三角函数和三角恒等变换知识点及题型分类总结

合集下载

三角函数的概念及三角恒等变换

三角函数的概念及三角恒等变换

三角函数专题复习知识点一:三角函数的概念、同角三角函数的关系式及诱导公式一.考试要求二.基础知识1.角的概念的推广:按逆时针方向旋转所形成的角叫 角,按顺时针方向旋转所形成的角叫_______角,一条射线没有作任何旋转时,称它形成一个 角。

射线的起始位置称为始边,终止位置称为终边。

2、象限角(1)定义:在直角坐标系中,使角的顶点与原点重合,角的始边与轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。

如果角的终边在坐标轴上,就认为这个角 任何象限。

(2)象限角的集合:第一象限角的集合为第二象限角的集合为第三象限角的集合为___________________________________第四象限角的集合为___________________________________终边在轴上的角的集合为终边在轴上的角的集合为______________________终边在坐标轴上的角的集合为_____________________(3)终边相同的角:与终边相同的角注意:相等的角的终边一定________,终边相同的角_____________.3、与的终边关系:若是第二象限角,则是第_____象限角4.弧度制:弧度与角度互换公式:1rad=、1°=(rad)。

弧长公式:(是圆心角的弧度数),扇形面积公式:【典例】已知扇形周长为10,面积为4,求扇形的圆心角.5、任意角的三角函数的定义:设是任意一个角,是的终边上的任意一点(异于原点),它与原点的距离是,那么,,.注:三角函数值与角的大小关,与终边上点P的位置关。

思考:判断各三角函数在每个象限的符号?【典型例题】1.(2014全国)已知角的终边经过点,则=()A.B.C.D.2.已知角的顶点与原点重合,始边与轴的正半轴重合,终边在直线上,则=____________,=____________,=____________3.(2011江西)已知角的顶点为坐标原点,始边为轴的正半轴,若是角终边上一点,且,则=_____________.【变式训练】1.(2014湖北孝感)点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.若,且,则所在的象限为_______________.3.已知角的终边上一点,且,求的值.6.特殊角的三角函数值:7.同角三角函数的基本关系式:(1)平方关系:(2)商数关系:【典型例题】1.已知,,则()A.B.C.D.无法确定2:已知,,则__________3.(2012江西)若,则=_________.【变式训练】1.(2011全国)已知,,则=______.2.如果,且,那么的值是()A.B.或C.D.或3.若,则=____________,=_______,=_____________.8、三角函数的诱导公式(重难点)【规律总结】奇偶(对而言,取奇数或偶数),符号___________(看原函数,同时把看成是锐角).诱导公式的应用的一般步骤:(1)负角变正角,再写成+,;(2)转化为锐角三角函数.【典型例题】1.(2013广东)已知,那么()A.B.C.D.2.如果为锐角,()A.B.C.D.3.的值等于()A.B.-C.D.-4.+的值是 .【变式训练】1.=_________;2.已知的值等于___________.3.已知.(1)化简;(2)若角的终边在第二象限且,求.【迁移应用】1.下列各命题正确的是()A.终边相同的角一定相等B.第一象限的角都是锐角C.锐角都是第一象限的角D.小于的角都是锐角2.等于()ABCD3.(2013山东诸城)集合中的角的终边所在的范围(阴影部分)是()4.化为弧度等于()A.B.C.D.5.点在第()象限.A.第一象限 B.第二象限 C.第三象限 D.第四象限6.点在第三象限,则角的终边在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.点从(1,0)出发,沿单位圆逆时针方向运动弧长到达Q点,则Q的坐标为()A.B.C.D.8.设,角的终边经过点,那么的值等于( )A.B.C.D.9.已知,且,则的值为( )A.B.[C.D.10.化简的结果是()A.B.1 C.D.11.已知角的顶点在坐标原点,始边与轴正半轴重合,终边在直线上,则=()A.B.2 C.0 D.12.(2014山东济南质检)已知角的顶点与原点重合,始边与轴的正半轴重合,终边在直线上,则=_________.13.(2011全国)已知,,则__________.14.已知,则____________.15..扇形的圆心角是,半径为20cm,则扇形的面积为16.(2012山东)如图,在平面直角坐标系中,一单位圆的圆心的初始位置在,此时圆上一点的位置在,圆在轴上沿正向滚动.当圆滚动到圆心位于时,的坐标为__________________.17.化简:(1)(2)18.已知,求(1);(2)的值19.(2013江苏启东中学测试)已知是关于的方程的两个根.(1)求的值.(2)求的值.知识点二:三角恒等变换1.考试要求二.基础知识(1)两角和与差的三角函数(正余余正号相同)(余余正正号相反)(2).二倍角公式______________=_____________=______________.(3)降幂公式;____________;___________.(4)辅助角公式。

三角函数与三角恒等变换复习PPT优秀课件

三角函数与三角恒等变换复习PPT优秀课件


偶函数
A sin( x ) 的图象(A>0, 2、函数 y
第一种变换:
>0 )
y sin( x )
y sin x
图象向左( 向右(
0
)或
1 1)或缩短( 1)到原来的 横坐标伸长( 0 纵坐标不变
纵坐标伸长(A>1 )或缩短( 0<A<1 )到原来的A倍


例3:已知函数
2 2 y sin x 2 sin x cos x 3 cos x , x R ,
求:⑴函数的最小正周期;⑵函数的单增区间;⑶函数的最大值 及相应的x的值; ⑷函数的图象可以由函数 的图象经过怎样的变换得到。 y 2 sin 2 x ,x R
2 2 2 y sin x 2 sin x cos x 3 cos x 1 sin 2 x 2 cos x 解: 1 sin 2 x cos 2 x 1 2 2 sin( 2 x ) 4 2 ⑴ T 2 3 k x k , k Z ⑵由 2 k 2 x 2 k , 得
3 函数的单增区间为 [ k , k ]( k Z ) 8 8 2 x 2 k , 即 x k ( k Z ) 时 , y 2 2 ⑶当 最大值 4 2 8 y 2 sin( 2 x ) 2x 图象向左平移 8 个单位 ⑷ y 2sin 4
1
2 -1
o
2

3 2
2 x

2 -1

3 2
2 x
R [-1,1] T=2
R


[-1,1] T=2

必修四三角函数和三角恒等变换知识点及题型分类总结

必修四三角函数和三角恒等变换知识点及题型分类总结

三角函数知识点总结1、任意角:正角: ;负角: ;零角: ;2、角α的顶点与 重合,角的始边与 重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为 第二象限角的集合为 第三象限角的集合为 第四象限角的集合为 终边在x 轴上的角的集合为 终边在y 轴上的角的集合为 终边在坐标轴上的角的集合为 3、与角α终边相同的角的集合为 4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在的区域.5、 叫做1弧度.6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是 .7、弧度制与角度制的换算公式:8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l= .S=9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin y r α=,cos x r α=,()tan 0yx xα=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正. 11、三角函数线:.12、同角三角函数的基本关系:(1) ;(2) ;(3) 13、三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-.()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭.口诀:奇变偶不变,符号看象限. 重要公式⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+(()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=-(()()tan tan tan 1tan tan αβαβαβ+=+-).二倍角的正弦、余弦和正切公式: ⑴sin 22sin cos ααα=.(2)2222cos2cos sin 2cos 112sin ααααα=-=-=-(2cos 21cos 2αα+=,21cos 2sin 2αα-=).⑶22tan tan 21tan ααα=-.公式的变形:()βαβαβαtan tan 1)tan(tan tan •±=±,辅助角公式()sin cos αααϕA +B =+,其中tan ϕB =A. 14、函数sin y x =的图象平移变换变成函数()sin y x ωϕ=A +的图象. 15。

