二次根式知识点归纳及题型总结-精华版
二次根式知识点详解与精点训练
次根式知识点一:二次根式的概念形如■ J (口工〔)的式子叫做二次根式。
在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须 注意:因为负数没有平方根,所以 “「一】是、・J 为二次根式的前提条件,如 , 1,■*' 1■■ ■''等是二次根式,而 J , 等都不是二次根式。
知识点二:取值范围1.二次根式有意义的条件:由二次根式的意义可知,当a ± 0时,■二 有意义,是二次根式。
所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2.二次根式无意义的条件: 因负数没有算术平方根, 所以当a < 0时,■丿没有意义。
知识点三:二次根式(二二】)的非负性•“(:工〕)表示a 的算术平方根,也就是说, (山工'■)是一个非负数,即■■』 三0 ( * —)。
…三0「)这个性质和绝对值、偶次方类似。
这个性质在解答题目时应用较多, 如若 G ••八 ,则 a=0,b=0 ;若' I ' _ ,则 a=0,b=0 ;若,则a=0,b=0 。
1、不同点”与表示的意义是不同的,,'表示一个正数 a 的算术平方根的平方,而:表示一个实数a 的平方的算术平方根;在、… 中二--,而弋‘中a 可以 是正实数,0,负实数。
因而它的运算的结果是有差别的,if知识点四:二次根式(■')的性质(■—;)知识点五:二次根式的性质 知识点六:与「:一 即:一个非负数的算术平方根的平方等于这个非负数。
-a (YOj= |of| =的异同点2、相同点:都是非负数,即 — L 。
当被开方数都是非负数,即L . - L 时,知识点七:二次根式的运算(1) 因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的 算术平方根代替,从而移到根号外面; 如果被开方数是代数式和的形式,那么先分解因式,变形为积的形 式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2) 二次根式的加减法:先把二次根式化成最简二次根式,再合并同类二次根式. (3) 二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商) 仍作积(商)的被开方数并将运算结果化为最简二次根式.Vab = 4a •b ( a >0 b >0 ;(4) 有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及 多项式的乘法公式,都适用于二次根式的运算.本节中还要记住一些常见根式的约等数,常见的有.2 1.414; .3 1.732; ,5 2.236 ; 、7 2.646【主要题型】 二次根式有意义的条件:例:求下列各式有意义的所有 x 的取值范围。
第01讲 二次根式的概念(2个知识点+3类热点题型讲练+习题巩固)(解析版)
第01讲二次根式的概念课程标准学习目标①二次根式的定义②二次根式有无意义的条件1.掌握二次根式的定义,能够熟练判断二次根式。
2.掌握二次根式有无意义的条件,能够根据此条件熟练求值。
知识点01二次根式的定义1.二次根式的定义:一般地,我们把形如()0≥a a 的式子叫做二次根式。
其中叫做二次根号,a 叫做被开方数。
判断一个式子是不是二次根式需判断是不是含有二次根号以及被开方数是否大于等于0。
两者必须同时满足。
【即学即练1】1.下列各式中,一定是二次根式的是()A .B .C .D .【分析】根据二次根式的定义:一般地,我们把形如(a ≥0)的式子叫做二次根式.【解答】解:A .,被开方数是负数,二次根式无意义,故此选项不合题意;B .,三次根式,故此选项不合题意;C .,是二次根式,故此选项符合题意;D .,被开方数有可能是负数,二次根式无意义,故此选项不合题意;故选:C .知识点02二次根式有无意义的条件1.二次根式有意义的条件:二次根式有意义必须满足二次根式的被开方数大于等于0。
即a 中,a 。
注意:当二次根式存在在分母的位置时,被开方数只能大于零。
【即学即练1】2.若二次根式有意义,则x 的取值范围是()A .x ≥6B .x ≥﹣6C .x ≤﹣6D .x ≤6【分析】根据二次根式有意义的条件可得6+x ≥0,再解不等式即可.【解答】解:由题意得:6+x ≥0,解得:x ≥﹣6,故选:B .题型01判断二次根式【典例1】下列式子是二次根式的是()A .B .C .D .【分析】根据二次根式的定义:形如(a ≥0)的式子,逐一判断即可解答.【解答】解:A 、无意义,故A 不符合题意;B 、不是二次根式,故B 不符合题意;C 、是二次根式,故C 符合题意;D 、无意义,故D 不符合题意;故选:C .【变式1】若a 为任意实数,则下列各式中是二次根式的是()A .B .C .D .【分析】根据二次根式的定义逐个判断即可.【解答】解:A.当a<0时,不是二次根式,故本选项不符合题意;B.当a<﹣1时,不是二次根式,故本选项不符合题意;C.是二次根式,故本选项符合题意;D.当﹣1<a<1时,不是二次根式,故本选项不符合题意.故选:C.【变式2】已知:a、b均为实数,下列式子:①;②;③;④;⑤.其中是二次根式是个数有()个.A.1个B.2个C.3个D.4个【分析】根据二次根式的定义(根指数是2,被开方数是非负数)判断即可.【解答】解:二次根式有①③④,共3个,故选:C.【变式3】若是二次根式,则x的取值范围是x≥﹣3.【分析】根据被开方数是非负数,建立不等式求解即可.【解答】解:∵是二次根式,∴x+3≥0,解得:x≥﹣3,故答案为:x≥﹣3.【变式4】若是二次根式,则x的取值范围是()A.x为非负数B.x≠1C.x≥1D.x>1【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据题意得:x﹣1>0,解得x>1.故选:D.题型02根据二次根式有意义的条件求取值范围【典例1】若式子在实数范围内有意义,则实数x的取值范围是x≤1.【分析】根据二次根式有意义的条件,即可求解.【解答】解:根据题意得:﹣x+1≥0,解得:x≤1.故答案为:x≤1.【变式1】若式子有意义,则x的取值范围是x≥1且x≠2.【分析】根据二次根式有意义的条件和分式有意义的条件得出x﹣1≥0且x﹣2≠0,再求出答案即可.【解答】解:要使式子有意义,必须x﹣1≥0且x﹣2≠0,解得:x≥1且x≠2.故答案为:x≥1且x≠2.【变式2】若二次根式有意义,则x的取值范围是x<2.【分析】根据二次根式被开放数为非负数,分式的分母不为零求解即可.【解答】解:∵二次根式有意义,∴2﹣x>0,解得:x<2.故答案为:x<2.【变式3】若代数式有意义,则x的取值范围是x≥﹣1且x≠3.【分析】根据分式有意义时分母不等于0,二次根式有意义时被开方数大于或等于0列式求解即可.【解答】解:∵x+1≥0,∴x≥﹣1,∵,∴x≠3,∴x的取值范围是x≥﹣1且x≠3.故答案为:x≥﹣1且x≠3.【变式4】若,则()A.a≥6B.a≥0C.0≤a≤6D.a为一切正实数【分析】由二次根式可知要使有意义,则根号里面的数不能小于0,再进行列式计算即可.【解答】解:由题可知,,解得a≥6,故选:A.【变式5】若=在实数范围内成立,则x的取值范围是()A.x≥1B.x≥4C.1≤x≤4D.x>4【分析】根据二次根式有意义和分式有意义的条件进行判断即可.【解答】解:∵=在实数范围内成立,∴x﹣1≥0,x﹣4>0,∴x>4.故选:D.题型03利用二次根式有意义的条件求值【典例1】若,则a+b的值为()A.1B.0C.﹣1D.2【分析】根据二次根式有意义的条件得出2b﹣4≥0且4﹣2b≥0,求出b=2,再代入求出a=﹣1,最后求出a+b即可.【解答】解:要使有意义,必须2b﹣4≥0且4﹣2b≥0,解得:b=2,所以a=0+0﹣1=﹣1,即a+b=﹣1+2=1.故选:A.【变式1】若x,y都是实数,且y=,则x y的值是()A.﹣B.C.2D.﹣2【分析】根据二次根式有意义的条件求出x,y的值,再代入x y计算即可.【解答】解:由题意,得,解得x=,∴y=﹣1,∴x y=.故选:C.【变式2】如果实数a满足|2021﹣a|+=a.那么a﹣20212的值是()A.2022B.2021C.2020D.2019【分析】根据二次根式(a≥0)确定a的范围,然后进行计算即可解答.【解答】解:由题意得:a﹣2022≥0,∴a≥2022,∴2021﹣a<0,∴|2021﹣a|+=a,∴a﹣2021+=a,∴=2021,∴a﹣2022=20212,∴a﹣20212=2022,故选:A.【变式3】已知:,则(﹣x)y=﹣.【分析】根据二次根式为非负数,列不等式组可得x的值,进而得到y的值,代入求值即可.【解答】解:由题意得,解得x=,∴y=3,∴(﹣x)y=(﹣)3=﹣.【变式4】已知x、y为实数,且,求y﹣x2+17的值.【分析】根据二次根式有意义的条件得出,从而得出x、y的值,代入进行计算即可.【解答】解:根据题意得:,解得:x=4,∴当x=4时,y=2023,∴y﹣x2+17=2023﹣42+17=2024.1.下列各式中,一定是二次根式的是()A.B.C.D.【分析】根据二次根式的定义分别判断即可.【解答】解:A、的被开方数﹣2<0,不是二次根式,故此选项不符合题意;B、是三次根式,故此选项不符合题意;C、的被开方数a2+1>0,是二次根式,故此选项符合题意;D、的被开方数a﹣1有可能小于0,即当a<1时不是二次根式,故此选项不符合题意;故选:C.2.若式子是二次根式,则a的值不可以是()A.0B.﹣2C.2D.4【分析】根据二次根式的定义得出a≥0,再得出选项即可.【解答】解:∵式子是二次根式,∴a≥0,即只有选项B符合,选项A、选项C、选项D都不符合,故选:B.3.当a=﹣2时,二次根式的值为()A.2B.C.D.±2【分析】把a=﹣2代入二次根式,即可解决问题.【解答】解:当a=﹣2时,二次根式===2.故选:A.4.当x=2时,下列二次根式没有意义的是()A.B.C.D.【分析】根据二次根式有意义的条件:形如(a≥0)的式子叫做二次根式,求解即可.【解答】解:当x=2时,,,,故选项A、B、C不符合题意;x﹣3=2﹣3=﹣1<0,即没有意义,选项D符合题意.故选:D.5.若有意义,则a的值可以是()A.﹣1B.0C.2D.6【分析】直接利用二次根式的定义得出a的取值范围,进而得出答案.【解答】解:有意义,则a﹣4≥0,解得:a≥4,故a的值可以是6.故选:D.6.若有意义,则x可以取()A.0B.﹣1C.﹣2D.﹣3【分析】根据二次根式有意义的条件,即被开方数为非负数进行求解即可得.【解答】解:由题意得:2x+1≥0,解得,即x可以取的值是0.故选:A.7.已知代数式在实数范围内有意义,则x的取值范围是()A.x≠1B.x≠0C.x>0且x≠1D.x≥0且x≠1【分析】根据二次根式有意义的条件以及分式有意义的条件得到x≥0且,进行计算即可得到答案.【解答】解:根据题意得:x≥0且,解得:x≥0且x≠1,故选:D.8.设x,y为实数,且,则|y﹣x|的值是()A.1B.9C.4D.5【分析】根据二次根式有题意的条件可求解x,y值,进而可求解|y﹣x|的值.【解答】解:∵,∴5﹣x≥0,5﹣x≤0,∴5﹣x=0,解得x=5,∴y=4,∴|y﹣x|=|4﹣5|=1.故选:A.9.二次根式在实数范围内有意义,则实数x的取值范围在数轴上表示为()A.B.C.D.【分析】直接利用二次根式有意义的条件得出x的取值范围,进而在数轴上表示即可.【解答】解:二次根式在实数范围内有意义,则1﹣x≥0,解得:x≤1,则实数x的取值范围在数轴上表示为:.故选:C.10.已知,则2xyz的相反数是()A.B.C.D.【分析】根据算术平方根和绝对值的非负性,得出,解之得出x、y、z的值,再把x、y、z的值代入2xyz计算,得出2xyz的值,再根据相反数的定义,即可得出答案.【解答】解:在中,∵,,|x﹣2y|≥0,|z+4y|≥0,∴可得:,解得:,∴,∴2xyz的相反数是.故选:B.11.下列各式:①②③④,其中一定是二次根式的是②④.(只填序号)【分析】根据二次根式的定义逐个判断即可.【解答】解:①(﹣2)3=﹣8<0,故不是二次根式;②(﹣2)4=16>0,故是二次根式;③的根指数是3,故不是二次根式,④a2+1>0,故是二次根式;所以一定是二次根式的是②④.故答案为:②④.12.如果是二次根式,那么x应满足的条件是x≥1.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣1≥0,解得x≥1.故答案为:x≥1.13.如果,那么x y的值是100.