数列求通项公式及求和9种方法
求数列通项公式+求数列前 N项和的常用方法
![求数列通项公式+求数列前 N项和的常用方法](https://img.taocdn.com/s3/m/a65002d0856a561252d36fb4.png)
的前n项和Sn 解:
点拨:这道题只要经过简单整理,就可以很明显 的看出:这个数列可以分解成两个数列,一个等差 数列,一个等比数列,再分别运用公式求和,最后 把两个数列的和再求和。 三.用裂项相消法求数列的前n项和
裂项相消法是将数列的一项拆成两项或多项,使 得前后项相抵消,留下有限项,从而求出数列的前 n项和。
例题3:求数列
(n∈N*)的和 解:
点拨:此题先通过求数列的通项找到可以裂项的 规律,再把数列的每一项拆开之后,中间部分的项 相互抵消,再把剩下的项整理成最后的结果即可。
四.用错位相减法求数列的前n项和 错位相减法是一种常用的数列求和方法,应用于
等比数列与等差数列相乘的形式。即若在数列 {an·bn}中,{an}成等差数列,{bn}成等比数列,在 和式的两边同乘以公比,再与原式错位相减整理后 即可以求出前n项和。
例题4:求数列{nan}(n∈N*)的和 解:设 Sn = a + 2a2 + 3a3 + … + nan①
则:aSn = a2 + 2a3 + … + (n-1)an + nan+1② ①-②得:(1-a)Sn = a + a2 + a3 + … + an nan+1③ 若a = 1则:Sn = 1 + 2 + 3 + … + n =
求数列 前N项和的常用方法 核心提示:求数列的前n项和要借助于通项公式,即先有通项公式, 再在分析数列通项公式的基础上,或分解为基本数列求和,或转化为 基本数列求和。当遇到具体问题时,要注意观察数列的特点和规律, 找到适合的方法解题。
一.用倒序相加法求数列的前n项和
数列通项公式的9种求法
![数列通项公式的9种求法](https://img.taocdn.com/s3/m/18745d17f18583d04964594c.png)
数列通项公式的9种求法1、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.例1、等差数列}a {n 是递增数列,前n 项和为n S ,且931a ,a ,a 成等比数列,255a S =.求数列}a {n 的通项公式解:设数列}a {n 公差为)0d (d >∵931a ,a ,a 成等比数列,∴9123a a a =,即)d 8a (a )d 2a (1121+=+,得d a d 12= ∵0d ≠,∴d a 1=……① ∵255S a =∴211)d 4a (d 245a 5+=⋅⨯+……② 由①②得:53a 1=,53d =∴n 5353)1n (53a n =⨯-+=点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项。
2、累加法求形如a n -a n-1=f(n)(f(n)为等差或等比数列或其它可求和的数列)的数列通项,可用累加法,即令n=2,3,…n —1得到n —1个式子累加求得通项。
例2、已知数列{a n }中,a 1=1,对任意自然数n都有11(1)n n a a n n -=++,求n a .解:由已知得11(1)n n a a n n --=+,121(1)n n a a n n ---=-,……,32134a a -=⨯,21123a a -=⨯,以上式子累加,利用111(1)1n n n n =-++得n a -1a =1111...23(2)(1)(1)(1)n n n n n n ++++⨯---+ =1121n -+,3121n a n ∴=-+ 点评:累加法是反复利用递推关系得到n —1个式子累加求出通项,这种方法最终转化为求{f(n)}的前n —1项的和,要注意求和的技巧.3、迭代法求形如1n n a qa d +=+(其中,q d 为常数) 的数列通项,可反复利用递推关系迭代求出。
数列递推公式的九种方法
![数列递推公式的九种方法](https://img.taocdn.com/s3/m/d624e5b8c5da50e2534d7f1c.png)
求递推数列的通项公式的九种方法利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一.一、作差求和法例1在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .解:原递推式可化为:1111+-+=+n n a a n n 则,211112-+=a a 312123-+=a a 413134-+=a a ,……,n n a a n n 1111--+=-逐项相加得:n a a n 111-+=.故na n 14-=.二、作商求和法例2设数列{n a }是首项为1的正项数列,且0)1(1221=+-+++n n n n a a na a n (n=1,2,3…),则它的通项公式是n a =▁▁▁(2000年高考15题)解:原递推式可化为:)]()1[(11n n n n a a na a n +-+++=0∵n n a a ++1>0,11+=+n na a n n 则,43,32,21342312===a a a a a a ……,nn a a n n 11-=-逐项相乘得:na a n 11=,即n a =n 1.三、换元法例3已知数列{n a },其中913,3421==a a ,且当n≥3时,)(31211----=-n n n n a a a a ,求通项公式n a (1986年高考文科第八题改编).解:设11---=n n n a a b ,原递推式可化为:}{,3121n n n b b b --=是一个等比数列,9134913121=-=-=a a b ,公比为31.故n n n n b b 31()31(9131(2211==⋅=---.故n n n a a )31(1=--.由逐差法可得:nn a )31(2123-=.例4已知数列{n a },其中2,121==a a ,且当n ≥3时,1221=+---n n n a a a ,求通项公式n a 。
数列求和各种方法总结归纳
![数列求和各种方法总结归纳](https://img.taocdn.com/s3/m/014c284a2b160b4e767fcf1e.png)
故数列{an}的通项公式为an=2-n.
an (2)设数列{ n-1}的前n项和为Sn, 2 a2 an 即Sn=a1+ 2 +…+ n-1,① 2 Sn a1 a2 an 故S1=1, 2 = 2 + 4 +…+2n,② 所以,当n>1时,①-②得
a2-a1 an-an-1 an Sn 2 =a1+ 2 +…+ 2n-1 -2n
- - -
(2)由题意知bn-an=3n 1,所以bn=3n 1+an=3n 1-2n+21. Tn=Sn+(1+3+…+3
n-1
3n-1 )=-n +20n+ 2 .
2
[冲关锦囊]
分组求和常见类型及方法
(1)an=kn+b,利用等差数列前n项和公式直接求解; (2)an=a·n-1,利用等比数列前n项和公式直接求解; q (3)an=bn±cn,数列{bn},{cn}是等比数列或等差数列, 采用分组求和法求{an}的前n项和.
