2002年高考试题——数学理(全国卷)

合集下载

2002年全国卷高考理科数学试题及标准答案

2002年全国卷高考理科数学试题及标准答案

2002年普通高等学校招生全国统一考试数学试卷(理科)及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I卷1至2页.第II卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I卷(选择题)和第II 卷(非选择题)两部分.第I卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.(1)圆1)1(22=+-y x 的圆心到直线y x =的距离是 (A)21 (B )23 (C)1 (D )3 (2)复数3)2321(i +的值是 (A )i - (B)i (C )1- (D )1(3)不等式0|)|1)(1(>-+x x 的解集是(A)}10|{<≤x x (B )0|{<x x 且}1-≠x(C )}11|{<<-x x (D )1|{<x x 且}1-≠x(4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππ (B)),4(ππ (C))45,4(ππ (D))23,45(),4(ππππ (5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则 (A)N M = (B )N M ⊂ (C )N M ⊃ (D)∅=N M(6)点)0,1(P 到曲线⎩⎨⎧==ty t x 22(其中参数R t ∈)上的点的最短距离为(A)0 (B)1 (C )2 (D)2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是(A )43 (B )54 (C)53 (D)53- (8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A)︒90 (B )︒60 (C)︒45 (D)︒30(9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是(A )0≥b (B)0≤b (C)0>b (D)0<b(10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有(A )8种 (B)12种 (C)16种 (D )20种(12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A)115000亿元 (B)120000亿元 (C )127000亿元 (D)135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线.(13)函数x a y =在]1,0[上的最大值与最小值这和为3,则a =(14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k(15)72)2)(1(-+x x 展开式中3x 的系数是。

2002年普通高等学校招生全国统一考试(数学)理及答案

2002年普通高等学校招生全国统一考试(数学)理及答案

2002年普通高等学校招生全国统一考试(数学)理及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)圆1)1(22=+-y x 的圆心到直线3y x =的距离是 (A )21(B )23 (C )1 (D )3(2)复数3)2321(i +的值是 (A )i - (B )i (C )1- (D )1 (3)不等式0|)|1)(1(>-+x x 的解集是(A )}10|{<≤x x (B )0|{<x x 且}1-≠x (C )}11|{<<-x x (D )1|{<x x 且}1-≠x (4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππ (B )),4(ππ (C ))45,4(ππ (D ))23,45(),4(ππππ (5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则(A )N M = (B )N M ⊂ (C )N M ⊃ (D )∅=N M(6)点)0,1(P 到曲线⎩⎨⎧==t y t x 22(其中参数R t ∈)上的点的最短距离为(A )0 (B )1 (C )2 (D )2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是 (A )43 (B )54 (C )53 (D )53- (8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A )︒90 (B )︒60 (C )︒45 (D )︒30 (9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是 (A )0≥b (B )0≤b (C )0>b (D )0<b (10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 (A )8种 (B )12种 (C )16种 (D )20种 (12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A )115000亿元 (B )120000亿元 (C )127000亿元 (D )135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线. (13)函数xa y =在]1,0[上的最大值与最小值这和为3,则a =(14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k (15)72)2)(1(-+x x 展开式中3x 的系数是(16)已知221)(xx x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++= 三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤. (17)已知12cos cos 2sin 2sin 2=-+αααα,)2,0(πα∈,求αsin 、αtg 的值(18)如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直点M 在AC 上移动,点N 在BF 上移动,若a BN CM ==(20<<a )(1)求MN 的长;(2)a 为何值时,MN 的长最小;(3)当MN 的长最小时,求面MNA 与面MNB 所成二面角α的大小(19)设点P 到点)0,1(-、)0,1(距离之差为m 2,到x 、y 轴的距离之比为2,求m 的取值范围(20)某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?(21)设a 为实数,函数1||)(2+-+=a x x x f ,R x ∈ (1)讨论)(x f 的奇偶性; (2)求)(x f 的最小值(22)设数列}{n a 满足:121+-=+n n n na a a , ,3,2,1=n (I )当21=a 时,求432,,a a a 并由此猜测n a 的一个通项公式; (II )当31≥a 时,证明对所的1≥n ,有 (i )2+≥n a n (ii )2111111111321≤++++++++n a a a a ADE参考答案(13)2 (14)1 (15)1008 (16)27 三、解答题(17)解:由12cos cos 2sin 2sin 2=-+αααα,得0cos 2cos sin 2cos sin 42222=-+ααααα0)1sin sin 2(cos 222=-+ααα 0)1)(sin 1sin 2(cos 22=+-ααα∵)2,0(πα∈∴01sin ≠+α,0cos 2≠=α ∴01sin 2=-α,即21sin =α ∴6πα=∴33=αtg (18)解(I )作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连结PQ ,依题意可得MP ∥NQ ,且NQ MP =,即MNQP 是平行四边形∴PQ MN =由已知a BN CM ==,1===BE AB CB ∴2==BF AC ,a BQ CP 22== )20( 21)22( )2()21( )1(22222<<+-=+-==+-==a a a a BQ CP PQ MN(II )由(I )21)22( 2+-=a MN 所以,当22=a 时,22=MN 即当M 、N 分别为AC 、BF 的中点时,MN 的长最小,最小值为22(III )取MN 的中点G ,连结AG 、BG , ∵BN BM AN AM ==,,G 为MN 的中点∴MN BG MN AG ⊥⊥,,即AGB ∠即为二面角的平面角α又46==BG AG ,所以,由余弦定理有 31464621)46()46(cos 22-=⋅⋅-+=α 故所求二面角为31arccos -=πα(19)解:设点P 的坐标为),(y x ,依题设得2||||=x y ,即x y 2±=,0≠x 因此,点),(y x P 、)0,1(-M 、)0,1(N 三点不共线,得2||||||||=<-MN PN PM∵0||2||||||>=-m PN PM ∴1||0<<m因此,点P 在以M 、N 为焦点,实轴长为||2m 的双曲线上,故112222=--my m x 将x y 2±=代入112222=--m y m x ,并解得222251)1(mm m x --=,因012>-m 所以0512>-m 解得55||0<<m 即m 的取值范围为)55,0()0,55( -(20)解:设2001年末汽车保有量为1b 万辆,以后各年末汽车保有量依次为2b 万辆,3b 万辆,…,每年新增汽车x 万辆,则301=b ,x b b +⨯=94.012对于1>n ,有)94.01(94.0 94.0211x b xb b n n n ++⨯=+⨯=-+ 所以)94.094.094.01(94.0211n n n x b b +++++⨯=+x b nn06.094.0194.01-+⨯=n x x 94.0)06.030(06.0⨯-+= 当006.030≥-x,即8.1≤x 时 11=≤≤≤+b b b n n当006.030<-x,即8.1>x 时 数列}{n b 逐项增加,可以任意靠近06.0x 06.0]94.0)06.030(06.0[lim lim 1xx x b n n n n =⨯-+=-+∞→+∞→ 因此,如果要求汽车保有量不超过60万辆,即60≤n b ( ,3,2,1=n )则6006.0≤x,即6.3≤x 万辆 综上,每年新增汽车不应超过6.3万辆(21)解:(I )当0=a 时,函数)(1||)()(2x f x x x f =+-+-=- 此时,)(x f 为偶函数当0≠a 时,1)(2+=a a f ,1||2)(2++=-a a a f ,)()(a f a f -≠,)()(a f a f --≠此时)(x f 既不是奇函数,也不是偶函数(II )(i )当a x ≤时,43)21(1)(22++-=++-=a x a x x x f 当21≤a ,则函数)(x f 在],(a -∞上单调递减,从而函数)(x f 在],(a -∞上的最小值为1)(2+=a a f .若21>a ,则函数)(x f 在],(a -∞上的最小值为a f +=43)21(,且)()21(a f f ≤. (ii )当a x ≥时,函数43)21(1)(22+-+=+-+=a x a x x x f若21-≤a ,则函数)(x f 在],(a -∞上的最小值为a f -=-43)21(,且)()21(a f f ≤-若21->a ,则函数)(x f 在),[+∞a 上单调递增,从而函数)(x f 在),[+∞a 上的最小值为1)(2+=a a f .综上,当21-≤a 时,函数)(x f 的最小值为a -43 当2121≤<-a 时,函数)(x f 的最小值为12+a当21>a 时,函数)(x f 的最小值为a +43.(22)解(I )由21=a ,得311212=+-=a a a 由32=a ,得4122223=+-=a a a 由43=a ,得5133234=+-=a a a由此猜想n a 的一个通项公式:1+=n a n (1≥n ) (II )(i )用数学归纳法证明:①当1=n 时,2131+=≥a ,不等式成立. ②假设当k n =时不等式成立,即2+≥k a k ,那么3521)2)(2(1)(1+≥+=+-++≥+-=+k k k k k k a a a k k k .也就是说,当1+=k n 时,2)1(1++≥+k a k 据①和②,对于所有1≥n ,有2n a n ≥+. (ii )由1)(1+-=+n a a a n n n 及(i ),对2≥k ,有1)1(11++-=--k a a a k k k121)121(11+=++-+-≥--k k a k k a……1)1(2122211211-+=++++≥---a a a k k k k于是11211111-⋅+≤+k k a a ,2≥k2131212211121111111111121111=+≤+≤+=+++≤+∑∑∑=-=-=a a a a a nk k nk k nk k。

