非线性电路混沌实验
非线性电路混沌实验
C2
L
R C1
~
R 有源非线性负阻元件, G 电导(diàn dǎo),C1和C2 电容。
各区域的作用(zuòyòng):黄色区: 产生振荡,蓝色区: 移相, 粉色 区:有源非线性元件。
第36页,共36页。
有源非线性元件的电压(diànyā)、电流特性: I
0
V
上图是一个(yī ɡè)非线性负阻的电压电流特性曲线, 实现方法有许多种,本实验使用的是Kennedy于1993年提 出的方法。它采用了两个运算放大器和六个配置电阻来 实现的。由于我们主要研究的是元件的外部效应,即电 路两端的电压和流过其电流的关系,因此我们可以把上 述元件看成是一个(yī ɡè)黑匣子即—有源非线性负阻。
值得注意的是,周期倍增过程没有限制,可以一直这样分下去,但 对应的 值却有一个极限 ,,到达 ,时,迭代的稳定(wěndìng)解 是2 周期解---周期无穷大,也就是没有周期。所以这时得到的是非周 期解,迭代的数据到处乱跑,无法把握,系统进入混沌状态。
倍周期分岔产生的混沌,在心脏生理学方面有潜在的应用价值。心 律不齐,心肌梗塞这些医学难题,有可能找到正确的答案。
第36页,共36页。
实验(shíyàn)现象的观察二
阵发(zhèn fā)混沌 第36页,共36页。
实验(shíyàn)现象的观察三
三倍周期 (zhōuqī)
奇异(qíyì)吸引子
第36页,共36页。
实验(shíyàn)现象的观察四
双吸引(xīyǐn) 子
第36页,共36页。
混沌(hùndùn)和现代科学
第36页,共36页。
身边的混沌(hù ndù n)现象
1. 当您的妈妈对这您大叫:“你的房间简直一片混沌(混 乱)!”她的话可能正确,但是她一定不会知道:混沌里蕴 含着秩序。那些乱七八糟的书籍、五颜六色的果皮糖纸、 臭气熏天的袜子里都隐藏着一种秩序,只是等待您的发现。
非线性电路中的混沌现象实验报告doc
非线性电路中的混沌现象实验报告篇一:非线性电路混沌实验报告近代物理实验报告指导教师:得分:实验时间: XX 年 11 月 8 日,第十一周,周一,第 5-8 节实验者:班级材料0705学号 XX67025 姓名童凌炜同组者:班级材料0705学号 XX67007 姓名车宏龙实验地点:综合楼 404实验条件:室内温度℃,相对湿度 %,室内气压实验题目:非线性电路混沌实验仪器:(注明规格和型号) 1. 约结电子模拟器约结电子模拟器的主要电路包括:1.1, 一个压控震荡电路, 根据约瑟夫方程, 用以模拟理想的约结1.2, 一个加法电路器, 更具电路方程9-1-10, 用以模拟结电阻、结电容和理想的约结三者相并联的关系1.3, 100kHz正弦波振荡波作为参考信号2. 低频信号发生器用以输出正弦波信号,提供给约结作为交流信号 3. 数字示波器用以测量结电压、超流、混沌特性和参考信号等各个物理量的波形实验目的:1. 了解混沌的产生和特点2. 掌握吸引子。
倍周期和分岔等概念3. 观察非线性电路的混沌现象实验原理简述:混沌不是具有周期性和对称性的有序,也不是绝对的无序,而是可以用奇怪吸引子等来描述的复杂有序——混沌而呈现非周期性的有序。
混沌的最本质特征是对初始条件极为敏感。
1. 非线性线性和非线性,首先区别于对于函数y=f(x)与其自变量x的依赖关系。
除此之外,非线性关系还具有某些不同于线性关系的共性:1.1 线性关系是简单的比例关系,而非线性是对这种关系的偏移1.3 线性关系保持信号的频率成分不变,而非线性使得频率结构发生变化 1.4 非线性是引起行为突变的原因2. 倍周期,分岔,吸引子,混沌借用T.R.Malthas的人口和虫口理论,以说明非线性关系中的最基本概念。
虫口方程如下:xn?1???xn(1?xn)μ是与虫口增长率有关的控制参数,当1 1?,这个值就叫做周期或者不动点。
在通过迭代法解方程的过程中,最终会得到一个不随时间变化的固定值。
非线性混沌电路实验报告
非线性电路混沌及其同步控制【摘要】本实验通过测量非线性电阻的I-U特性曲线,了解非线性电阻特性,,从而搭建出典型的非线性电路——蔡氏振荡电路,通过改变其状态参数,观察到混沌的产生,周期运动,倍周期与分岔,点吸引子,双吸引子,环吸引子,周期窗口的物理图像,并研究其费根鲍姆常数。
最后,实验将两个蔡氏电路通过一个单相耦合系统连接并最终研究其混沌同步现象。
【关键词】混沌现象有源非线性负阻蔡氏电路混沌同步费根鲍姆常数一.【引言】1963年,美国气象学家洛伦茨在《确定论非周期流》一文中,给出了描述大气湍流的洛伦茨方程,并提出了著名的“蝴蝶效应”,从而揭开了对非线性科学深入研究的序幕。
非线性科学被誉为继相对论和量子力学之后,20世界物理学的“第三次重大革命”。
由非线性科学所引起的对确定论和随机论、有序和无序、偶然性与必然性等范畴和概念的重新认识,形成了一种新的自然观,将深刻的影响人类的思维方法,并涉及现代科学的逻辑体系的根本性问题。
迄今为止,最丰富的混沌现象是非线性震荡电路中观察到的,这是因为电路可以精密元件控制,因此可以通过精确地改变实验条件得到丰富的实验结果,蔡氏电路是华裔科学家蔡少棠设计的能产生混沌的最简单的电路,它是熟悉和理解非线性现象的经典电路。
本实验的目的是学习有源非线性负阻元件的工作原理,借助蔡氏电路掌握非线性动力学系统运动的一般规律性,了解混沌同步和控制的基本概念。
通过本实验的学习扩展视野、活跃思维,以一种崭新的科学世界观来认识事物发展的一般规律。
二.【实验原理】1.有源非线性负阻一般的电阻器件是有线的正阻,即当电阻两端的电压升高时,电阻内的电流也会随之增加,并且i-v 呈线性变化,所谓正阻,即I-U 是正相关,i-v 曲线的斜率u i∆∆为正。
相对的有非线性的器件和负阻,有源非线性负阻表现在当电阻两端的电压增大时,电流减小,并且不是线性变化。
负阻只有在电路中有电流是才会产生,而正阻则不论有没有电流流过总是存在的,从功率意义上说,正阻在电路中消耗功率,是耗能元件;而负阻不但不消耗功率,反而向外界输出功率,是产能元件。
非线性电路混沌实验报告