【分析】先根据二次根式的非负性求出x的值,进而求出y的值,再代入x y计算.【解答】解:∵,,∴x=10,∴,∴x y=102=100.故答案为:100.14.如果,那么x+y的平方根为±.【分析】根据二次根式中的被开方数是非负数可得x﹣2=0,可得x和y的值,再解答即可.【解答】解:∵,∴x﹣2≥0,2﹣x≥0,∴x﹣2=0,∴x=2,∴y=3,∴x+y=2+3=5,∴x+y的平方根为±.故答案为:±.15.要使式子有意义,则实数x的取值范围是x≥1且x≠2.【分析】直接利用二次根式有意义的条件、分式有意义的条件分析得出答案.【解答】解:∵要使式子有意义,∴x﹣1≥0且x﹣2≠0,解得:x≥1且x≠2,则实数x的取值范围是x≥1且x≠2.故答案为:x≥1且x≠2.16.当x分别取下列值时,求二次根式的值.(1)x=0;(2)x=;(3)x=﹣2.【分析】直接将(1)x=0;(2)x=;(3)x=﹣2;代入二次根式求出即可,注意开方时容易出错.【解答】解:(1)把x=0,代入二次根式==3;(2)把x=,代入二次根式==;(3)把x=﹣2,代入二次根式==5.17.已知实数x,y满足等式,求3x+4y的立方根.【分析】先根据二次根式有意义的条件求出x的值,进而求出y的值,再求出3x+4y的值,即可求出对应的立方根.【解答】解:∵要有意义,∴,∴x=5,∴,∴3x+4y=3×5+4×3=27,∵27的立方根是3,∴3x+4y的立方根是3.18.若x,y是实数,且.(1)求x,y的值;(2)求的值.【分析】(1)根据二次根式有意义的条件进行解题即可;(2)将求出的x与y代入进行求解即可.【解答】解:(1)由题可知,,解得x=,将x=代入,解得y=.故x=,y=.(2)将x与y代入得==.19.(1)已知一个正数的两个不同平方根分别是a+3与2a﹣15,求这个数.(2)已知x,y为实数,且,求的平方根.【分析】(1)先根据正数的两个平方根互为相反数,得出a+3+2a﹣15=0,求出a的值,得出这个数的一个平方根,即可得出这个正数;(2)先根据二次根式有意义的条件得出x=9,从而求出y=4,代入求出,即可得出答案.【解答】解:(1)∵一个正数的两个不同平方根分别是a+3与2a﹣15,∴a+3+2a﹣15=0,解得a=4,∴这个数一个平方根为4+3=7,∴这个数为72=49;(2)∵x,y为实数,,∴,∴,∴x=9,∴y=4,∴==6,∴的平方根为.20.(1)已知2b+1的平方根为±3,3a+2b﹣1的算术平方根为4,求a+2b的平方根.(2)若x、y都是实数,且y=++8,求x+y的值.【分析】(1)根据平方根的定义列式求出b,再根据算术平方根的定义列式求出a,然后求出a+2b的值,再根据平方根的定义解答即可;(2)由二次根式有意义的条件得到关于x的不等式组,解不等式组即可求出x的值,进一步即可求得结果.【解答】解:(1)∵2b+1的平方根为±3,∴2b+1=9,解得b=4,∵3a+2b﹣1的算术平方根为4,∴3a+2b﹣1=16,解得a=3,∴a+2b=3+2×4=11,∴a+2b的平方根是±.(2)由题意得:,解得,所以x=3,当x=3时,y=8,所以x+y=3+8=11.。
(完整版)八年级下册数学--二次根式知识点整理
二次根式1、算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。
2、解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。
如:-2x>4,不等式两边同除以-2得x<-2。
不等式组的解集是两个不等式解集的公共部分。
如{3、分式有意义的条件:分母≠04、绝对值:|a|=a (a≥0);|a|= - a (a<0)一、二次根式的概念一般地,我们把形如 a (a≥0)的式子叫做二次根式,“”称为二次根号。
★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“2”,我们一般省略根指数2,写作“”。
如25 可以写作 5 。
(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。
(3)式子 a 表示非负数a的算术平方根,因此a≥0, a ≥0。
其中a≥0是 a 有意义的前提条件。
(4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。
(5)形如b a (a≥0)的式子也是二次根式,b与 a 是相乘的关系。
要注意当b是分数时不能写成带分数,例如832 可写成8 23,但不能写成 2232 。
练习:一、判断下列各式,哪些是二次根式?(1) 6 ;(2)-18 ;(3)x2+1 ;(4)3-8 ;(5)x2+2x+1 ;(6)3|x|;(7)1+2x (x<-12)X≥-2X<5的解集为-2≤x<5。
二、当x 取什么实数时,下列各式有意义?(1)2-5x ;(2)4x 2+4x+1二、二次根式的性质:二次根式的性质符号语言文字语言应用与拓展注意a (a ≥0)的性质a ≥0 (a ≥0)一个非负数的算术平方根是非负数。
(1)二次根式的非负性(a ≥0,a ≥0)应用较多,如:a+1 +b-3 =0,则a+1=0,b-3=0,即a= -1,b=3;又如x-a +a-x ,则x 的取值范围是x-a ≥0,a-x ≥0,解得x=a 。
《二次根式》知识点总结-题型分类-复习专用.doc
《二次根式》题型分类知识点一:二次根式的概念 【知识要点】二次根式的定义:形如五的戎子叫二次根式,其中么叫被开 方数,只有当么是一个非负数时,石才有意义.【典型例题】题型一:二次根式的判定【例1】下列各式1)卫,2)底,3)-存714)扬,5)』(-A 6)举一反三:1、 使代数式有意义的X 的取值范围是x-4( )A 、x>3 B. x > 3C 、 x>4D 、 x 》3且XH 42、 若式子丁鼻有意义,则x 的取值范围\l x — 3是 _____________ .题型去二次根式定义的运用【例 31 若 y= Qx-5 +』5-x ,则 x+y= _______________7)J/著换三:若x 、y 都是实数,且yr 求xy 的值1、下列各式中,一定是二次根式的是( )A 、乔B 、V^IOC 、yfa + lD 、题型二:二次根式有意义【例2】J 兀-2有意义的x 的取值范围是 ---------已知a 是亦整数部分,b 是 亦的小数部分, 求a-b 的值。
V5V 3,其中是二次根式的是 ------------ (填序号). 举一反三: 2、在丽、Vl + x 2 、的中是二次根式的个数有 ------- 个3、当。
取什么值时,代数式血 + 1+1取值最小, 并求出这个最小值。
知识点二:二次根式的性质【知识要点】1.非负性:V^(a>0)是一个非负数.2. (V^)2 =a(a>0).注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全 平方的形式:a = (7a)2(a>0)4.公式=\a\=l a^~^ 与(Va)2 =a(a>0)的区别与联系-a(a < 0)(1) 品表示求一个数的平方的算术根,a 的范围是一切实数. (2) (需尸表示一个数的算术平方根的平方,a 的范围是非负数. (3) Q 和(石尸的运算结果都是非负的.【典型例题】題型二:二次根式的牲廣2(公式(石)2二a(a > 0)的运用)注意:此性质可作公式记住,后面根式运算中经常用到.f 例5】化简:卜一1| + (丁^二5)2的结果为()A 、4-2aB 、0C 、2a —4D 、4举一反三:在实数范围内分解因式:才-3二 _________________ ; 題型去二次根式餉濒3(公式7^? = |a| = J a(a ~0)的应用)注意:(1)字母不一定是正数.-a(a < 0)(2) 能开得尽方的因式移到根号外时,必须用它的算术平方根代替.(3) 可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.f 例6】已知x<2,则化简J(x —2)2的结果是A % x — 2B 、兀+ 2C. —X — 2D. 2 — x3.=|a|= <a(a > 0)-a(a < 0)举一反三:1、根式J(-3)2的值是()A. -3B. 3 或-3C. 3D. 9那么|疑-2a |可化简为()2、已知a<0,A. - aB. aC. 一3aD. 3a【例71如果表示a, b两个实数的点在数轴上的位置如图所示,那么化简| a-b | + J(a + b)2的结果等于() ---- ----- -- --- Ab a oA. -2bB. 2bC. -2aD. 2a举一反三:实数a在数轴上的位置如图所示:化简:0-1| +J(Q-2)2= ______________ . 寸—()j-*-I:例811、把二次根式agl化简,正确的结果是( )A. J—aB. — J-aC. — -VaD.2、__________________________________________________________ 把根号外的因式移到根号内:当b>0时,-V7 = ; (。
二次根式知识点归纳及题型总结
二次根式知识点及题型归纳1. 二次根式的概念二次根式的定义: 形如)0(≥a a 的式子叫二次根式,其中a 叫被开方数,只有当a 是一个非负数时,a 才有意义.2. 二次根式的性质1. 非负性:)0(≥a a 是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到.2.)0()(2≥=a a a注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:)0()(2≥=a a a3. ⎩⎨⎧<-≥==)0()0(2a a a a a a 注意:(1)字母不一定是正数. (2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.4. 二次根式混合运算二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。
3. 最简二次根式和同类二次根式1、最简二次根式:(1)最简二次根式的定义:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或因式;分母中不含根号.2、同类二次根式(可合并根式):几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式4. 二次根式计算——分母有理化1.分母有理化定义:把分母中的根号化去,叫做分母有理化。
2.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。
有理化因式确定方法如下:①单项二次根式:利用a a a =⋅来确定,如:a 与a ,b a +与b a +,b a -与b a -等分别互为有理化因式。
②两项二次根式:利用平方差公式来确定。
如b a +与b a -,b a +与b a -,y b x a +与y b x a -分别互为有理化因式。
3.分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;5. 二次根式计算——二次根式的乘除1.积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。
二次根式的知识点、典型例题、练习
第十六章 二次根式的知识点、典型例题及相应的练习1、二次根式的概念:1、定义:一般地,形如a (a≥0)的代数式叫做二次根式。
当a≥0时,a 表示a 的算术平方根,当a 小于0时,非二次根式(在一元二次方程中,若根号下为负数,则无实数根)概念:式子a (a≥0)叫二次根式。
a (a≥0)是一个非负数。
题型一:判断二次根式(1)下列式子,哪些是二次根式,哪些不是二次根式:2、33、1x 、x (x>0)、0、42、-2、1x y+、x y +(x≥0,y ≥0). (2)在式子()()()230,2,12,20,3,1,2x x y y x x x x y+=--++中,二次根式有( )A. 2个B. 3个C. 4个D. 5个(3)下列各式一定是二次根式的是( )A. 7-B. 32mC. 21a +D. a b2、二次根式有意义的条件题型二:判断二次根式有没有意义1、写出下列各式有意义的条件:(1)43-x (2)a 831- (3)42+m (4)x 1- 2、21x x --有意义,则 ; 3、若x x x x --=--3232成立,则x 满足_______________。