2002高考数学全国卷及答案理

2002高考数学全国卷及答案理

2002年普通高等学校招生全国统一考试(数学)理及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)圆1)1(22=+-y x 的圆心到直线3y x =的距离是 (A )21 (B )23 (C )1 (D )3 (2)复数3)2321(i +的值是 (A )i - (B )i (C )1- (D )1 (3)不等式0|)|1)(1(>-+x x 的解集是(A )}10|{<≤x x (B )0|{<x x 且}1-≠x (C )}11|{<<-x x (D )1|{<x x 且}1-≠x (4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππ (B )),4(ππ (C ))45,4(ππ (D ))23,45(),4(ππππ (5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则(A )N M = (B )N M ⊂ (C )N M ⊃ (D )∅=N M(6)点)0,1(P 到曲线⎩⎨⎧==t y t x 22(其中参数R t ∈)上的点的最短距离为(A )0 (B )1 (C )2 (D )2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是 (A )43 (B )54 (C )53 (D )53- (8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A )︒90 (B )︒60 (C )︒45 (D )︒30 (9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是 (A )0≥b (B )0≤b (C )0>b (D )0<b (10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 (A )8种 (B )12种 (C )16种 (D )20种 (12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为 (A )亿元 (B )亿元 (C )亿元 (D )亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线. (13)函数xa y =在]1,0[上的最大值与最小值这和为3,则a =(14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k (15)72)2)(1(-+x x 展开式中3x 的系数是(16)已知221)(xx x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++= 三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤. (17)已知12cos cos 2sin 2sin 2=-+αααα,)2,0(πα∈,求αsin 、αtg 的值(18)如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直点M 在AC 上移动,点N 在BF 上移动,若a BN CM ==(20<<a )(1)求MN 的长;(2)a 为何值时,MN 的长最小;(3)当MN 的长最小时,求面MNA 与面MNB 所成二面角α的大小(19)设点P 到点)0,1(-、)0,1(距离之差为m 2,到x 、y 轴的距离之比为2,求m 的取值范围(20)某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?(21)设a 为实数,函数1||)(2+-+=a x x x f ,R x ∈ (1)讨论)(x f 的奇偶性; (2)求)(x f 的最小值(22)设数列}{n a 满足:121+-=+n n n na a a , ,3,2,1=n (I )当21=a 时,求432,,a a a 并由此猜测n a 的一个通项公式; (II )当31≥a 时,证明对所的1≥n ,有 (i )2+≥n a n (ii )2111111111321≤++++++++n a a a a ADE参考答案(13)2 (14)1 (15)1008 (16)27 三、解答题(17)解:由12cos cos 2sin 2sin 2=-+αααα,得0cos 2cos sin 2cos sin 42222=-+ααααα0)1sin sin 2(cos 222=-+ααα 0)1)(sin 1sin 2(cos 22=+-ααα∵)2,0(πα∈∴01sin ≠+α,0cos 2≠=α∴01sin 2=-α,即21sin =α ∴6πα=∴33=αtg (18)解(I )作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连结PQ ,依题意可得MP ∥NQ ,且NQ MP =,即MNQP 是平行四边形∴PQ MN =由已知a BN CM ==,1===BE AB CB ∴2==BF AC ,a BQ CP 22== )20( 21)22( )2()21( )1(22222<<+-=+-==+-==a a a a BQ CP PQ MN(II )由(I )21)22( 2+-=a MN 所以,当22=a 时,22=MN 即当M 、N 分别为AC 、BF 的中点时,MN 的长最小,最小值为22(III )取MN 的中点G ,连结AG 、BG , ∵BN BM AN AM ==,,G 为MN 的中点∴MN BG MN AG ⊥⊥,,即AGB ∠即为二面角的平面角α又46==BG AG ,所以,由余弦定理有 31464621)46()46(cos 22-=⋅⋅-+=α 故所求二面角为31arccos-=πα (19)解:设点P 的坐标为),(y x ,依题设得2||||=x y ,即x y 2±=,0≠x 因此,点),(y x P 、)0,1(-M 、)0,1(N 三点不共线,得2||||||||=<-MN PN PM∵0||2||||||>=-m PN PM ∴1||0<<m因此,点P 在以M 、N 为焦点,实轴长为||2m 的双曲线上,故112222=--my m x 将x y 2±=代入112222=--m y m x ,并解得222251)1(mm m x --=,因012>-m 所以0512>-m 解得55||0<<m 即m 的取值范围为)55,0()0,55( -(20)解:设2001年末汽车保有量为1b 万辆,以后各年末汽车保有量依次为2b 万辆,3b 万辆,…,每年新增汽车x 万辆,则301=b ,x b b +⨯=94.012对于1>n ,有)94.01(94.0 94.0211x b xb b n n n ++⨯=+⨯=-+ 所以)94.094.094.01(94.0211n n n x b b +++++⨯=+x b nn06.094.0194.01-+⨯=n x x 94.0)06.030(06.0⨯-+= 当006.030≥-x,即8.1≤x 时 3011=≤≤≤+b b b n n当006.030<-x,即8.1>x 时 数列}{n b 逐项增加,可以任意靠近06.0x 06.0]94.0)06.030(06.0[lim lim 1x x x b n n n n =⨯-+=-+∞→+∞→ 因此,如果要求汽车保有量不超过60万辆,即60≤n b ( ,3,2,1=n )则6006.0≤x,即6.3≤x 万辆 综上,每年新增汽车不应超过6.3万辆(21)解:(I )当0=a 时,函数)(1||)()(2x f x x x f =+-+-=- 此时,)(x f 为偶函数当0≠a 时,1)(2+=a a f ,1||2)(2++=-a a a f ,)()(a f a f -≠,)()(a f a f --≠此时)(x f 既不是奇函数,也不是偶函数(II )(i )当a x ≤时,43)21(1)(22++-=++-=a x a x x x f 当21≤a ,则函数)(x f 在],(a -∞上单调递减,从而函数)(x f 在],(a -∞上的最小值为1)(2+=a a f .若21>a ,则函数)(x f 在],(a -∞上的最小值为a f +=43)21(,且)()21(a f f ≤. (ii )当a x ≥时,函数43)21(1)(22+-+=+-+=a x a x x x f若21-≤a ,则函数)(x f 在],(a -∞上的最小值为a f -=-43)21(,且)()21(a f f ≤-若21->a ,则函数)(x f 在),[+∞a 上单调递增,从而函数)(x f 在),[+∞a 上的最小值为1)(2+=a a f .综上,当21-≤a 时,函数)(x f 的最小值为a -43 当2121≤<-a 时,函数)(x f 的最小值为12+a当21>a 时,函数)(x f 的最小值为a +43.(22)解(I )由21=a ,得311212=+-=a a a 由32=a ,得4122223=+-=a a a 由43=a ,得5133234=+-=a a a由此猜想n a 的一个通项公式:1+=n a n (1≥n ) (II )(i )用数学归纳法证明:①当1=n 时,2131+=≥a ,不等式成立. ②假设当k n =时不等式成立,即2+≥k a k ,那么3521)2)(2(1)(1+≥+=+-++≥+-=+k k k k k k a a a k k k .也就是说,当1+=k n 时,2)1(1++≥+k a k 据①和②,对于所有1≥n ,有2n a n ≥+. (ii )由1)(1+-=+n a a a n n n 及(i ),对2≥k ,有1)1(11++-=--k a a a k k k121)121(11+=++-+-≥--k k a k k a……1)1(2122211211-+=++++≥---a a a k k k k于是11211111-⋅+≤+k k a a ,2≥k2131212211121111111111121111=+≤+≤+=+++≤+∑∑∑=-=-=a a a a a n k k n k k nk k。