00三角函数、三角恒等变换、解三角形知识点归纳

00三角函数、三角恒等变换、解三角形知识点归纳

T
P
A
Mo
x
P A
oM x
(Ⅱ) T
(Ⅰ)
y
T
y
M
A
o
x
P (Ⅲ)
MA
o
x
(Ⅳ) P T
由四个图看出:
当角 的终边不在坐标轴上时,有向线段 OM x, MP y ,于是有
sin y y y MP , cos x x x OM , tan y MP AT AT
r1
r1
x OM OA
B.方法与要点 一个口诀 1、诱导公式的记忆口诀为:奇变偶不变,符号看象限.
2、四种方法
在求值与化简时,常用方法有:
(1)弦切互化法:主要利用公式 tan α=sin α化成正、余弦. cos α
(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化.
( sin cos 、 sin cos 、 sin cos 三个式子知一可求二)
第一象限角的集合为 k 360 k 360 90, k 第二象限角的集合为 k 360 90 k 360 180, k 第三象限角的集合为 k 360 180 k 360 270, k 第四象限角的集合为 k 360 270 k 360 360, k 终边在 x 轴上的角的集合为 k 180, k 终边在 y 轴上的角的集合为 k 180 90, k 终边在坐标轴上的角的集合为 k 90, k
三角函数知识点总结
一、任意角、弧度制及任意角的三角函数
1.任意角 (1)角的概念的推广 ①按旋转方向不同分为正角、负角、零角.
正角:按逆时针方向旋转形成的角 任意角负角:按顺时针方向旋转形成的角
零角:不作任何旋转形成的角

三角恒等变换专题总结复习

三角恒等变换专题总结复习

三角恒等变换【知识分析】1、本章网络结构2、要点概述(1)求值常用的方法:切割化弦法,升幂降幂法,和积互化法,辅助元素法,“1”的代换法等。

(2)要熟悉角的拆拼、变换的技巧,倍角与半角的相对性,如是的半角,是的倍角等。

(3)要掌握求值问题的解题规律和途径,寻求角间关系的特殊性,化非特殊角为特殊角,正确选用公式,灵活地掌握各个公式的正用、逆用、变形用等。

(4)求值的类型:①“给角求值”:一般所给出的角都是非特殊角,从表面来看较难,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合和差化积、积化和差、升降幂公式转化为特殊角并且消降非特殊角的三角函数而得解。

②“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系。

③“给值求角”:实质上可转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角。

(5)灵活运用角和公式的变形,如:,等,另外重视角的范围对三角函数值的影响,因此要注意角的范围的讨论。

(6)合一变形(辅助角公式)把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的形式。

,其中.(7)化简三角函数式常有两种思路:一是角的变换(即将多种形式的角尽量统一),二是三角函数名称的变化(即当式子中所含三角函数种类较多时,一般是“切割化弦”),有时,两种变换并用,有时只用一种,视题而定。

(8)三角恒等变换方法观察(角、名、式)→三变(变角、变名、变式)① “变角”主要指把未知的角向已知的角转化,是变换的主线,如α=(α+β)-β=(α-β)+β, 2α=(α+β)+ (α-β), 2α=(β+α)-(β-α),α+β=2·,= (α-)-(-β)等.②“变名”指的是切化弦(正切余切化成正弦余弦),③“变式’指的是利用升幂公式和降幂公式升幂降幂,利用和角和差角公式、合一变形公式展开和合并等。

三角恒等变换和三角函数性质专题

三角恒等变换和三角函数性质专题
三角恒等变换和三角函数 性质专题
知识梳理 1.正弦、余弦、正切函数图像与性质
函数
y=sinx
y=cosx
y=tanx
图像
定义域 值域 奇偶性 最小正周期
单调性
R
[-1,1] 奇函数 2π
在[-������+2kπ,������+2kπ](k∈Z)上递增.
2
2
在[������+2kπ,3������+2kπ](k∈Z)上递减
2
x=-������+2kπ,k∈Z时,y取得最小值-1
2
x=2kπ,k∈Z时,y取得最大值1. 无最值
x=π+2kπ,k∈Z时,y取得最小值-1
对称中心:(kπ,0)(k∈Z). 对称轴:x=������+kπ(k∈Z)
2
对称中心:(������+kπ,0)(k∈Z).
2
对称轴:x=kπ(k∈Z)
2
2
R [-1,1] 偶函数 2π
在[-π+2kπ,2kπ](k∈Z)上递增. 在[2kπ,π+2kπ](k∈Z)上递减
{x|x≠������+kπ,k∈Z}
2
R 奇函数 π
在 ( - ������ + kπ , ������ + kπ)(k ∈ Z)
2
2
上递增
最值 对称性
x=������+2kπ,k∈Z时,y取得最大值1.
例4.已知f ������
= sin
������
+
������ 6
+ sin
������

������ 6
+������������������������ + ������的最大值为1

三角恒等变换-知识点+例题+练习

三角恒等变换-知识点+例题+练习

三角恒等变换-知识点+例题+练习编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(三角恒等变换-知识点+例题+练习)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为三角恒等变换-知识点+例题+练习的全部内容。

两角和与差的正弦、余弦和正切基础梳理1.两角和与差的正弦、余弦、正切公式(1)C(α-β):cos(α-β)=cos_αcos_β+sin_αsin_β;(2)C(α+β):cos(α+β)=cos_αcos_β-sin_αsin_β; (3)S(α+β):sin(α+β)=sin_αcos_β+cos_αsin_β;(4)S(α-β):sin(α-β)=sin_αcos_β-cos_αsin_β;(5)T(α+β):tan(α+β)=错误!;(6)T(α-β):tan(α-β)=错误!。

2.二倍角的正弦、余弦、正切公式(1)S2α:sin 2α=2sin_αcos_α;(2)C2α:cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α;(3)T2α:tan 2α=2tan α1-tan2α.3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β);(2)cos2α=错误!,sin2α=错误!;(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=错误!sin错误!。

4.函数f(α)=a cos α+b sin α(a,b为常数),可以化为f(α)=a2+b2sin (α+φ)或f(α)=a2+b2cos(α-φ),其中φ可由a,b的值唯一确定.两个技巧(1)拆角、拼角技巧:2α=(α+β)+(α-β);α=(α+β)-β;β=错误!-错误!;错误!=错误!-错误!.(2)化简技巧:切化弦、“1”的代换等.三个变化(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分"、“分解与组合"、“配方与平方”等.双基自测1.(人教A 版教材习题改编)下列各式的值为14的是( ). A .2cos 2 错误!-1B .1-2sin 275°C 。