典型练习题:1、当x 是多少时, 23x ++11x +在实数范围内有意义?2、当x 是多少时,23x x++x 2在实数范围内有意义? 3、当__________时,212x x ++-有意义。
4、使式子2(5)x --有意义的未知数x 有( )个.A .0B .1C .2D .无数 5、已知y=2x -+2x -+5,求x y的值. 6、若3x -+3x -有意义,则2x -=_______.7、若11m m -++有意义,则m 的取值范围是 。
8、已知()222x x -=-,则x 的取值范围是 。
9、使等式()()1111x x x x +-=-+成立的条件是 。
10、已知233x x +=-x 3+x ,则( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤011、若x <y <0,则222y xy x +-+222y xy x ++=( )(A )2x (B )2y (C )-2x (D )-2y12、若0<x <1,则4)1(2+-x x -4)1(2-+xx 等( ) (A )x 2 (B )-x2 (C )-2x (D )2x 13、化简aa 3-(a <0)得( ) (A )a - (B )-a (C )-a - (D )a3、最简二次根式的化简最简二次根式是特殊的二次根式,他需要满足:(1)被开方数的因数是整数,字母因式是整式;(2)被开方数中不含能开的尽方的因数或因式。
(完整版)二次根式知识点归纳及题型总结精华版
二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1.;2.;3.;4.积的算术平方根的性质:;5. 商的算术平方根的性质:.6.假设,那么.知识点二、二次根式的运算1.二次根式的乘除运算(1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号.(2)注意每一步运算的算理;2.二次根式的加减运算先化简,再运算,3.二次根式的混杂运算(1) 明确运算的序次,即先乘方、开方,再乘除,最后算加减,有括号先算括号里;(2) 整式、分式中的运算律、运算法那么及乘法公式在二次根式的混杂运算中也同样适用.一. 利用二次根式的双重非负性来解题〔a0 〔a≥0〕,即一个非负数的算术平方根是一个非负数。
〕1.〕。
A、3;B、x ;C、x21;D、x1以下各式中必然是二次根式的是〔2.等式(x 1)2=1- x 成立的条件是 _____________ .3.当 x____________ 时,二次根式2x 3 有意义.4.x 取何值时,以下各式在实数范围内有意义。
〔 1〕〔 2〕1〔3〕5x 2 x1x4〔 4〕假设x( x1)x x1,那么 x 的取值范围是〔 5〕假设x3x3,那么 x 的取值范围是。
x1x16.假设3m 1 有意义,那么m能取的最小整数值是;假设 20m 是一个正整数,那么正整数m的最小值是________.7.当 x 为何整数时,10x11有最小整数值,这个最小整数值为。
8. 假设2004 a a2005a ,那么a2004 2=_____________;假设y x33x 4 ,那么x y9.设 m、n 满足n m299m22mn =。
m 3,那么10. 假设三角形的三边a、 b、 c 满足a24a 4 b 3 =0,那么第三边c的取值范围是11. 假设|4x8 |x y m0 ,且 y 0 时,那么〔〕 A 、0m1 B 、m2C、m 2 D、 m 2利用二次根式的性质2a(a b)(即一个数的平方的算术平方根等于这个数的绝对值)来解题二. a =|a|=0(a0)a(a0)1.x33x2=-x x 3 ,那么〔〕 A.x≤0 B. x≤- 3C. x≥- 3 D.- 3≤x≤ 02.. a<b,化简二次根式 a 3b 的正确结果是〔〕A.a ab B .a ab C. a ab D .a ab3.假设化简 | 1-x |-28x16 的结果为2x-5 那么〔〕 A 、 x 为任意实数B、1≤ x≤ 4C、 x≥1 D 、x≤ 4 x4. a, b, c 为三角形的三边,那么(a b c)2(b c a) 2(b c a) 2=5.当 -3<x<5 时,化简26921025 =。
二次根式知识点归纳及题型总结-精华版
二次根式知识点归纳与题型归类一、知识框图二、知识要点梳理知识点一、二次根式得主要性质:1、; 2、; 3、;ﻫ4、积得算术平方根得性质:;ﻫ5、商得算术平方根得性质:、6、若,则、知识点二、二次根式得运算1.二次根式得乘除运算(1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号、(2)注意每一步运算得算理;2.二次根式得加减运算先化简,再运算, ﻫ3.二次根式得混合运算(1)明确运算得顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里;ﻫ(2)整式、分式中得运算律、运算法则及乘法公式在二次根式得混合运算中也同样适用、一、利用二次根式得双重非负性来解题((a≥0),即一个非负数得算术平方根就是一个非负数。
)1、下列各式中一定就是二次根式得就是()。
A、; B、;C、; D、2.等式=1-x成立得条件就是_____________.3.当x____________时,二次根式有意义.4、x取何值时,下列各式在实数范围内有意义。
(1) (2) (3) ﻫ(4)若,则x得取值范围就是(5)若,则x得取值范围就是。
6、若有意义,则m能取得最小整数值就是 ;若就是一个正整数,则正整数m得最小值就是________.7、当x为何整数时,有最小整数值,这个最小整数值为。
8、若,则=_____________;若,则9.设m、n满足,则=。
10、若三角形得三边a、b、c满足=0,则第三边c得取值范围就是11、若,且时,则( ) A、B、ﻩC、D、二.利用二次根式得性质=|a|=(即一个数得平方得算术平方根等于这个数得绝对值)来解题1、已知=-x,则( ) A、x≤0 B、x≤-3 C、x≥-3 D、-3≤x≤02、.已知a<b,化简二次根式得正确结果就是()A. B. C.D.3、若化简|1-x|-得结果为2x-5则( ) A、x为任意实数B、1≤x≤4 C、x≥1 D、x≤44、已知a,b,c为三角形得三边,则=5、当-3<x<5时,化简= 。
二次根式知识点总结及常见题型
二次根式知识点总结及常见题型一、二次根式的定义形如a (a ≥0)的式子叫做二次根式.其中“”叫做二次根号,a 叫做被开方数.(1)二次根式有意义的条件是被开方数为非负数.据此可以确定字母的取值范围; (2)判断一个式子是否为二次根式,应根据以下两个标准判断: ①是否含有二次根号“”;②被开方数是否为非负数.若两个标准都符合,则是二次根式;若只符合其中一个标准,则不是二次根式.(3)形如a m (a ≥0)的式子也是二次根式,其中m 叫做二次根式的系数,它表示的是:a m a m ⋅=(a ≥0);(4)根据二次根式有意义的条件,若二次根式B A -与A B -都有意义,则有B A =. 二、二次根式的性质 二次根式具有以下性质:(1)双重非负性:a ≥0,a ≥0;(主要用于字母的求值) (2)回归性:()a a =2(a ≥0);(主要用于二次根式的计算)(3)转化性:⎩⎨⎧≤-≥==)0()0(2a a a a a a .(主要用于二次根式的化简)重要结论:(1)若几个非负数的和为0,则每个非负数分别等于0. 若02=++C B A ,则0,0,0===C B A . 应用与书写规范:∵02=++C B A ,A ≥0,2B ≥0,C ≥0∴0,0,0===C B A . 该性质常与配方法结合求字母的值. (2)()()()⎩⎨⎧≤-≥-=-=-B A A B B A B A B A B A 2;主要用于二次根式的化简.(3)()()⎪⎩⎪⎨⎧<⋅->⋅=0022A B A A B A B A ,其中B ≥0; 该结论主要用于某些带系数的二次根式的化简:可以考虑把二次根号外面的系数根据符号以平方的形式移到根号内,以达到化简的目的. (4)()B A BA ⋅=22,其中B ≥0.该结论主要用于二次根式的计算. 例1. 式子11-x 在实数范围内有意义,则x 的取值范围是_________.分析:本题考查二次根式有意义的条件,即被开方数为非负数,注意分母不能为0. 解:由二次根式有意义的条件可知:01>-x ,∴1>x . 例2. 若y x ,为实数,且2111+-+-=x x y ,化简:11--y y .分析:本题考查二次根式有意义的条件,且有重要结论:若二次根式B A -与A B -都有意义,则有B A =. 解:∵1-x ≥0,x -1≥0 ∴x ≥1,x ≤1 ∴1=x ∴1212100<=++=y ∴11111-=--=--y yy y . 习题1. 如果53+a 有意义,则实数a 的取值范围是__________. 习题2. 若233+-+-=x x y ,则=y x _________. 习题3. 要使代数式x 21-有意义,则x 的最大值是_________. 习题4. 若函数xxy 21-=,则自变量x 的取值范围是__________. 习题5. 已知128123--+-=a a b ,则=b a _________.例3. 若04412=+-+-b b a ,则ab 的值等于 【 】(A )2- (B )0 (C )1 (D )2分析:本题考查二次根式的非负性以及结论:若几个非负数的和为0,则每个非负数分别等于0.解:∵04412=+-+-b b a ∴()0212=-+-b a∵1-a ≥0,()22-b ≥0∴02,01=-=-b a ∴2,1==b a∴221=⨯=ab .选择【 D 】.例4. 无论x 取任何实数,代数式m x x +-62都有意义,则m 的取值范围是__________. 分析:无论x 取任何实数,代数式m x x +-62都有意义,即被开方数m x x +-62≥0恒成立,所以有如下两种解法:解法一:由题意可知:m x x +-62≥0 ∵()93622-+-=+-m x m x x ≥0∴()23-x ≥m -9∵()23-x ≥0∴m -9≤0,∴m ≥9. 解法二:设m x x y +-=62∵无论x 取任何实数,代数式m x x +-62都有意义 ∴m x x y +-=62≥0恒成立即抛物线m x x y +-=62与x 轴最多有一个交点 ∴()m m 436462-=--=∆≤0解之得:m ≥9.例 5. 已知c b a ,,是△ABC 的三边长,并且满足c c b a 20100862=++-+-,试判断△ABC 的形状.分析:非负数的性质常和配方法结合用于求字母的值. 解:∵c c b a 20100862=++-+- ∴010020862=+-+-+-c c b a ∴()010862=-+-+-c b a∵6-a ≥0,8-b ≥0,()210-c ≥0∴010,08,06=-=-=-c b a ∴10,8,6===c b a∵10010,10086222222===+=+c b a ∴222c b a =+ ∴△ABC 为直角三角形.习题 6. 已知实数y x ,满足084=-+-y x ,则以y x ,的值为两边长的等腰三角形的周长为 【 】 (A )20或16 (B )20(C )16 (D )以上答案均不对习题7. 当=x _________时,119++x 取得最小值,这个最小值为_________.习题8. 已知24422--+-=x x x y ,则y x 的值为_________.习题9. 已知非零实数b a ,满足()()a b a b a a =++-+-++-415316822,求1-b a 的值.提示:由()()152+-b a ≥0,且012>+b 可得:5-a ≥0,∴a ≥5.例6. 计算:(1)()26; (2)()232+x ; (3)2323⎪⎪⎭⎫⎝⎛-. 分析:本题考查二次根式的性质: ()a a =2(a ≥0).该性质主要用于二次根式的计算.解:(1)()662=;(2)()32322+=+x x ;(3)()6329323323222=⨯=⎪⎪⎭⎫ ⎝⎛⨯-=⎪⎪⎭⎫ ⎝⎛-. 注意:()B A B A ⋅=22,其中B ≥0.该结论主要用于二次根式的计算.例7. 化简:(1)225; (2)2710⎪⎭⎫ ⎝⎛-; (3)962+-x x ()3<x .分析:本题考查二次根式的性质:⎩⎨⎧≤-≥==)0()0(2a a a a a a .该性质主要用于二次根式的化简.解:(1)2525252==;(2)7107107102=-=⎪⎭⎫ ⎝⎛-; (3)()339622-=-=+-x x x x∵3<x ∴原式x -=3.