2002年普通高等学校招生全国统一考试(数学)理含答案

2002年普通高等学校招生全国统一考试(数学)理含答案
本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分.第 I 卷 1 至 2 页.第 II 卷 3 至 9 页.共 150 分.考试时间 120 分钟.
第Ⅰ卷(选择题共 60 分)
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只 有一项是符合题目要求的.
2002 年普通高等学校招生全国统一考试(数学)理及答案
本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分.第 I 卷 1 至 2 页.第 II 卷 3 至 9 页.共 150 分.考试时间 120 分钟.
第Ⅰ卷(选择题共 60 分)
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只 有一项是符合题目要求的.
互相垂直 点 新疆 王新敞
奎屯
M 在 AC 上 移 动 , 点 N 在 BF 上 移 动 , 若 CM = BN = a
C
(0 a 2)
D
(1)求 MN 的长;
P
M
(2) a 为何值时, MN 的长最小;
Q
(3)当 MN 的长最小时,求面 MNA 与面 MNB 所成二面角 的
B
E
大小 新疆 王新敞 奎屯
2
4
当 a 1 ,则函数 f (x) 在 (−, a] 上单调递减,从而函数 f (x) 在 (−, a] 上的最小值为 2
f (a) = a2 +1.
若 a 1 ,则函数 f (x) 在 (−, a]上的最小值为 f (1) = 3 + a ,且 f (1) f (a) .
2
24
2
(ii)当 x a 时,函数 f (x) = x2 + x − a +1 = (x + 1)2 − a + 3

2002年普通高等学校招生全国统一考试数学(理)试题及答案

2002年普通高等学校招生全国统一考试数学(理)试题及答案

2002年普通高等学校招生全国统一考试数学(理工农医类)第Ⅰ卷(选择题共60分)试卷类型:A参考公式:三角函数的积化和差公式 正棱台、圆台的侧面积公式)sin()[sin(21cos sin βαβαβα-++=)]sin()[sin(21sin cos βαβαβα--+=)]cos()[cos(21cos cos βαβαβα-++=)]cos()[cos(21sin sin βαβαβα--+-=一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.圆1)1(22=+-y x 的圆心到直线x y 33=的距离是A .21 B .23 C .1 D .32.复数3)2321(i +的值是A .-iB .iC .-1D .13.不等式0|)|1)(1(>-+x x 的解集是 A .}10|{<≤x x B .}10|{-≠<x x x 且C .{11|<<-x x }D .}11|{-≠<x x x 且S台侧=l c c )(21+'其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长 球的体积公式334R V π=球其中R 表示球的半径4.在(π2,0)内,使x x cos sin >成立的x 取值范围为A .)45,()2,4(ππππB .),4(ππC .)45,4(ππD .)23,45(),4(ππππ5.设集合M=},214|{},,412|{Z k k x x N Z k k x x ∈+==∈+=,则A .M =NB .N M ⊂C .N M ⊃D .=N M ø6.点P (1,0)到曲线⎩⎨⎧==ty t x 22(其中参数t ∈R )上的点的最短距离为A .0B .1C .2D .27.一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么,这个圆锥轴截面顶角的余弦值是A .43 B .54 C .53D .53-8.正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1的底面边长为1,侧棱长为2,则这个棱柱的侧面对角线E 1D 与BC 1所成的角是A .90°B .60°C .45°D .30°9.函数)),0[(2+∞∈++=x c bx x y 是单调函数的充要条件是A .b ≥0B .b ≤0C .b>0D .b<010.函数111--=x y 的图象是 ABC D11.从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有A .8种B .12种C .16种D .20种 12.据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%.”如果“十·五”期间(2001年—2005年)每年的国内生产总值都按此年增长率增长,那么到“十·五”末我国国内年生产总值约为A .115 000亿元B .120 000亿元C .127 000亿元D .135 000亿元第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.函数a y =在[0,1]的最大值与最小值的和为3,则a = .14.椭圆5522=+ky x 的一个焦点是(0,2),那么k = . 15.72)2)(1(-+x x 的展开式中x 3项的系数是 .16.已知函数221)(xxx f +=那么=++++++)41()4()31()3()21()2()1(f f f f f f f.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知απαααααsin ).2,0(,12cos cos 2sin 2sin 2求∈=-+、αtg 的值.18.(本小题满分12分)如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直. 点M在AC 上移动,点N 在BF 上移动,若CM=BN=)20(<<a a .(Ⅰ)求MN 的长;(Ⅱ)当a 为何值时,MN 的长最小;(Ⅲ)当MN 长最小时,求面MNA 与面MNB 所成的二面角α的大小.19.(本小题满分12分) 设点P 到点M (-1,0)、N (1,0)距离之差为2m , 到x 轴、y 轴距离之比为2.求m 的取值范围.20.(本小题满分12分) 某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同.为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?21.(本小题满分12分) 设a 为实数,函数.,1||)(2R x a x x x f ∈+-+= (Ⅰ)讨论)(x f 的奇偶性; (Ⅱ)求)(x f 的最小值.22.(本小题满分14分) 设数列{a n }满足,,3,2,1,121 =+-=+n na a a n n n(Ⅰ)当21=a 时,求432,,a a a ,并由此猜想出n a 的一个通项公式; (Ⅱ)当31≥a 时,证明对所有的1≥n ,有(i );2+≥n a n(ii ).2111111121≤++++++na a a数学试题(理工农医类)参考解答及评分标准说明: 一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则. 二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答末改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分. 三、解答右端所注分数,表示考生正确做到这一步应得的累加分数.四、只给整数分数.选择题和填空题不给中间分.A 卷选择题答案:一、选择题:本题考查基本知识和基本运算.每小题5分,满分60分. 1.A 2.C 3.D 4.C 5.B 6.B 7.C 8.B 9.A 10.B 11.B 12.C二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 13.214.1 15.1 008 16.27三、解答题17.本小题主要考查同角三角函数的基本关系式、二倍角公式以及三角函数式的恒等变形等基础知识和基本运算技能.满分12分. 解:由倍角公式,1cos 22cos ,cos sin 22sin 2-==ααααα ………………2分由原式得0cos 2cos sin 2cos sin 42222=-+ααααα0)1s i n s i n 2(c o s 222=-+⇔ααα,0)1)(s i n 1s i n 2(c o s 22=+-⇔ααα………………8分)2,0(πα∈ ,.21s i n ,01s i n 2,0c o s ,01s i n 2==-∴≠≠+∴αααα即,6πα=∴.33=∴αtg ……………12分18.本小题主要考查线面关系、二面角和函数极值等基础知识,考查空间想象能力和推理论证能力.满分12分.解:(Ⅰ)作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连结PQ ,依题意可得MP ∥NQ ,且MP=NQ ,即MNQP 是平行四边形,∴ MN=PQ. ……………3分由已知,CM=BN=a ,CB=AB=BE=1, ∴ AC=BF=2,21,21a BQ a CP == 即2a BQ CP ==2222)2()21()1(a a BQCP PQ MN +-=+-==∴)20(21)22(2<<+-=a a . ………………6分(Ⅱ)由(Ⅰ),,21)22(2+-=a MN 所以,当.22,22==MN a 时即M 、N 分别移动到AC 、BF 的中点时,MN 的长最小,最小值为.22 (9)分(Ⅲ)取MN 的中点G ,连结AG 、BG ,∵ AM=AN ,BM=BN ,G 为MN 的中点 ∴ AG ⊥MN ,BG ⊥MN ,∠AGB 即为二面角α的平面角, 又AG=BG=46,所以,由余弦定理有.31464621)46()46(c o s 22-=⋅⋅-+=α故所求二面角)31arccos(-=α.……………12分19.本小题主要考查直线、双曲线等基础知识,考查基本运算、逻辑推理能力.满分12分.解法一:设点P 的坐标为(x ,y ),依题设得||||x y =2,即.0,2≠±=x x y①………2分因此,点P (x ,y )、M (-1,0)、N (1,0)三点不共线,得,2||||||||=<-MN pN PM ,0||2||||||>=-m PN PM ,1||0<<∴m因此,点P 在以M 、N 为焦点,实轴长为2|m|的双曲线上,故.112222=--mymx ②…………6分将①式代入②,并解得222251)1(mm m x --=,……………8分,0510122>-∴>-mm解得55||0<<m .即m 的取值范围为).55,0()0,55( -……………12分解法二:设点P 的坐标为(x ,y ),依题设得2||||=x y ,即0,2≠±=x x y . ①…………2分由|PM|-|PN|=2m ,得 ,2)1()1(2222m yx yx =+--++ ②…………4分由②式可得,2)1()1(42222m yx yx x =+-+++所以,0||,21||2||2||≠=<m y x m 且.……………6分由②式移项,两边平方整理得.)1(222m x y x m -=+- 将①式代入,整理得)1()51(2222m m x m -=-.③…………8分且,02>x③式右端大于0,0512>-∴m.综上,得m 满足.55||0<<m即m 的取值范围为).55,0()0,55( -……………12分20.本小题主要考查为数列、数列的极限等基础知识,考查建立数学模型、运用所学知识解决实际问题的能力.满分12分.解:设2001年末汽车保有量为b 1万辆,以后各年末汽车保有量依次为b 2万辆,b 3万辆,…,每年新增汽车x 万辆,则 .94.0,30121x b b b +⨯==………………2分对于n >1,有 ,)94.01(94.094.0211x b x b b n n n ++⨯=+⨯=-+x b x b b nnn nn 06.094.0194.0)94.094.01(94.01111-+⨯=++++⨯=∴-+.94.0)06.030(06.0nx x ⨯-+=………………6分当.30,8.1,006.03011=≤≤≤≤≥-+b b b x x n n 时即………………8分当,06.0]94.0)06.030(06.0[lim lim ,8.1,006.0301x x x b x xn n n n =⨯-+=><--∞→∞→时即并且数列{b n }逐项增加,可以任意靠近06.0x . ……………10分因此,如果要求汽车保有量不超过60万辆,即),3,2,1(60 =≤n b n .则6.3,6006.0≤≤x x 即(万辆).综上,每年新增汽车不应超过3.6万辆.………12分21.本小题主要考查函数的概念、函数的奇偶性和最小值等基础知识,考查分类讨论的思想和逻辑思维能力.满分12分. 解:(Ⅰ)当)(),(1||)()(,02x f x f x x x f a 此时函数时=+-+-=-=为偶函数.………………2分当,1||2)(,1)(,022++=-+=≠a a a f a a f a 时)()(),()(a f a f a f a f -≠-≠-.此时函数)(x f 既不是奇函数,也不是偶函数.………………4分(Ⅱ)(i )当.43)21(1)(,22++-=++-=≤a x a x x x f a x 函数时若],()(,21a x f a -∞≤在则函数上单调递减,从而,函数],()(a x f -∞在上的最小值为.1)(2+=a a f若21>a ,则函数],()(a x f -∞在上的最小值为).()21(,43)21(a f f a f ≤+=且………7分(ii )当a x ≥时,函数.43)21(1)(22+-+=+-+=a x a x x x f若).()21(,43)21(),[)(,21a f f a f a x f a ≤--=-+∞-≤且上的最小值为在则函数若.1)(),[)(,,),[)(,212+=+∞+∞->aa f a x f a x f a 上的最小值为在函数从而上单调递增在则函数……………10分综上,当.43)(,21a x f a --≤的最小值是函数时当.1)(,21212+≤<-a x f a 的最小值是函数时当.43)(,21+>a x f a 的最小值是函数时……………12分22.本小题主要考查数列和不等式等知识,考查猜想、归纳、推理以及分析问题和解决问题的能力.满分14分. 解:(Ⅰ)由,412,3,31,22223212121=+-===+-==a a a a a a a a 得由得由.513,432343=+-==a a a a 得由此猜想na 的一个通项公式:)1(1≥+=x n a n………4分(Ⅱ)(i )用数学归纳法证明: ①当213,11+=≥=a n ,不等式成立.………………6分②假设当k n =时不等式成立,即2+≥k a k ,那么,31)2)(2(1)(1+≥+-++≥+-=+k k k k k a a a k k k也就是说,当.2)1(11++≥+=+k a k n k 时根据①和②,对于所有.2,1+≥≥n a n n 有……………10分(ii )由及1)(1+-=+n a a a n n n (i ),对1)1(,211++-=≥--k a a a k k k k 有,121)121(11+=++-+-≥--k k a k k a .1)1(2122211211-+=++++≥∴---a a a k k k k……………12分于是.2,21111111≥⋅+≤+-k a a k k∑∑∑===--=+≤+≤+=+++≤+nk nk nk k k ka a a a a121111111.2131212211121111111……14分。