(1)求数列{an}的通项公式; 第三行
(2)若数列{bn}满足:bn=an+(-1)nln an,求 {bn}的前2n项和S2n
[自主解答]
(1)当a1=3时,不合题意;
当a1=2时,当且仅当a2=6,a3=18时,符合题意; 当a1=10时,不合题意. 因此a1=2,a2=6,a3=18.所以公比q=3,
2 3a2=1,a3=9a2a6.
(1)求数列{an}的通项公式; 1 (2)设bn=log3a1+log3a2+…+log3an,求数列{b }的前n项和. n
[自主解答]
(1)设数列{an}的公比为q.由a2=9a2a6得 3 9 3
1 1 2 2 2 a3=9a4,所以q = .由条件可知q>0,故q= . 1 由2a1+3a2=1,得2a1+3a1q=1,得a1=3. 1 故数列{an}的通项公式为an=3n.
常见递推数列通项的九种求解方法
![常见递推数列通项的九种求解方法](https://img.taocdn.com/s3/m/46e32640284ac850ac024200.png)
常见递推数列通项的九种求解方法(总10页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--常见递推数列通项的九种求解方法高考中的递推数列求通项问题,情境新颖别致,有广度,创新度和深度,是高考的热点之一。
是一类考查思维能力的好题。
要求考生进行严格的逻辑推理,找到数列的通项公式,为此介绍几种常见递推数列通项公式的求解方法。
类型一:1()n na a f n +=+(()f n 可以求和)−−−−→解决方法累加法 例1、在数列{}n a 中,已知1a =1,当2n ≥时,有121n n a a n -=+-()2n ≥,求数列的通项公式。
解析:121(2)n n a a n n --=-≥∴213243113521n n a a a a a a a a n --=⎧⎪-=⎪⎪-=⎨⎪⎪-=-⎪⎩ 上述1n -个等式相加可得: ∴211n a a n -=- 2n a n ∴=评注:一般情况下,累加法里只有n-1个等式相加。
【类型一专项练习题】1、已知11a =,1n n a a n -=+(2≥n ),求n a 。
2、已知数列{}n a ,1a =2,1n a +=n a +3n +2,求n a 。
3、已知数列}a {n 满足1a 1n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。
4、已知}{n a 中,n n n a a a 2,311+==+,求n a 。
5、已知112a =,112nn n a a +⎛⎫=+ ⎪⎝⎭*()n N ∈,求数列{}n a 通项公式.6、 已知数列{}n a 满足11,a =()1132,n n n a a n --=+≥求通项公式n a7、若数列的递推公式为1*113,23()n n n a a a n N ++==-⋅∈,则求这个数列的通项公式 8、 已知数列}a {n 满足3a 132a a 1n n 1n =+⋅+=+,,求数列}a {n 的通项公式。
数列求通项公式的9种方法
![数列求通项公式的9种方法](https://img.taocdn.com/s3/m/856e6dfb84868762caaed58e.png)
例
9:已知数列{an} 满足 a1
1 , an1
an an
2
,求{an} 的通项公式.
例 10(拓展).设由 a1
1, an
an1
2n 1an1
n
1
2,3,定义数列an ,试将 an 用 n 来表示
变式训练 11
已知数列 {an }
满足
a1
1 , an1
变式训练 14
已知数列{an} 满足 a1
2 , an1
1 2 an
2n ,求{an} 的通项公式.
变式训练 15 已知数列{an} 满足 a1 1 , an1 2an 3 2n1 ,求{an} 的通项公式.
七、型如 an1 pan A0n B0 的数列
四、加法构造
型如 an1 kan b ( k、b 为常数)的数列构造{an } 为等比数列
例 7 已知数列{an} 满足 a1 2 , an1 2an 3 ,求{an} 的通项公式.
变式训练 9 已知数列{an} 满足 a1 1 , an1 3an 2 ,求{an} 的通项公式.
数列求通项公式常见的9种方法
知识复习
1、等差数列通项公式: an=a1+ (n-1)d an=am+(n-m)d
2、等比数列通项公式: an= a1·qn-1 am= a1·qn-m
一、利用 an 与 Sn 关系求 an
an=SS1n,-Sn-1,
n=1, n≥2.
例1 已知数列{an}的前n项和Sn,求数列{an}的通项公式.(1)Sn=2n-1;(2)Sn=2n2+ n+3.
变式训练 10
数列通项公式常见9种求法
![数列通项公式常见9种求法](https://img.taocdn.com/s3/m/15c5f68dcc7931b764ce155d.png)
解:令
,得
,则 是函数
的不动点。
因为
,所以
。
评注:本题解题的关键是通过将 形式,从而可知数列
最后再求出数列 的通项公式。
的换元为 ,使得所给递推关系式转化
为等比数列,进而求出数列
的通项公式,
,求数列 的通项公式。
解:令
,得
的两个不动点。因为
,则
是函数
。所以数列
是以
为首项,以 为公比的等比数列,故
,
则
。
评注:本题解题的关键是先求出函数
的不动点,即方程
的两
个根
,进而可推出
,从而可知数列
为等比数
列,再求出数列
的通项公式,最后求出数列 的通项公式。
例 15 已知数列 满足
,求数列 的通项公式。
并整理,得
,
,求数列 的通项公式。
,所以 ⑩
。在
式两边取
11
,则
,两边消去
,故
代入 11 式,得 由 得 则 所以数列 比数列,则
, ,
是以
12 及 12 式,
为首项,以 5 为公比的等 ,因此
则
。
评注:本题解题的关键是通过对数变换把递推关系式
转化为 ,从而可知数列
是等比数列,进而求出数列 公式,最后再求出数列 的通项公式。
解:设
⑥
将
代入⑥式,得
整理得
。
令
,则
,代入⑥式得
⑦
由
及⑦式,
得
,则
,
故数列 因此
是以 ,则
为首项,以 3 为公比的等比数列, 。
评注:本题解题的关键是把递推关系式
数列的通项与求和计算方法总结
![数列的通项与求和计算方法总结](https://img.taocdn.com/s3/m/cb41ab8748d7c1c709a14503.png)
数列的通项与求和计算方法总结(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--数列的通项与求和计算方法总结第一章 数列通项公式的十种求法一、公式法例1 已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n n a 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n na n =+-,所以数列{}n a 的通项公式为31()222n n a n =-。
评注:本题解题的关键是把递推关系式1232n n n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2nna 是等差数列,再直接利用等差数列的通项公式求出31(1)22n na n =+-,进而求出数列{}n a 的通项公式。
二、累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =。
评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+,即得数列{}n a 的通项公式。
数列通项公式—常见9种求法
![数列通项公式—常见9种求法](https://img.taocdn.com/s3/m/b40a7f47ff00bed5b8f31d2b.png)
数列通项公式—常见9种求法一、公式法例1 已知数列满足,,求数列的通项公式。
解:两边除以,得,则,故数列是以为首项,以为公差的等差数列,由等差数列的通项公式,得,所以数列的通项公式为。
评注:本题解题的关键是把递推关系式转化为,说明数列是等差数列,再直接利用等差数列的通项公式求出,进而求出数列的通项公式。
二、累加法例2 已知数列满足,求数列的通项公式。
解:由得则所以数列的通项公式为。
评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。