注意: 结论:()()()⎩⎨⎧≤-≥-=-=-B A A B B A B A B A B A 2.该结论主要用于二次根式和绝对值的化简.例8. 当3-x 有意义时,化简:()()22125x x x -+-++.解:∵二次根式3-x 有意义 ∴3-x ≥0 ∴x ≥3 ∴()()22125x x x -+-++图(1)23125125+=-+-++=-+-++=x x x x x x x例9. 化简:()()2223-+-x x .分析:()222-=-x x ,继续化简需要x 的取值范围,而取值范围的获得需要挖掘题目本身的隐含条件:3-x 的被开方数3-x 为非负数. 解:由二次根式有意义的条件可知:3-x ≥0 ∴x ≥3 ∴()()2223-+-x x522323-=-+-=-+-=x x x x x 例10. 已知10<<a ,化简=-+-++2121aa a a __________. 解:∵10<<a ∴aa 1<∴2121-+-++aa a a aaa a a a a a a a a a a a a a a 21111111122=+-+=⎪⎭⎫⎝⎛--+=--+=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+= 例11. 已知直线()23-+-=n x m y (n m ,是常数), 如图(1),化简1442--+---m n n n m . 解:由函数()23-+-=n x m y 的图象可知:02,03<->-n m∴2,3<>n m∴1442--+---m n n n m()()()1121212122-=+-+--=-----=-----=-----=m n n m m n n m m n n m m n n m例12. 已知c b a ,,在数轴上的位置如图(2)所示,化简:()()222b a c c a a --++-.解:由数轴可知:b a c <<<0 ∴0<+c a ∴()()222b a c c a a --++-ba b c a c a a b a c c a a -=--+++-=--++--=习题10. 要使()()2222-=-x x ,x 的取值范围是__________.习题11. 若02=+a a ,则a 的取值范围是__________.习题12. 计算:=⎪⎪⎭⎫⎝⎛243_________. 习题13. 计算:=⎪⎭⎫⎝⎛-2221_________. 习题14. 若()332-=-x x 成立,则x 的取值范围是__________.习题15. 下列等式正确的是 【 】 (A )()332= (B )()332-=-(C )333= (D )()332-=-习题16. 下列各式成立的是 【 】图(2)(A )21212-=⎪⎭⎫ ⎝⎛- (B )()ππ-=-332(C )21212=⎪⎪⎭⎫ ⎝⎛ (D )74322=+ 习题17. 计算:()=-272_________.习题18. 化简:()=+-22x x_________.习题19. 若=-+=++++-b a a b b a a 22221,01213则________. 习题20. 已知01<<-a ,化简414122+⎪⎭⎫ ⎝⎛-+-⎪⎭⎫ ⎝⎛+a a a a 得__________. 习题21. 实数c b a ,,在数轴上对应的点如图(3)所示,化简代数式:222212b ab a c b a a +---++-的结果为 【 】 (A )12--c b (B )1- (C )12--c a (D )1+-c b习题22. 化简:()2232144--+-x x x .例13. 把aa 1-中根号外的因式移到根号内,结果是 【 】 (A )a - (B )a - (C )a (D )a --分析:本题实为二次根式的化简:某些二次根式在化简时,把根号外的系数移到根号内,可以达到化简的目的,但要注意根号外面系数的符号.有如下的结论:()()⎪⎩⎪⎨⎧<⋅->⋅=0022A B A A B A B A ,其中B ≥0. 图(3)解:由二次根式有意义的条件可知:01>-a∴0<a ∴a a a a a --=⎪⎭⎫⎝⎛-⋅-=-112.选择【 D 】. 习题23. 化简()212--a a 得__________. 三、二次根式的乘法 一般地,有:ab b a =⋅(a ≥0,b ≥0)(1)以上便是二次根式的乘法公式,注意公式成立的条件:a ≥0,b ≥0.即参与乘法运算的每个二次根式的被开方数均为非负数;(2)二次根式的乘法公式用于二次根式的计算;(3)两个带系数的二次根式的乘法为:ab mn b n a m =⋅(a ≥0,b ≥0); (4)二次根式的乘法公式可逆用,即有:b a ab ⋅=(a ≥0,b ≥0)公式的逆用主要用于二次根式的化简.注意公式逆用的条件不变.例14. 若()66-=-⋅x x x x 成立,则 【 】 (A )x ≥6 (B )0≤x ≤6 (C )x ≥0 (D )x 为任意实数分析:本题考查二次根式乘法公式成立的条件:ab b a =⋅(a ≥0,b ≥0)解:由题意可得:⎩⎨⎧≥-≥060x x解之得:x ≥6. 选择【 A 】.例15. 若1112-⋅+=-x x x 成立,则x 的取值范围是__________.分析:本题考查二次根式乘法公式逆用成立的条件:b a ab ⋅=(a ≥0,b ≥0)解:由题意可得:⎩⎨⎧≥-≥+0101x x解之得:x ≥1. 例16. 计算:a a 812⋅(a ≥0). 解:a a a a a a a 21214181281222=⎪⎭⎫ ⎝⎛==⋅=⋅(a ≥0). 习题24. 计算:=⨯2731_________. 习题25. 已知()21233-⨯⎪⎪⎭⎫⎝⎛-=m ,则有 【 】 (A )65<<m (B )54<<m (C )45-<<-m (D )56-<<-m 习题26. 化简12的结果是_________. 四、二次根式的除法 一般地,有:baba =(a ≥0,0>b ) (1)以上便是二次根式的除法公式,要特别注意公式成立的条件; (2)二次根式的除法公式用于二次根式的计算;(3)二次根式的除法公式可写为:b a b a ÷=÷ (a ≥0,0>b ); (4)二次根式的除法公式可逆用,即有:ba b a =(a ≥0,0>b ) 公式的逆用主要用于二次根式的化简,注意公式逆用的条件不变. 五、最简二次根式符合以下条件的二次根式为最简二次根式: (1)被开方数中不含有完全平方数或完全平方式; (2)被开方数中不含有分母或小数.注意:二次根式的计算结果要化为最简二次根式.六、分母有理化把分母中的根号去掉的过程,叫做分母有理化. 如对21进行分母有理化,过程为:2222221=⨯=;对321+进行分母有理化,过程为:()()723232323321-=-+-=+. 由举例可以看出,分母有理化是借助于分数或分式的性质实现的.例17. 计算:(1)654; (2)3223238÷; (3)()22728y xy -÷. 解:(1)39654654===; (2)24338169388323383823383832383223238=⨯==⨯⨯=÷⨯=÷=÷; (3)()x x y xy y xy 247287282222-=-=÷-=-÷.例18. 化简: (1)65; (2)4.0; (3)a a a 9623+-(3>a ). 解:(1)63066656565=⨯⨯==; (2)51052524.0===; (3)∵3>a ∴()()()a a a a a a a a a a 3396962223-=-=+-=+- 注意:随着学习的深入,在熟练时某些计算或化简的环节可以省略,以简化计算. 例19. 式子2121-+=-+x x x x 成立的条件是__________.分析:本题求解的是x 的取值范围,考查了二次根式除法公式逆用成立的条件:ba b a = (a ≥0,0>b ). 解:由题意可得:⎩⎨⎧>-≥+0201x x 解之得:2>x .例20. 计算:(1)7523⨯; (2)5120-; (3)2832-. 解:(1)5225275237523==⨯=⨯; (2)552515205120-=-=-; (3)解法1:224416282322832=-=-=-=-. 解法2:()2248216642228322832=-=-=⨯⨯-=-. 二次根式的乘除混合运算例21. 计算:(1)⎪⎪⎭⎫ ⎝⎛-÷⨯21223222330; (2)182712⨯÷. 解:(1)原式⎪⎪⎭⎫ ⎝⎛-÷⨯=252382330 232443216435238302123-=⨯⨯-=⨯⨯-=⨯⨯⨯⎪⎭⎫ ⎝⎛-⨯=(2)原式228324182712===⨯=.习题27. 下列计算正确的是 【 】(A )3212= (B ) (C ) (D )x x =2习题28. 计算:=÷⨯213827_________. 习题29. 计算:=÷32643x x _________. 习题30. 直线13-=x y 与x 轴的交点坐标是_________.习题31. 如果0,0<+>b a ab ,那么下面各式:①ba b a =; ②1=⋅a b b a ; ③b b a ab -=÷. 其中正确的是_________(填序号).习题32. 若0<ab ,则化简2ab 的结果是_________.习题33. 计算:(1)⎪⎪⎭⎫ ⎝⎛-⨯÷7225283212; (2)⎪⎪⎭⎫ ⎝⎛÷⨯2143236181841.例22. 先化简,再求值:1441132+++÷⎪⎭⎫ ⎝⎛+-+x x x x x ,其中22-=x . 解:1441132+++÷⎪⎭⎫ ⎝⎛+-+x x x x x ()()()()()()2221122211111322+--=++⋅+-+-=++⋅⎥⎦⎤⎢⎣⎡+-+-+=x x x x x x x x x x x x x 2323=x x x -=-3当22-=x 时 原式122242222222-=--=+----=.习题34. 先化简,再求值:11121122-+÷+-+--a a a a a a ,其中12+=a .习题35. 先化简,再求值:2222221y xy x y x x x yx +--÷⎪⎭⎫ ⎝⎛---,其中6,2==y x .习题36. 下列根式中是最简二次根式的是【】 (A )32(B )3 (C )9 (D )12例23. 观察下列各式: ()()()()()().;34434343431;23323232321;12212121211 -=-+-=+-=-+-=+-=-+-=+ (1)请利用上面的规律直接写出100991+的结果;(2)请用含n (n 为正整数)的代数式表示上述规律,并证明;(3)计算:()20171201720161431321211+⨯⎪⎭⎫ ⎝⎛++++++++ . 分析:本题考查分母有理化.解:(1)1131099100100991-=-=+; (2)n n n n -+=++111; (3)原式()()2017120162017342312+⨯-++-+-+-= ()()2016120171201712017=-=+-= 习题37. 化简:891231121++++++ .七、同类二次根式 如果几个最简二次根式的被开方数相同,那么它们是同类二次根式. 同类二次根式的判断方法:(1)先化简二次根式;(2)看被开方数是否相同;(3)定结果:若相同,则它们是同类二次根式;若不相同,则不是.同类二次根式的合并方法:几个同类二次根式相加减,将它们的系数相加减,二次根式保持不变.八、二次根式的加减二次根式相加减,先把各个二次根式化简,再合并同类二次根式.二次根式加减运算的步骤:(1)化简参与运算的二次根式;(2)合并同类二次根式;(3)检查结果.例24. 计算:(1)12188++; (2)451227+-. 解:(1)原式3225322322+=++=;(2)原式533533233+=+-=.注意:不是同类二次根式不能合并.例25. 计算:1832225-+.解:原式232425-+=2272225=+=例26. 计算:(1)⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛+32233223;(2)()()()23225775-++-.解:(1)原式223223⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛=36199243=-=(2)原式364875+-+-=649-=.。
(word完整版)二次根式知识点总结及常见题型,推荐文档
应用与书写规范:∵ A B 2 C 0 ,
A ≥0, B 2 ≥0, C ≥0
∴ A 0, B 0, C 0 . 该性质常与配方法结合求字母的值.