2002年高考全国卷理科数学试题及标准答案

2002年高考全国卷理科数学试题及标准答案

普通高等学校招生全国统一考试数学试卷(理科)及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第I I卷3至9页.共150分.考试时间120分钟.(1)圆1)1(22=+-y x 的圆心到直线y x =的距离是 (A )21 (B )23 (C)1 (D)3 (2)复数3)2321(i +的值是 (A)i - (B)i (C )1- (D )1(3)不等式0|)|1)(1(>-+x x 的解集是(A)}10|{<≤x x (B)0|{<x x 且}1-≠x(C)}11|{<<-x x (D)1|{<x x 且}1-≠x(4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A))45,()2,4(ππππ (B)),4(ππ (C ))45,4(ππ (D))23,45(),4(ππππ (5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则 (A )N M = (B )N M ⊂ (C)N M ⊃ (D)∅=N M (6)点)0,1(P 到曲线⎩⎨⎧==ty t x 22(其中参数R t ∈)上的点的最短距离为(A )0 (B)1 (C)2 (D)2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是(A)43 (B)54 (C )53 (D)53- (8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A)︒90 (B)︒60 (C)︒45 (D )︒30(9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是(A )0≥b (B )0≤b (C)0>b (D )0<b(10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有(A)8种 (B)12种 (C)16种 (D)20种(12)据 3月5日九届人大五次会议《政府工作报告》:“ 国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间( - )每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A )115000亿元 (B )120000亿元 (C)127000亿元 (D)135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线.(13)函数x a y =在]1,0[上的最大值与最小值这和为3,则a =(14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k(15)72)2)(1(-+x x 展开式中3x 的系数是 (16)已知221)(x x x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++= 三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.。

2002年全国高考数学试题普通高等学校招生全国统一考试数学试卷(理科)

2002年全国高考数学试题普通高等学校招生全国统一考试数学试卷(理科)

2002年普通高等学校招生全国统一考试数学试卷(理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页..满分 150分.考试时间120分钟第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)圆1)1(22=+-y x 的圆心到直线33=y 的距离是 (A )21(B )23 (C )1 (D )3(2)复数3)2321(i +的值是 (A )i - (B )i (C )1- (D )1 (3)不等式0|)|1)(1(>-+x x 的解集是(A )}10|{<≤x x (B )0|{<x x 且}1-≠x (C )}11|{<<-x x (D )1|{<x x 且}1-≠x (4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππ (B )),4(ππ (C ))45,4(ππ (D ))23,45(),4(ππππ(5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则 (A )N M = (B )N M ⊂ (C )N M ⊃ (D )∅=N M(6)点)0,1(P 到曲线⎩⎨⎧==t y t x 22(其中参数R t ∈)上的点的最短距离为(A )0 (B )1 (C )2 (D )2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是(A )43 (B )54 (C )53 (D )53-(8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A )︒90 (B )︒60 (C )︒45 (D )︒30 (9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是 (A )0≥b (B )0≤b (C )0>b (D )0<b(10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有(A )8种 (B )12种 (C )16种 (D )20种 (12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A )115000亿元 (B )120000亿元 (C )127000亿元 (D )135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线.(13)函数x a y =在]1,0[上的最大值与最小值这和为3,则a = (14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k (15)72)2)(1(-+x x 展开式中3x 的系数是(16)已知221)(xx x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++= 三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.(17)已知12cos cos 2sin 2sin 2=-+αααα,)2,0(πα∈,求αsin 、αtg 的值。