三角恒等变换知识点及题型归纳总结

三角恒等变换知识点及题型归纳总结

三角恒等变换知识点及题型归纳总结(共8页)-本页仅作为预览文档封面,使用时请删除本页-三角恒等变换知识点及题型归纳总结知识点精讲常用三角恒等变形公式 和角公式sin()sin cos sin cos αβαβαβ+=+ cos()cos cos sin sin αβαβαβ+=-tan tan tan()1tan tan αβαβαβ++=-差角公式sin()sin cos sin cos αβαβαβ-=- cos()cos cos sin sin αβαβαβ-=+tan tan tan()1tan tan αβαβαβ--=+倍角公式sin 22sin cos ααα=2222cos 2cos sin 2cos 112sin ααααα=-=-=-22tan tan 21tan ααα=-降次(幂)公式2211cos 21cos 2sin cos sin 2;sin ;cos ;222ααααααα-+===半角公式sin 22αα== sin 1cos tan.21cos sin a αααα-==+辅助角公式sin cos ),tan (0),ba b ab aαααϕϕ+=+=≠角ϕ的终边过点(,)a b ,特殊地,若sin cos a b αα+=或tan .b aα= 常用的几个公式sin cos );4πααα±=±sin 2sin();3πααα±=±cos 2sin();6πααα±=±题型归纳总结题型1 两角和与差公式的证明 题型归纳及思路提示思路提示推证两角和与差公式就是要用这两个单角的三角函数表示和差角的三角公式,通过余弦定理或向量数量积建立它们之间的关系,这就是证明的思路. 例 证明(1):cos()cos cos sin sin ;C αβαβαβαβ++=-(2)用C αβ+证明:sin()sin cos sin S cos αβαβαβαβ++=+ (3)用(1)(2)证明tan tan :tan().1tan tan T αβαβαβαβ+++=-解析(1)证法一:如图4-32(a )所示,设角,αβ-的终边交单位圆于12(cos .sin ),(cos(),sin()),P P ααββ--,由余弦定理得2221212122()PP OP OP OP OP cos αβ=+-⋅+22[cos cos()][sin sin()]22cos()αβαβαβ⇒--+--=-+22(cos cos sin sin )22cos()αβαβαβ⇒--=-+:cos()cos cos sin sin .C αβαβαβαβ+⇒+=-证法二:利用两点间的距离公式.如图4-32(b )所示12(1,0),(cos ,sin ),(cos(),sin(),A P P αααβαβ++3(cos(),sin()),P ββ--由231;OAP OP P ∆≅∆得,213.AP PP =故2222(1cos())(0sin())[cos()cos ][sin()sin ],αβαββαβα-++-+=--+--即222222[1cos()]sin ()cos cos 2cos cos sin sin 2sin sin αβαββααββααβ-+++=+-+++化简得cos()cos cos sin sin αβαβαβ+=-(2)sin()[()][()]22cos cos ππαβαβαβ+=+-=+-cos()sin sin()22cos ππαβαβ=---sin sin cos cos αβαβ=+:sin()sin cos sin S cos αβαβαβαβ+⇒+=+ sin(sin cos cos sin (3)tan()cos()cos cos sin sin αβαβαβαβαβαβαβ+++==+-sin cos cos sin cos cos cos cos cos cos sin sin cos cos cos cos αβαβαβαβαβαβαβαβ+-tan tan :tan().1tan tan T αβαβαβαβ++⇒+=- 变式1 证明:(1):cos()cos cos sin sin ;C αβαβαβαβ--=+ (2):sin()sin cos sin S cos αβαβαβαβ--=- tan tan (3):tan().1tan tan T αβαβαβαβ---=+题型2 化简求值 思路提示三角函数的求值问题常见的题型有:给式求值、给值求值、给值求角等.(1)给式求值:给出某些式子的值,求其他式子的值.解此类问题,一般应先将所给式子变形,将其转化成所求函数式能使用的条件,或将所求函数式变形为可使用条件的形式.(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系,解题的基本方法是:①将待求式用已知三角函数表示;②将已知条件转化而推出结论,其中“凑角法”是解此类问题的常用技巧,解题时首先要分析已知条件和结论中各种角之间的相互关系,并根据这些关系来选择公式.(3)给值求角:解此类问题的基本方法是:先求出“所求角”的某一三角函数值,再确定“所求角”的范围,最后借助三角函数图像、诱导公式求角. 一、化同角同函例 已知3cos()45x π+=则2sin 22sin ()1tan x xx -=-7.25A 12.25B 11.25C 18.25D 解析 解法一:化简所求式22sin 22sin 2sin cos 2sin sin 1tan 1cos x x x x xx x x--=--cos 2sin (cos sin )2sin cos .cos sin xx x x x x x x=-=-由3cos()45x π+=得3,225x x -=即cos sin 5x x -=两边平方得 2218cos sin 2sin cos ,25x x x x +-=即1812sin cos .25x x -= 所以72sin cos .25x x =故选A. 解法二:化简所求式2sin 22sin 2sin cos sin 21tan x xx x xx-==-27sin[2()]cos 2()12cos ().424425x x x ππππ=+-=-+=-+=故选A. 评注 解法一运用了由未知到已知,单方向的转化化归思想求解;解法二运用了化未知为已知,目标意识强烈的构造法求解,从复杂度来讲,一般情况下采用构造法较为简单. 变式1 若13cos(),cos(),55αβαβ+=-=则tan tan _______.αβ=变式2 若4cos 5α=-,α是第三象限角,则1tan2()1tan 2αα+=- 1.2A - 1.2B .2C .2D -变式3 (2012江西理4)若1tan 4tan θθ+=,则sin 2().θ= 1.5A 1.4B 1.3C 1.2D 二、建立已知角与未知角的联系(通过凑配角建立)将已知条件转化而推出结论,其中“凑角法”是解此类问题的常用技巧,解题时首先要分析已知条件和结论中各种角的相互关系,并根据这种关系来选择公式.常见的角的变换有:和、差角,辅助角,倍角,降幂,诱导等. 1.和、差角变换如α可变为()αββ+-;2α可变为()()αβαβ++-;2αβ-可变为()αβα-+ 例 若330,cos ,sin(),255παβπααβ<<<<=+=-则cos β的值为( ). .1A - .1B -或725 24.25C - 24.25D ±分析 建立未知角与已知角的联系,().βαβα=+-解析 解法一:cos cos[()]cos()cos sin()sin .βαβααβααβα=+-=+++因为3(,)22ππαβ+∈所以,则 4cos(),(0,),sin 0,52παβαα+=-∈>4sin 5,α=433424cos ()().555525β=-⨯+-⨯=-解法二:因为(,)2πβπ∈,所示cos (1,0).β∈-故选C.评注 利用和、差角公式来建立已知角与未知角的联系,常利用以下技巧:();();()()βαβαβααβαβαγβγ=+-=--+=-++等.解题时,要注意根据已知角的范围来确定未知角的范围,从而确定所求三角式的符号. 变式1已知sin ),(0,)2πααβαβ=-=∈则().β=.3B π .4C π .6D π变式2 若3335(,),(0,),cos(),sin()44445413πππππαβαβ∈∈-=+=,则 sin()______.αβ+=二、辅助角公式变换 例已知cos()sin 65παα-+=,则7sin()6πα+的值为( )..5A -.5B 4.5C - 4.5D分析 将已知式化简,找到与未知式的联系. 解析由题意,cos cossin sinsin 66ππααα++=3cos sin )2265πααα⇒+=+=,得4sin().65πα+= 所以74sin()sin[()]sin().6665πππαπαα+=++=-+=-故选C. 变式1设6sin14cos14,sin16cos16,,2b c α=+=+=则a,b,c 的大小关系为( ). <b<c <c<a <c<b <a<c变式2设sin15cos15,sin17cos17,b α=+=+则下列各式中正确的是( ).22.2a b A a b +<< 22.2a b B a b +<<5.12A π22.2a b C b a +<< 22.2a b D b a +<<3.倍角,降幂(次)变换例(2012大纲全国理7)已知α为第二象限角,sin cos αα+=则cos 2().α=.A .B - C D分析 利用同角三角函数的基本关系式及二倍角公式求解.解析 解法一:;因为sin cos αα+=所以21(sin cos )3αα+=得22sin cos 3αα=-,即2sin 23α=-.又因为α为第二象限角且sin cos 0αα+=>,则3(2,2)().24k k k Z ππαππ∈++∈所以32(4,4)().2k k k Z παπππ∈++∈故2α为第三象限角,cos 2α==.故选A.解法二:由α为第二象限角,得cos 0,sin 0αα<>,cos sin 0,αα-<且2(cos sin )12sin cos αααα-=-,又sin cos αα+=,则 21(sin cos )12sin cos 3αααα+=+=22sin cos 3αα⇒=-,得25(cos sin )3αα-=,所以cos sin 3αα-=-22cos2cos sin (cos sin )(cos sin )ααααααα=-=+-(==故选A. 变式1 若1sin()63πα-=则2cos()().3πα+= 7.9A - 1.3B - 1.3C 7.9D变式2设α为锐角,若4cos()65πα+=,则7sin(2)12πα+的值省为 .变式3已知312sin(2),sin 513αββ-==-且(,),(,0),22ππαπβ∈∈-求sin α值. 变式4若31sin ,(,),tan()522πααππβ=∈-=,则tan(2)().αβ-= 24.7A - 7.24B - 24.7C 7.24D 变式5已知1sin cos 2αα=+,且(0.)2πα∈,则cos 2_____.sin()4απα=-4.诱导变换例若(sin )3cos 2f x x =-,则(cos )().f x =.3cos 2A x - .3sin 2B x - .3cos 2C x + .3sin 2D x +分析 化同函(cos )(sin())f x f =以便利用已知条件. 解析 解法一:(cos )[sin()]3cos 2()3cos(2)3cos 2.22f x f x x x x πππ=+=-+=-+=+故选C.解法二:22(sin )3cos23(12sin )2sin 2f x x x x =-=--=+则2()22,[1,1]f x x x =+∈-故22(cos )2cos 22cos 13cos2 3.f x x x x =+=-+=+故选C.变式1α是第二象限角,4tan(2)3πα+=-,则tan _______.α= 变式2若5sin(),(0,)4132ππαα-=∈,则cos 2_____.cos()4απα=+最有效训练题1.已知函数()sin ,f x x x =设(),(),()763a fb fc f πππ===,则,,a b c 的大小关系为( ).<b<c B. c<a<b <a<c <c<a2.若1sin()34πα+=,则cos(2)().3πα-= 1.4B - 7.8C - 7.8D3.若1tan 2α=,则cos(2)().2πα+= 4.5A 4.5B - 1.2C 1.2D - 4.已知11tan(),tan 27αββ-==-,且,(0,)αβπ∈,则2().αβ-= .4A π 3.4B π- 5.,44C ππ 35.,,444D πππ-1.4A5.函数sin()(0)y x πϕϕ=+>的部分图像如图4-33所示,设P是图像的最高点,A,B是图像与x 轴的交点,则tan ().APB ∠=A.10 B.8 8.7C 4.7D6.函数sin 3cos 4x y x -=+的最大值是( ).1.2A -1226.15B -- 4.3C - 1226.15D -+ 7.已知tan()34πθ+=,则2sin 22cos ______.θθ-=8.已知,x y 满足1sin sin 31cos cos 5x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩,则cos()______.x y += 9.23tan101________.(4cos 102)sin10+=- 10.已知113cos ,cos()714ααβ=-=,且02πβα<<<,则tan 2____,____.αβ== 11.已知函数2()2cos 3sin .2x f x x =- (1)求函数()f x 的最小正周期和值域; (2)若α是第二象限角,且1()33f πα-=,求cos 21cos 2sin 2ααα+-的值.12.已知三点3(3,0),(0,3),(cos ,sin ),(,).22A B C ππααα∈(1)若AC BC =,求角α;(2)若1AC BC ⋅=-,求22sin sin 21tan ααα++的值.。

