第一章第一节高分子材料基本加工工艺

合集下载

高分子材料技术手册

高分子材料技术手册

目录第一章高分子材料的合成工艺 (1)1.1 基本概念 (1)1.2 高分子聚合物的聚合反应 (3)1.2.1 缩合聚合 (3)1.2.2 加成聚合 (3)1.2.3 开环聚合 (5)1.3 高分子聚合物的聚合方法 (6)1.3.1本体聚合 (6)1.3.2 溶液聚合 (6)1.3.3悬浮聚合 (7)1.3.4乳液聚合 (8)1.4 高分子塑料的混合与塑化 (8)1.4.1原料的准备 (9)1.4.2 混合 (9)1.4.3塑化 (10)1.4.4粉碎和粒化 (11)第二章高分子材料的成型加工工艺 (13)2.1 成型工艺原理 (13)2.2 可加工性质 (13)2.3成型加工工艺 (14)2.3.1挤出 (14)2.3.2 注射模塑 (16)2.3.3 中空吹塑成型 (19)2.3.4 热成型 (19)2.3.5 拉幅薄膜成型 (20)2.3.6 冷成型 (20)2.4 橡胶的塑炼与混炼 (21)2.4.1 生胶的塑炼 (21)2.4.2 塑炼工艺 (23)2.4.3、胶料的混炼 (25)2.4.5 混炼工艺 (27)第三章高分子材料改性 (30)3.1 绪论 (30)3.2 化学改性 (30)3.2.1 化学反应的特征 (31)3.2.2 聚合物的基团反应 (32)3.2.3 聚合物的共聚反应 (35)3.2.4 氧化处理改性 (35)3.3物理改性 (36)3.3.1 高分子共混 (36)3.3.2 有机小分子共混 (38)3.3.3 无机小分子共混 (38)3.4 加工工艺改性 (38)3.4.1 聚合物聚合度的改变 (38)3.4.2 等离子体处理 (39)3.4.3 热处理 (39)第四章塑料性能检测 (40)4.1 绪论 (40)4.2.塑料性能测试的概述 (40)4.2.1 概述 (40)4.2.2 塑料性能测试的标准 (41)4.2.3 热塑性塑料性能测试样条制备 (42)4.2.4 性能测试时试验条件 (42)4.3 塑料物理性能测试 (43)4.3.1 塑料密度与相对密度的测定 (43)4.3.2 塑料吸水性的测试 (44)4.4 塑料力学性能测试 (44)4.4.1 拉伸性能测试 (44)4.4.2 弯曲性能测试 (45)4.4.3 冲击性能测试 (45)4.4.4 塑料硬度测试 (45)4.5塑料热性能测试 (46)4.5.1 塑料的热稳定性能测试 (46)4.5.2 塑料流动性测试 (47)4.6塑料老化性能测试 (49)4.6.1定义 (49)4.6.2 引起老化的原因 (50)4.6.3老化现象 (50)4.6.4研究老化的意义 (50)4.6.5 老化试验方法 (50)4.7 塑料其他性能测试 (50)4.7.1透光率与雾度的测试 (50)4.8 常用的性能测试仪器操作 (54)4.8.1 力学性能检测设备 (54)4.8.2 热学性能检测设备 (55)4.8.3 光学性能检测设备 (55)4.8.4 塑料老化性能及有关理化性能检测设备 (56)4.8.5 实验室加工设备 (56)附表:各种高分子材料的简称 (57)第一章高分子材料的合成工艺1.1 基本概念单体(Monomer)----高分子化合物是由一类相对分子质量很高的分子聚集而成的化合物,也称为高分子、大分子等。

高分子材料加工工艺聚合物流变学基础

高分子材料加工工艺聚合物流变学基础
度,类似凝胶;当外部τ作用而破坏暂时的交联点时,粘度即随 和剪切时间的增加而降低。 摇凝性液体
A.含义:在定温下表观粘度随剪切持续时间延长而增大的液体称为摇凝性液体。 B.原因:主要原因是溶液中不对称的粒子(椭球形线团)在剪切应力场的速度作用下取向排列形成暂时 次价交联点所致,这种绨合使粘度不断增加,最后形成凝胶状,只要外力作用一停止,暂时交联点就消除,粘 度重新降低。
应变:材料在应力作用下产生的形变和尺寸的改变称为应变。(单位长度的形变量) 根据受力方式不同,通常有三种类型:剪切应变(γ)、拉伸应变(ε)和流体静压力的均匀压缩
剪切速率
表示单位时间内的剪切应变
拉伸速率 牛顿粘度
表示单位时间内的拉伸应变
为比例常数,称为牛顿粘度。是液体自身所固有的性质,其表征液体抵抗外力 引起流动变形的能力。液体不同,粘度值不同与分子结构和温度有关,单位(
高分子材料加工工艺聚合物流 变学基础
流变学 流动+形变
高分子材料加工流变学?
第一节 高分子熔体流变行为
• 1 非牛顿型流动 • (1)牛顿流体 • 服从牛顿流动定律的流体称为牛顿流体 • (2)非牛顿流体 • 凡不服从牛顿流动定律的流体称为非牛顿流体
应力:单位面积上所受的力称为应力。 根据受力方式不同,通常有三种主要类型:剪切应力(τ)、拉伸应力(б)和流体静压力(P)
• 高分子流动不是简单的整个分子的迁移,而是链段的相继蠕动来实现的。类似于蛇的蠕动。链段的尺寸大 小约含几十个主链原子。
• 流动不复合牛顿流体的运动规律。粘度随剪切速率或剪切应力的大小而改变。 • 这个优点利于我们通过改变螺杆转速、压力等工艺参数调节熔体的粘度、改善其流动性。
• 聚合物在流动过程中所发生的形变一部分是可逆的,因为聚合物的流动并不是高分子链之间简单的相对滑 移的结果,而是链段分段运动的总结果,这样在外力作用下,高分子链不可避免地要顺外力方向有所伸展 ,聚合物进行黏性流动时,必然伴随高弹形变。在外力消除后,高分子链又要卷曲起来。