例3 已知数列满足,求数列的通项公式解:由得所以评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。
例4已知数列满足,求数列的通项公式。
解:两边除以,得,则,故因此,则评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式,最后再求数列的通项公式。
三、累乘法例5 已知数列满足,求数列的通项公式。
解:因为,所以,则,故所以数列的通项公式为评注:本题解题的关键是把递推关系转化为,进而求出,即得数列的通项公式。
例6 已知数列满足,求的通项公式。
解:因为①所以②用②式-①式得则故所以③由,,则,又知,则,代入③得。
所以,的通项公式为评注:本题解题的关键是把递推关系式转化为,进而求出,从而可得当的表达式,最后再求出数列的通项公式。
四、待定系数法例7已知数列满足,求数列的通项公式。
解:设④将代入④式,得,等式两边消去,得,两边除以,得代入④式得⑤由及⑤式得,则,则数列是以为首项,以2为公比的等比数列,则,故。
评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。
例8 已知数列满足,求数列的通项公式。
解:设⑥将代入⑥式,得整理得。
令,则,代入⑥式得⑦由及⑦式,得,则,故数列是以为首项,以3为公比的等比数列,因此,则。
评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求数列的通项公式。
数列求通项公式及求和9种方法
![数列求通项公式及求和9种方法](https://img.taocdn.com/s3/m/afb7fe556c85ec3a87c2c5da.png)
数列求通项公式及求和9种方法数列专题1:根据递推关系求数列的通项公式根据递推关系求数列的通项公式主要有如下几种类型一、nS是数列{}n a的前n项的和11(1)(2)nn nS naS S n-=⎧=⎨-≥⎩【方法】:“1n nS S--”代入消元消na。
【注意】漏检验n的值 (如1n=的情况【例1】.(1)已知正数数列{}na的前n项的和为nS,且对任意的正整数n满足1na=+,求数列{}na的通项公式。
(2)数列{}na中,11a=对所有的正整数n都有2123na a a a n⋅⋅⋅⋅=,求数列{}n a的通项公式【作业一】1-1.数列{}na满足21*123333()3nnna a a a n N-++++=∈,求数列{}n a的通项公式.(二).累加、累乘 型如1()n n a a f n --=,1()nn a f n a -=1()n n a a f n --= ,用累加法求通项公式(推导等差数列通项公式的方法)【方法】1()n n a a f n --=, 12(1)n n a a f n ---=-, ……,21(2)a a f -=2n ≥,从而1()(1)(2)n a a f n f n f -=+-++,检验1n=的情况()f n =,用累乘法求通项公式(推导等比数列通项公式的方法) 【方法】2n ≥,12121()(1)(2)n n n n a a a f n f n f a a a ---⋅⋅⋅=⋅-⋅⋅即1()(1)(2)na f n f n f a =⋅-⋅⋅,检验1n =的情况【小结】一般情况下,“累加法”(“累乘法”)里只有1n -个等式相加(相乘).【例2】. (1) 已知211=a ,)2(1121≥-+=-n n a a n n,求n a . (2)已知数列{}n a 满足12n n n aa n +=+,且321=a ,求n a .【例3】.(2009广东高考文数)在数列{}n a 中,11111,(1)2n n n n a a a n ++==++.设n na b n =,求数列{}n b 的通项公式(三).待定系数法1n n a ca p +=+ (,1,1c,p c p ≠≠为非零常数)【方法】构造1()n n a x c a x ++=+,即1(1)n n a ca c x +=+-,故(1)c x p -=, 即{}1n pa c +-为等比数列【例4】. 11a =,123n n a a +=+,求数列{}n a 的通项公式。
高中数学-数列求和及数列通项公式的基本方法和技巧
![高中数学-数列求和及数列通项公式的基本方法和技巧](https://img.taocdn.com/s3/m/f52eb5cd25c52cc58bd6bef2.png)
数列求和通项分式法 错位相减法 反序相加法 分组法 分组法 合并法数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a an S n n 2)1(2)(11-+=+=2、 等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn自然数方幂和公式:3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例] 求和1+x 2+x 4+x 6+…x 2n+4(x≠0) 解: ∵x≠0∴该数列是首项为1,公比为x 2的等比数列而且有n+3项 当x 2=1 即x =±1时 和为n+3评注:(1)利用等比数列求和公式.当公比是用字母表示时,应对其是否为1进行讨论,如本题若为“等比”的形式而并未指明其为等比数列,还应对x 是否为0进行讨论.(2)要弄清数列共有多少项,末项不一定是第n 项. 对应高考考题:设数列1,(1+2),…,(1+2+1222-⋯+n ),……的前顶和为ns,则ns的值。
二、错位相减法求和错位相减法求和在高考中占有相当重要的位置,近几年来的高考题其中的数列方面都出了这方面的内容。
需要我们的学生认真掌握好这种方法。
这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比q ;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法。
数列通项公式的求法13种和求和的七种方法
![数列通项公式的求法13种和求和的七种方法](https://img.taocdn.com/s3/m/9bbe12da8762caaedd33d496.png)
最全的数列通项公式的求法数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。
而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。
本文给出了求数列通项公式的常用方法。
一、直接法根据数列的特征,使用作差法等直接写出通项公式。
例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,… (2) ,17164,1093,542,211 (3) ,52,21,32,1 (4) ,54,43,32,21-- 解:(1)变形为:101-1,102―1,103―1,104―1,…… ∴通项公式为:110-=nn a(2);122++=n n n a n (3);12+=n a n (4)1)1(1+⋅-=+n na n n .点评:关键是找出各项与项数n 的关系例10:设数列}{n c 的各项是一个等差数列与一个等比数列对应项的和,若c 1=2,c 2=4,c 3=7,c 4=12,求通项公式c n解:设1)1(-+-+=n n bqd n a c 132211121237242-+=⇒⎪⎪⎩⎪⎪⎨⎧=====⎪⎪⎩⎪⎪⎨⎧=++=++=++=+∴n n n c a b d q bq d a bq d a bq d a b a 例11. 已知数列{}n c 中,b b c +=11,bb c b c n n ++⋅=-11, 其中b 是与n 无关的常数,且1±≠b 。
求出用n 和b 表示的a n 的关系式。
解析:递推公式一定可表示为)(1λλ-=--n n c b c 的形式。
由待定系数法知:bbb ++=1λλ )1(1,1,12122b bc b b b c b b b n n --=--∴-=∴≠-λ 故数列⎭⎬⎫⎩⎨⎧--21b b c n 是首项为112221-=--b b b b c ,公比为b 的等比数列,故111121211222--=∴-=-=--++-b b b c b b b b b b b c n n n n n 点评:用待定系数法解题时,常先假定通项公式或前n 项和公式为某一多项式,一般地,若数列}{n a 为等差数列:则c bn a n +=,cn bn s n +=2(b 、c为常数),若数列}{n a 为等比数列,则1-=n n Aq a ,)1,0(≠≠-=q Aq A Aq s n n 。