2002年高考理科数学试题及答案

2002年高考理科数学试题及答案

2002年高考理科数学试题及答案2002年普通高等学校招生全国统一考试(数学)理及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)圆1)1(22=+-y x 的圆心到直线3y x =的距离是(A )21 (B )23(C )1 (D )3(2)复数3)2321(i +的值是(A )i - (B )i (C )1- (D )1(3)不等式0|)|1)(1(>-+x x 的解集是 (A )}10|{<≤x x (B )0|{<x x 且}1-≠x (C )}11|{<<-x x (D )1|{<x x 且}1-≠x (4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππY (B )),4(ππ (C ))45,4(ππ (D ))23,45(),4(ππππY(5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则(A )N M = (B )N M ⊂ (C )N M ⊃ (D )∅=N M I(6)点)0,1(P 到曲线⎩⎨⎧==ty t x 22(其中参数R t ∈)上的点的最短距离为(A )0 (B )1 (C )2 (D )2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是(A )43 (B )54 (C )53(D )53-(8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A )︒90 (B )︒60 (C )︒45 (D )︒30 (9)函数cbx x y ++=2(),0[+∞∈)是单调函数的充要条件是(A )0≥b (B )0≤b (C )0>b (D )0<b(10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有(A )8种 (B )12种 (C )16种 (D )20种(12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A )115000亿元 (B )120000亿元 (C )127000亿元 (D )135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线. (13)函数xa y =在]1,0[上的最大值与最小值这和为3,则a = (14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k(15)72)2)(1(-+x x 展开式中3x 的系数是(16)已知221)(x x x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++=三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤. (17)已知12cos cos 2sin 2sin2=-+αααα,)2,0(πα∈,求αsin 、αtg 的值(18)如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直点M 在AC 上移动,点N 在BF上移动,若a BN CM ==(20<<a ) (1)求MN 的长;(2)a 为何值时,MN 的长最小;(3)当MN 的长最小时,求面MNA 与面MNB 所成二面角α的大小(19)设点P 到点)0,1(-、)0,1(距离之差为m 2,到x 、y轴的距离之比为2,求m 的取值范围(20)某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆? (21)设a 为实数,函数1||)(2+-+=a x xx f ,R x ∈ADE(1)讨论)(x f 的奇偶性; (2)求)(x f 的最小值(22)设数列}{na 满足:121+-=+n n n na a a,Λ,3,2,1=n(I )当21=a 时,求432,,a a a 并由此猜测na 的一个通项公式;(II )当31≥a 时,证明对所的1≥n ,有(i )2+≥n an(ii )2111111111321≤++++++++n a a a aΛ参考答案 一、选择题二、填空题(13)2 (14)1 (15)1008 (16)27 三、解答题 (17)解:由12cos cos 2sin 2sin2=-+αααα,得cos 2cos sin 2cos sin 42222=-+ααααα)1sin sin 2(cos 222=-+ααα 0)1)(sin 1sin 2(cos 22=+-ααα∵)2,0(πα∈ ∴01sin ≠+α,0cos 2≠=α∴01sin 2=-α,即21sin =α ∴6πα= ∴33=αtg(18)解(I )作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE于点Q ,连结PQ ,依题意可得MP ∥NQ ,且NQ MP =,即MNQP 是平行四边形∴PQ MN =由已知a BN CM ==,1===BE AB CB ∴2==BF AC ,a BQ CP 22==)20( 21)22( )2()21( )1(22222<<+-=+-==+-==a a a a BQ CP PQ MN(II )由(I )21)22( 2+-=a MN 所以,当22=a 时,22=MN即当M 、N 分别为AC 、BF 的中点时,MN 的长最小,最小值为22(III )取MN 的中点G ,连结AG 、BG , ∵BN BM AN AM ==,,G 为MN 的中点∴MN BG MN AG ⊥⊥,,即AGB ∠即为二面角的平面角α 又46==BG AG ,所以,由余弦定理有31464621)46()46(cos 22-=⋅⋅-+=α故所求二面角为31arccos -=πα (19)解:设点P 的坐标为),(y x ,依题设得2||||=x y ,即x y 2±=,0≠x因此,点),(y x P 、)0,1(-M 、)0,1(N 三点不共线,得 2||||||||=<-MN PN PM ∵0||2||||||>=-m PN PM ∴1||0<<m因此,点P 在以M 、N 为焦点,实轴长为||2m 的双曲线上,故112222=--my m x将x y 2±=代入112222=--m y m x ,并解得222251)1(m m m x --=,因012>-m所以0512>-m解得55||0<<m即m 的取值范围为)55,0()0,55(Y -(20)解:设2001年末汽车保有量为1b 万辆,以后各年末汽车保有量依次为2b 万辆,3b 万辆,…,每年新增汽车x 万辆,则301=b ,xb b+⨯=94.012对于1>n ,有Λ)94.01(94.0 94.0211x b xb b n n n ++⨯=+⨯=-+所以)94.094.094.01(94.0211n n n x b b+++++⨯=+Λxb nn06.094.0194.01-+⨯=nx x 94.0)06.030(06.0⨯-+=当006.030≥-x ,即8.1≤x 时 3011=≤≤≤+b b b n n Λ当006.030<-x ,即8.1>x 时 数列}{nb 逐项增加,可以任意靠近06.0x 06.0]94.0)06.030(06.0[lim lim 1x x x b n n n n =⨯-+=-+∞→+∞→因此,如果要求汽车保有量不超过60万辆,即60≤n b (Λ,3,2,1=n )则6006.0≤x ,即6.3≤x 万辆 综上,每年新增汽车不应超过6.3万辆(21)解:(I )当0=a 时,函数)(1||)()(2x f x x x f =+-+-=-此时,)(x f 为偶函数 当0≠a 时,1)(2+=aa f ,1||2)(2++=-a aa f ,)()(a f a f -≠,)()(a f a f --≠此时)(x f 既不是奇函数,也不是偶函数 (II )(i )当a x ≤时,43)21(1)(22++-=++-=a x a x xx f当21≤a ,则函数)(x f 在],(a -∞上单调递减,从而函数)(x f 在],(a -∞上的最小值为1)(2+=aa f .若21>a ,则函数)(x f 在],(a -∞上的最小值为a f +=43)21(,且)()21(a f f ≤. (ii )当a x ≥时,函数43)21(1)(22+-+=+-+=a x a x x x f若21-≤a ,则函数)(x f 在],(a -∞上的最小值为af -=-43)21(,且)()21(a f f ≤- 若21->a ,则函数)(x f 在),[+∞a 上单调递增,从而函数)(x f 在),[+∞a 上的最小值为1)(2+=aa f .综上,当21-≤a 时,函数)(x f 的最小值为a -43当2121≤<-a 时,函数)(x f 的最小值为12+a当21>a 时,函数)(x f 的最小值为a +43. (22)解(I )由21=a,得311212=+-=a a a由32=a ,得4122223=+-=a a a由43=a,得5133234=+-=a a a由此猜想na 的一个通项公式:1+=n a n(1≥n )(II )(i )用数学归纳法证明:①当1=n 时,2131+=≥a,不等式成立.②假设当k n =时不等式成立,即2+≥k a k,那么3521)2)(2(1)(1+≥+=+-++≥+-=+k k k k k k a a a k k k . 也就是说,当1+=k n 时,2)1(1++≥+k a k 据①和②,对于所有1≥n ,有2nan ≥+.(ii )由1)(1+-=+n a a an n n 及(i ),对2≥k ,有 1)1(11++-=--k a a a k k k121)121(11+=++-+-≥--k k a k k a……1)1(2122211211-+=++++≥---a a a k k k k Λ于是11211111-⋅+≤+k ka a,2≥k2131212211121111111111121111=+≤+≤+=+++≤+∑∑∑=-=-=a a a a a nk k nk k nk k。

2002年普通高等学校招生全国统一考试数学试卷全国卷理

2002年普通高等学校招生全国统一考试数学试卷全国卷理

2002年普通高等学校招生全国统一考试数学试卷(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)圆1)1(22=+-y x 的圆心到直线33=y 的距离是(A )21(B )23 (C )1 (D )3(2)复数3)2321(i +的值是(A )i - (B )i (C )1- (D )1(3)不等式0|)|1)(1(>-+x x 的解集是(A )}10|{<≤x x (B )0|{<x x 且}1-≠x(C )}11|{<<-x x (D )1|{<x x 且}1-≠x(4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππ (B )),4(ππ(C ))45,4(ππ (D ))23,45(),4(ππππ (5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则(A )N M = (B )N M ⊂ (C )N M ⊃ (D )∅=N M(6)点)0,1(P 到曲线⎩⎨⎧==t y t x 22(其中参数R t ∈)上的点的最短距离为(A )0 (B )1 (C )2 (D )2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是(A )43 (B )54 (C )53 (D )53-(8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A )︒90 (B )︒60 (C )︒45 (D )︒30(9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是 (A )0≥b (B )0≤b (C )0>b (D )0<b(10)函数111--=x y 的图像是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有(A )8种 (B )12种 (C )16种 (D )20种(12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A )115000亿元 (B )120000亿元 (C )127000亿元 (D )135000亿元第II 卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线.(13)函数x a y =在]1,0[上的最大值与最小值这和为3,则a =(14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k (15)72)2)(1(-+x x 展开式中3x 的系数是(16)已知221)(x x x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++= 三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.(17)已知12cos cos 2sin 2sin 2=-+αααα,)2,0(πα∈,求αsin 、αtg 的值。

2002年高考全国卷理科数学试题及答案

2002年高考全国卷理科数学试题及答案

(A) i
(B) i
(C) 1
(3)不等式 (1 x)(1 | x |) 0 的解集是
(D)1
(A){x | 0 x 1}
(B){x | 1 x 1}
(D){x | x 1且 x 1}
(4)在 (0,2 ) 内,使sin x cos x 成立的 x 的取值范围是
5 ( A) ( 4 , 2 ) ( , 4 )
(II)当 a1 3 时,证明对所的 n 1,有
(i) an n 2
1
1
1
(ii) 1 a1 1 a2 1 a3
11 1 an 2
参考答案
一、选择题
题号 1
2
3
4
5
6
7
8
9 10 11 12
答案 A C D C B B C B A B B C
二、填空题
(13)2
(14)1
(15)1008
7 (16) 2
( B) ( 4 , )

C)
(4
5 ,4
)
( D)
(4, )
5 (4
,
3 2
)
(5)设集合 M {x | x k 1 , k Z} , N {x | x k 1 , k Z} ,则
24
42
(A) M N (B) M N
(C) M N
(D) M N
2
(6)点 P(1,0) 到曲线 xy t2t (其中参数t R )上的点的最短距离为
2
奎奎奎奎奎
(18)如图,正方形 ABCD 、 ABEF 的边长都是 1,而且平面 ABCD 、 ABEF 互相垂直 奎奎奎奎奎
点 M 在 AC 上移动,点 N 在 BF 上移动,若 CM BN a (