第1页
(2)
A B2
AB
A B
BA AA
B B;主要用于二次根式的化简.
(3) A
B
A2 B A 0
,其中 B ≥0;
A2 B A 0
(1)双重非负性: a ≥0, a ≥0;(主要用于字母的求值)
2
(2)回归性: a a ( a ≥0);(主要用于二次根式的计算)
(3)转化性:
a2
a
a(a a(a
0) 0)
.(主要用于二次根式的化简)
重要结论:
(1)若几个非负数的和为 0,则每个非负数分别等于 0.
若 A B 2 C 0 ,则 A 0, B 0, C 0 .
a2 三、二次根式的乘法
一般地,有: a b ab ( a ≥0, b ≥0)
(1)以上便是二次根式的乘法公式,注意公式成立的条件: a ≥0, b ≥0.即参与乘法运算的 每个二次根式的被开方数均为非负数; (2)二次根式的乘法公式用于二次根式的计算;
第9页
(3)两个带系数的二次根式的乘法为: m a n b mn ab ( a ≥0, b ≥0); (4)二次根式的乘法公式可逆用,即有:
第4页
例 6. 计算:
2
(1) 6 ;
2
(2) 2x 3 ;
(3) 3
2 3
2
.
2
分析:本题考查二次根式的性质: a a ( a ≥0).该性质主要用于二次根式的计算.
2
解:(1) 6 6 ;
二次根式知识点归纳和题型归类
二次根式知识点归纳和题型归类一、知识点归纳二次方程,是一种整式方程,其未知项的最高次数是2,且各项未知数的次数只能是自然数。
一个二次方程只含有一个未知数 x,那么就称其为一元二次方程,其主要内容包括方程求解、方程图像、一元二次函数求最值三个方面;如果一个二次方程含有二个未知数x、y,那么就称其为二元二次方程,以此类推。
二次方程是一种整式方程,其未知项的最高次数是2。
根的判定是利用判别式判定。
二次方程中最常见的是一元二次方程。
二次方程根的判定解实系数一元二次方程时,必须关注解是实数还是复数,通过判断判别式的正负可以判断。
对于任意一个一元二次方程:(1)若△<0,方程无实数根,有两个复数根:(2)若△=0,方程有两个相等的实根:(3)若△>0,方程有两个不等实根。
解一元二次方程的基本思想是设法把所有方程变形成和它同解的两个最简单的一元一次方程.该方法主要是通过因式分解,把一个一元二次方程的求解问题转化为一元一次方程的求解问题,通常把这种方法也叫作降次求解方法,这种方法也适用于某些高次方程。
学好一元二次方程的第二个要求就是要会解一元二次方程,一元二次方程属于高次方程;所以我们解题的基本思路就是降次,其主要方法有四种:(1)直接开方法;(2)因式分解法;(3)配方法;(4)公式法。
二、二次方程的求根公式解ax^2+bx+c=0的解。
移项,ax^2+bx=-c两边除a,然后再配方,x^2+(b/a)x+(b/2a)^2=-c/a+(b/2a)^2[x+b/(2a)]^2=[b^2-4ac]/(2a)^2两边开平方根,解得x=[-b±√(b2-4ac)]/(2a)。
二次根式知识点总结大全
二次根式【知识回顾】1.二次根式:式子a (a ≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:(1)(a )2=a (a ≥0); (2) 5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.ab =a ·b (a≥0,b≥0); b b a a=(b≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】1、概念与性质a (a >0) ==a a 2 a -(a <0)0 (a =0);例1下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+, 其中是二次根式的是_________(填序号).例2、求下列二次根式中字母的取值范围(1)x x --+315;(2)22)-(x例3、 在根式1) 222;2);3);4)275x a b x xy abc +-,最简二次根式是()A .1) 2)B .3) 4)C .1) 3)D .1) 4)例4、已知:的值。
求代数式22,211881-+-+++-+-=x yy xx y y x x x y例5、 (2009龙岩)已知数a ,b ,若2()a b -=b -a ,则 ( )A. a>bB. a<bC. a≥bD. a≤b2、二次根式的化简与计算例1. 将根号外的a 移到根号内,得 ( ) A. ; B. -; C. -;D.例2. 把(a -b )-1a -b 化成最简二次根式例3、计算:例4、先化简,再求值:11()ba b b a a b ++++,其中a=512+,b=512-.例5、如图,实数a 、b 在数轴上的位置,化简 :222()a b a b ---3、在实数范围内分解因式例. 在实数范围内分解因式。
二次根式知识点总结及常见题型
二次根式知识点总结及常见题型资料编号:一、二次根式的定义形如.a( a >0)的式子叫做二次根式.其中“”叫做二次根号,a叫做被开方数.(1)二次根式有意义的条件是被开方数为非负数.据此可以确定字母的取值范围;(2)判断一个式子是否为二次根式,应根据以下两个标准判断:①是否含有二次根号“”;②被开方数是否为非负数.若两个标准都符合,则是二次根式;若只符合其中一个标准,则不是二次根式.(3)形如m・.a ( a > 0)的式子也是二次根式,其中m叫做二次根式的系数,它表示的是:m- a m a ( a > 0);(4)根据二次根式有意义的条件,若二次根式、、A B与.B A都有意义,则有A B.二、二次根式的性质二次根式具有以下性质(1)双重非负性:..a >0, a >0;(主要用于字母的求值)(2)回归性:...a2 a( a > 0);(主要用于二次根式的计算)(3)转化性:a2 a a(a (主要用于二次根式的化简)a(a 0)重要结论:(1)若几个非负数的和为°,则每个非负数分别等于0.若 A B2C 0,贝卩 A 0,B 0,C 0.应用与书写规范:V A B2.C 0,A > 0, B2>0,、C > 0A 0,B 0,C 0.该性质常与配方法结合求字母的值.(2)•. AB2 AB A BA B ;主要用于二次根式的化简.A2 B A 0(3)A国—,其中 B > 0;<A2 B A 0该结论主要用于某些带系数的二次根式的化简:可以考虑把二次根号外面的系数根据符号以平方的形式移到根号内,以达到化简的目的.2(4) A B A2 B,其中 B > 0.该结论主要用于二次根式的计算.例1.式子〒二在实数范围内有意义,则x的取值范围是 ____________ .寸x 1分析:本题考查二次根式有意义的条件,即被开方数为非负数,注意分母不能为0.解:由二次根式有意义的条件可知:x 1 0,二x 1.例2.若x,y为实数,且y -x 1 J x丄,化简:丄」.2 y 1分析:本题考查二次根式有意义的条件,且有重要结论:若二次根式A B与B A都有意义,则有A B .解:•/ x 1 > 0, 1 x > 0x》1, x W 1/. x 1• 1 1 ,…y 0 0 12 2习题1.如果V3C有意义,则实数a的取值范围是_____________ .习题 2.若y 4^32,则x y_____________ .习题3.要使代数式(P 有意义,则x的最大值是 _______________ .习题4.若函数y 丄空,则自变量x的取值范围是.x习题5. 已知b J3a 12 <8 2a 1,贝廿a b__________________ .例 3. 若.a 1 b2 4b 4 0 ,贝卩ab 的值等【】(A) 2 (B) 0 (C) 1 (D) 2分析:本题考查二次根式的非负性以及结论:若几个非负数的和为0,则每个非负数分别等于0.解:T1 b2 4b 4 0/. a 1 b 2 20T a 1 > 0, b 2 2> 0二 a 1 0,b 2 0「• ab 1 2 2.选择【D ] 例4.无论x取任何实数,代数式x2 6x m都有意义,则m的取值范围是 __________ .分析:无论x取任何实数,代数式.x2 6x m都有意义,即被开方数x2 6x m > 0恒成立,所以有如下两种解法:解法一:由题意可知:x2 6x m > 0T x2 6x m x 3 2 m 9 > 0--x 3 > 9 m•/ x 3 2> 0/. 9 m < 0, A m > 9.解法二:设y x2 6x mT•无论x取任何实数,代数式x2 6x m都有意义A y x2 6x m》0恒成立即抛物线y x2 6x m与x轴最多有一个交点2A 6 4m 36 4m < 0解之得:m > 9.例5.已知a,b,c是厶ABC勺三边长,并且满足、、a 6 8 b c2 100 20c,试判断△ ABC勺形状.分析:非负数的性质常和配方法结合用于求字母的值解:T a 6 8 b c2100 20ca 6b 8 c220c 100 0.a 6 b 8 c 10 20T a 6 > 0, b 8 > 0, c 10 2> 0二 a 6 0, b 8 0,c 10 0二 a 6, b 8, c 10T a2 b26282100,c2102100•••△ ABC为直角三角形.习题6.已知实数x,y满足x 4,Y 8 0,则以x,y的值为两边长的等(A) 20或16 (B) 20解:(1 )-6 2 6;(D )以上答案均不对习题7.当x ________________ 时,<9x 1 1取得最小值,这个最小值为习题8.已知V 我4韶X?,则x y 的值为x 2习题9.已知非零实数a,b 满足.a 2 8a 16 b 3 . a 5 b 2 1 4 a ,求a b1的值.提示:由 a 5 b 2 1 > 0,且 b 2 1 0可得:a 5》0, — a > 5.例6•计算:二次根式的计算.(C ) 16 —2(1)6 ;------------- 2(2)2x 3 ;(3)3,3分析:本题考查二次根式的性质_ 2 ______________________________________________________ . ”.a a ( a > 0).该性质主要用于_ ______ 2(2)、2x 3 2x 3;-2 - 2(3)3J - 3 29 - 6. ^3丫 3 3注意:A. B 2 A 2 B ,其中B > 0.该结论主要用于二次根式的计算例7.化简:I2(1)< 252 ; ( 2)10; ( 3). X 2 6x 9 x 3 .¥7二次根式的化简. 解:(1).25225 25;10 ;7;二原式 3 x .和绝对值的化简.分析:本题考查二次根式的性质:a 2aaa(a 0)0).该性质主要用于(2)注意:结论:.A B 2A BABA B A A.该结论主要用于二次根式10 7(3) x 2 6x 932例10.已知0 a 1 ,化简:a ; 2例8.当、、x 3有意义时,化简:x 5 . x 22.. 1解:•••二次根式、x 3有意义-----2'xx 5 x 2 1xx 5 x 2 x 13x 2例9. 化简:i.2一 x 2分析:,x 2 2x 2,继续化简需要x 的取值范围需要挖掘题目本身的隐含条件 「X 3的被开方数 ,而取值范围的获得x 3为非负数.解:由二次根式有意义的条件可知:* 3 >----------- 2 --------------------------x 3 x 2x 3 x 2 x 3 x 22x 5221解:由函数y m 3x n 2的图象可知: m 3 0, n 2 0m 3,n 2m n | :n 2 4n 4 |m 1m n..n 2 2 m1mn n2 m 1 m n 2 n m 1m n 2 n m 1解:•/ 0 a 1• r~ 1…、.a —.a2肓I.a 1 ■- a1 a 1 .a例11.已知直线y m 3 x n 2 ( m,n 是常数),如图(1),化简m| *n 2 4n 4 m 1 .x例12.已知a,b,c在数轴上的位置如图(2 )所示,化简:ac a 0图(2)解:由数轴可知:c a 0 b二 a a c $ 、c a $ . b2习题10.要使..x 2 2 x 2 2 ,x的取值范围是习题11.若.a2 a 0,则a的取值范围是习题12.习题13.计算:〉2习题14. 若:.x 3 2x 3成立,则x的取值范围是15. 下列等式正确2 __________________________________________________________ _____ _(A )品 3(B )厂〒 3___ 2(C )-..33 3(D )、、3 3习题18.