数列求通项公式及求和9种方法
![数列求通项公式及求和9种方法](https://img.taocdn.com/s3/m/14a244a6f9c75fbfc77da26925c52cc58ad69057.png)
数列求通项公式及求和9种方法数列是指按照一定规律排列的一系列数值。
求数列的通项公式和求和的方法是数列研究的基础,下面将介绍9种常见的方法。
一、等差数列求通项公式和求和等差数列是指数列中两个相邻项之间的差固定的数列。
例如:1,3,5,7,9,……,其中差为21.1求通项公式对于等差数列,可使用以下公式计算通项:通项公式:a_n=a_1+(n-1)*d其中a_n表示数列第n项,a_1表示数列第一项,d表示公差。
1.2求和求和的公式为:S_n=(a_1+a_n)*n/2其中S_n表示数列前n项的和。
二、等比数列求通项公式和求和等比数列是指数列中的两个相邻项之间的比值是固定的数列。
例如:1,2,4,8,16,……,其中比值为22.1求通项公式等比数列的通项公式为:a_n=a_1*q^(n-1)其中a_n表示数列的第n项,a_1表示数列的第一项,q表示公比。
2.2求和求等比数列前n项和的公式为:S_n=a_1*(q^n-1)/(q-1)三、斐波那契数列求通项公式和求和斐波那契数列是指数列中的每一项都等于前两项之和。
例如:0,1,1,2,3,5,8,13,……3.1求通项公式斐波那契数列的通项公式为:a_n=a_(n-1)+a_(n-2)其中a_n表示数列的第n项。
3.2求和斐波那契数列前n项和的公式为:S_n=a_(n+2)-1四、等差数列的和差公式求通项公式和求和对于等差数列,如果已知首项、末项和项数,可以使用和差公式求通项公式和求和。
4.1公式和差公式是指通过首项、末项和项数计算公差的公式。
已知首项a_1、末项a_n和项数n,可以使用和差公式计算公差d:d=(a_n-a_1)/(n-1)4.2求通项公式已知首项a_1、公差d和项数n,可以使用通项公式计算任意项的值:a_n=a_1+(n-1)*d4.3求和已知首项a_1、末项a_n和项数n,可以使用求和公式计算等差数列前n项的和:S_n=(a_1+a_n)*n/2五、等比数列的部分和求和公式求通项公式和求和对于等比数列,如果已知首项、公比和项数,可以使用部分和求和公式求通项公式和求和。
数列求和及数列通项公式的基本方法和技巧
![数列求和及数列通项公式的基本方法和技巧](https://img.taocdn.com/s3/m/d5f9f0aab90d6c85ed3ac681.png)
数列求和及数列通项公式的基本方法和技巧导语:数列是高中代数的重要内容,又是学习高等数学的基础.在高考和各种数学竞赛中都占有重要的地位.数列求和及数列的通项公式是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧.下面,就几个历届高考数学来谈谈数列求和及数列通项公式的基本方法和技巧.(一)数列求和一、利用常用求和公式求和.利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、)1(211+==∑=n n k S nk n4、)12)(1(6112++==∑=n n n k S nk n5、213)]1(21[+==∑=n n k S n k n【例1】求和:)0(1422242≠++⋯+++++x x x x x n n 【解】∵x≠0∴该数列是首项为1,公比为x 2的等比数列,而且有n+3项 当x 2=1,即x =±1时,和为n+3.当12≠x ,即1±≠x 时,和为262232111)(1x x x x n n --=--++.评注:(1)利用等比数列求和公式.当公比是用字母表示时,应对其是否为1进行讨论,如本题若为“等比”的形式而并未指明其为等比数列,还应对x 是否为0进行讨论.(2)要弄清数列共有多少项,末项不一定是第n 项. 二、错位相减法求和.错位相减法求和在高考中占有相当重要的位置,近几年来的高考题其中的数列方面都出了这方面的内容.需要我们的学生认真掌握好这种方法.这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{a n }、{b n }分别是等差数列和等比数列.求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比q ;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法.【例2】求和:)1()12(7531132≠-+⋅⋅⋅++++=-x x n x x x S n n ………………………① 【解】由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积.设n n x n x x x x xS )12(7531432-+⋅⋅⋅++++=……………………….②(设置错位) ①-②得n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=--(错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴21)1()1()12()12(x x x n x n S n n n -+++--=+ 评注:(1)要考虑当公比x 为值1时为特殊情况; (2)错位相减时要注意末项;(3)此类题的特点是所求数列是由一个等差数列与一个等比数列对应项相乘.三、反序相加法求和.这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.【例3】求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 【证明】设n n n n n n C n C C C S )12(53210++⋅⋅⋅+++=…………………………..①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=-(反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..……..②①+②得n nn n n n nn n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=-(反序相加) ∴n n n S 2)1(⋅+=四、分组法求和.有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.若数列{}n a 的通项公式为n n n b a c +=,其中{}{}n n b a ,中一个是等差数列,另一个是等比数列,求和时一般用分组结合法.【例4】求数列Λ1614813412211,,,的前n 项和;分析:数列的通项公式为n n n a 21+=,而数列{}⎭⎬⎫⎩⎨⎧n n 21,分别是等差数列、等比数列,求和时一般用分组结合法;【解】因为nn n a 21+=,所以 )21()813()412()211(n n n s ++++++++=Λ)21814121()321(n n +++++++++=ΛΛ(分组)前一个括号内是一个等比数列的和,后一个括号内是一个等差数列的和,因此1212211)211(212)1(2+-+=--++=n n n n n n五、裂项法求和.这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如:(1))()1(n f n f a n -+=;(2)οοοοοn n n n tan )1tan()1cos(cos 1sin -+=+;(3)111)1(1+-=+=n n n n a n ;(4))121121(211)12)(12()2(2+--+=+-=n n n n n a n ; (5)])2)(1(1)1(1[21)2)(1(1++-+=++=n n n n n n n a n .【例5】求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.【解】设n n n n a n -+=++=111(裂项)则11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了.只剩下有限的几项.