非线性电路混沌实验报告本实验旨在通过搭建非线性电路,观察其在一定条件下的混沌现象,并对实验结果进行分析和总结。
在此过程中,我们使用了一些基本的电子元件,如电阻、电容和电感等,通过合理的连接和控制参数,成功地观察到了混沌现象的产生。
首先,我们搭建了一个基本的非线性电路,其中包括了电源、电阻、电容和二极管等元件。
通过调节电路中的参数,我们观察到了电压和电流的非线性响应,这表明电路的行为不再遵循简单的线性关系。
接着,我们进一步调整电路参数,尤其是电容和电阻的数值,使电路处于临界状态,这时我们观察到了电路输出信号的混沌波形。
混沌波形表现出了随机性和不可预测性,这与传统的周期性信号有着明显的区别。
在观察混沌波形的过程中,我们发现了一些有趣的现象。
首先,混沌波形的频谱分布呈现出了宽带特性,这说明混沌信号包含了多个频率成分,这也是混沌信号难以预测的重要原因之一。
其次,混沌信号的自相关函数表现出了指数衰减的特性,这表明混沌信号的相关性极低,难以通过传统的方法进行分析和处理。
最后,我们还观察到了混沌信号的分形特性,即信号在不同时间尺度下呈现出相似的结构,这也是混沌信号独特的特征之一。
综合以上实验结果,我们可以得出以下结论,非线性电路在一定条件下会产生混沌现象,混沌信号具有随机性、不可预测性、宽带特性、自相关性低和分形特性等特点。
这些特点使得混沌信号在通信、加密、混沌电路设计等领域具有重要的应用前景。
同时,我们也需要注意到混沌信号的复杂性和不确定性,这对于混沌信号的分析和处理提出了挑战,需要进一步的研究和探索。
总之,本实验通过搭建非线性电路,成功地观察到了混沌现象,并对混沌信号的特性进行了初步的分析和讨论。
通过本次实验,我们对混沌现象有了更深入的理解,也为混沌信号的应用和研究提供了一定的参考和启发。
希望本实验能够对相关领域的研究和工程实践有所帮助。
感谢各位的参与和支持!非线性电路混沌实验小组。
日期,XXXX年XX月XX日。
[实验报告]用非线性电路研究混沌现象
用非线性电路研究混沌现象一. 实验目的掌握用示波器观察正弦波形的周期分岔及混沌现象的方法。
学会自己设计和制作一个实用电感器以及测量非线性器件伏安特性的方法。
二. 实验原理1.非线性电路与非线性动力学实验电路如图1所示,图1中只有一个非线性元件R ,它是一个有源非线性负阻器件。
电感器L 和电容C 2组成一个损耗可以忽略的谐振回路;可变电阻R V 和电容器C 1串联将振荡器产生的正弦信号移相输出。
本实验中所用的非线性元件R 是一个三段分段线性元件。
图2所示的是该电阻的伏安特性曲线,从特性曲线显示中加在此非线性元件上电压与通过它的电流极性是相反的。
由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。
图1非线性电路原理图 图2非线性元件伏安特性 图1电路的非线性动力学方程为:1121)(1C C C C U g U U G dtdU C ⋅--⋅= L C C C i U U G dt dU C +-⋅=)(21122 (1)2C L U dt di L -=式中,导纳V R G /1=,1C U 和2C U 分别为表示加在电容器C 1和C 2上的电压,L i 表示流过电感器L 的电流,G 表示非线性电阻的导纳。
2.有源非线性负阻元件的实现有源非线性负阻元件实现的方法有多种,这里使用的是一种较简单的电路,采用两个运算放大器和六个配置电阻来实现其电路如图4所示,实验所要研究的是该非线性元件对整个电路的影响,而非线性负阻元件的作用是使振动周期产生分岔和混沌等一系列非线性现象。
图3有源非线性器件图4双运放非线性元件的伏安特性实际非线性混沌实验电路如图5所示。
图5非线性电路混沌实验电路图三.实验步骤测量一个铁氧体电感器的电感量,观测倍周期分岔和混沌现象。
1.按图5所示电路接线,其中电感器L由实验者用漆包铜线手工缠绕。
可在线框上绕70-75圈,然后装上铁氧体磁心,并把引出漆包线端点上的绝缘漆用刀片刮去,使两端点导电性能良好。
非线电路混沌实验
物理实验中心
【实验目的】
1、 学会双踪示波器观测两个波形组成的相图。 2、 改变RC移相器中可调电阻R的值,观察相图 周期变化。记录倍周期分岔、阵发混沌、三倍周期 、吸引子和双吸引子相图。 3、 了解LF353双运放构成的有源非线性负阻“ 元件”的伏安特性,结合非线性电路的动力学方程 ,解释混沌产生的原因。
R1+R2
C1
R3
R6
L
C2
C1
LF356
LF356
R2
R5
Hale Waihona Puke R1R4图5非线性电路 混沌实验电路
【实验内容和步骤】
1、打开机箱,将铁氧化介质电感连接到与 面板上对应接线柱相接。
2、用同轴电缆线将实验仪面板上的CH2插 座连接示波器的Y输入。CH1插座连接示波器 的X输入,并置X和Y输入为DC。以观测二个 正弦波构成的李萨如图。
【实验仪器】
非线性混沌仪、 双踪示波器
【实验原理】
实验电路如图1所示,图中只有一个非线性元件 R,它是一个有源非线性负阻器件。电感器L和 电容器C2组成一个损耗可以忽略的谐振回路; 可变电阻RV和电容器C1串联将振荡器产生的正 弦信号移相输出。
4、调节示波器,用示波器观察相图周期变 化。
5、调节图中的W1和W2的大小,观察并 描绘相图周期的分岔混沌现象。将一个环形 相图定为P,那么要求观测并记录2P、4P 、阵发混沌、3P、单吸引子(混沌)、双 吸引子(混沌)共六个相图和相应的CH1 -地和CH2-地两个输出波形。
3、按非线性电路图接好电路。接通实验板的 电源,这时数字电压表有显示,对应+15V和 -15V电源指示灯都为亮状态,且有电压输出 。
【注意事项】
非线性电路中的混沌现象实验报告
非线性电路中的混沌现象五:数据处理:1.计算电感L本实验采用相位测量。
根据RLC 谐振规律,当输入激励的频率LCf π21=时,RLC 串联电路将达到谐振,L 和C 的电压反相,在示波器上显示的是一条过二四象限的45度斜线。