三角恒等变换知识总结 (1)

三角恒等变换知识总结 (1)

三角恒等变换知识点总结一、基本内容串讲1. 两角和与差的正弦、余弦和正切公式如下:sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±= ;tan tan tan()1tan tan αβαβαβ±±=对其变形:tan α+tan β=tan(α+β)(1- tan αtan β),有时应用该公式比较方便。

2. 二倍角的正弦、余弦、正切公式如下:sin 2sin cos ααα=. 2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 要熟悉余弦“倍角”与“二次”的关系(升角—降次,降角—升次).特别注意公式的三角表达形式,且要善于变形, 22cos 1sin ,22cos 1cos 22α-=αα+=α 这两个形式常用。

3.辅助角公式:sin cos 4x x x π⎛⎫+=+ ⎪⎝⎭cos 2sin 6x x x π⎛⎫±=± ⎪⎝⎭()sin cos a x b x x ρ+=+.4.简单的三角恒等变换(1)变换对象:角、名称和形式,三角变换只变其形,不变其质。

(2)变换目标:利用公式简化三角函数式,达到化简、计算或证明的目的。

(3)变换依据:两角和与差的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式。

(4)变换思路:明确变换目标,选择变换公式,设计变换途径。

5.常用知识点:(1)基本恒等式:22sin sin cos 1,tan cos ααααα+==(注意变形使用,尤其‘1’的灵活应用,求函数值时注意角的范围);(2)三角形中的角:A B C π++=,sinA sin(B ),cosA cos(B C)C =+=-+;(3)向量的数量积:cos ,a b a b a b =, 1212a b x x y y =+ ,12120a b x x y y ⊥⇔+= 1221//0a b x y x y ⇔-= ; 二、考点阐述考点1两角和与差的正弦、余弦、正切公式1、sin 20cos 40cos 20sin 40+ 的值等于( )2、若tan 3α=,4tan 3β=,则tan()αβ-等于( ) 3、若3,4παβ+=则(1tan )(1tan )αβ--的值是________. 4、(1tan1)(1tan 2)(1tan3)(1tan 44)(1tan 45)+︒+︒+︒+︒+︒= _______________.考点2二倍角的正弦、余弦、正切公式5、cos5πcos52π的值等于( ) (提示:构造分子分母) 6、cos 20cos 40cos60cos80= ( ) 7、 已知322A ππ<<,且3cos 5A =,那么sin 2A 等于( ) 考点3运用相关公式进行简单的三角恒等变换8、已知,41)4tan(,52)tan(=-=+πββα则)4tan(πα+的值等于( ) 9、已知,31cos cos ,21sin sin =+=+βαβα则)cos(βα-值等于()10、函数22()cos ()sin ()11212f x x x ππ=-++-是( ) (A )周期为2π的奇函数 (B )周期为2π的偶函数(C )周期为π的奇函数 (D )周期为π的偶函数4、常见题型及解题技巧(另外总结)(一)关于辅助角公式:()sin cos a x b x x ρ+=+.其中cos ϕϕ==)如:1.若方程sin x x c =有实数解,则c 的取值范围是____________. 2.2cos 3sin 2y x x =-+的最大值与最小值之和为_____________.7.若2tan(),45πα+=则tan α=________. (二)三角函数式的化简与求值[例1] 1.0000cos15sin15cos15sin15-+; 2.00sin50(1);3.求tan 70tan 5070tan 50+ 值;4.△ABC 不是直角三角形,求证:C B A C B A tan tan tan tan tan tan ∙∙=++ (三)三角函数给值求值问题1. 已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是_____________;2. 已知54cos(),cos ,,135αββαβα+==均为锐角,求sin 的值。

三角函数与三角恒等变换知识点

三角函数与三角恒等变换知识点

三角函数与三角恒等变换(知识点)1.⑴ 角度制与弧度制的互化:π弧度180=o ,1180π=o 弧度,1弧度180()π=o '5718≈o .⑵ 弧长公式:||l R α=;扇形面积公式:211||22S R Rl α==. 2.三角函数定义:⑴ 设α是一个任意角,终边与单位圆交于点P (x ,y ),那么y 叫作α的正弦,记作sin α;x 叫作α的余弦,记作cos α;yx叫作α的正切,记作tan α. ⑵ 角α中边上任意一点P 为(,)x y ,设||OP r =,则:sin ,cos ,y x r r αα==tan yxα=.三角函数符号规律:一全正,二正弦,三正切,四余弦. 3.三角函数线:正弦线:MP ; 余弦线:OM ; 正切线: AT . 4.诱导公式:六组诱导公式统一为“()2k Z α±∈”,记忆口诀:奇变偶不变,符号看象限. 5.同角三角函数基本关系:22sin cos 1αα+=(平方关系);sin tan cos ααα=(商数关系).6.两角和与差的正弦、余弦、正切:①sin()sin coscos sin αβαβαβ±=±;② cos()cos cos sin sin αβαβαβ±=m ; ③ tan tan tan()1tan tan αβαβαβ±±=m .7.二倍角公式:① sin22sin cos ααα=;② 2222cos2cos sin 2cos 112sin ααααα=-=-=-; ③ 22tan tan 21tan ααα=-. 变形:21cos2sin 2αα-=;21cos2cos 2αα+=. (降次公式)8.化一:sin cos )y a x b x x x =+)x ϕ+. 9. 物理意义:物理简谐运动sin(),[0,)y A x x ωϕ=+∈+∞,其中0,0A ω>>. 振幅为A ,表示物体离开平衡位置的最大距离;周期为2T πω=,表示物体往返运动一次所需的时间;频率为12f T ωπ==,表示物体在单位时间内往返运动的次数;x ωϕ+为相位;ϕ为初相.11. 正弦型函数sin()(0,0)y A x A ωϕω=+>>的性质及研究思路:① 最小正周期2T πω=,值域为[,]A A -.② 五点法图:把“x ωϕ+”看成一个整体,取30,,,,222x ππωϕππ+=时的五个自变量值,相应的函数值为0,,0,,0A A -,描出五个关键点,得到一个周期内的图象.③ 三角函数图象变换路线:sin y x =ϕ−−−−−→左移个单位sin()y x ϕ=+ ω−−−−−→1横坐标变为倍sin()y x ωϕ=+A −−−−−→纵坐标变为倍sin()y A x ωϕ=+. 或:sin y x = ω−−−−−→1横坐标变为倍sin y x ω=ϕω−−−−−→左移个单位sin ()y x ϕωω=+A −−−−−→纵坐标变为倍sin()y A x ωϕ=+. ④ 单调性:sin()(0,0)y A x A ωϕω=+>>的增区间,把“x ωϕ+”代入到sin y x =增区间[2,2]()22k k k Z ππππ-++∈,即求解22()22k x k k Z πππωϕπ-+≤+≤+∈.⑤ 整体思想:把“x ωϕ+”看成一个整体,代入sin y x =与tan y x =的性质中进行求解. 这种整体思想的运用,主要体现在求单调区间时,或取最大值与最小值时的自变量取值.。