注意:余下的项具有如下的特点 1余下的项前后的位置前后是对称的. 2余下的项前后的正负性是相反的.六、合并法求和.针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .【例6】在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值. 【解】设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质q p n m a a a a q p n m =⇒+=+(找特殊性质项) 和对数的运算性质N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++=(合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅ =9log 9log 9log 333+⋅⋅⋅++ =10(二)求数列通项公式一、构造等差或等比数列法【例7】已知数列{}n a 满足:1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式. 【解】1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+ 则113222n n n n a a ++-= 故数列{}2n na 是以122211==a 为首项,以23为公差的等差数列. 由等差数列的通项公式,得31(1)22n n a n =+-. 所以数列{}n a 的通项公式为31()222n n a n =-.评注:本题解题的关键是把递推关系式1232n n n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2nna 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式.二、累加法.【例8】已知数列{}n a 满足:11211n n a a n a +=++=,,求数列{}n a 的通项公式. 【解】由121n n a a n +=++得121n n a a n +-=+ 则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=L L L 所以,数列{}n a 的通项公式为2n a n =. 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+L ,即得数列{}n a 的通项公式.【例9】已知数列{}n a 满足:112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式. 【解】由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+.则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-L L L所以3 1.n n a n =+- 评注:本题解题的关键是把递推关系式1231n n n a a +=+⨯+转化为1231n n n a a +-=⨯+,进而求出11232211()()()()n n n n n a a a a a a a a a a ---=-+-++-+-+L ,即得数列{}n a 的通项公式.【例10】已知数列{}n a 满足:1132313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式. 【解】13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+, 故112232112232111122122()()()()33333333212121213()()()()3333333332(1)11111()1333333n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a n --------------=-+-+-++-+=+++++++++-=+++++++L L L因此,11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯, 则21133.322n n n a n =⨯⨯+⨯-评注:本题解题的关键是把递推关系式13231n n n a a +=+⨯+转化为111213333n n n n n a a +++-=+,进而求出112232*********()()()()333333333n n n n n n n n n n n n a a a a a a a a a -----------+-+-++-+L ,即得数列3n n a ⎧⎫⎨⎬⎩⎭的通项公式,最后再求数列{}n a 的通项公式.三、累乘法.【例11】已知数列{}n a 满足:112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式. 【解】因为112(1)53n n n a n a a +=+⨯=,. 所以,0n a ≠. 则12(1)5n n na n a +=+, 故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯L L L L 所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯评注:本题解题的关键是把递推关系12(1)5n n n a n a +=+⨯转化为12(1)5n n na n a +=+,进而求出13211221n n n n a a a a a a a a a ---⋅⋅⋅⋅⋅L ,即得数列{}n a 的通项公式. 【例12】已知数列{}n a 满足:11231123(1)(2)n n a a a a a n a n -==++++-≥L ,,求{}n a 的通项公式.【解】因为123123(1)(2)n n a a a a n a n -=++++-≥L ①所以1123123(1)n n n a a a a n a na +-=++++-+L ②用②式-①式得1.n n n a a na +-= 则1(1)(2)n n a n a n +=+≥ 故11(2)n na n n a +=+≥ 所以13222122![(1)43].2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=L L ③由123123(1)(2)n n a a a a n a n -=++++-≥L ,21222n a a a ==+取得,则21a a =,又知11a =,则21a =,代入③得!13452n n a n =⋅⋅⋅⋅⋅=L . 所以,{}n a 的通项公式为!.2n n a = 评注:本题解题的关键是把递推关系式1(1)(2)n n a n a n +=+≥转化为11(2)n na n n a +=+≥,进而求出132122n n n n a a a a a a a ---⋅⋅⋅⋅L ,从而可得当2n n a ≥时,的表达式,最后再求出数列{}n a 的通项公式. 四、待定系数法.【例13】已知数列{}n a 满足:112356n n n a a a +=+⨯=,,求数列{}n a 的通项公式. 【解】设1152(5)n n n n a x a x +++⨯=+⨯④将1235n n n a a +=+⨯代入④式,得12355225n n n n n a x a x ++⨯+⨯=+⨯, 等式两边消去2n a ,得135525n n n x x +⋅+⋅=⋅, 两边除以5n ,得352,1,x x x +==-则 代入④式得1152(5)n n n n a a ++-=-⑤由1156510a -=-=≠及⑤式得50n n a -≠.则11525n n nn a a ++-=-,则数列{5}n n a -是以1151a -=为首项,以2为公比的等比数列. 则152n n n a --=. 故125n n n a -=+. 评注:本题解题的关键是把递推关系式1235n n n a a +=+⨯转化为1152(5)n n n n a a ++-=-,从而可知数列{5}n n a -是等比数列,进而求出数列{5}n n a -的通项公式,最后再求出数列{}n a 的通项公式.【例14】已知数列{}n a 满足:1135241n n n a a a +=+⨯+=,,求数列{}n a 的通项公式. 