测量得:f=32.8kHz ;实验仪器标示:C=1.095nF 由此可得:mH C f L 50.21)108.32(10095.114.34141239222=⨯⨯⨯⨯⨯==-π估算不确定度: 估计u(C)=0.005nF ,u(f)=0.1kHz 则:32222106.7)()(4)(-⨯=+=C C u f f u L L u 即mH L u 16.0)(=最终结果:mH L u L )2.05.21()(±=+2.用一元线性回归方法对有源非线性负阻元件的测量数据进行处理: (1)原始数据:(2)数据处理:根据RU I RR=可以得出流过电阻箱的电流,由回路KCL 方程和KVL 方程可知:RR R R U U I I =-=11由此可得对应的1R I 值。
对非线性负阻R1,将实验测得的每个(I ,U )实验点均标注在坐标平面上,可得:图中可以发现,(0.0046336,-9.8)和(0.0013899,-1.8)两个实验点是折线的拐点。
故我们在V U 8.912≤≤-、8V .1U 9.8-≤<-、0V U 1.8≤<-这三个区间分别使用线性回归的方法来求相应的I-U 曲线。
使用Excel 的Linest 函数可以求出这三段的线性回归方程:⎪⎩⎪⎨⎧≤≤≤≤+-≤≤= 0U 1.72- 0.00079U - -1.72U 9.78- 30.000651950.00041U - 9.78U 12- 20.02453093-0.002032UI经计算可得,三段线性回归的相关系数均非常接近1(r=0.99997),证明在区间内I-V 线性符合得较好。
应用相关作图软件可以得出非线性负阻在U<0区间的I-U 曲线。
非线性混沌电路实验报告
非线性混沌电路实验报告一、实验目的本实验旨在通过设计和搭建一个非线性混沌电路,了解混沌理论的基本原理,并观察和分析混沌电路的输出特性。
二、实验原理混沌理论是一种描述非线性系统行为的数学理论。
混沌系统有着极其敏感的初始条件和参数,微小的初始条件差异可能导致系统行为的巨大差异。
混沌电路是模拟混沌系统行为的电路,通过合适的电路设计和参数设置,可以实现混沌现象。
三、实验步骤及结果1.搭建电路2.参数设置根据实验要求,设置电路中的参数:L1=0.67H,L2=0.07H,C=0.001F,V1=2V,V2=0.6V。
3.实验观察连接电路电源后,用示波器观察电路输出的波形,并记录实验结果。
在实验观察中,我们可以看到输出波形呈现出混沌现象。
混沌信号的特征是没有周期性,具有高度的随机性和复杂性。
四、实验分析通过实验观察结果,我们可以看到混沌电路输出的波形呈现出混沌现象。
混沌信号的特征是没有周期性,具有高度的随机性和复杂性。
这是由于混沌系统对初始条件和参数的敏感性所导致的。
混沌电路通过合适的电路设计和参数设置,模拟了混沌系统的行为。
通过调整电路中的元件值和电源电压,可以改变混沌电路的输出特性。
这为混沌系统的研究和应用提供了重要的实验手段。
五、实验总结本实验通过设计和搭建一个非线性混沌电路,对混沌理论的基本原理进行了实践探究。
通过观察和分析混沌电路的输出特性,我们认识到混沌系统的随机性和复杂性。
混沌电路有着广泛的应用领域,例如密码学、通信和图像处理等。
这些应用都是基于混沌信号具有的随机性和复杂性。
通过深入研究混沌电路,我们可以更好地理解和应用混沌系统。
非线性电路与混沌实验报告
非线性电路与混沌实验报告非线性电路与混沌实验报告引言非线性电路与混沌是现代电子学与控制理论中的重要研究领域。
混沌现象的出现使得我们对于系统的行为有了更深入的理解,并且在通信、密码学、图像处理等领域中有着广泛的应用。
本文将介绍我们进行的非线性电路与混沌实验,并对实验结果进行分析和讨论。
实验背景非线性电路是指电流和电压之间的关系不遵循线性规律的电路。
而混沌是指一种看似无序的、无法预测的动态行为。
非线性电路中的混沌现象是由于系统的非线性特性导致的,通过合适的电路设计和参数调节,可以实现混沌现象的产生和控制。
实验目的本实验的目的是通过设计和搭建非线性电路,观察和分析混沌现象的产生和特性。
我们希望通过实验验证混沌现象的存在,并进一步了解混沌现象对于系统的影响和应用。
实验装置我们使用了一块实验板和一些基本的电子元器件,如电阻、电容和二极管等。
通过搭建电路并连接到示波器,我们可以观察到电路的输出波形,并进一步分析和研究电路的行为。
实验过程我们首先设计了一个基于二极管的非线性电路。
通过合理选择电阻和电容的数值,我们成功地实现了混沌现象的产生。
接下来,我们调节了电路的参数,观察到了混沌现象的不同特性。
我们记录了电路输出的波形,并进行了数据分析和处理。
实验结果实验结果表明,我们所设计的非线性电路确实产生了混沌现象。
通过观察示波器上的波形,我们可以看到波形呈现出复杂的、无规律的变化。
通过进一步的分析,我们发现电路的输出呈现出分形特性,即具有自相似的结构。
这一结果与混沌现象的特性相吻合。
讨论与分析通过实验,我们进一步了解了非线性电路与混沌现象之间的关系。
非线性电路的设计和参数调节对于混沌现象的产生和控制起着重要的作用。
混沌现象的存在使得系统的行为变得复杂且难以预测,这对于某些应用来说可能是不利的,但在其他领域中却可以发挥重要作用。
例如,在密码学中,混沌信号可以用于加密和解密,提高信息的安全性。
结论通过本次实验,我们成功地设计和搭建了一个非线性电路,并观察到了混沌现象的产生和特性。
非线性电路混沌实验报告
非线性电路混沌实验报告本次实验旨在探究非线性电路中的混沌现象,并通过实验数据分析和理论推导,对混沌现象进行深入研究和分析。
本文将从实验目的、实验原理、实验装置、实验步骤、实验结果和分析、实验结论等方面进行详细介绍。
实验目的。
1. 了解非线性电路中混沌现象的产生原理;2. 掌握混沌电路的基本工作原理;3. 通过实验数据分析,验证混沌电路的混沌特性。
实验原理。
混沌电路是一种非线性系统,其混沌现象来源于系统的非线性特性和反馈作用。
在非线性电路中,由于电压和电流的非线性关系,使得系统的输出信号呈现出复杂的、不可预测的混沌运动。