2002年高考全国卷理科数学试题及答案

2002年高考全国卷理科数学试题及答案

0.06
bn 1 bn
b1
30 奎奎奎奎奎
当 30 x 0 ,即 x 1.8时 0.06
数列{bn
}
逐项增加,可以任意靠近
x 0.06
因nlim此,bn如果nli要m求[0汽.x0车6 保(有30量不0超.x0过6)
0.94 n
1]
60 万辆,即
x 0.06
bn 60 ( n 1,2,3, )
x 则 0.06
2
24
2
(ii)当 x a 时,函数 f (x) x2 x a 1 (x 1 )2 a 3
2
4
若 a 1 ,则函数 f (x) 在 ( , a]上的最小值为 f ( 1 ) 3 a ,且 f ( 1 ) f (a)
2
24
2
若 a 1 ,则函数 f (x) 在[a, ) 上单调递增,从而函数 f (x) 在[a, ) 上的最小值为 2
f (a) a2 1.
综上,当 a
1 时,函数 f (x) 的最小值为 3 a
2
4
当 1 a 1 时,函数 f (x) 的最小值为 a 2 1
2
2
当 a 1 时,函数 f (x) 的最小值为 3 a .
2
4
(22)解(I)由 a1 2 ,得 a2 a12 a1 1 3
由 a2 3 ,得 a a2 2 2a 1 4
(A)0
(B)1
(C) 2
(D)2
(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个
圆锥轴截面顶角的余弦值是
3 (A) 4
(B)
4 5
(C) 3 5
(D) 3 5
(8)正六棱柱 ABCDEF A1B1C1D1E1F1 的底面边长为 1,侧棱长为 2 ,则这个棱柱侧

2002年普通高等学校招生全国统一考试数学试卷(理科)

2002年普通高等学校招生全国统一考试数学试卷(理科)

2002年普通高等学校招生全国统一考试数学试卷(理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页..满分 150分.考试时间120分钟第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)圆1)1(22=+-y x 的圆心到直线33=y 的距离是 (A )21 (B )23 (C )1 (D )3 (2)复数3)2321(i +的值是(A )i - (B )i (C )1- (D )1 (3)不等式0|)|1)(1(>-+x x 的解集是(A )}10|{<≤x x (B )0|{<x x 且}1-≠x (C )}11|{<<-x x (D )1|{<x x 且}1-≠x (4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππ (B )),4(ππ (C ))45,4(ππ (D ))23,45(),4(ππππ(5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则(A )N M = (B )N M ⊂ (C )N M ⊃ (D )∅=N M(6)点)0,1(P 到曲线⎩⎨⎧==t y t x 22(其中参数R t ∈)上的点的最短距离为(A )0 (B )1 (C )2 (D )2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是(A )43 (B )54 (C )53 (D )53-(8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A )︒90 (B )︒60 (C )︒45 (D )︒30 (9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是 (A )0≥b (B )0≤b (C )0>b (D )0<b(10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有(A )8种 (B )12种 (C )16种 (D )20种 (12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A )115000亿元 (B )120000亿元 (C )127000亿元 (D )135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线. (13)函数x a y =在]1,0[上的最大值与最小值这和为3,则a =(14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k (15)72)2)(1(-+x x 展开式中3x 的系数是(16)已知221)(xx x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++= 三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.(17)已知12cos cos 2sin 2sin 2=-+αααα,)2,0(πα∈,求αsin 、αtg 的值。

2002年全国卷高考理科数学试题与答案

2002年全国卷高考理科数学试题与答案

2002 年普通高等学校招生全国统一考试数学试卷(理科)及答案本试卷分第 I 卷 (选择题 )和第 II 卷 (非选择题 ) 两部分.第 I 卷 1至2页.第 II 卷 3至 9页.共 150分.考试时间 120分钟.第Ⅰ卷 (选择题共60 分 )一、选择题:本大题共 12 小题,每小题5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第 I 卷 (选择题 ) 和第 II卷 (非选择题 )两部分.第 I 卷 1至2页.第 II 卷3 至 9页.共 150 分.考试时间 120 分钟.(1)圆 ( x 1) 2y 21 的圆心到直线 y3x 的距离是3(A )1( B ) 3(C )1(D ) 322(2)复数 (13 i )3 的值是22(A ) i( B ) i (C ) 1(D )1(3)不等式 (1 x)(1 | x |) 0 的解集是(A ) { x | 0 x 1}( B ) { x | x 0 且 x 1}(C ) { x | 1 x 1}( D ) { x | x 1且 x1}(4)在 (0,2 ) 内,使 sin x cosx 成立的 x 的取值范围是(A )( ,2)( ,5)(B ) (, ) (C ) ( ,5)(D )(,)(5,3) 4444 444 2(5)设集合 M { x | xk 1, k Z},N{ x | xk 1,kZ} ,则2442(A )MN(B )MN(C )MN(D )MN(6)点 P(1,0) x t 2 R )上的点的最短距离为到曲线(其中参数 ty2t(A )0(B ) 1(C ) 2(D )2( 7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是 (A )3(B )4(C )3(D )34555(8)正六棱柱ABCDEF A 1 B 1C 1 D 1E 1 F 1 的底面边长为 1,侧棱长为2 ,则这个棱柱侧面对角线 E 1 D 与 BC 1 所成的角是(A ) 90(B ) 60(C ) 45(D ) 30(9)函数 y x 2bx c ([0, ) )是单调函数的充要条件是(A ) b 0( B ) b 0( C ) b( D ) b 0(10)函数 y11的图象是x 1yyyy1111-1O1O1x-1OxOxx(A)(B)(C)(D)(11)从正方体的 6 个面中选取 3 个面,其中有 2 个面不相邻的选法共有(A )8种(B )12 种(C )16 种 (D )20 种(12)据 2002 年 3 月 5 日九届人大五次会议《政府工作报告》 :“ 2001 年国内生产总值达到95933 亿元,比上年增长 7.3%”,如果“十 ?五”期间( 2001 年- 2005 年)每年的国内生产总值都按此年增长率增长,那么到“十 ?