化简:厂2卫 _________________ .习题 19.若 Ja 2 3a 1 b 2 2b 1 0,则a 2 丄 b ______________________a2 '2~习题20.已知1 a 0,化简{ a 14J a 14得 -----------16.下 列 各 式成 立 的 是(A )(B )32 3(C )(D), 32 42 7习题17.计算:2、72习题21.实数a,b,c 在数轴上对应的点如图3)所示,化简代数式: a 2 2a 1 b c | ::a 2 2ab b 2的【 】 结果为(A ) 2b c 1(B ) 1(C) 2a c 1 (D) b c 11 212例13.把a 1中根号外的因式移到根号内,结果是Y a【 】(A ) . a( B ) .. a ( C ) . a( D )a分析:本题实为二次根式的化简:某些二次根式在化简时,把根号外的 系数移到根号内,可以达到化简的目的,但要注意根号外面系数的符 号.有如下的结论:解:由二次根式有意义的条件可知:1 0a图(3)习题22.化简:.4x 2 4x 1________ 2“2x 3A-BA 2B A 0 A 2B A 0,其中B > 0.1 a 1aa .选择【D ]习题23.化简2「工得\a 2 ----------------------三、二次根式的乘法一般地,有:a b ab ( a > 0, b > 0)(1)以上便是二次根式的乘法公式,注意公式成立的条件:a >0, b > 0.即参与乘法运算的每个二次根式的被开方数均为非负数;(2)二次根式的乘法公式用于二次根式的计算;(3)两个带系数的二次根式的乘法为:m.. a n b mn._ ab ( a > 0, b > 0);(4)二次根式的乘法公式可逆用,即有:' ab a ' b ( a》0, b》0)公式的逆用主要用于二次根式的化简.注意公式逆用的条件不变.例14.若.x x 6 .. x x 6 成立,则【】(C) x > 0 (D) x为任意实数(A) x》6(B) 0w x w 63分析:本题考查二次根式乘法公式成立的条件:•. a .b . ab ( a > 0, b > 0)解:由题意可得解之得:x > 6.选择【A J .例15.若Vx2 i jx i 成立,则x的取值范围是___________________分析:本题考查二次根式乘法公式逆用成立的条件:ab - a0, b >0)解:由题意可得解之得:x > 1.例16.计算:..2a :;a ( a >0) 解:2a 8a .2a 8a >2■. :a厂a》0)习题24.计算:J-叼 ______________ .习题25. 已知2 213(A ) 5 m 6(C )5 m 4(D )6 m 5习题26.化简 辺 的结果是 __________ .四、二次根式的除法般地,有:(1) 以上便是二次根式的除法公式,要特别注意公式成立的条件(2) 二次根式的除法公式用于二次根式的计算;(3) 二次根式的除法公式可写为:•. a . a b ( a > 0, b 0 )(4) 二次根式的除法公式可逆用,即有:公式的逆用主要用于二次根式的化简,注意公式逆用的条件不变 五、最简二次根式符合以下条件的二次根式为最简二次根式(B) 4 m 5:a(a》o,b(1)被开方数中不含有完全平方数或完全平方式(2)被开方数中不含有分母或小数.注意:二次根式的计算结果要化为最简二次根式.六、分母有理化把分母中的根号去掉的过程,叫做分母有理化.如对寺进行分母有理化,过程为:〒2 2 2 2;对、233进行42分母有理化,过程为:丽 3 、2 3 -、23 .2 3 27 '由举例可以看出,分母有理化是借助于分数或分式的性质实现的.例17•计算:(1 ;(2)8占23 ;(3)J28xy2 J7『.解:(1)54 54.9 3;(2)83 3 228338 8 3 8 8 3 3 8 9 8 3(2)®2 3 23 8:2 3、3 3 -2 3 3-2 8 3 “6 3 ;2;v4x 2丘.3 - 28xy2...7y2 28xy2 7y2例18.化简:(1) 5;(2) .、0.4;(3) ,.a3 6a2 9a ( a 3).Y 6解:(1) 5i5'-5 6 30 .解:(1)'. 6 .6 .6、6 可;(—5; ¥;(3)V a 3/. .a3 6a2 9a a a2 6a 9 、aa 32 a 3 , a注意:随着学习的深入,在熟练时某些计算或化简的环节可以省略以简化计算.例19.式子$ —旦成立的条件是\x 2 v x 2 ----------------------分析:本题求解的是x的取值范围,考查了二次根式除法公式逆用成立的条件:a a\ b vb(a > 0, b 0 )解:由题意可得解之得:x 2.2 4-16 2 4,2 4 3、-2例20.计算:⑵201解:(1)3 . 752 2 .275 ■. 25 ~5(2)(3) 解法1:32'.8.232 8.16 42 24 22.解法 2: 32.82:、22 、8 、2 ■::2 」2• 64 、162二次根式的乘除混合运算 例21.计算:222W ;(2)■ 12 .27.18.解:(〔)原式竝号芒2£18 3(2原式1218f --- 1 O 24、8 2.2.;27■ 3习题27.下列计算正确的是【】(A)J2 2.3(B) . 3\ 22(C)、、x3x.. x(D). x2x习题28.计算:727 J8黒.\ 3 \ 2 -------------------习题29.计算:^r6x y2\卜.\ 3习题30.直线y打x 1与x轴的交点坐标是____________ .习题31.如果ab 0, a b 0 ,那么下面各式:①,a a;②.a . b 1;③ ab ,a b.-b . b■. b . a,b其中正确的是__________ (填序号).习题32.若ab 0,则化简J硬的结果是 _____________ .习题33.计算:(1)■. 2 1 3.28 5 22;(2)1 18 8 1〈41\ 2 V 7 4 * 36 ^2X 3 4x 4 n3X 1 X 1 X 1 X 1X 12x 2X 2 x 2 X 1X 1 X 22X 2X2当X2 2时原式2 2 2 2 4222 2 2J 、J3X例也先化简,再求值:耳X 1=,其中X 2 *-习题34.先化简,再求值:占a 1 a 2 2a 1时其中 a 2 1.2 2x y2 2X 2xy y习题36.下列根式中是最简二次根式的是(B) 3(C) .9 (D) 、12例23.观察下列各式:112 .313 .41 、21 \2 1 2■ 3 .2;卅4 ?3;(1)请利用上面的规律直接写出 199 .100的结果(2)请用含n ( n为正整数)的代数式表示上述规律,并证明;(3)计算:丿I 1 V2017■ 2016-2017分析:本题考查分母有理化2. 100、99 10 3 11 ; •、99 .100(2).2017 1 . 2017 12017 1 2016七、同类二次根式如果几个最简二次根式的被开方数相同,那么它们是同类二次根 式•同类二次根式的判断方法:(1) 先化简二次根式;(2) 看被开方数是否相同;(3) 定结果:若相同,则它们是同类二次根式;若不相同,则不是.同类二次根式的合并方法几个同类二次根式相加减,将它们的系数相加减,二次根式保持解:(1) (3)原式 2 1,3 ,2.3 .2017 ,2016 1 .. 2017习题37.化简:二1、9 、8不变.八、二次根式的加减二次根式相加减,先把各个二次根式化简,再合并同类二次根式二次根式加减运算的步骤:(1)化简参与运算的二次根式;(2)合并同类二次根式;(3)检查结果.例24.计算:(1).8 -.18 12;(2)• 27 ■. 12 . 45 .解:(1)原式2、2 3-2 2..3 5 2 2 3 ;(2)原式 3 3 2.3 3 5 ,3 3.5 .注意:不是同类二次根式不能合并例25 •计算:..25 32 <18.2解:原式4.2 3、\2 .227、22例26 •计算:(1)三二虫二T V T V解:(1)原式3 24 91936(2)原式 5 7 8 463习题35.先化简,再求值:--x 12。
初二二次根式所有知识点总结和常考题提高难题压轴题练习含答案解析)
初二二次根式所有知识点总结和常考题知识点:1、二次根式: 形如)0(≥a a 的式子。
①二次根式必须满足:含有二次根号“”;被开方数a 必须是非负数。
②非负性2、最简二次根式:满足:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式的二次根式。
3、化最简二次根式的方法和步骤:(1)如果被开方数含分母,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
(2)如果被开方数含能开得尽方的因数或因式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。
3、二次根式有关公式(1))0()(2≥=a a a (2)a a =2(3)乘法公式)0,0(≥≥∙=b a b a ab(4)除法公式)0,0( b a ba b a ≥= 4、二次根式的加减法则:先将二次根式化为最简二次根式,再将被开方数相同的二次根式进行合并。
5、二次根式混合运算顺序:先乘方,再乘除,最后加减,有括号的先算括号里的。
常考题:一.选择题(共14小题)1.下列二次根式中属于最简二次根式的是( ) A .B .C .D .2.式子有意义的x 的取值范围是( )A .x ≥﹣且x ≠1B .x ≠1C .D .3.下列计算错误的是( )A .B .C .D .4.估计的运算结果应在( )A .6到7之间B .7到8之间C .8到9之间D .9到10之间5.如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥6.若=(x+y)2,则x﹣y的值为()A.﹣1 B.1 C.2 D.37.是整数,则正整数n的最小值是()A.4 B.5 C.6 D.78.化简的结果是()A.B.C.D.9.k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n10.实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定11.把根号外的因式移入根号内得()A.B.C.D.12.已知是正整数,则实数n的最大值为()A.12 B.11 C.8 D.313.若式子有意义,则点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限14.已知m=1+,n=1﹣,则代数式的值为()A.9 B.±3 C.3 D.5二.填空题(共13小题)15.实数a在数轴上的位置如图所示,则|a﹣1|+= .16.计算:的结果是.17.化简:(﹣)﹣﹣|﹣3|= .18.如果最简二次根式与是同类二次根式,则a= .19.定义运算“@”的运算法则为:x@y=,则(2@6)@8= .20.化简×﹣4××(1﹣)0的结果是.21.计算:﹣﹣= .22.三角形的三边长分别为,,,则这个三角形的周长为cm.23.如果最简二次根式与能合并,那么a= .24.如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是.(结果保留根号)25.实数p在数轴上的位置如图所示,化简= .26.计算:= .27.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= .三.解答题(共13小题)28.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得= ;参照(四)式得= .(3)化简:+++…+.29.计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0+.30.先化简,再求值:,其中.31.先化简,再求值:,其中x=1+,y=1﹣.32.先化简,再求值:,其中.33.已知a=,求的值.34.对于题目“化简并求值:+,其中a=”,甲、乙两人的解答不同.甲的解答:+=+=+﹣a=﹣a=;乙的解答:+=+=+a﹣=a=.请你判断谁的答案是错误的,为什么?35.