混沌电路的混沌特性通常表现为系统的输出信号呈现出周期性、随机性和规律性交织的运动状态。
实验装置。
本次实验所需的主要仪器设备有,信号发生器、示波器、混沌电路实验板、电压表等。
实验步骤。
1. 将混沌电路实验板连接至信号发生器和示波器,并进行电路连接和参数设置;2. 调节信号发生器的频率和幅值,观察示波器上的波形变化;3. 记录实验数据,包括电路参数设置、示波器波形图、混沌电路输出信号的特性等。
实验结果和分析。
通过实验数据的记录和分析,我们观察到混沌电路在不同频率和幅值下的输出信号呈现出复杂的、随机的波形变化。
在一定范围内,混沌电路的输出信号表现出周期性、随机性和规律性交织的混沌特性,这与混沌电路的非线性特性和反馈作用密切相关。
实验结论。
通过本次实验,我们深入了解了非线性电路中的混沌现象及其产生原理。
混沌电路的混沌特性表现为系统的输出信号呈现出周期性、随机性和规律性交织的运动状态,这为非线性系统的混沌现象提供了重要的实验验证和理论分析依据。
结语。
通过本次实验,我们对非线性电路中的混沌现象有了更深入的理解,同时也掌握了混沌电路的基本工作原理和实验方法。
混沌现象的研究不仅有助于深化对非线性系统的理解,还对信息处理、通信系统和混沌密码学等领域具有重要的理论和应用价值。
希望本次实验能为相关领域的研究和应用提供一定的参考和借鉴。
非线性混沌现象实验报告
V0sinωtE研究性实验:包含非线性电感互感的混沌电路实验非线性电路中的混沌现象十分丰富,而且易于观察和测量。
因此,用非线性电路研究混沌现象受到广泛的重视。
电路中产生混沌现象的必要条件是电路中具有非线性器件,这种非线性器件可以是变容二极管(电容是端电压的非线性函数),带磁芯的电感或互感,非线性电阻等。
一.实验仪器和电路电感线圈一个,L0用于直流激磁,L1、L2为互感线圈,互感量为M。
电容箱二个,电阻箱二个信号发生器CA1640直流电源一台,电流表一块双踪示波器SS7802工作参数C1≈C2 ~ 0.5-0.8μFR1≈R2 ~ 1 - 5ΩE直流电源0-6VA电流约100mAV0sinωt信号源V0可调,0-50V(pp)频率f可调,~3000Hz电路方程222222221ddddddCituuiRtiLtiM==+++二.实验内容通过选择实验电路的参数,实现电路从定态进入混沌和从混沌带复杂的区域中部出现正规的周期窗口的过程。
从定态进入混沌有多种途径,实验主要研究从倍周期分岔,即在基频(1P),二分频(2P),四分频(4P),八分频(8P)……进入混沌状态的过程。
1.研究L0中电流对互感输出的影响。
2.研究改变信号源V0sinω幅值V0实现混沌的过程。
3.研究改变信号源角频率ω实现混沌的过程。
*4.周期和混沌信号的频谱观察与测量。
课前先准备教材p362上的思考题。
参考文献见教材P363。
非线性电路混沌实验报告
非线性电路混沌_实验报告非线性电路混沌实验报告一、实验目的通过搭建非线性电路,观察和研究电路的混沌现象,深入理解和掌握混沌系统的特性。
二、实验原理混沌系统是一类非线性动力系统,其特点是对初始条件极其敏感,微小的初始条件变化会导致系统演化出完全不同的结果。
混沌系统的行为复杂、难以预测,具有高度的随机性。
在电路中,非线性元件的引入可以引起电路的混沌现象。
三、实验器材和仪器1. 函数生成器2. 示波器3. 混沌电路实验板4. 电源5. 电压表和电流表四、实验步骤1. 搭建混沌电路按照实验指导书上的电路图,搭建混沌电路。
其中,电路中需要包含非线性元件,如二极管、晶体管等。
2. 调节函数生成器将函数生成器连接到电路中,调节函数生成器的频率和幅度,使其能够提供合适的输入信号。
同时,设置函数生成器的触发方式和触发电平。
3. 连接示波器将示波器的输入端连接到电路输出端,调节示波器的触发方式和触发电平,使其能够正常显示电路的输出波形。
4. 开始实验打开电源,调节函数生成器和示波器,观察电路的输出波形。
记录不同参数下的波形变化,并观察混沌现象的特点。
五、实验结果与分析在实验中,我们观察到了电路的混沌现象。
随着参数的变化,电路输出的波形呈现出复杂的、不规则的变化。
即使是微小的参数调节,也会导致电路输出的波形发生明显的变化,呈现出不同的分形结构。
这表明混沌系统对初始条件的敏感性。
通过实验结果的观察和分析,我们深入理解了混沌系统的特性。
混沌系统的不可预测性和随机性使其在信息加密、随机数生成等领域具有广泛的应用价值。
六、实验总结通过本次实验,我们成功搭建了混沌电路,并观察到了电路的混沌现象。
通过实验的操作,我们对混沌系统的特性有了更深入的理解,并掌握了观察和研究混沌现象的方法。
混沌系统具有很高的随机性和不可预测性,这为信息加密、随机数生成等领域提供了新的思路和方法。
在今后的学习和研究中,我们将进一步探索混沌系统的特性,并应用于实际问题中。
非线性电路混沌实验报告
非线性电路混沌实验报告非线性电路混沌实验报告引言:混沌理论是近年来电路研究领域的热门话题之一。
混沌现象的出现使得非线性电路的应用领域得到了广泛的拓展。
本实验旨在通过设计和搭建一个非线性电路,观察和分析混沌现象的特征和行为。
实验原理:混沌理论是一种描述非线性系统行为的数学理论。
在非线性电路中,混沌现象是由于系统的非线性特性导致的。
通过合适的电路设计和参数调节,可以使电路达到混沌状态。
实验装置和步骤:本实验采用了一个经典的非线性电路——Chua电路。
Chua电路由电感、电容和非线性电阻组成。
实验步骤如下:1. 按照电路图搭建Chua电路,并连接相应的电源和示波器。
2. 调节电路中的参数,使电路处于混沌状态。
3. 观察和记录电路输出的波形,并进行分析。
实验结果和分析:在实验中,我们通过调节电路中的参数,成功地使Chua电路进入了混沌状态。
观察示波器上的波形,我们发现电路输出的波形呈现出复杂的、不规则的特征。
这种不规则性表现为波形的高度和宽度的变化,以及波形的周期性的变化。
进一步分析发现,Chua电路的混沌现象是由于电路中的非线性电阻引起的。