新高考 核心考点与题型 三角函数 第5讲 三角恒等变换 - 解析

新高考 核心考点与题型 三角函数 第5讲 三角恒等变换 - 解析

第5讲 三角恒等变换[考情分析] 1.三角恒等变换的求值、化简是命题的热点,利用三角恒等变换作为工具,将三角函数与解三角形相结合求解最值范围问题.2.单独考查可出现在选择题、填空题中,综合考查以解答题为主,中等难度.考点一、两角和、差的正、余弦公式 二倍角公式(记准)()sin()sin cos cos sin ()S αβαβαβαβ±±=±; sin 22sin cos ααα=2()S α;()cos()cos cos sin sin ()C αβαβαβαβ±±=; ααα22sin cos 2cos -=2()C α;()tan tan tan()()1tan tan T αβαβαβαβ±±±=-;22tan tan 21tan ααα=-2()T α。

考点二、二倍角公式的推论(熟悉会推导即可)降幂公式:ααα2sin 21cos sin =; 22cos 1sin 2αα-=; 22cos 1cos 2αα+=.万能公式:ααα2tan 1tan 22sin +=;ααα22tan 1tan 12cos +-=.微点提示:1.三角求值“三大类型”:“给角求值”“给值求值”“给值求角”. 2.三角恒等变换“四大策略”(1)常值代换:常用到“1”的代换,1=sin 2θ+cos 2θ=tan 45°等.(2)项的拆分与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等. (3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次. (4)弦、切互化.类型一:正用公式 例1-1.若,则( ) (A )(B ) (C ) (D )解析:因为3cos()45πα-=,所以2cos 2()2cos ()144ππαα-=--,即237cos(2)sin 22()12525παα-==⨯-=-,即7sin 225α=-. 【点评】对已知条件变形来表示目标式子是处理三角恒等变化的基本思路。

三角恒等变换各种题型归纳分析

三角恒等变换各种题型归纳分析

三角恒等变换各种题型归纳分析三角恒等变换基础知识及题型分类汇总一、知识点:一)公式回顾:cos(\alpha\pm\beta)=\cos\alpha\cos\beta\mp\sin\alpha\sin\beta $,简记为C($\alpha\pm\beta$)sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta $,简记为S($\alpha\pm\beta$)sin2\alpha=2\sin\alpha\cos\alpha$,简记为S2cos2\alpha=\cos^2\alpha-\sin^2\alpha$,简记为C2tan2\alpha=\frac{2\tan\alpha}{1-\tan^2\alpha}$,其中$\alpha\neq\frac{k\pi}{2}$,简记为T2二)公式的变式1\pm\cos2\alpha=2\cos^2\alpha$,简记为1±C2frac{1\pm\cos\alpha}{2}=\sin^2\frac{\alpha}{2}$,简记为S2/2sin\alpha\pm\sin\beta=2\sin\frac{\alpha\pm\beta}{2}\cos\frac {\alpha\mp\beta}{2}$,简记为S±Scos\alpha+\cos\beta=2\cos\frac{\alpha+\beta}{2}\cos\frac{\al pha-\beta}{2}$,简记为C+Ccos\alpha-\cos\beta=-2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}$,简记为C-Ctan\frac{\alpha}{2}=\frac{1-\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1+\cos\alpha}$,简记为T1辅助角(合一)公式:begin{cases}\sin(\pi-\alpha)=\sin\alpha\\\cos(\pi-\alpha)=-\cos\alpha\end{cases}$begin{cases}\sin(\pi+\alpha)=-\sin\alpha\\\cos(\pi+\alpha)=-\cos\alpha\end{cases}$begin{cases}\sin(-\alpha)=-\sin\alpha\\\cos(-\alpha)=\cos\alpha\end{cases}$begin{cases}\sin(\frac{\pi}{2}-\alpha)=\cos\alpha\\\cos(\frac{\pi}{2}-\alpha)=\sin\alpha\end{cases}$begin{cases}\sin(\frac{\pi}{2}+\alpha)=\cos\alpha\\\cos(\frac {\pi}{2}+\alpha)=-\sin\alpha\end{cases}$begin{cases}\sin(\pi-\alpha)=\sin\alpha\\\cos(\pi-\alpha)=-\cos\alpha\end{cases}$二典例剖析:基础题型例1:已知$\sin2\alpha=\frac{5\pi}{13}$,$\alpha\in\left(0,\frac{\pi}{2}\right)$,求$\sin4\alpha$,$\cos4\alpha$,$\tan4\alpha$。

三角函数 三角恒等变换及其解三角形知识点总结理科

三角函数 三角恒等变换及其解三角形知识点总结理科

三角函数 三角恒等变换知识点总结一、角的概念和弧度制:(1)在直角坐标系内讨论角:角的顶点在原点,始边在x 轴的正半轴上,角的终边在第几象限,就说过角是第几象限的角。

若角的终边在坐标轴上,就说这个角不属于任何象限,它叫象限界角。

(2)①与α角终边相同的角的集合:},2|{},360|{0Z k k Z k k ∈+=∈+=απββαββ或与α角终边在同一条直线上的角的集合: ;与α角终边关于x 轴对称的角的集合: ; 与α角终边关于y 轴对称的角的集合: ; 与α角终边关于x y =轴对称的角的集合: ;②一些特殊角集合的表示:终边在坐标轴上角的集合: ;终边在一、三象限的平分线上角的集合: ; 终边在二、四象限的平分线上角的集合: ; 终边在四个象限的平分线上角的集合: ; (3)区间角的表示:①象限角:第一象限角: ;第三象限角: ;第一、三象限角: ;②写出图中所表示的区间角:(4)正确理解角:要正确理解“oo 90~0间的角”= ;“第一象限的角”= ;“锐角”= ; “小于o90的角”= ;(5)由α的终边所在的象限,通过 来判断2α所在的象限,通过 来判断3α所在的象限 (6)弧度制:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;任一已知角α的弧度数的绝对值rl=||α,其中l 为以角α作为圆心角时所对圆弧的长,r 为圆的半径。

注意钟表指针所转过的角是负角。

(7)弧长公式: ;半径公式: ;扇形面积公式: ;二、任意角的三角函数:(1)任意角的三角函数定义:以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则=αsin ;=αcos ;=αtan ;如:角α的终边上一点)3,(a a -,则=+ααsin 2cos 。

注意r>0 (2)在图中画出角α的正弦线、余弦线、正切线;比较)2,0(π∈x ,x sin ,x tan ,x 的大小关系: 。

三角恒等变换各种题型归纳分析

三角恒等变换各种题型归纳分析

三角恒等变换各种题型归纳分析三角恒等变换一、知识点:一)公式回顾:cos(α±β)=cosαcosβ∓sinαsinβ,简记为C(α±β)sin(α±β)=sinαcosβ±cosαsinβ,简记为S(α±β)sin2α=2sinαcosα,XXX为S2αcos2α=cos²α-sin²α,XXX为C2αtan2α=(α≠kπ/2且α≠kπ)简记为T2α2、二倍角公式不仅限于2α是α的二倍的形式,其它如4α是2α的两倍,α/2是α/4的两倍,3α是3α/2的两倍,α/3是α/6的两倍等,所有这些都可以应用二倍角公式。