【解】设1123(2)n n n n a x y a x y +++⨯+=+⨯+ ⑥将13524n n n a a +=+⨯+代入⑥式,得1352423(2)n n n n n a x y a x y ++⨯++⨯+=+⨯+整理得(52)24323n n x y x y +⨯++=⨯+.令52343x x y y +=⎧⎨+=⎩,则52x y =⎧⎨=⎩,代入⑥式得115223(522)n n n n a a +++⨯+=+⨯+⑦由11522112130a +⨯+=+=≠及⑦式,得5220nn a +⨯+≠,则115223522n n nn a a +++⨯+=+⨯+, 故数列{522}n n a +⨯+是以1152211213a +⨯+=+=为首项,以3为公比的等比数列,因此1522133n n n a -+⨯+=⨯,则1133522n n n a -=⨯-⨯-.评注:本题解题的关键是把递推关系式13524n n n a a +=+⨯+转化为115223(522)n n n n a a +++⨯+=+⨯+,从而可知数列{522}n n a +⨯+是等比数列,进而求出数列{522}n n a +⨯+的通项公式,最后再求数列{}n a 的通项公式.【例15】已知数列{}n a 满足:21123451n n a a n n a +=+++=,,求数列{}n a 的通项公式. 【解】设221(1)(1)2()n n a x n y n z a xn yn z ++++++=+++⑧将212345n n a a n n +=+++代入⑧式,得2222345(1)(1)2()n n a n n x n y n z a xn yn z ++++++++=+++,则 222(3)(24)(5)2222n n a x n x y n x y z a xn yn z +++++++++=+++等式两边消去2n a ,得22(3)(24)(5)222x n x y n x y z xn yn z ++++++++=++,解方程组3224252x x x y y x y z z +=⎧⎪++=⎨⎪+++=⎩,则31018x y z =⎧⎪=⎨⎪=⎩,代入⑧式,得2213(1)10(1)182(31018)n n a n n a n n ++++++=+++⑨由213110118131320a +⨯+⨯+=+=≠及⑨式,得2310180n a n n +++≠则2123(1)10(1)18231018n n a n n a n n ++++++=+++,故数列2{31018}n a n n +++为以21311011813132a +⨯+⨯+=+=为首项,以2为公比的等比数列,因此2131018322n n a n n -+++=⨯,则42231018n n a n n +=---.评注:本题解题的关键是把递推关系式212345n n a a n n +=+++转化为2213(1)10(1)182(31018)n n a n n a n n ++++++=+++,从而可知数列2{31018}n a n n +++是等比数列,进而求出数列2{31018}n a n n +++的通项公式,最后再求出数列{}n a 的通项公式.五、对数变换法.【例16】已知数列{}n a 满足:5123n n n a a +=⨯⨯,17a =,求数列{}n a 的通项公式. 【解】因为511237n n na a a +=⨯⨯=,,所以100n n a a +>>,. 在5123n n n a a +=⨯⨯式两边取常用对数得1lg 5lg lg3lg 2n n a a n +=++⑩设1lg (1)5(lg )n n a x n y a xn y ++++=++ ○11 将⑩式代入○11式,得5lg lg 3lg 2(1)5(lg )n n a n x n y a xn y +++++=++,两边消去5lg n a 并整理,得(lg3)lg 255x n x y xn y ++++=+,则lg35lg 25x x x y y +=⎧⎨++=⎩,故lg 34lg 3lg 2164x y ⎧=⎪⎪⎨⎪=+⎪⎩代入○11式,得1lg3lg3lg 2lg3lg3lg 2lg (1)5(lg )41644164n n a n a n +++++=+++○12 由1lg3lg3lg 2lg3lg3lg 2lg 1lg 71041644164a +⨯++=+⨯++≠及○12式, 得lg3lg3lg 2lg 04164n a n +++≠, 则1lg3lg3lg 2lg (1)41645lg3lg3lg 2lg 4164n n a n a n +++++=+++, 所以数列lg3lg3lg 2{lg }4164n a n +++是以lg3lg3lg 2lg 74164+++为首项,以5为公比的等比数列,则1lg3lg3lg 2lg3lg3lg 2lg (lg 7)541644164n n a n -+++=+++, 因此1111111116164444111111161644441111111616444455514lg 3lg 3lg 2lg 3lg 3lg 2lg (lg 7)54164464(lg 7lg 3lg 3lg 2)5lg 3lg 3lg 2[lg(7332)]5lg(332)lg(7332)5lg(332)lg(733n n n n n n n n n n n n a n ---------=+++---=+++---=⋅⋅⋅-⋅⋅=⋅⋅⋅-⋅⋅=⋅⋅1115116454151511642)lg(732)n n n n n -------⋅=⋅⋅则11541515164732n n n n n a -----=⨯⨯.评注:本题解题的关键是通过对数变换把递推关系式5123n n n a a +=⨯⨯转化为1lg3lg3lg 2lg3lg3lg 2lg (1)5(lg )41644164n n a n a n +++++=+++,从而可知数列lg3lg3lg 2{lg }4164n a n +++是等比数列,进而求出数列lg3lg3lg 2{lg }4164n a n +++的通项公式,最后再求出数列{}n a 的通项公式.六、迭代法.【例17】已知数列{}n a 满足:3(1)2115nn n n a a a ++==,,求数列{}n a 的通项公式.【解】因为3(1)21n n n n a a ++=,所以121323(1)23212[]n n n n n n n n n a a a ---⋅-⋅⋅--== 2(2)(1)32(2)(1)3(3)(2)(1)112(3)(2)(1)(1)123(1)223(2)23(1)233(2)(1)23323(2)(1)213!21[]n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n aa a a a -+---+--+-+--+++-+-+----⋅⋅--⋅-⋅⋅---⋅-⋅⋅-⋅-⋅⋅⋅⋅======L L L L L又15a =,所以数列{}n a 的通项公式为(1)123!25n n n n na --⋅⋅=.评注:本题还可综合利用累乘法和对数变换法求数列的通项公式.即先将等式3(1)21nn n n a a ++=两边取常用对数得1lg 3(1)2lg n n n a n a +=+⨯⨯,即1lg 3(1)2lg n n na n a +=+,再由累乘法可推知(1)123!213211221lg lg lg lg lg lg lg5lg lg lg lg n n n n n n n n n a a a a a a a a a a --⋅⋅---=⋅⋅⋅⋅⋅=L ,从而1(1)3!225n n n n n a --⋅⋅=.七、数学归纳法.【例18】已知数列{}n a 满足:11228(1)8(21)(23)9n n n a a a n n ++=+=++,,求数列{}n a 的通项公式.【解】由1228(1)(21)(23)n n n a a n n ++=+++及189a =,得 2122322243228(11)88224(211)(213)9925258(21)248348(221)(223)252549498(31)488480(231)(233)49498181a a a a a a +⨯=+=+=⨯+⨯+⨯+⨯=+=+=⨯+⨯+⨯+⨯=+=+=⨯+⨯+⨯ 由此可猜测22(21)1(21)n n a n +-=+,往下用数学归纳法证明这个结论.