-m x x 的两个实根,并1x 和2x 满足不等式
14
212
1<-+x x x x ,则实数m 取值范围是 .
(2)已知关于x 的一元二次方程07)1(82=-+++m x m x 有两个负数根,那么实数m 的取值范围是 .
2.已知α、β是方程的两个实数根,则代数式2223βαββαα+++的值为 .
3.CD 是Rt △ABC 斜边上的高线,AD 、BD 是方程0462=+-x x 的两根,则△ABC 的面积是 . 4.设1x 、2x 是关于x 的方程02=++q px x 的两根,1x +1、2x +1是关于x 的方程02=++p qx x 的两根,则p 、q 的值分别等于( )
A .1,-3
B .1,3
C .-1,-3
D .-1,3
5.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x
的方程0772=++-c x x 的两根,那么AB 边上的中线长是( ) A .2
3 B .2
5 C .5 D .2
6.方程019972=++px x 恰有两个正整数根1x 、2x ,则)
1)(1(21++x x p
的值是( )
A .1
B .-l
C .2
1- D .2
1
7.若关于x 的一元二次方程的两个实数根满足关系式:)1)(1()1()1(212211++=+++x x x x x x ,判断
4)(2≤+b a 是否正确?
8.已知关于x 的方程01)32(22=++--k x k x . (1)当k 是为何值时,此方程有实数根;
(2)若此方程的两个实数根1x 、2x 满足:312=+x x ,求k 的值.
9.已知方程02=++q px x 的两根均为正整数,且28=+q p ,那么这个方程两根为 .
10.已知α、β是方程012=--x x 的两个根,则βα34+的值为 .
11.△ABC 的一边长为5,另两边长恰为方程01222=+-m x x 的两根,则m 的取值范围是 .
12.两个质数a 、b 恰好是整系数方程的两个根,则b
a a
b
+的值是( )
A .9413
B .
1949413 C .999413 D .97
9413
13.设方程有一个正根1x ,一个负根2x ,则以1x 、2x 为根的一元二次方程为( )
A .0232=---m x x
B .0232=--+m x x
C .02412=---x m x
D .02412=+--x m x
14.如果方程0)2)(1(2=+--m x x x 的三根可以作为一个三角形的三边之长,那么实数m 的取值范围是( )
A .0≤m ≤1
B .m ≥4
3 C .14
3≤<m D .4
3≤m ≤1 15.如图,在矩形ABCD 中,对角线AC 的长为10,且AB 、BC(AB>BC)的长是关于x 的方程的两个根.
(1)求
rn 的值;
(2)若E 是AB 上的一点,CF ⊥DE 于F,求BE 为何值时,△CEF 的面积是△CED 的面积的3
1,请说明理由.
16.设m 是不小于1-的实数,使得关于x 的方程工033)2(222=+-+-+m m x m x 有两个不相等的实数根1x 、2x .
(1)若62221=+x x ,求m 的值.
(2)求
2
2
212111x mx x mx -+-的最大值.
17.如图,已知在△ABC 中,∠ACB=90°,过C 作CD ⊥AB
于D,且
AD =m,BD=n,AC 2:BC 2=2:1;又关于x 的方程012)1(24
1
22=-+--m x n x 两实数根的差的平方小于192,求整数m 、n 的值.
18.设a 、b 、c 为三个不同的实数,使得方程和012=++ax x 和02=++c bx x 有一个相同的实数根,
并且使方程02=++a x x 和02=++b cx x 也有一个相同的实数根,试求c b a ++的值.
参考答案。

相关文档
最新文档