非线性电阻的存在导致了电路中的非线性行为,从而使得电路的输出呈现出混沌特征。
这种混沌特征可以通过电路参数的调节来控制和调整。
混沌现象的出现使得电路的应用领域得到了广泛的拓展。
例如,在通信领域,混沌信号可以用于加密和解密,提高信息传输的安全性。
在生物医学领域,混沌现象可以应用于心电图信号的分析和识别,从而帮助医生进行疾病的诊断和治疗。
结论:通过本次实验,我们成功地观察和分析了非线性电路的混沌现象。
混沌现象的出现使得电路的行为变得复杂而有趣。
混沌理论的应用前景广阔,对于电路设计和系统控制具有重要的意义。
然而,混沌现象的研究仍然存在许多挑战和问题。
例如,如何准确地预测和控制混沌系统的行为,如何在实际应用中充分利用混沌现象的优势等。
这些问题需要我们进一步的研究和探索。
参考文献:[1] 张三, 李四. 非线性电路混沌现象的研究[J]. 电子科技大学学报, 2010, 39(2): 123-128.[2] 王五, 赵六. 混沌理论在通信领域的应用研究[J]. 通信科技, 2012, 28(3): 45-51.。
非线性电路中的混沌现象实验
背景 混沌特点:
倍周期分岔 无穷嵌套的自相似结构 系统长期行为具有某些普适性 系统轨迹敏感依赖于初始条件,即Lyapunov
指数为正 具有分形结构
非线性电路
电路
有源非线性负电阻
动力学方程
C1
dVc1 dt
G(Vc2
Vc1 )
gVc1
C2
dVc2 dt
按已知的数据信息(L~20mh,r~10Ω,C0
见现场测试盒提供的数据)估算电路的共振
频率f;
考虑测共振频率时应如何连线? 用振幅法和相位法测量共振频率并由此算得
电感量,测量时电流不要超过20mA
实验内容二
倍周期分岔和混沌现象的观察
求观察并记录2倍周期分岔,4倍周期分岔, 阵发混沌,3倍周期,单吸引子,双吸引子 现象及相应的Vc1(t)和Vc2(t)的波形。
由非线性方程组结合本实验的相关参数, 用四阶龙格—库塔(Runge-Kutta)数值积分 法编程并画出奇异吸引子、双吸引子的 相图和对应变量的波形图并与实验记录 进行对照。
谢谢
相图:任意两运动状态之间的关系图
实验内容三
非线性电阻伏安特性的测量
用伏安法测量 测量时把有源非线性负阻元件与移相器连线
隔开(想一想,如何实现?) 注意实验点分布的合理性
V
R
非线性负电阻
数据处理要求
由测量数据计算电感L。
用一元线性回归方法对有源非线性负阻 元件的测量数据做分段拟合,并作图。
周期窗口 间歇现象 —阵发混沌
实验仪器介绍
实验内容 一
串联谐振电路和电感的测量
串联谐振电路
I ( 1 jL R) E I
E
E
非线性电路混沌现象研究
混沌的产生
混沌的产生
奇异吸引子
英国的海岸线地图
自然界中的分形
山
星 云
星
云
天空中的云朵 植物的叶子
毛细血管分布
视乳头旁毛细血管瘤 视网膜中央动脉颞上支阻塞
河流分布图
自然界中的分形
• 股票价格曲线 • 岩石裂缝 • 金属损伤裂缝 • 道路分布 • 神经末梢的分布 …………
3、当代科学对混沌的研究(主要研究通向 混沌的途径)。
后来洛伦兹发现两次计算的差别只是第二次 输入中间数据时将原来的0.506127省略为 0.506。洛伦兹意识到,因为他的方程是 非线性的,非线性方程不同于线性方程, 线性方程对初值的依赖不敏感,而非线性 方程对初值的依赖极其敏感。正是初始条 件的微小误差导致了计算结果的巨大偏离。 由此洛伦兹断言:准确地作出长期天气预 报是不可能的。对此,洛伦兹作了个形象 的比喻:一只蝴蝶在巴西扇动一下翅膀会 在美国的得克萨斯州引起一场龙卷风,这 就是蝴蝶效应。
• 逻辑斯蒂映射的形式为
xn1 axn (1 xn )
• 以参数a为横坐标、以x的稳定定态 (stable steady states)为纵坐标作图, 得到1、图2等。从图中可以看出开始是 周期加倍分岔(也称周期倍化分岔或周期 倍分岔),然后是混沌,混沌区中又有周 期窗口。窗口放大后又可见到同样结构 的一套东西。此 所谓无穷自相似结构。
⑴倍周期分岔进入混沌 一个系统,在一定条件下,经过周期加倍,会逐步 丧失周期行为而进入混沌。例如,一个非线性电子电路 (混沌仪),当我们观察它的输出交变电压随输入电压 大小的改变而变化的规律时,可以发现:开始输入电压 较低时,输出电压的频率与输入电压的频率一样,而随 着输入电压的增加,输出电压的频率经过二分频(具有 输入频率及其1/2频率,共两个频率)、四分频、八分 频……,最后进入混沌(具有各种各样频率的输出电 压)。这就是倍周期分岔进入的混沌,是一种典型的非 平衡过程产生的混沌。
非线电路混沌实验
L
C2
C1
LF356
LF356
R2
R5
R1
R4
图5非线性电路 混沌实验电路
【实验内容和步骤】
1、打开机箱,将铁氧化介质电感连接到与 面板上对应接线柱相接。
2、用同轴电缆线将实验仪面板上的CH2插 座连接示波器的Y输入。CH1插座连接示波器 的X输入,并置X和Y输入为DC。以观测二个 正弦波构成的李萨如图。
3、按非线性电路图接好电路。接通实验板的 电源,这时数字电压表有显示,对应+15V和 -15V电源指示灯都为亮状态,且有电压输出 。
【注意事项】
1、双运算放大器的正负极不能接反,地 线与电源接地点必须接下来触良好。
2、关掉电源以后,才能拆实验板上的接 线。
3、一起预热10分钟以后才开始测数据 。所测图形如下:
4、调节示波器,用示波器观察相图周期变 化。
5、调节图中的W1和W2的大小,观察并 描绘相图周期的分岔混沌现象。将一个环形 相图定为P,那么要求观测并记录2P、4P 、阵发混沌、3P、单吸引子(混沌)、双 吸引子(混沌)共六个相图和相应的CH1 -地和CH2-地两个输出波形。
R1+R2
C1
R3
R6
非线电路混沌实验
Rv
C2 L
R
ቤተ መጻሕፍቲ ባይዱ
C1
图1 非线性电路原理
I(R)
V(R)
图2 非线性元 件伏安特性
图1电路的非线性动力学方程为: C1 d Uc1 /d t=G(Uc2-Uc1)-gUc1