(1)当1n =时,212(211)18(211)9a ⨯+-==⨯+,所以等式成立. (2)假设当n k =时等式成立,即22(21)1(21)k k a k +-=+,则当1n k =+时,1228(1)(21)(23)k k k a a k k ++=+++222222222222222222222(21)18(1)(21)(21)(23)[(21)1](23)8(1)(21)(23)(21)(23)(23)8(1)(21)(23)(21)(23)(21)(21)(23)(23)1(23)[2(1)1]1[2(1)1]k k k k k k k k k k k k k k k k k k k k k k k k k +-+=+++++-+++=++++-+++=++++-+=+++-=+++-=++2由此可知,当1n k =+时等式也成立.根据(1),(2)可知,等式对任何*n N ∈都成立. 评注:本题解题的关键是通过首项和递推关系式先求出数列的前n 项,进而猜出数列的通项公式,最后再用数学归纳法加以证明.八、换元法.【例19】已知数列{}n a满足:111(14116n n a a a +=+=,,求数列{}n a 的通项公式.【解】令n b =21(1)24n n a b =- 故2111(1)24n n a b ++=-,代入11(1416n n a a +=++得 221111(1)[14(1)]241624n n n b b b +-=+-+ 即2214(3)n n b b +=+因为0n b =≥,故10n b +=≥则123n n b b +=+,即11322n n b b +=+,可化为113(3)2n n b b +-=-,所以{3}n b -是以13332b -==为首项,以21为公比的等比数列,因此121132()()22n n n b ---==,则21()32n n b -=+21()32n -=+,得2111()()3423n n n a =++.评注:本题解题的关键是通过将n b ,使得所给递推关系式转化11322n n b b +=+形式,从而可知数列{3}n b -为等比数列,进而求出数列{3}n b -的通项公式,最后再求出数列{}n a 的通项公式.九、不动点法.【例20】已知数列{}n a 满足:112124441n n n a a a a +-==+,,求数列{}n a 的通项公式.【解】令212441x x x -=+,得2420240x x -+=,则1223x x ==,是函数2124()41x f x x -=+的两个不动点.因为112124224121242(41)13262132124321243(41)92793341n n n n n n n nn n n n n n a a a a a a a a a a a a a a ++---+--+--====----+---+. 所以数列23n n a a ⎧⎫-⎨⎬-⎩⎭是以112422343a a --==--为首项,以913为公比的等比数列, 故12132()39n n n a a --=-,则113132()19n n a -=+-.评注:本题解题的关键是先求出函数2124()41x f x x -=+的不动点,即方程212441x x x -=+的两个根1223x x ==,,进而可推出112213393n n n n a a a a ++--=⋅--,从而可知数列23n n a a ⎧⎫-⎨⎬-⎩⎭为等比数列,再求出数列23n n a a ⎧⎫-⎨⎬-⎩⎭的通项公式,最后求出数列{}n a 的通项公式.【例21】已知数列{}n a 满足:1172223n n n a a a a +-==+,,求数列{}n a 的通项公式. 【解】令7223x x x -=+,得22420x x -+=, 则1x =是函数31()47x f x x -=+的不动点. 因为17255112323n n n n n a a a a a +---=-=++,所以2111()()3423n n n a =++.。
数列求和与求通项公式方法总结(已打)
![数列求和与求通项公式方法总结(已打)](https://img.taocdn.com/s3/m/d34bed09fd0a79563d1e723f.png)
12、已知 为等比数列, , ,则 。
13、已知 得三边长成公比为 的等比数列,则其最大角的余弦值为_________.
14、已知等比数列 为递增数列,且 ,则数列的通项公式 _____.
15、等比数列{ }的前n项和为Sn,若S3+3S2=0,则公比 =_______
(Ⅰ)求 的值;(Ⅱ)求数列 的通项公式.
(1)求数列 的通项公式;
(2)记 ,求数列 的前n项和 。
数列练习题(近三年各地高考题选编)
一、填空题
1、在等差数列 中, ,则 的前5项和 =。
2、等差数列 中, ,则数列 的公差为。
3、在等差数列 中,已知 =16,则 。
4、如果等差数列 中, + + =12,那么 + +•••…+ =。
5、 为等差数列, 为其前 项和.若 , ,则 ________.
(1)求数列 、 的通项公式;
(2)设 ,数列 的前 项和为 ,问 > 的最小正整数 是多少
2、(2012广州一模)已知等差数列 的公差 ,它的前 项和为 ,若 ,且 , , 成等比数列.
(1)求数列 的通项公式;
(2)设数列 的前 项和为 ,求证: .
3、(2012惠州三模)已知函数 ,且数列 是首项为 ,公差为2的等差数列.
6、{an}的前n项和为Sn,且Sn= ,n∈N﹡,数列{bn}满足an=4log2bn+3,n∈N﹡.
(1)求an,bn;
(2)求数列{an·bn}的前n项和Tn.
7、已知 是等差数列,其前 项和为 , 是等比数列,且 .
(I)求数列 与 的通项公式;
数列求通项公式及求和的方法
![数列求通项公式及求和的方法](https://img.taocdn.com/s3/m/4d72c61d3069a45177232f60ddccda38376be135.png)
数列求通项公式及求和的方法数列专题-数列求通项公式及求和的方法考点1:求通项公式1、公式法:已知数列{an}为等差或等比数列,可根据通项公式an=a1+(n-1)d或an=a1qn-1进行求解。
例1:已知{an}是一个等差数列,且a2=1,a5=-5,求{an}的通项公式。
变式:已知等差数列{an}中,a10=28,S6=51,求{an}的通项公式。
2、前n项和法:已知数列{an}的前n项和Sn的解析式,可求出an。
例2:已知数列{an}的前n项和Sn=2n-1,求通项an。
变式:已知下列数列{an}的前n项和Sn的公式为Sn=3n2-2n(n∈N*),求{an}的通项公式。
3、Sn与an的关系式法:已知数列{an}的前n项和Sn与通项an的关系式,可求出an。
例3:已知数列{an}的前n项和Sn满足an+1=Sn,其中a1=1,求an。
变式:已知{an}中,an+1=nan,且a1=2,求{an}的通项公式。
4、累加法:当数列{an}中有an-an-1=f(n),即第n项与第n-1项的差是个有“规律”的数时,可用这种方法。
例4:a1=0,an+1=an+2(n-1),求通项an。
变式:已知数列{an}的首项a1=1,且an=an-1+3(n≥2),求通项an。
5、累乘法:当数列{an}中有an/an-1=f(n),即第n项与第n-1项的商是个有“规律”的数时,可用这种方法。
例5:a1=1,an=an-1(n),求通项an。
6、构造法:1)配常数法:在数列{an}中有an=kan-1+b(k、b均为常数且k≠),从表面形式上来看an是关于an-1的“一次函数”的形式,可用下面的方法:一般化方法:设an+m=k(an-1+m),则{an+m}成等比数列。
例6:已知a1=1,an=2an-1+1(n2),求通项an。
2)配一次函数法:在数列{an}中有an=kan-1+bn+c(k、b、c均为常数且k≠),可用下面的方法:一般化方法:设an+tn+u=k(an-1+t(n-1)+u),则{an+tn+u}成等比数列。
数列求通项公式的9种方法
![数列求通项公式的9种方法](https://img.taocdn.com/s3/m/dcdb735130126edb6f1aff00bed5b9f3f80f7267.png)
例14
已知 满足+2 = 3+1 − 2 ,2 = 2, 1 = 1,求 的通项公式
九、奇偶分项求通项公式
核心思想:
n为奇数时,设n=2k-1
n为偶数时,设n=2k
例15 数列 满足 = ቊ
2,为奇数时
,求 的通项公式。
2 ,为偶数时
变式训练15
n2
a n ,求 {an } 的通项公式.