因此,要理解“二倍角”的含义,即当α=2β时,α就是β的二倍角。

凡是符合二倍角关系的就可以应用二倍角公式。

二)公式的变式1±sin²α=(sinα±cosα)²cos²α=1/(1+tan²α)1-cos²α=2sin²αtan(α±β)=(tanα±tanβ)/(1∓tanαtanβ)公式前的±号,取决于2合1公式所在的象限,注意讨论。

absinx+cosx=a+ba+b其中tanθ=b/a二、经典例题剖析:基础题型例1:已知sin2α=5π/13,0<α<π/2,求sin4α,cos4α,tan4α.例2:在△ABC中,cosA=4/5,tanB=2,求tan(2A+2B).题型二:公式的逆向运用例3:求下列各式的值:2tan15°1.化简下列各式:1) sin²22.5°cos²22.5°;2) (1-2sin²75°)/(21-tan15°);3) sin(3π/4)/[1-(tanπ/5)²].2.化简下列各式:1) sin⁴θ-cos⁴θ;2) -αcosα-(3α²/4).3.求值:1) cos(π/12)cos(π/6);2) cos36°cos72°.题型三:升降幂功能与平方功能的应用例3.化简下列各式:1) 1+sin40°;2) 1-sinα;3) 1+cos20°;4) 1-cosα.1) (cos²θ+sin²θ+2sinθcosθ-cos²θ)/(cos²θ+sin²θ-2sinθcosθ) = 2sinθ/(1-cos2θ);2) (cos²θ+sin²θ+2sinθcosθ+cos²θ)/(cos²θ+sin²θ-2sinθcosθ) = 2cosθ/(1+cos2θ).3.已知sinx+cosx=3/2.x∈(0,π),求sin2x和cos2x.2sinxcosx = sin2x。

必修四三角函数和三角恒等变换知识点及题型分类总结

必修四三角函数和三角恒等变换知识点及题型分类总结

必修四三角函数和三角恒等变换知识点及题型分类总结三角函数知识点总结1、任意角: 正角:;负角:;零角:; 2、角得顶点与重合,角得始边与重合,终边落在第几象限,则称为第几象限角、第一象限角得集合为第二象限角得集合为第三象限角得集合为第四象限角得集合为终边在轴上得角得集合为终边在轴上得角得集合为终边在坐标轴上得角得集合为3、与角终边相同得角得集合为4 4 、已知就就是第几象限角,确定所在象限得方法: : 先把各象限均分等份, , 再从轴得正半轴得上方起, , 依次将各区域标上一、二、三、四, , 则原来就就是第几象限对应得标号即为终边所落在得区域、5、叫做弧度、6、半径为得圆得圆心角所对弧得长为,则角得弧度数得绝对值就就是、7、弧度制与角度制得换算公式:8 、若扇形得圆心角为, 半径为,弧长为, 周长为,面积为, 则l=、S=9、设就就是一个任意大小得角,得终边上任意一点得坐标就就是,它与原点得距离就就是,则,,、10、三角函数在各象限得符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正、11、三角函数线:、12 、同角三角函数得基本关系:(1);(2); ; (3) )13、三角函数得诱导公式: ,,、,,、,,、,,、,、,、口诀: : 奇变偶不变, , 符号瞧象限、重要公式⑴;⑵;⑶;⑷; ⑸(); ⑹()、二倍角得正弦、余弦与正切公式: ⑴、(2)(,)、⑶、公式得变形: :, 辅助角公式,其中、14、函数得图象平移变换变成函数得图象、15、函数得性质:① 振幅:; ② 周期:; ③ 频率:; ④ 相位:; ⑤ 初相:、16、图像正弦函数、余弦函数与正切函数得图象与性质:三角函数题型分类总结一.求值1、===2、(1)7 (07 全国Ⅰ) ) 就就是第四象限角,,则(2)(09 北京文)若,则、(3)(09 全国卷Ⅱ文)已知△ABC 中,,则、(4) 就就是第三象限角,,则==3 3 、(1))((7 07 陕西) ) 已知则=、(2)(04全国文)设,若,则=、(3)(06 福建)已知则=4 4 (0 0 7重庆) )下列各式中,值为得就就是()(A) (B)(C)(D) 5、(1 )(0 7福建) ) =(2)(06陕西)=。

《三角恒等变换》知识点及常见题型总结

《三角恒等变换》知识点及常见题型总结

简单的三角恒等变换一、考点、热点回顾模块一、两角和与差的三角函数要点一、两角和与差的正弦、余弦、正切公式及倍角公式:()sin sin cos cos sin sin 22sin cos 令αβαβαβαβααα=±=±−−−→=()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 21cos2sin 22tan tan 21tan 令 = = αβαβαβαβααααααβααβααβααααα=±=−−−→=-↓=-=-±±=⇒-↓=-要点二、三角函数的化简、计算、证明的恒等变形的基本思路①巧变角:()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--,22αβαβ++=⋅,()()222αββααβ+=---等②三角函数名互化:切割化弦③公式变形使用:tan tan αβ±()()tan 1tan tan αβαβ=±, 1±sin2α=sin 2α+cos 2α±2sinα·cosα=(sinα±cosα)2 ④三角函数次数的降升:降幂公式:21cos 2cos 2αα+=,21cos 2sin 2αα-=;升幂公式:21cos 22cos αα+=,21cos 22sin αα-= ⑤常值变换主要指“1”的变换:221sin cos x x =+tan sin 42ππ===等模块二、简单的三角恒等变换 要点三、半角公式:sin α2=cos 2α= tan2α=sin 1cos 1cos sin αααα-=+ 要点四、三角函数的积化和差公式1sin cos [sin()sin()].2αβαβαβ=++-1cos sin [sin()sin()].2αβαβαβ=+--1cos cos [cos()cos()].2αβαβαβ=++-1sin sin [cos()cos()].2αβαβαβ=-+--记忆口诀:前角用和后角差,正余二分正弦和,余正二分正弦差,余余二分余弦和,正正负半余弦差。