C2d Uc2 /d t=G(Uc1-Uc2)+iL Ld iL /d t= -Uc2 式中,导纳G=1/Rv,Uc2和Uc1分别是加在电容器C2 和C1上的电压,iL表示流过电感器L的电流,g表示 非线性电阻的导纳。
非线性电路中的混沌现象实验报告
竭诚为您提供优质文档/双击可除非线性电路中的混沌现象实验报告篇一:非线性电路混沌实验报告近代物理实验报告指导教师:得分:实验时间:20XX年11月8日,第十一周,周一,第5-8节实验者:班级材料0705学号20XX67025姓名童凌炜同组者:班级材料0705学号20XX67007姓名车宏龙实验地点:综合楼404实验条件:室内温度℃,相对湿度%,室内气压实验题目:非线性电路混沌实验仪器:(注明规格和型号)1.约结电子模拟器约结电子模拟器的主要电路包括:1.1,一个压控震荡电路,根据约瑟夫方程,用以模拟理想的约结1.2,一个加法电路器,更具电路方程9-1-10,用以模拟结电阻、结电容和理想的约结三者相并联的关系1.3,100khz正弦波振荡波作为参考信号2.低频信号发生器用以输出正弦波信号,提供给约结作为交流信号3.数字示波器用以测量结电压、超流、混沌特性和参考信号等各个物理量的波形实验目的:1.了解混沌的产生和特点2.掌握吸引子。
倍周期和分岔等概念3.观察非线性电路的混沌现象实验原理简述:混沌不是具有周期性和对称性的有序,也不是绝对的无序,而是可以用奇怪吸引子等来描述的复杂有序——混沌而呈现非周期性的有序。
混沌的最本质特征是对初始条件极为敏感。
1.非线性线性和非线性,首先区别于对于函数y=f(x)与其自变量x的依赖关系。
除此之外,非线性关系还具有某些不同于线性关系的共性:1.1线性关系是简单的比例关系,而非线性是对这种关系的偏移1.3线性关系保持信号的频率成分不变,而非线性使得频率结构发生变化1.4非线性是引起行为突变的原因2.倍周期,分岔,吸引子,混沌借用T.R.malthas的人口和虫口理论,以说明非线性关系中的最基本概念。
虫口方程如下:xn?1xn(1?xn)μ是与虫口增长率有关的控制参数,当1 1?,这个值就叫做周期或者不动点。
在通过迭代法解方程的过程中,最终会得到一个不随时间变化的固定值。
非线性混沌实验报告
一、实验目的1. 了解非线性混沌现象的产生机制和特点;2. 掌握非线性电路混沌现象的实验方法;3. 通过实验验证混沌现象在非线性电路中的存在和表现。
二、实验原理混沌现象是指非线性系统在初始条件和参数变化下,表现出对初始条件极为敏感、长期行为不可预测、复杂且非周期性的现象。
在非线性电路中,混沌现象通常由非线性元件(如非线性电阻、非线性电容等)引起。
本实验采用蔡氏振荡电路(Chua's circuit)作为研究对象,该电路具有以下特点:1. 简单易实现;2. 混沌现象明显;3. 可以通过调节电路参数来观察混沌现象的产生、发展和消失。
三、实验仪器与设备1. 数字示波器;2. 函数信号发生器;3. 万用表;4. 电路实验板;5. 连接线。
四、实验步骤1. 搭建蔡氏振荡电路,包括非线性电阻、线性电阻、电容和运算放大器等元件;2. 使用函数信号发生器为电路提供激励信号;3. 使用数字示波器观察电路输出信号的波形;4. 调节电路参数(如非线性电阻的值、电容的值等),观察混沌现象的产生、发展和消失;5. 记录不同参数下电路输出信号的波形,分析混沌现象的特点。
五、实验结果与分析1. 混沌现象的产生当非线性电阻的值较小时,电路输出信号为稳定的正弦波;随着非线性电阻的值逐渐增大,混沌现象开始出现。
在非线性电阻值达到一定范围时,电路输出信号呈现出复杂的非周期性波形,即混沌现象。
2. 混沌现象的特点(1)对初始条件的敏感依赖性:在混沌现象中,电路输出信号的长期行为对初始条件极为敏感,微小变化可能导致截然不同的结果。
(2)复杂性和非周期性:混沌现象的输出信号具有复杂性和非周期性,无法用简单的数学公式描述。
(3)奇怪吸引子:混沌现象的长期行为可以用奇怪吸引子来描述,奇怪吸引子是一种具有复杂结构的有序结构。
3. 参数调节对混沌现象的影响(1)非线性电阻的值:非线性电阻的值对混沌现象的产生和消失具有关键作用。
当非线性电阻的值较小时,电路输出信号为稳定的正弦波;随着非线性电阻的值逐渐增大,混沌现象开始出现。
混沌效应 非线性混沌电路
混沌效应一、实验名称 非线性电路振荡周期的分岔与混沌二、实验原理⒈分岔与混沌 ⑴ 逻辑斯蒂映射考虑一条单位长度的线段,线段上的一点用0和1之间的数x 表示。
逻辑斯蒂映射是)1(x kx x -→其中k 是0和4之间的常数。
迭代这映射,我们得离散动力学系统 )1(1n n n x kx x -=+ ,0=n ,1,2…我们发现:①当k 小于3时,无论初值是多少经过多次迭代,总能趋于一个稳定的不动点; ②当k 大于3时,随着k 的增大出现分岔,迭代结果在两个不同数值之间交替出现,称之为周期2循环;k 继续增大会出现4,8,16,32…周期倍化级联;③很快k 在58.3左右就结束了周期倍增,迭代结果出现混沌,从而无周期可言。
④在混沌状态下迭代结果对初值高度敏感,细微的初值差异会导致结果巨大区别,常把这种现象称之为“蝴蝶效应”。
⑤迭代结果不会超出0~1的范围称为奇怪吸引子。
以上这些特点可用图示法直观形象地给出。
逻辑斯蒂映射函数是一条抛物线,所以先画一条)1(x kx y -=的抛物线,再画一条x y =的辅助线,迭代过程如箭头线所示(图1)。
图 1—A 不动点 图1—B 分岔周期2 图1—C 混沌 图1—D 蝴蝶效应图1 ⑵逻辑斯蒂映射的分岔图 以k 为横坐标,迭代200次以后的x 值为纵坐标,可得到著名的逻辑斯蒂映射分岔图。
X 0X A X B图2逻辑斯蒂映射的分岔图。
k 从2.8增大到4。
⒉ 非线性负阻电路振荡周期的分岔与混沌 ⑴非线性电路与非线性动力学实验电路如图3所示。
它由有源非线性负阻器件R ;LC 振荡器和移相器三部分构成。
图中只有一个非线性元件R ,它是一个有源非线性负阻器件;电感器L 和电容器C2组成一个损耗可以忽略的振荡回路;可变电阻Rv1+Rv2和电容器C1串联将振荡器产生的正弦信号移相输出。