n
变式训练 6 已知数列 {an } 满足 a1 1 , an1 2n an ,求 {an } 的通项公式.
变式训练 7 已知数列 {an } 满足 a1 1 , an n(an1 an ) ,求 {an } 的通项公式.
四、加法构造
数列求通项公式常见的9种方法
知识复习
1、等差数列通项公式: an=a1+ (n-1)d
an=am+(n-m)d
2、等比数列通项公式: an= a1·
qn-1
am= a1·qn-m
一、利用 an 与 Sn 关系求 an
S1,
n=1,
an=
Sn-Sn-1, n≥2.
例1
n+3.
已知数列{an}的前n项和Sn,求数列{an}的通项公式.(1)Sn=2n-1;(2)Sn=2n2+
17
3
变式训练 10 已知数列 {an } 满足 a1
, an an1 5( n 2) ,求 {an } 的通项公式.
2
2
五、倒数构造
型如 an1
m an
(m pq 0) 的数列直接取倒数
pan q
例 8 已知数列 {an } 满足 a1 1 , an1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列专题1:根据递推关系求数列的通项公式
根据递推关系求数列的通项公式主要有如下几种类型
一、n S 是数列{}n a 的前n 项的和
1
1(1)(2)n n
n S n a S S n -=⎧=⎨-≥⎩
【方法】: “1n n S S --”代入消元消n a。
【注意】漏检验n 的值 (如1n =的情况
【例1】.(1)已知正数数列{}n
a 的前n 项的和为n S ,
且对任意的正整数n 满足1n a =+,求数列{}n a 的
通项公式。
(2)数列{}n
a 中,11a =对所有的正整数n 都
有2123n a a a a n ⋅⋅⋅⋅=,求数列{}n a 的通项公式
【作业一】 1- 1.
数
列
{}
n a 满足
2
1
*123333()3
n n n
a a a a n N -+++
+=∈,求数列{}n a 的通
项公式.
(二).累加、累乘 型如1()n n a a f n --=, 1
()n
n a f n a -=
1()n n a a f n --= ,用累加法求通项公式(推导等差数列通项公式的方法)
【方法】
1()n n a a f n --=, 12(1)n n a a f n ---=-, ……,
21(2)a a f -=2n ≥,
从而1()(1)(2)n a a f n f n f -=+-+
+,检验1n
=的情
况
()f n =,用累乘法求通项公式(推导等比数列通项公式的方法) 【方法】2n ≥,1
2
12
1
()(1)(2)n n n n a a a f n f n f a a a ---⋅⋅⋅
=⋅-⋅⋅
即1
()(1)(2)n
a f n f n f a =⋅-⋅
⋅,
检验1n =的情况 【小结】一般情况下,“累加法”(“累乘法”)里只有1
n -个等式相加(相乘).
【例2】. (1) 已知21
1=a ,)2(1
1
21≥-+=-n n a a n n
,
求n a . (2)已知数列{}n a 满足1
2n n n a
a n +=+,且3
21=a ,求n a .
【例3】.(2009广东高考文数)在数列{}n a 中,
1111
1,(1)2
n n n n a a a n ++==++.设n n a b n =,求数列{}
n b 的通项公式
(三).待定系数法
1n n a ca p +=+ (,1,1c,p c p ≠≠为非零常数)
【方法】构造1()n n a x c a x ++=+,即
1(1)n n a ca c x +=+-,故(1)c x p -=, 即{}1
n p a c +-为
等比数列
【例4】. 11a =,123n n a a +=+,求数列{}n a 的通项公式。
(四).倒数法
1n
n n
ka a ca p +=+ (,,k p c 为非零常数)
【方法】两边取倒数,得111n n p c
a k a k
+=⋅+, 转化为待定系数法求解
【例5】. 已知数列{}n a 的首项为13
5a =,
1
321n n n a a a +=+,
1,2,n =,求{}n a 的通项公式
数列专题2:数列求和
1.数列a 1+2,…,a k +2k ,…,a 10+20共有十项,
且其和为240,则a 1+…+a k +…+a 10之值为 ( )
A .31
B .120
C .130
D .185 练习1.已知数列{a n }的通项公式是a n =2n -1
2
n ,
其前n项和S n=321
64,则项数n等于()
A.13 B.10 C.9 D.6
2.设函数f(x)=x+ax的导函数f′(x)=2x+1,
则数列{1
f(n)}(n∈N
*)的前n项和是()
A.
n
n+1
B.
n+2
n+1
C.
n
n-1
D.
n+1
n
练习2.数列a n=
1
n(n+1)
,其前n项之和为
9
10,
则在平面直角坐标系中,直线(n+1)x+y+n=0在y轴上的截距为()
A.-10 B.-9 C.10 D.9
3.求和:S n=1
a+
2
a2+
3
a3+…+
n
a n.
练习3(2010·昌平模拟)设数列{a n}满足a1+3a2+
32a3+…+3n-1a n=n
3,n∈N
*.
(1)求数列{a n}的通项公式;
(2)设b n=n
a n,求数列{
b n}的前n项和S n.。