五”末我国国内年生产总值约为 (A ) 115000 亿元 ( B ) 120000 亿元 ( C ) 127000 亿元( D ) 135000 亿元第 II 卷(非选择题共 90 分 )二、填空题:本大题共 4 小题,每小题 4 分,共 16 分.把答案填在题中横线.(13 )函数 y a x在 [0,1] 上的最大值与最小值这和为3,则 a =(14 )椭圆 5x 2ky 25 的一个焦点是 (0,2) ,那么 k(15 ) ( x21)( x 2) 7 展开式中 x 3 的系数是(16 )已知 f ( x)x 2,那么 f (1) f (2) f ( 1)f (3) f (1)f (4)f ( 1) =1 x 2234三、解答题:本大题共6 小题,共74 分,解答应写出文字说明、证明过程或演算步骤.(17 )已知 sin 22sin 2 coscos 21,(0, ) ,求 sin、 tg的值2(18 )如图,正方形 ABCD 、 ABEF 的边长都是 1,而且平面 ABCD 、 ABEF 互相垂直 点M 在 AC 上 移 动 , 点 N 在 BF 上 移 动 , 若 CM BN aC( 0a 2 )(1)求 MN 的长;DP(2) a 为何值时, MN 的长最小;MBQ(3)当 MN 的长最小时,求面 MNA 与面 MNB 所成二面角的E大小N(19)设点 P 到点 ( 1,0) 、 (1,0) 距离之差为 2m ,到 x 、 y 轴的A F距离之比为 2,求 m 的取值范围(20)某城市 2001 年末汽车保有量为 30 万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同为保护城市环境,要求该城市汽车保有量不超过60 万辆,那么每年新增汽车数量不应超过多少辆?(21)设 a 为实数,函数 f (x)x 2| x a | 1 , xR(1)讨论 f (x) 的奇偶性;(2)求 f ( x) 的最小值(22)设数列 {a n } 满足: aa2na1 , n 1,2,3,n 1 nn(I )当 a 1 2 时,求 a 2 , a 3 , a 4 并由此猜测 a n 的一个通项公式;(II )当 a 1 3 时,证明对所的 n 1 ,有(i ) a nn 2(ii )11 11 11 a 11 a2 1 a 31 a n2参考答案 一、选择题题号1 2 3 4 5 6 7 8 9 10 11 12 答案ACDCBBCBABBC二、填空题 (13) 2(14)1(15) 1008(16)72三、解答题(17)解:由 sin 2 2sin 2 coscos2 1,得 4 sin 2 cos 2 2sin cos 22cos 22 cos 2 (2 sin 2 sin 1) 02 cos 2 (2 sin1)(sin1)∵(0, )2∴ sin 1 0 , cos 2∴ 2sin10 ,即 sin1 2∴6∴ tg33(18)解( I )作 MP ∥ AB 交BC 于点 P ,NQ ∥ AB 交BE 于点 Q ,连结 PQ ,依题意可得 MP ∥NQ ,且 MP NQ ,即 MNQP 是平行四边形∴ MN PQ由已知 CM BN a , CB ABBE1∴ ACBF2 , CP BQ2 a2MNPQ(1 CP)2 BQ 2 (1a )2 (a)222(a2 ) 2 1 ( 0 a2)2 2(II )由( I )MN(a 2 )2122所以,当 a22时, MN22即当M、N分别为 AC、 BF 的中点时, MN 的长最小,最小值为2 2(III )取MN的中点G,连结AG、BG,∵ AM AN,BM BN,G为MN的中点∴ AG MN,BG MN ,即AGB即为二面角的平面角又AG BG 6,所以,由余弦定理有4( 6 )2(6 )21cos441663244故所求二面角为arccos13(19)解:设点P的坐标为( x, y),依题设得| y |2 ,即 y 2 x ,x 0| x |因此,点 P( x, y) 、 M (1,0) 、 N (1,0) 三点不共线,得||PM ||PN || |MN |2∵||PM ||PN|| 2 | m | 0∴0 | m | 1因此,点 P 在以 M 、N为焦点,实轴长为 2 | m |的双曲线上,故x2y21m21m2将 y2x 代入x2y 21,并解得m 2 1 m22m 2 (2 )2x1 m,因 1 m1 5m2所以 1 5 m 2解得 0 | m |55即 m 的取值范围为 (5,0)(0, 5 )55(20)解:设 2001 年末汽车保有量为 b 1 万辆, 以后各年末汽车保有量依次为 b 2 万辆, b 3 万辆,⋯,每年新增汽车x 万辆,则b 1 30 , b 2 b 1 0.94 x对于 n 1 ,有bn 1b n 0.94 xb n 1 0.942 (1 0.94)x所以 b n1b10.94 n x (1 0.94 0.942b 1 0.94 n 1 0.94 n x0.06 x(30x ) 0.94 n0.060.06当 30x 0 ,即 x 1.8 时0.06b n 1bnb 130当 30x0 ,即 x1.8时0.06x数列 { b n } 逐项增加,可以任意靠近0.06xxlim b nlim [ (30) 0.94n 1]nn0.060.0660 万辆,即因此,如果要求汽车保有量不超过0.94 n )x0.06b n 60 ( n 1,2,3, )则 x60 ,即 x 3.6 万辆0.06综上,每年新增汽车不应超过3.6 万辆(21)解:( I )当 a0 时,函数 f ( x) ( x) 2 | x | 1f ( x)此时, f (x) 为偶函数当 a 0 时, f (a)a 2 1, f ( a)a 22 | a |1,f (a) f ( a) , f (a)f ( a)此时 f (x) 既不是奇函数,也不是偶函数(II )(i )当 x a 时, f ( x) x 2x a 1 ( x1 )2 a 3124当 af (x) 在 (, a] 上单调递减,从而函数f ( x) 在 ( , a] 上的最小值为,则函数2f ( a) a 21.若 a1 ,则函数 f (x) 在 ( , a] 上的最小值为f (1)22(ii )当 xa 时,函数 f ( x) x 2 x a 1( x 1 )223 a ,且 f ( 1) f ( a) . 4 23a4若 a1 ,则函数 f ( x) 在 ( , a] 上的最小值为 f (1 )3 a ,且 f ( 1) f (a)2 2 4 2若 a1 ,则函数 f (x) 在 [ a,) 上单调递增,从而函数f (x) 在 [ a,) 上的最小值为2f ( a) a 21.综上,当 a1时,函数 f (x) 的最小值为 3a2 411 当a时,函数 f ( x) 的最小值为 a 2 121 2 3当 a 的最小值为a .时,函数 f ( x)42(22)解( I )由 a 12 ,得 a2a 2a1 1 31由 a 2 3 ,得 a 3 a 2 22a 2 1 4 由 a 34 ,得 a 423a 3 1 5a 3由此猜想 a n 的一个通项公式: a nn1 ( n 1)(II )(i )用数学归纳法证明:①当 n1时, a 1 3 1 2 ,不等式成立.②假设当 nk 时不等式成立,即 a kk2 ,那么a k 1 a k (a kk) 1 (k 2)( k 2 k ) 1 2k 5 k 3 . 也就是说,当 n k 1时, a k 1 (k 1) 2据①和②,对于所有n 1,有 a nn 2 .(ii )由 a n 1 a n ( a n n) 1及( i ),对 k 2 ,有a kak 1(ak 1k 1) 1a k 1 (k 1 2 k 1) 1 2a k 1 1⋯⋯ak2k 1 a2k 22 1 2k 1( a 1) 111于是11 1 , k 21 a k 1 a 1 2k 1n11 1n1 1 n1 2 2 1k 11 a k1 a 11 a 1 k2 2 k 1 1 a 1 k 1 2k 11 a 11 3 2。