较理想的非线性元件R 是一个三段分段线性元件。
图4所示的是该电阻的伏安特性曲线,从特性曲线显示加在此非线性元件上的电压与通过它的电流极性是相反的。
非线性电路混沌
非线性电路混沌一、实验内容:1.了解混沌的一些基本概念;2.测量有源非线性电阻的伏安特性;3.通过研究一个简单的非线性电路,了解混沌现象和产生混沌的原因。
二、实验仪器:电源,非线性混沌电路板,数字万用表,非线性电阻,电容、电感和电阻箱,双踪示波器等。
三、实验原理:实验电路原理图如图1所示。
电路中的R是非线性元件,是一个分段线性的电阻,整体呈现出非线性。
它的伏安特性如图2所示。
RL图1 电路原理图 图2 非线性元件R 的U - I 特性 电路的非线性动力学方程为:其中U C1、U C2是电容C 1、C 2上的电压,i L 是电感L 上的电流,G =1/R 0是电导,g 为R 的伏安特性函数。
如果R 是线性的,g 是常数。
实验电路如图3所示。
L 图3 实验电路四、实验步骤:1.倍周期现象的观察、记录按图3连好线路。
将电容C 1,C 2上的电压输入到示波器的X (CH1),Y (CH2)轴,先把R 0调到最小,示波器屏上可观察到一条直线,调节R 0,直线变成椭圆。
增大示波器UI(mA)的倍率,反向微调R 0,可见曲线作倍周期变化,曲线由一周期(P )增为二周期(2P),由二周期倍增至四周(4P)。
记录2P 、4P 倍周期时的相图及相应的CH1、CH2输出波形图。
2. 单吸引子和双吸引子的观察、记录在步骤1的基础上,继续调节R 0直至出现一系列难以计数的无首尾的环状曲线,这是一个单涡旋吸引子集。
再细微调节R 0,单吸引子突然变成了双吸引子,只见环状曲线在两个向外涡旋的吸引子之间不断填充与跳跃,这就是混沌研究文献中所描述的“蝴蝶”图像,也是一种奇怪吸引子,它的特点是整体上的稳定性和局域上的不稳定性同时存在。
记录单吸引子和双吸引子的相图相应的CH1、CH2输出波形图。
3. 周期性窗口的观察、记录仔细调节R 0,有时原先的混沌吸引子不是倍周期变化,却突然出现了一个三周期图像,再微调R 0,又出现混沌吸引子,这一现象称为出现了周期性窗口。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经计算可以
得出,三段线性回归相关系数均非常接近 1(r 分别 0.99732,0.99979,0.99992),
2.非线性电路---蔡氏电路与非线性动力学 实验电路如图 1 所示,图 1 是非线性电路系统的一种简单而又经典的电路---
蔡氏电路,它只有一个非线性电阻 R,电感器 L 和电容器 C2 组成一个损耗可以 忽略的谐振回路,可调电阻 RV 以及电容器和 C1 串联将振荡器产生的正弦信号移 相输出。其中非线性电阻 R 是一个三段分线性元件,它的伏安特性曲线如图二, 它的电流随电压增高而减小,称之为非线性负阻元件,它是核心元件,是系统产 生混沌的必要条件。
一、引言 混沌实验研究起源于 1963 年美国气象学家洛伦茨(E.lorenz)研究天气预
报时用到的三个动力学方程,后来他在《确定论非周期流》一文中,给出了描述 大气湍流的洛伦茨方程,并提出了著名的“蝴蝶效应”,从而揭开了对非线性科 学深入研究的序幕。混沌来自非线性,是非线性系统中存在的一种普遍现象。无 论是复杂系统,如气象系统、太阳系、还是简单系统,如钟摆、滴水龙头等,皆 因存在着内在随机性而出现类似无轨、但实际是非周期有序运动,即混沌现象。 迄今为止,最丰富的混沌现象是非线性震荡电路中观察到的,这是因为电路可以 精密元件控制,因此可以通过精确地改变实验条件得到丰富的实验结果,蔡氏电 路是华裔科学家蔡少棠设计的能产生混沌的最简单的电路,它是熟悉和理解非线 性现象的经典电路。 本实验的目的是学习有源非线性负阻元件的工作原理,借 助蔡氏电路掌握非线性动力学系统运动的一般规律性,了解混沌同步和控制的基 本概念。 二、实验原理 1.名词解释
3.有源非线性负阻元件的实现 有源非线性负阻元件实现的方法有多种,这里使用的是一种较简单的电路:
采用两个运算放大器(一个双运放 353LF) 和六个配置电阻来实现,其电路如图 3 所示,它的伏安特性曲线如图 2 所示。由于本实验研究的是该非线性元件对整 个电路的影响,只要知道它主要是一个负阻电路 (元件),能输出电流维持 2LC 振 荡器不断振荡,而非线性负阻元件的作用是使振动周期产生分岔和混沌等一系列 现象。
这三个区间分别使用线性回归的方法来求相应的 I-U 曲线。可求出线性回归方程
⎧0.01962U + 0.02355184.................... .... −12.0 ≤ U ≤ −9.6 分析, I = ⎪⎨− 0.000407U + 0.00062534.................... − 9.6 ≤ U ≤ −1.8
U/V
-11.317 -11.349 -11.379 -11.408 -11.435 -11.462 -11.487 -11.511 -11.534 -11.557 -11.578 -11.598 -11.618 -11.637 -11.655 -12.489
I/A
0.003144 0.003067 0.002994 0.002925 0.002859 0.002796 0.002735 0.002677 0.002621 0.002568 0.002517 0.002468 0.00242 0.002375 0.002331 0.00041
b、有源非线性负阻伏安特性原始记录表
利用 Microsoft Office Excel 对数据进行处理,根据欧姆定律 IR=UR/R 可
计算出流过电阻箱的电流 I,计入表中 I,记得换算成 SI 单位。 根据回路的 KCL 方程:在任一瞬间,流向某一结点的电流之和恒等于由该结
点流出的电流之和,即 IR1=-IR ,和 KVL 方程:在任一瞬间,沿电路中的任一回 路绕行一周,在该回路上电动势之和恒等于各电阻上的电压降之和,即 UR1=-UR ,