一个三角形的三边长分别为、、(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.36.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.37.已知:,,求代数式x2﹣xy+y2值.38.计算或化简:(1);(2)(a>0,b>0).39.先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m,=,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.40.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若a+4=,且a、m、n均为正整数,求a的值?初二二次根式所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共14小题)1.(2005•岳阳)下列二次根式中属于最简二次根式的是()A.B.C. D.【分析】B、D选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.【解答】解:因为:B、=4;C、=;D、=2;所以这三项都不是最简二次根式.故选A.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.2.(2013•娄底)式子有意义的x的取值范围是()A.x≥﹣且x≠1 B.x≠1 C.D.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得,2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1.故选A.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.(2007•荆州)下列计算错误的是()A.B.C.D.【分析】根据二次根式的运算法则分别计算,再作判断.【解答】解:A、==7,正确;B、==2,正确;C、+=3+5=8,正确;D、,故错误.故选D.【点评】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.4.(2008•芜湖)估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间【分析】先进行二次根式的运算,然后再进行估算.【解答】解:∵=4+,而4<<5,∴原式运算的结果在8到9之间;故选C.【点评】本题考查了无理数的近似值问题,现实生活中经常需要估算,“夹逼法”是估算的一般方法,也是常用方法.5.(2011•烟台)如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥【分析】由已知得1﹣2a≥0,从而得出a的取值范围即可.【解答】解:∵,∴1﹣2a≥0,解得a≤.故选:B.【点评】本题考查了二次根式的化简与求值,是基础知识要熟练掌握.6.(2009•荆门)若=(x+y)2,则x﹣y的值为()A.﹣1 B.1 C.2 D.3【分析】先根据二次根式的性质,被开方数大于或等于0,可求出x、y的值,再代入代数式即可.【解答】解:∵=(x+y)2有意义,∴x﹣1≥0且1﹣x≥0,∴x=1,y=﹣1,∴x﹣y=1﹣(﹣1)=2.故选:C.【点评】本题主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.7.(2012秋•麻城市校级期末)是整数,则正整数n的最小值是()A.4 B.5 C.6 D.7【分析】本题可将24拆成4×6,先把化简为2,所以只要乘以6得出62即可得出整数,由此可得出n的值.【解答】解:∵==2,∴当n=6时,=6,∴原式=2=12,∴n的最小值为6.故选:C.【点评】本题考查的是二次根式的性质.本题还可将选项代入根式中看是否能开得尽方,若能则为答案.8.(2013•佛山)化简的结果是()A.B.C.D.【分析】分子、分母同时乘以(+1)即可.【解答】解:原式===2+.故选:D.【点评】本题考查了分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.9.(2013•台湾)k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n【分析】根据二次根式的化简公式得到k,m及n的值,即可作出判断.【解答】解:=3,=15,=6,可得:k=3,m=2,n=5,则m<k<n.故选:D【点评】此题考查了二次根式的性质与化简,熟练掌握二次根式的化简公式是解本题的关键.10.(2011•菏泽)实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定【分析】先从实数a在数轴上的位置,得出a的取值范围,然后求出(a﹣4)和(a﹣11)的取值范围,再开方化简.【解答】解:从实数a在数轴上的位置可得,5<a<10,所以a﹣4>0,a﹣11<0,则,=a﹣4+11﹣a,=7.故选A.【点评】本题主要考查了二次根式的化简,正确理解二次根式的算术平方根等概念.11.(2013秋•五莲县期末)把根号外的因式移入根号内得()A.B.C.D.【分析】根据二次根式的性质及二次根式成立的条件解答.【解答】解:∵成立,∴﹣>0,即m<0,原式=﹣=﹣.故选:D.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.二次根式成立的条件:被开方数大于等于0,含分母的分母不为0.12.(2009•绵阳)已知是正整数,则实数n的最大值为()A.12 B.11 C.8 D.3【分析】如果实数n取最大值,那么12﹣n有最小值;又知是正整数,而最小的正整数是1,则等于1,从而得出结果.【解答】解:当等于最小的正整数1时,n取最大值,则n=11.故选B.【点评】此题的关键是分析当等于最小的正整数1时,n取最大值.13.(2005•辽宁)若式子有意义,则点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据二次根式的被开方数为非负数和分母不为0,对a、b的取值范围进行判断.【解答】解:要使这个式子有意义,必须有﹣a≥0,ab>0,∴a<0,b<0,∴点(a,b)在第三象限.故选C.【点评】本题考查二次根式有意义的条件,以及各象限内点的坐标的符号.14.(2013•上城区一模)已知m=1+,n=1﹣,则代数式的值为()A.9 B.±3 C.3 D.5【分析】原式变形为,由已知易得m+n=2,mn=(1+)(1﹣)=﹣1,然后整体代入计算即可.【解答】解:m+n=2,mn=(1+)(1﹣)=﹣1,原式====3.故选:C.【点评】本题考查了二次根式的化简求值:先把被开方数变形,用两个数的和与积表示,然后利用整体代入的思想代入计算.二.填空题(共13小题)15.(2004•山西)实数a在数轴上的位置如图所示,则|a﹣1|+= 1 .【分析】根据数轴上表示的两个数,右边的数总比左边的大,分别得出a﹣1与0,a﹣2与0的关系,然后根据绝对值的意义和二次根式的意义化简.【解答】解:根据数轴上显示的数据可知:1<a<2,∴a﹣1>0,a﹣2<0,∴|a﹣1|+=a﹣1+2﹣a=1.故答案为:1.【点评】本题主要考查了数轴,绝对值的意义和根据二次根式的意义化简.二次根式的化简规律总结:当a≥0时,=a;当a≤0时,=﹣a.16.(2013•南京)计算:的结果是.【分析】先进行二次根式的化简,然后合并同类二次根式即可.【解答】解:原式=﹣=.故答案为:.【点评】本题考查了二次根式的加减运算,属于基础题,关键是掌握二次根式的化简及同类二次根式的合并.17.(2013•泰安)化简:(﹣)﹣﹣|﹣3|= ﹣6 .【分析】根据二次根式的乘法运算法则以及绝对值的性质和二次根式的化简分别化简整理得出即可.【解答】解:(﹣)﹣﹣|﹣3|=﹣3﹣2﹣(3﹣),=﹣6.故答案为:﹣6.【点评】此题主要考查了二次根式的化简与混合运算,正确化简二次根式是解题关键.18.(2006•广安)如果最简二次根式与是同类二次根式,则a= 5 .【分析】根据最简二次根式和同类二次根式的定义,列方程求解.【解答】解:∵最简二次根式与是同类二次根式,∴3a﹣8=17﹣2a,解得:a=5.【点评】此题主要考查最简二次根式和同类二次根式的定义.19.(2007•芜湖)定义运算“@”的运算法则为:x@y=,则(2@6)@8= 6 .【分析】认真观察新运算法则的特点,找出其中的规律,再计算.【解答】解:∵x@y=,∴(2@6)@8=@8=4@8==6,故答案为:6.【点评】解答此类题目的关键是认真观察新运算法则的特点,找出其中的规律,再计算.20.(2014•荆州)化简×﹣4××(1﹣)0的结果是.【分析】先把各二次根式化为最简二次根式,再根据二次根式的乘法法则和零指数幂的意义计算得到原式=2﹣,然后合并即可.【解答】解:原式=2×﹣4××1=2﹣=.故答案为:.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.21.(2014•广元)计算:﹣﹣= ﹣2 .【分析】分别进行分母有理化、二次根式的化简,然后合并求解.【解答】解:==﹣2.故答案为:﹣2.【点评】本题考查了二次根式的加减法,本题涉及了分母有理化、二次根式的化简等运算,属于基础题.22.(2013•宜城市模拟)三角形的三边长分别为,,,则这个三角形的周长为5cm.【分析】三角形的三边长的和为三角形的周长,所以这个三角形的周长为++,化简合并同类二次根式.【解答】解:这个三角形的周长为++=2+2+3=5+2(cm).故答案为:5+2(cm).【点评】本题考查了运用二次根式的加减解决实际问题.23.(2012秋•浏阳市校级期中)如果最简二次根式与能合并,那么a= 1 .【分析】根据两最简二次根式能合并,得到被开方数相同,然后列一元一次方程求解即可.【解答】解:根据题意得,1+a=4a﹣2,移项合并,得3a=3,系数化为1,得a=1.故答案为:1.【点评】本题考查了最简二次根式,利用好最简二次根式的被开方数相同是解题的关键.24.(2006•宿迁)如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是2﹣2 .(结果保留根号)【分析】根据题意可知,两相邻正方形的边长分别是和,由图知,矩形的长和宽分别为+、,所以矩形的面积是为(+)•=2+6,即可求得矩形内阴影部分的面积.【解答】解:矩形内阴影部分的面积是(+)•﹣2﹣6=2+6﹣2﹣6=2﹣2.【点评】本题要运用数形结合的思想,注意观察各图形间的联系,是解决问题的关键.25.(2003•河南)实数p在数轴上的位置如图所示,化简=1 .【分析】根据数轴确定p的取值范围,再利用二次根式的性质化简.【解答】解:由数轴可得,1<p<2,∴p﹣1>0,p﹣2<0,∴=p﹣1+2﹣p=1.【点评】此题从数轴读取p的取值范围是关键.26.(2009•泸州)计算:= 2 .【分析】运用二次根式的性质:=|a|,由于2>,故=2﹣.【解答】解:原式=2﹣+=2.【点评】合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.27.(2011•凉山州)已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= 2.5 .【分析】只需首先对估算出大小,从而求出其整数部分a,其小数部分用﹣a表示.再分别代入amn+bn2=1进行计算.【解答】解:因为2<<3,所以2<5﹣<3,故m=2,n=5﹣﹣2=3﹣.把m=2,n=3﹣代入amn+bn2=1得,2(3﹣)a+(3﹣)2b=1化简得(6a+16b)﹣(2a+6b)=1,等式两边相对照,因为结果不含,所以6a+16b=1且2a+6b=0,解得a=1.5,b=﹣0.5.所以2a+b=3﹣0.5=2.5.故答案为:2.5.【点评】本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.三.解答题(共13小题)28.(2009•邵阳)阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得= ;参照(四)式得= .(3)化简:+++…+.