【高考试题】2002年全国高考数学试题(理科)★答案

【高考试题】2002年全国高考数学试题(理科)★答案

【高考试题】2002年全国高考数学试题(理科)★答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页..满分 150分.考试时间120分钟第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)圆1)1(22=+-y x 的圆心到直线33=y 的距离是 (A )21 (B )23 (C )1 (D )3 (2)复数3)2321(i +的值是(A )i - (B )i (C )1- (D )1 (3)不等式0|)|1)(1(>-+x x 的解集是(A )}10|{<≤x x (B )0|{<x x 且}1-≠x (C )}11|{<<-x x (D )1|{<x x 且}1-≠x (4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππ (B )),4(ππ (C ))45,4(ππ (D ))23,45(),4(ππππ(5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则(A )N M = (B )N M ⊂ (C )N M ⊃ (D )∅=N M(6)点)0,1(P 到曲线⎩⎨⎧==t y t x 22(其中参数R t ∈)上的点的最短距离为(A )0 (B )1 (C )2 (D )2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是(A )43 (B )54 (C )53 (D )53-(8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A )︒90 (B )︒60 (C )︒45 (D )︒30 (9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是 (A )0≥b (B )0≤b (C )0>b (D )0<b(10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有(A )8种 (B )12种 (C )16种 (D )20种 (12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A )115000亿元 (B )120000亿元 (C )127000亿元 (D )135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线. (13)函数x a y =在]1,0[上的最大值与最小值这和为3,则a =(14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k (15)72)2)(1(-+x x 展开式中3x 的系数是(16)已知221)(xx x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++= 三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.(17)已知12cos cos 2sin 2sin 2=-+αααα,)2,0(πα∈,求αsin 、αtg 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2002年普通高等学校招生全国统一考试数学(理工农医类)第Ⅰ卷(选择题共60分)试卷类型:A参考公式:三角函数的积化和差公式 正棱台、圆台的侧面积公式 )sin()[sin(21cos sin βαβαβα-++=)]sin()[sin(21sin cos βαβαβα--+=)]cos()[cos(21cos cos βαβαβα-++=)]cos()[cos(21sin sin βαβαβα--+-=一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.圆1)1(22=+-y x 的圆心到直线x y 33=的距离是A .21 B .23 C .1D .32.复数3)2321(i +的值是A .-iB .iC .-1D .13.不等式0|)|1)(1(>-+x x 的解集是 A .}10|{<≤x x B .}10|{-≠<x x x 且C .{11|<<-x x }D .}11|{-≠<x x x 且4.在(π2,0)内,使x x cos sin >成立的x 取值范围为A .)45,()2,4(ππππ B .),4(ππC .)45,4(ππD .)23,45(),4(ππππ 5.设集合M=},214|{},,412|{Z k k x x N Z k k x x ∈+==∈+=,则A .M =NB .N M ⊂C .N M ⊃D .=N M øS 台侧=l c c )(21+'其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长 球的体积公式334R V π=球其中R 表示球的半径6.点P (1,0)到曲线⎩⎨⎧==ty t x 22(其中参数t ∈R )上的点的最短距离为A .0B .1C .2D .27.一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么,这个圆锥轴截面顶角的余弦值是A .43B .54 C .53 D .53-8.正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1的底面边长为1,侧棱长为2,则这个棱柱的侧面对角线E 1D 与BC 1所成的角是 A .90° B .60°C .45°D .30°9.函数)),0[(2+∞∈++=x c bx x y 是单调函数的充要条件是A .b ≥0B .b ≤0C .b>0D .b<010.函数111--=x y 的图象是 A B C D11.从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 A .8种 B .12种 C .16种 D .20种 12.据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%.”如果“十·五”期间(2001年—2005年)每年的国内生产总值都按此年增长率增长,那么到“十·五”末我国国内年生产总值约为A .115 000亿元B .120 000亿元C .127 000亿元D .135 000亿元第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.函数x a y =在[0,1]的最大值与最小值的和为3,则a = .14.椭圆5522=+ky x 的一个焦点是(0,2),那么k = . 15.72)2)(1(-+x x 的展开式中x 3项的系数是 .16.已知函数221)(xx x f +=那么=++++++)41()4()31()3()21()2()1(f f f f f f f .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知απαααααsin ).2,0(,12cos cos 2sin 2sin 2求∈=-+、αtg 的值.18.(本小题满分12分)如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直. 点M 在AC 上移动,点N 在BF 上移动,若CM=BN=)20(<<a a .(Ⅰ)求MN 的长;(Ⅱ)当a 为何值时,MN 的长最小;(Ⅲ)当MN 长最小时,求面MNA 与面MNB 所成的二面角α的大小. 19.(本小题满分12分) 设点P 到点M (-1,0)、N (1,0)距离之差为2m , 到x 轴、y 轴距离之比为2.求m 的取值范围.20.(本小题满分12分)某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同.为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆? 21.(本小题满分12分) 设a 为实数,函数.,1||)(2R x a x x x f ∈+-+= (Ⅰ)讨论)(x f 的奇偶性;(Ⅱ)求)(x f 的最小值.22.(本小题满分14分) 设数列{a n }满足,,3,2,1,121 =+-=+n na a a n n n(Ⅰ)当21=a 时,求432,,a a a ,并由此猜想出n a 的一个通项公式;(Ⅱ)当31≥a 时,证明对所有的1≥n ,有(i );2+≥n a n(ii ).2111111121≤++++++n a a a数学试题(理工农医类)参考解答及评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答末改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.选择题和填空题不给中间分. A 卷选择题答案:一、选择题:本题考查基本知识和基本运算.每小题5分,满分60分. 1.A 2.C 3.D 4.C 5.B 6.B 7.C 8.B 9.A 10.B 11.B 12.C二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 13.2 14.1 15.1 008 16.27 三、解答题 17.本小题主要考查同角三角函数的基本关系式、二倍角公式以及三角函数式的恒等变形等基础知识和基本运算技能.满分12分.解:由倍角公式,1cos 22cos ,cos sin 22sin 2-==ααααα (2)分由原式得0cos 2cos sin 2cos sin 42222=-+ααααα0)1sin sin 2(cos 222=-+⇔ααα,0)1)(sin 1sin 2(cos 22=+-⇔ααα (8)分)2,0(πα∈ ,.21sin ,01sin 2,0cos ,01sin 2==-∴≠≠+∴αααα即,6πα=∴.33=∴αtg ……………12分 18.本小题主要考查线面关系、二面角和函数极值等基础知识,考查空间想象能力和推理论证能力.满分12分. 解:(Ⅰ)作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连结PQ ,依题意可得MP ∥NQ ,且MP=NQ ,即MNQP 是平行四边形,∴ MN=PQ. ……………3分 由已知,CM=BN=a ,CB=AB=BE=1,∴ AC=BF=2, 21,21a BQ a CP ==即 2a BQ CP ==2222)2()21()1(a a BQ CP PQ MN +-=+-==∴)20(21)22(2<<+-=a a . (6)分 (Ⅱ)由(Ⅰ),,21)22(2+-=a MN 所以,当.22,22==MN a时即M 、N 分别移动到AC 、BF 的中点时,MN 的长最小,最小值为.22……9分(Ⅲ)取MN 的中点G ,连结AG 、BG ,∵ AM=AN ,BM=BN ,G 为MN 的中点∴ AG ⊥MN ,BG ⊥MN ,∠AGB 即为二面角α的平面角, 又AG=BG=46,所以,由余弦定理有.31464621)46()46(cos 22-=⋅⋅-+=α 故所求二面角)31arccos(-=α.……………12分19.本小题主要考查直线、双曲线等基础知识,考查基本运算、逻辑推理能力.满分12分.解法一:设点P 的坐标为(x ,y ),依题设得||||x y =2, 即.0,2≠±=x x y①………2分因此,点P (x ,y )、M (-1,0)、N (1,0)三点不共线,得,2||||||||=<-MN pN PM ,0||2||||||>=-m PN PM ,1||0<<∴m因此,点P 在以M 、N 为焦点,实轴长为2|m|的双曲线上,故.112222=--my m x②…………6分将①式代入②,并解得222251)1(m m m x --=, ……………8分,0510122>-∴>-m m 解得55||0<<m . 即m 的取值范围为).55,0()0,55( -……………12分解法二:设点P 的坐标为(x ,y ),依题设得2||||=x y ,即0,2≠±=x x y . ①…………2分 由|PM|-|PN|=2m ,得 ,2)1()1(2222m y x y x =+--++ ②…………4分由②式可得,2)1()1(42222m y x y x x=+-+++所以,0||,21||2||2||≠=<m y x m 且.……………6分由②式移项,两边平方整理得.)1(222m x y x m -=+- 将①式代入,整理得)1()51(2222m m x m -=-.③…………8分且,02>x③式右端大于0,0512>-∴m .综上,得m 满足.55||0<<m即m 的取值范围为).55,0()0,55( - ……………12分20.本小题主要考查为数列、数列的极限等基础知识,考查建立数学模型、运用所学知识解决实际问题的能力.满分12分.解:设2001年末汽车保有量为b 1万辆,以后各年末汽车保有量依次为b 2万辆,b 3万辆,…,每年新增汽车x 万辆,则.94.0,30121x b b b +⨯== (2)分对于n >1,有 ,)94.01(94.094.0211x b x b b n n n ++⨯=+⨯=-+x b x b b nnn n n 06.094.0194.0)94.094.01(94.01111-+⨯=++++⨯=∴-+.94.0)06.030(06.0n x x ⨯-+= (6)分当.30,8.1,006.03011=≤≤≤≤≥-+b b b x xn n 时即 (8)分当,06.0]94.0)06.030(06.0[lim lim ,8.1,006.0301x x x b x x n n n n =⨯-+=><--∞→∞→时即并且数列{b n }逐项增加,可以任意靠近06.0x. ……………10分因此,如果要求汽车保有量不超过60万辆,即),3,2,1(60 =≤n b n .则6.3,6006.0≤≤x x即(万辆).综上,每年新增汽车不应超过3.6万辆.………12分 21.本小题主要考查函数的概念、函数的奇偶性和最小值等基础知识,考查分类讨论的思想和逻辑思维能力.满分12分. 解:(Ⅰ)当)(),(1||)()(,02x f x f x x x f a 此时函数时=+-+-=-=为偶函数. (2)分当,1||2)(,1)(,022++=-+=≠a a a f a a f a 时)()(),()(a f a f a f a f -≠-≠-.此时函数)(x f 既不是奇函数,也不是偶函数. (4)分(Ⅱ)(i )当.43)21(1)(,22++-=++-=≤a x a x x x f a x 函数时 若],()(,21a x f a -∞≤在则函数上单调递减,从而,函数],()(a x f -∞在上的最小值为.1)(2+=a a f若21>a ,则函数],()(a x f -∞在上的最小值为).()21(,43)21(a f f a f ≤+=且………7分(ii )当a x ≥时,函数.43)21(1)(22+-+=+-+=a x a x x x f若).()21(,43)21(),[)(,21a f f a f a x f a ≤--=-+∞-≤且上的最小值为在则函数若.1)(),[)(,,),[)(,212+=+∞+∞->a a f a x f a x f a 上的最小值为在函数从而上单调递增在则函数……………10分综上,当.43)(,21a x f a --≤的最小值是函数时当.1)(,21212+≤<-a x f a 的最小值是函数时当.43)(,21+>a x f a 的最小值是函数时 ……………12分22.本小题主要考查数列和不等式等知识,考查猜想、归纳、推理以及分析问题和解决问题的能力.满分14分. 解:(Ⅰ)由,412,3,31,22223212121=+-===+-==a a a a a a a a 得由得由.513,432343=+-==a a a a 得由此猜想n a 的一个通项公式:)1(1≥+=x n a n ………4分(Ⅱ)(i )用数学归纳法证明: ①当213,11+=≥=a n ,不等式成立. (6)分②假设当k n =时不等式成立,即2+≥k a k ,那么,31)2)(2(1)(1+≥+-++≥+-=+k k k k k a a a k k k也就是说,当.2)1(11++≥+=+k a k n k 时根据①和②,对于所有.2,1+≥≥n a n n 有……………10分(ii )由及1)(1+-=+n a a a n n n (i ),对1)1(,211++-=≥--k a a a k k k k 有,121)121(11+=++-+-≥--k k a k k a.1)1(2122211211-+=++++≥∴---a a a k k k k……………12分于是.2,21111111≥⋅+≤+-k a a k k∑∑∑===--=+≤+≤+=+++≤+nk n k n k k k ka a a a a 121111111.2131212211121111111……14分。

相关文档
最新文档