混沌现象:混沌现象是指发生在确定性系统中的貌似随机的不规则运动,一 个确定性理论描述的系统,其行为却表现为不确定性一不可重复、不可预测,这 就是混沌现象。进一步研究表明,混沌是非线性动力系统的固有特性,是非线性 系统普遍存在的现象。牛顿确定性理论能够充分处理的多为线性系统,而线性系 统大多是由非线性系统简化来的。因此,在现实生活和实际工程技术问题中,混 沌是无处不在的。
普通物理实验 C 课程论文
题 目 非线性电路混沌实验研究
学
院
专
业
年
级
学
号
姓
名
指导老师
论文成绩
答辩成绩
物理科学与技术学院 物理学(师范)
2012 年 12 月 10 日
非线性混沌实验研究
摘要:本实验通过自己查资料,由有源非线性负阻、LC 振荡器和 RC 移相器三部分建立非线 性电路,通过测量非线性电阻的 I-U 特性曲线,了解非线性电阻,了解非线性电阻特性,从 而搭建出典型的非线性电路----蔡氏振荡电路,改变 RC 移相器中可调电阻 R 的值,通过 LC 振荡器产生的正弦波与经过 RC 移相器移相的正弦波移成的相图,观察混沌的产生,周期运 动,倍周期与分岔,点吸引子,双吸引子,双吸引子,周期窗口的物理图像,来增加对混沌 现象的认识。最后通过蔡氏电路测量有源非线性负阻元件的特性曲线。 关键词:混沌现象 非线性 蔡氏电路
图十二 四倍周期(Four times the cycle)
图十一 二倍周期 CH2-地 (Two times cycle CH2-GND)
图十八 三倍周期(Three time cycle)
图十九 三倍周期 CH1-地 (Three time cycle CH1-GND)
图二十四 双吸引子 1(Double attractor one)
U/V
I/A
-4.822 -6.014 -7.74 -10.542 -10.691 -10.759 -10.823 -10.939 -10.991 -11.04 -11.087 -11.13 -11.172 -11.211 -11.248 -11.283
0.00254 0.003007 0.003685 0.004792 0.004648 0.004483 0.004329 0.004051 0.003925 0.003807 0.003696 0.00359 0.003491 0.003397 0.003308 0.003224
a、因为非线性电阻是含源的,测量时不用电源。连接电路的方式为:如图 5, 断开试验仪的电源,将+15V 电源输出端与有源非线性负阻的正连接,负极与电 阻箱的一端连接,然后将电阻箱的另一端与-15V 电源输出端连接,最后在有源 非线性负阻两端并联上实验仪上的数字电压表。将电阻箱阻值调到最大,检查电 路无误后打开试验仪电源。
利用这个电路,还可以观察到周期性窗口,仔细调节 R,有时原先的混沌吸 引子不是倍周期变化,却突然出现了一个三周期图像,再微调 R,又出现混沌吸 引子,这一现象称为出现了周期性窗口。
用手机等拍照工具拍照实验调节出来的一倍周期、二倍周期、四倍周期、 阵 发混沌、三倍周期、奇异吸引子、双吸引子的图像。同时在示波器 X-Y 工作状态 调出倍周期图像时,将示波器调至 X 和 Y 工作状态,分别记录在不同工作状态下 不同倍周期显示的波形。 2、测量有缘非线性电阻的伏安特性并画出伏安特性曲线
b、调节 Rv 的阻值,即可在示波器上观测到 CH1 和 CH2 所构成的相图,即李 萨如图形。首先将 Rv 调到最小值,示波器屏可观察到一条直线,调节 R,直线
变成椭圆,到某一位置,图形缩成一点。增大示波器的倍率,反向微调 R,可见 曲线做倍周期变化,曲线由一周期增为二周期,由二周期倍增至四周期,......, 直至一系列难以计数的无首尾的环状曲线,这是一个单涡旋吸引子集。再细微调 节 R,单吸引子突然变成双引子,可看见环状曲线在两个向外涡旋的吸引子之间 不断填充与跳跃,就是混沌研究文献中所描述的“蝴蝶”图像,也是一种奇怪吸 引子,它的特点是整体上的稳定性和局域上的不稳定性同时存在。
吸引子、非奇异吸引子:在系统条件一定下,无论个它什么样的初始条件, 最终都将落入到各自的终态集上,这些终态集被称为“吸引子”。 周期解的吸 引子称为非奇异吸引子,非周期解的吸引子称为奇异吸引子。
发生混沌现象的途径(来自网上资料): 1) 倍周期分叉途径。所谓的倍周 期分叉是指一个映射的稳定周期随着参数增大而加倍的分叉现象。经过倍周期分 叉就能进入混沌。 2) 阵发性途径。所谓的阵发性途径也就是在时间域中系统不 规则行为和规则行为的随机交替现象。随着随机运动的次数增加,进入完全的混 沌状态。 3) 准周期运动分叉途径。具有两个或两个以上不可微的频率成分的 “准周期”运动,直接失稳成为奇怪吸引子而出现混沌。
混沌现象的产生:混沌的产生是系统整体稳定性和局部不稳定性共同作用的 结果,局部的不稳定性使它具有对初值的敏感性,而整体的稳定性则使它在相空 间(又称状态空间)表现出一定的分形结构,这种结构被称为混沌吸引子。
混沌现象的基本特征:混沌的产生依赖于初始条件。随着初始条件的改变, 系统的稳定状态会从一个解逐渐分岔到两个解以至于无穷解,也即混沌。同时也 可以发现系统对于初始条件十分敏感,一点点微小变化就能引起稳定状态的极大 变化。 2) 混沌系统在整体上是稳定的,在内部的运动则是混合和随机的。从示 波器上的图可以看到,不管是单吸引子还是双吸引子,都有一个明确的边界。但 是在边界内部,图案十分复杂,不可预测。 3) 存在奇异吸引子。观察示波器的 图案可以发现,在单吸引子和双吸引子的图像中,所有的轨道似乎都有一种被某 点产生的力吸引的趋势。但是同时也可以发现,两条在某个位置相差不大的轨道 在经过一段时间后会分道扬镳,就好象轨道之间会相互排斥一般。
表 1 非线性负阻伏安特性测定数据记录表(Nonlinear negative resistance volt -ampere characteristics detected data record)