三角函数和三角恒等变换知识点及题型分类总结

三角函数和三角恒等变换知识点及题型分类总结

三角函数知识点总结12、三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭.重要公式⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+()()tan tan tan 1tan tan αβαβαβ-=-+;⑹()tan tan tan 1tan tan αβαβαβ++=-()()tan tan tan 1tan tan αβαβαβ+=+-.二倍角的正弦、余弦和正切公式: ⑴sin 22sin cos ααα=.22222cos2cos sin 2cos 112sin ααααα=-=-=-2cos 21cos 2αα+=,21cos 2sin 2αα-=.⑶22tan tan 21tan ααα=-.辅助角公式()sin cos αααϕA +B =+,其中tan ϕB=A. 13、函数sin y x =的图象上所有点 得到函数()sin y x ωϕ=A +的图象. 14.函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ.函数()sin y x B ωϕ=A ++,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则()max min 12y y A =-,()max min 12y y B =+,()21122x x x x T =-<.一、求值1、sin330︒= tan690° = o585sin =2、1α是第四象限角,12cos 13α=,则sin α= 2若4sin ,tan 05θθ=->,则cos θ= . 3α是第三象限角,21)sin(=-πα,则αcos = )25cos(απ+= 3、1已知sin α=则44sin cos αα-= . 2设(0,)2πα∈,若3sin 5α=,)4πα+= .3已知3(,),sin ,25παπα∈=则tan()4πα+= 4.下列各式中,值为23的是 A 2sin15cos15︒︒ B ︒-︒15sin 15cos 22C 115sin 22-︒D ︒+︒15cos 15sin 22 5. 1 sin15cos75cos15sin105+= 2 cos 43cos77sin 43cos167oooo+= ; 3sin163sin 223sin 253sin313+= ; 6.1 若sin θ+cos θ=15,则sin 2θ= 2已知3sin()45x π-=,则sin 2x 的值为3 若2tan =α ,则ααααcos sin cos sin -+=7.若角α的终边经过点(12)P -,,则αcos = tan 2α= 8.已知3cos()22πϕ+=,且||2πϕ<,则tan ϕ= 9.若cos 22π2sin 4αα=-⎛⎫- ⎪⎝⎭,则cos sin αα+= 10.下列关系式中正确的是A .0sin11cos10sin168<< B .0sin168sin11cos10<< C .0sin11sin168cos10<< D .0sin168cos10sin11<< 11.已知53)2cos(=-πα,则αα22cos sin -的值为A .257B .2516-C .259D .257-12.已知sin θ=-1312,θ∈-2π,0,则cos θ-4π的值为A .-2627B .2627C .-26217D .2621713.已知fcosx=cos3x,则fsin30°的值是A .1B .23C .0D .-114.已知sin x -sin y = -32,cos x -cos y = 32,且x ,y 为锐角,则tan x -y 的值是 A .5142 B . -5142 C .±5142 D .28145± 15.已知tan160o=a ,则sin2000o的值是A.错误!B.-错误!C.错误!D.-错误!16.若02,sin απαα≤≤>,则α的取值范围是:A,32ππ⎛⎫⎪⎝⎭ B,3ππ⎛⎫⎪⎝⎭ C4,33ππ⎛⎫ ⎪⎝⎭ D3,32ππ⎛⎫⎪⎝⎭17.已知cos α-6π+sin α=的值是则)67sin(,354πα- A-532 B 532 C-54 D 5418.若,5sin 2cos -=+a a 则a tan = A21 B2 C 21- D 2-二.最值1.函数()sin cos f x x x =最小值是= ;2.① 函数x x x f cos sin )(-=的最大值为 ; ② 函数fx =错误!sin x +sin 错误!+x 的最大值是③ 若函数()(1)cos f x x x =+,02x π≤<,则()f x 的最大值为3. 函数()cos 22sin f x x x =+的最小值为 最大值为 ;4. 函数22cos sin 2y x x =+的最小值是 . 5.已知函数()2sin (0)f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是2-,则ω的最小值等于 6将函数x x y cos 3sin -=的图像向右平移了n 个单位,所得图像关于y 轴对称,则n 的最小正值是 A .6π7 B .3π C .6π D .2π7.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为 A .1BCD .28.函数y=sin 2πx+θcos 2πx+θ在x=2时有最大值,则θ的一个值是A .4π B .2πC .32π D .43π9.函数2()sin cos f x x x x =+在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是A.1 C.32三.单调性1.函数]),0[()26sin(2ππ∈-=x x y 为增函数的区间是 .A. ]3,0[πB. ]127,12[ππC. ]65,3[ππ D. ],65[ππ 2.函数sin y x =的一个单调增区间是A .ππ⎛⎫- ⎪44⎝⎭,B .3ππ⎛⎫ ⎪44⎝⎭,C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π⎪2⎝⎭,3.函数()sin ([,0])f x x x x π=∈-的单调递增区间是 A .5[,]6ππ--B .5[,]66ππ--C .[,0]3π-D .[,0]6π- 4.函数22cos y x =的一个单调增区间是 A .(,)44ππ-B .(0,)2πC .3(,)44ππD .(,)2ππ5.若函数f x 同时具有以下两个性质:①f x 是偶函数,②对任意实数x,都有f x +4π= f x -4π,则f x 的解析式可以是 A .f x=cosx B .f x=cos2x 2π+ C .f x=sin4x 2π+D .f x =cos6x四.周期性1.下列函数中,周期为2π的是 A .sin2x y = B .sin 2y x = C .cos 4xy = D .cos 4y x = 2. ()cos 6f x x πω⎛⎫=-⎪⎝⎭的最小正周期为5π,其中0ω>,则ω=3.1函数x x x f cos sin )(=的最小正周期是 . 2函数)(1cos 22R x x y ∈+=的最小正周期为 .4.函数1)4(cos 22--=πx y 是A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数 C. 最小正周期为2π的奇函数 D. 最小正周期为2π的偶函数5.函数2(sin cos )1y x x =++的最小正周期是 . 五.对称性 1.函数sin(2)3y x π=+图像的对称轴方程可能是A .6x π=-B .12x π=-C .6x π=D .12x π=2.下列函数中,图象关于直线3π=x 对称的是A )32sin(π-=x y B )62sin(π-=x y C )62sin(π+=x y D )62sin(π+=x y3.函数πsin 23y x ⎛⎫=+⎪⎝⎭的图象 A.关于点π03⎛⎫ ⎪⎝⎭,对称 B.关于直线π4x =对称C.关于点π04⎛⎫ ⎪⎝⎭,对称 D.关于直线π3x =对称 4.如果函数3cos(2)y x φ=+的图像关于点4(,0)3π中心对称,那么φ的最小值为 A6π B 4π C 3π D 2π 六.图象平移与变换1.函数y =cos x x ∈R 的图象向左平移2π个单位后,得到函数y=gx 的图象,则gx 的解析式为 2.将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是3.将函数y=sinx 的图象向左平移ϕ(0 ≤ϕ<2π)的单位后,得到函数y=sin ()6x π-的图象,则ϕ等于4.将函数 y = 错误!cos x -sin x 的图象向左平移 mm > 0个单位,所得到的图象关于y 轴对称,则 m 的最小正值是A. 错误!B. 错误!C. 错误!D. 错误! 七.图象1.下列函数中,图象的一部分如右图所示的是A sin 6y x π⎛⎫=+ ⎪⎝⎭B sin 26y x π⎛⎫=- ⎪⎝⎭C cos 43y x π⎛⎫=- ⎪⎝⎭D cos 26y x π⎛⎫=- ⎪⎝⎭2.已知函数()2sin()f x x ωφ=+的图像如图所示,则712f π⎛⎫= ⎪⎝⎭; 3.已知函数y =sin ωx +φ错误!的部分图象如图所示,则 A .ω=1,φ=错误! B .ω=1,φ=-错误! C .ω=2,φ=错误! D .ω=2,φ=-错误!4.已知函数fx =A sin x +φA >0,0<φ<π,x ∈R 的最大值是1,其图象经过点M 错误!.1求fx 的解析式;2已知α,β∈错误!,且fα=错误!,fβ=错误!,求fα-β的值.5.已知函数fx =错误!sin2x sin φ+cos 2x cos φ-错误!sin 错误!0<φ<π,其图象过点错误!.1求φ的值;2将函数y =fx 的图象上各点的横坐标缩短到原来的错误!,纵坐标不变,得到函数y =gx 的图象,求函数gx 在错误!上的最大值和最小值. 八.综合1. 已知函数))(2sin()(R x x x f ∈-=π,下面结论错误..的是 A. 函数)(x f 的最小正周期为2π B. 函数)(x f 在区间0,2π上是增函数 C.函数)(x f 的图象关于直线x =0对称 D. 函数)(x f 是奇函数 2.函数)32sin(3)(π-=x x f 的图象为C , 如下结论中正确的是 ①图象C 关于直线π1211=x 对称; ②图象C 关于点)0,32(π对称; ③函数125,12()(ππ-在区间x f 内是增函数; ④由x y 2sin 3=的图象向右平移3π个单位长度可以得到图象C.3.已知函数()2sin()f x x ωϕ=+对任意x 都有()()66f x f x ππ+=-,则()6f π等于A 、2或0B 、2-或2C 、0D 、2-或0九.解答题1.已知函数()sin(),f x x ωϕ=+其中0ω>,||2πϕ<I 若coscos,sinsin 0,44ππϕϕ3-=求ϕ的值; Ⅱ在I 的条件下,若函数()f x 的图像的相邻两条对称轴之间的距离等于3π,求函数()f x 的解析式;并求最小正实数m ,使得函数()f x 的图像象左平移m 个单位所对应的函数是偶函数;2.已知函数2π()sin 3sin 2f x x x x ωωω⎛⎫=++ ⎪⎝⎭0ω>的最小正周期为π. Ⅰ求ω的值;Ⅱ求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围.3.知函数22s (in cos s 1)2co f x x x x ωωω++=,0x R ω∈>的最小值正周期是2π. Ⅰ求ω的值;Ⅱ求函数()f x 的最大值,并且求使()f x 取得最大值的x 的集合.4.已知向量)cos ,sin 3(x x a = ,)cos ,(cos x x b = ,记函数b a x f⋅=)(;1求函数)(x f 的最小正周期;2求函数)(x f 的最大值,并求此时x 的值;5.已知函数()sin(),f x A x x R ωϕ=+∈其中0,0,02A πωϕ>><<的周期为π,且图象上一个最低点为2(,2)3M π-. Ⅰ求()f x 的解析式;Ⅱ当[0,]12x π∈,求()f x 的最值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数知识点总结1、任意角。

2、角α的顶点与 重合,角的始边与 重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为 第二象限角的集合为 第三象限角的集合为 第四象限角的集合为 3、与角α终边相同的角的集合为 4、 叫做1弧度.5、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是 .6、弧度制与角度制的换算公式7、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则L= . S=8、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin y r α=,cos x r α=,()tan 0yx xα=≠. 9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.10、三角函数线:sin α=MP ,cos α=OM ,tan α=AT .11、同角三角函数的基本关系:(1) ;(2) 。