【分析】(1)中,通过观察,发现:分母有理化的两种方法:1、同乘分母的有理化因式;2、因式分解达到约分的目的;(2)中,注意找规律:分母的两个被开方数相差是2,分母有理化后,分母都是2,分子可以出现抵消的情况.【解答】解:(1)=,=;(2)原式=+…+=++…+=.【点评】学会分母有理化的两种方法.29.(2014•张家界)计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0+.【分析】根据零指数幂、负整数指数幂和平方差公式得到原式=5﹣1﹣9+﹣1﹣1+2,然后合并即可.【解答】解:原式=5﹣1﹣9+﹣1﹣1+2=﹣7+3.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂.30.(2009•广州)先化简,再求值:,其中.【分析】本题的关键是对整式化简,然后把给定的值代入求值.【解答】解:原式=a2﹣3﹣a2+6a=6a﹣3,当a=时,原式=6+3﹣3=6.【点评】本题主要考查整式的运算、平方差公式等基本知识,考查基本的代数计算能力.注意先化简,再代入求值.31.(2005•沈阳)先化简,再求值:,其中x=1+,y=1﹣.【分析】这是个分式除法与减法混合运算题,运算顺序是先做括号内的减法,此时要注意把各分母先因式分解,确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.【解答】解:原式===;当x=1+,y=1﹣时,原式=.【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.32.(2010•莱芜)先化简,再求值:,其中.【分析】这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式去括号,把除法转换为乘法化简,然后再代入求值.本题注意x﹣2看作一个整体.【解答】解:原式====﹣(x+4),当时,原式===.【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.33.(2008•余姚市校级自主招生)已知a=,求的值.【分析】先化简,再代入求值即可.【解答】解:∵a=,∴a=2﹣<1,∴原式=﹣=a﹣1﹣=a﹣1+=2﹣﹣1+2+=4﹣1=3.【点评】本题考查了二次根式的化简与求值,将二次根式的化简是解此题的关键.34.(2002•辽宁)对于题目“化简并求值:+,其中a=”,甲、乙两人的解答不同.甲的解答:+=+=+﹣a=﹣a=;乙的解答:+=+=+a﹣=a=.请你判断谁的答案是错误的,为什么?【分析】因为a=时,a﹣=﹣5=﹣4<0,所以≠a﹣,故错误的是乙.【解答】解:甲的解答:a=时,﹣a=5﹣=4>0,所以=﹣a,正确;乙的解答:因为a=时,a﹣=﹣5=﹣4<0,所以≠a﹣,错误;因此,我们可以判断乙的解答是错误的.【点评】应熟练掌握二次根式的性质:=﹣a(a≤0).35.(2011•上城区二模)一个三角形的三边长分别为、、(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.【分析】把三角形的三边长相加,即为三角形的周长.再运用运用二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解:(1)周长=++==,(2)当x=20时,周长=,(或当x=时,周长=等)【点评】对于第(2)答案不唯一,但要注意必须符合题意.36.(2005•台州)我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.【分析】(1)代入计算即可;(2)需要在括号内都乘以4,括号外再乘,保持等式不变,构成完全平方公式,再进行计算.【解答】解:(1)s=,=;p=(5+7+8)=10,又s=;(2)=(﹣)=,=(c+a﹣b)(c﹣a+b)(a+b+c)(a+b﹣c),=(2p﹣2a)(2p﹣2b)•2p•(2p﹣2c),=p(p﹣a)(p﹣b)(p﹣c),∴=.(说明:若在整个推导过程中,始终带根号运算当然也正确)【点评】考查了三角形面积的海伦公式的用法,也培养了学生的推理和计算能力.37.(2009秋•金口河区期末)已知:,,求代数式x2﹣xy+y2值.【分析】观察,显然,要求的代数式可以变成x,y的差与积的形式,从而简便计算.【解答】解:∵,,∴xy=×2=,x﹣y=∴原式=(x﹣y)2+xy=5+=.【点评】此类题注意变成字母的和、差或积的形式,然后整体代值计算.38.(2010秋•灌云县校级期末)计算或化简:(1);(2)(a>0,b>0).【分析】(1)先化简,再运用分配律计算;(2)先化简,再根据乘除法的法则计算.【解答】解:(1)原式==6﹣12﹣6=6﹣18;(2)原式=﹣×=﹣3a2b2×=﹣a2b.【点评】熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.39.(2013秋•故城县期末)先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m,=,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【解答】解:根据,可得m=13,n=42,∵6+7=13,6×7=42,∴==.【点评】解题关键是把根号内的式子整理为完全平方的形式.40.(2013•黔西南州)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= m2+3n2,b= 2mn ;(2)利用所探索的结论,找一组正整数a、b、m、n填空: 4 + 2 =( 1+ 1 )2;(3)若a+4=,且a、m、n均为正整数,求a的值?【分析】(1)根据完全平方公式运算法则,即可得出a、b的表达式;(2)首先确定好m、n的正整数值,然后根据(1)的结论即可求出a、b的值;(3)根据题意,4=2mn,首先确定m、n的值,通过分析m=2,n=1或者m=1,n=2,然后即可确定好a的值.【解答】解:(1)∵a+b=,∴a+b=m2+3n2+2mn,∴a=m2+3n2,b=2mn.故答案为:m2+3n2,2mn.(2)设m=1,n=1,∴a=m2+3n2=4,b=2mn=2.故答案为4、2、1、1.(3)由题意,得:a=m2+3n2,b=2mn∵4=2mn,且m、n为正整数,∴m=2,n=1或者m=1,n=2,∴a=22+3×12=7,或a=12+3×22=13.【点评】本题主要考查二次根式的混合运算,完全平方公式,解题的关键在于熟练运算完全平方公式和二次根式的运算法则.。
二次根式知识点总结及常见题型
二次根式知识点总结及常见题型二次根式知识点总结及常见题型一、二次根式的定义形如$a\sqrt{a}$的式子叫做二次根式。
其中$\sqrt{a}$叫做二次根号,$a$叫做被开方数。
1) 二次根式有意义的条件是被开方数为非负数。
据此可以确定字母的取值范围。
2) 判断一个式子是否为二次根式,应根据以下两个标准判断:①是否含有二次根号“$\sqrt{}$”;②被开方数是否为非负数。
若两个标准都符合,则是二次根式;若只符合其中一个标准,则不是二次根式。
3) 形如$m\sqrt{a}$的式子也是二次根式,其中$m$叫做二次根式的系数,它表示的是:$m\sqrt{a}=m\cdot\sqrt{a}$。
4) 根据二次根式有意义的条件,若二次根式$A-B$与$B-A$都有意义,则有$A=B$。
二、二次根式的性质二次根式具有以下性质:1) 双重非负性:$a\geq0$,$\sqrt{a}\geq0$。
(主要用于字母的求值)2) 回归性:$(\sqrt{a})^2=a$,其中$a\geq0$。
(主要用于二次根式的计算)begin{cases}sqrt{a}(a\geq0)\\sqrt{a}(a\leq0)end{cases}$(主要用于二次根式的化简)重要结论:1) 若几个非负数的和为0,则每个非负数分别等于0.若$A+B^2+C=0$,则$A=0$,$B=0$,$C=0$。
应用与书写规范:$\because A+B^2+C=0$,$A\geq0$,$B^2\geq0$,$C\geq0$,$\therefore A=0$,$B=0$,$C=0$。
该性质常与配方法结合求字母的值。
2) $\begin{cases}A-B(A\geq B)\\frac{(A-B)^2}{A+B}\end{cases}$(主要用于二次根式的化简)3) $AB=\begin{cases}A\cdot B(A>0)\\A\cdot B(A<0)\end{cases}$,其中$B\geq0$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式知识点归纳和题型归类
一、知识框图
二、知识要点梳理
知识点一、二次根式的主要性质:
1.;
2.;
3.;
4.积的算术平方根的性质:;
5.商的算术平方根的性质:.
6.若,则.
知识点二、二次根式的运算
1.二次根式的乘除运算
(1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号.
(2) 注意每一步运算的算理;
2.二次根式的加减运算先化简,再运算,
3.二次根式的混合运算(1)明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里;
(2)整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用.
一. 利用二次根式的双重非负性来解题(0≥a (a ≥0),即一个非负数的算术平方根是一个非负数。
)
1.下列各式中一定是二次根式的是( )。
A 、3-; B 、x ; C 、12+x ; D 、1-x
2.等式2)1(-x =1-x 成立的条件是_____________.
3.当x ____________时,二次根式32-x 有意义.
4.x 取何值时,下列各式在实数范围内有意义。
(1)
(2)121+-x (3)45++x x
(4)若1)1(-=-x x x x ,
则x 的取值范围是 (5)若1
313++=++x x x x ,则x 的取值范围是 。
6.若13-m 有意义,则m 能取的最小整数值是 ;若20m 是一个正整数,则正整数m 的最小值是________.
7.当x 为何整数时,1110+-x 有最小整数值,这个最小整数值为 。
8. 若20042005a a a -+-=,则22004a -=_____________;若433+-+-=x x y ,则=+y x
9.设m 、n 满足3
29922-+-+-=m m m n ,则mn = 。
10. 若三角形的三边a 、b 、c 满足3442-++-b a a =0,则第三边c 的取值范围是
11.若0|84|=--+-m y x x ,且0>y 时,则( ) A 、10<<m B 、2≥m C 、2<m D 、2≤m
二.利用二次根式的性质2a =|a |=⎪⎩
⎪⎨⎧<-=>)0()
0(0)(a a a b a a (即一个数的平方的算术平方根等于这个数的绝对值)来解题 1.已知233x x +=-x 3+x ,则( ) A.x ≤0 B.x ≤-3 C.x ≥-3 D.-3≤x ≤0
2..已知a<b ,化简二次根式b a 3-的正确结果是( )A .ab a -- B .ab a - C .ab a D .ab a -
3.若化简|1-x |-1682+-x x 的结果为2x-5则( ) A 、x 为任意实数 B 、1≤x ≤4 C 、x ≥1 D 、x ≤4
4.已知a ,b ,c 为三角形的三边,则222)()()(a c b a c b c b a -++--+-+=
5. 当-3<x<5时,化简25109622+-+++x x x x = 。
6、化简)0(||2<<--y x x y x 的结果是( ) A .x y 2- B .y C .y x -2 D .y -
7、已知:221a a a +-+=1,则a 的取值范围是( )。
A 、0=a ; B 、1=a ; C 、0=a 或1; D 、1≤a
8、化简21)2(---x x 的结果为( ) A 、x -2; B 、2-x ;C 、2--
x D 、x --2
19. 已知:1
a
a
+=+2
2
a
a
+的值。
20. 已知:,x y为实数,且13
y x-+,化简:3
y-
21. 已知
()1
1
3
9
3
2
2
+
+
=
+
-
+
-
y
x
x
x
y
x
,求的值。