12、三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭.口诀:奇变偶不变,符号看象限.重要公式⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+(()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=-(()()tan tan tan 1tan tan αβαβαβ+=+-).二倍角的正弦、余弦和正切公式: ⑴sin 22sin cos ααα=.(2)2222cos2cos sin 2cos 112sin ααααα=-=-=-(2cos 21cos 2αα+=,21cos 2sin 2αα-=).⑶22tan tan 21tan ααα=-. 辅助角公式()22sin cos αααϕA +B =A +B +,其中tan ϕB =A. 13、函数sin y x =的图象上所有点 得到函数()sin y x ωϕ=A +的图象. 14.函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ. 函数()sin y x B ωϕ=A ++,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则()max min 12y y A =-,()max min 12y y B =+,()21122x x x x T =-<. sin y x =cos y x =tan y x =图象定义域 值域最值周期性 奇偶性单调性对称性函数性 质三角函数题型分类总结一、求值1、sin330︒= tan690° = o585sin =2、(1)α是第四象限角,12cos 13α=,则sin α= (2)若4sin ,tan 05θθ=->,则cos θ= . (3)α是第三象限角,21)sin(=-πα,则αcos = )25cos(απ+=3、(1)已知sin α=则44sin cos αα-= . (2)设(0,)2πα∈,若3sin 5α=)4πα+= .(3)已知3(,),sin ,25παπα∈=则tan()4πα+= 4.下列各式中,值为23的是( ) (A )2sin15cos15︒︒ (B )︒-︒15sin 15cos 22(C )115sin 22-︒(D )︒+︒15cos 15sin 22 5. (1) sin15cos75cos15sin105+= (2) cos 43cos77sin 43cos167oooo+= 。

(3)sin163sin 223sin 253sin313+= 。

6.(1) 若sin θ+cos θ=15,则sin 2θ= (2)已知3sin()45x π-=,则sin 2x 的值为(3) 若2tan =α ,则ααααcos sin cos sin -+=7.若角α的终边经过点(12)P -,,则αcos = tan 2α= 8.已知cos()2πϕ+=,且||2πϕ<,则tan ϕ= 9.若cos 2π2sin 4αα=-⎛⎫- ⎪⎝⎭cos sin αα+=10.下列关系式中正确的是( )A .0sin11cos10sin168<< B .0sin168sin11cos10<< C .0sin11sin168cos10<< D .0sin168cos10sin11<< 11.已知53)2cos(=-πα,则αα22cos sin -的值为 ( )A .257B .2516-C .259D .257-12.已知sin θ=-1312,θ∈(-2π,0),则cos (θ-4π)的值为 ( )A .-2627B .2627C .-26217D .2621713.已知f (cosx )=cos3x ,则f (sin30°)的值是 ( )A .1B .23C .0D .-1 14.已知sin x -sin y = -32,cos x -cos y = 32,且x ,y 为锐角,则tan(x -y )的值是 ( ) A .5142 B . -5142 C .±5142 D .28145± 15.已知tan160o=a ,则sin2000o的值是 ( ) A.a 1+a 2 B.-a 1+a 2 C.11+a 2 D.-11+a 216.若02,sin 3απαα≤≤>,则α的取值范围是: ( )(A),32ππ⎛⎫⎪⎝⎭ (B),3ππ⎛⎫⎪⎝⎭ (C)4,33ππ⎛⎫ ⎪⎝⎭ (D)3,32ππ⎛⎫⎪⎝⎭17.已知cos (α-6π)+sin α=的值是则)67sin(,354πα- ( ) (A )-532 (B )532 (C)-54 (D) 5418.若,5sin 2cos -=+a a 则a tan = ( ) (A )21 (B )2 (C )21- (D )2-二.最值1.函数()sin cos f x x x =最小值是= 。

2.① 函数x x x f cos sin )(-=的最大值为 。

② 函数f (x )=3sin x +sin(π2+x )的最大值是③ 若函数()(1)cos f x x x =+,02x π≤<,则()f x 的最大值为3. 函数()cos 22sin f x x x =+的最小值为 最大值为 。

4. 函数22cos sin 2y x x =+的最小值是 . 5.已知函数()2sin (0)f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是2-,则ω的最小值等于 6将函数x x y cos 3sin -=的图像向右平移了n 个单位,所得图像关于y 轴对称,则n 的最小正值是 A .6π7 B .3π C .6π D .2π 7.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( ) A .1B CD .28.函数y=sin (2πx+θ)cos (2πx+θ)在x=2时有最大值,则θ的一个值是( )A .4π B .2π C .32π D .43π9.函数2()sin cos f x x x x =+在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( )A.1B.12+ C.32三.单调性1.函数]),0[()26sin(2ππ∈-=x x y 为增函数的区间是( ).A. ]3,0[πB. ]127,12[ππC. ]65,3[ππ D. ],65[ππ 2.函数sin y x =的一个单调增区间是( )A .ππ⎛⎫- ⎪44⎝⎭,B .3ππ⎛⎫ ⎪44⎝⎭,C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π⎪2⎝⎭,3.函数()sin ([,0])f x x x x π=∈-的单调递增区间是 ( ) A .5[,]6ππ--B .5[,]66ππ--C .[,0]3π-D .[,0]6π- 4.函数22cos y x =的一个单调增区间是 ( ) A .(,)44ππ-B .(0,)2πC .3(,)44ππD .(,)2ππ5.若函数f (x)同时具有以下两个性质:①f (x)是偶函数,②对任意实数x ,都有f (x +4π)= f (x -4π),则f (x)的解析式可以是( )A .f (x)=cosxB .f (x)=cos(2x 2π+) C .f (x)=sin(4x 2π+) D .f (x) =cos6x四.周期性1.下列函数中,周期为2π的是( ) A .sin2x y = B .sin 2y x = C .cos 4xy = D .cos 4y x = 2. ()cos 6f x x πω⎛⎫=-⎪⎝⎭的最小正周期为5π,其中0ω>,则ω= 3.(1)函数x x x f cos sin )(=的最小正周期是 . (2)函数)(1cos 22R x x y ∈+=的最小正周期为 . 4.函数1)4(cos 22--=πx y 是 ( )A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数 C. 最小正周期为2π的奇函数 D. 最小正周期为2π的偶函数5.函数2(sin cos )1y x x =++的最小正周期是 . 五.对称性 1.函数sin(2)3y x π=+图像的对称轴方程可能是( )A .6x π=-B .12x π=-C .6x π=D .12x π=2.下列函数中,图象关于直线3π=x 对称的是( )A )32sin(π-=x y B )62sin(π-=x y C )62sin(π+=x y D )62sin(π+=x y3.函数πsin 23y x ⎛⎫=+⎪⎝⎭的图象( ) A.关于点π03⎛⎫ ⎪⎝⎭,对称 B.关于直线π4x =对称C.关于点π04⎛⎫ ⎪⎝⎭,对称 D.关于直线π3x =对称 4.如果函数3cos(2)y x φ=+的图像关于点4(,0)3π中心对称,那么φ的最小值为 ( ) (A)6π (B) 4π (C) 3π (D) 2π六.图象平移与变换1.函数y =cos x (x ∈R)的图象向左平移2π个单位后,得到函数y=g(x )的图象,则g(x )的解析式为 2.将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是3.将函数y=sinx 的图象向左平移ϕ(0 ≤ϕ<2π)的单位后,得到函数y=sin ()6x π-的图象,则ϕ等于4.将函数 y = 3 cos x -sin x 的图象向左平移 m (m > 0)个单位,所得到的图象关于y 轴对称,则 m 的最小正值是 ( )A. π6B. π3 C. 2π3 D. 5π6七.图象1.下列函数中,图象的一部分如右图所示的是( )(A )sin 6y x π⎛⎫=+ ⎪⎝⎭ (B )sin 26y x π⎛⎫=- ⎪⎝⎭(C )cos 43y x π⎛⎫=- ⎪⎝⎭ (D )cos 26y x π⎛⎫=- ⎪⎝⎭2.已知函数()2sin()f x x ωφ=+的图像如图所示,则712f π⎛⎫= ⎪⎝⎭。

相关文档
最新文档