高分子材料成型加工PPT课件

高分子材料成型加工PPT课件

部分了解的章节
第二章、第三章、第四章、第十二章、第十三章
考核方式
习题、读书报告、期终考试
可编辑课件PPT仁 浙江大学 教授
• 1980年7月由潘祖仁先生和孙经武(天津 大学)合编《高分子化学》,为文化革命 后我国第一部正式的高校教材。
• 1986年由潘祖仁先生为主编,对全书进行 了较大修改后再次出版。其后十余年间一 直是各校的主要教材,1992年被评为全国 优秀教材。
可编辑课件PPT
23
2、高分子材料的成型加工
高分子材料 成型加工工艺
实用的材料 或制品
(聚合物+助剂) 这一过程的工程技术
1 如何实现—方法(挤出、注射、压制等) 2 方法不同,产品性能不同 3 材料不同,方法不同 4 方法不同,设备不同
可编辑课件PPT
24
3、高分子材料的制造
高分子 化合物制造
的设可编备辑课件PPT
3
课程性质:
高分子材料与工程专业的 专业课程 核心课程
可编辑课件PPT
4
授课方式:
PowerPoint 1、讲课
录像
讲要点(部分章节) 2、自学
出专题、查资料、写报告
做相关的小课题 3、课外兴趣小组
写专题读书报告、集体讨论
可编辑课件PPT
5
授课内容与考核:
主要讲授的章节
绪论、第一章、第五章、第六章、 第七章、第八章、第九章、第十章、第十一章
物理化学 分可析编辑化课学件PPT
高分子物理 物理
材料力学 流体力学
…...
22
1、高分子材料的定义
高分子材料是一定配合的高分子化合物(由主要 成分树脂或橡胶和次要成分添加剂组成)在成型设备 中,受一定温度和压力的作用熔融塑化,然后通过 模塑制成一定形状,冷却后在常温下能保持既定形 状的材料制品。

高分子材料加工技术--压制成型

高分子材料加工技术--压制成型
处理温度比成型温度高10~50℃。 整修——去除飞边。 热处理时间视塑料的品种、制品的结构和壁
厚而定
高分子材料成型加工
四、模压成型工艺和条件限制
高分子材料成型加工
模压压力的作用
促进物料流动,充满型腔提高成型效率。 增大制品密度,提高制品的内在质量。 克服放出的低分子物及塑料中的挥发物所 产生的压力,从而避免制品出现气泡、肿胀 或脱层。 闭合模具,赋予制品形状尺寸。
高分子材料成型加工
计量
重量法:按质量加料。准确但麻烦; 容量法:按体积加料。方便但不及重量法
准确。 记数法:按预压坯料计数。操作最快,
但预先有个预压计量操作。
高分子材料成型加工
预压
在室温下,把定量的料预先用冷压法压成一 定形状规则的型坯
特点
加料快,准确,简单,便于运转。 降低压缩率,可减小模具的装料量和模具高
高分子材料成型加工
嵌件安放
加料前放入模具 平稳,位置准确
加料
准确均匀 合理堆放
闭模
应先快后慢——阳模未接触物料之前,应尽可能使 闭 模速度快,而当阳模快要接触到物料时,闭模速度要 放慢。
有利于缩短非生产时间 防止模具损伤和嵌件移位; 有利于充分排除模内空气
高分子材料成型加工
排气
赶走气泡、水份、挥发物,缩短固化时间 过早,不能完全排气 过迟,制品表面已经固化,气体不能顺利排出
高分子材料成型加工
2.模压压力的确定
取决于塑料种类、模温、制品形状和尺寸以及 其它工艺条件。
塑料的流动性越小,硬化速率与快,压缩率越 大,需施加的压力越大;
制品形状越复杂,深度越大,面积越大时,需 施加的压力越大;
预热的塑料比未经预热的需施加的压力小在一 定范围内,提高模具温度可有利于模压压力的 降低,但模温过高,靠近模壁的塑料会过早固 化而使它对降低模压压力没有作用。

第一章 高分子材料基础知识

第一章  高分子材料基础知识

第一章高分子材料基础知识第一节.高分子材料的基本概念一、高分子材料的结构1.高分子的含义:高分子材料是以高分子化合物为主要成分(适当加入添加剂)的材料。

高分子化合物:1.天然:松香、石蜡、淀粉2.合成:塑料、合成橡胶、合成纤维高分子化合物都是一种或几种简单低分子化合物集合而成为分子量很大的化合物,又称为高聚物或聚合物。

通常分子量>5000 高分子材料没有严格界限<500 低分子材料如:同为1000的多糖(低),石蜡(高)一般高分子化合物具有较好的弹性、塑性及强度二、高分子化合物的组成:高分子化合物虽然分子量很大,但化学组成比较简单。

都是由一种或几种简单的低分子化合物聚合而成。

即是由简单的结构单元以重方式相连接。

例:聚乙烯由乙烯聚合而成{ }概念:单体——组成高分子化合物的低分子化合物链节——大分子链由许许多多结构相同的基本单元重复连接构成,组成大分子链的这种结构单元称为链节。

聚合度——链节的重复次数。

n↑导致机械强度↑熔融粘度↑流动性差,不利于成型加工。

n要严格控制。

三、高分子的合成:加聚反应、缩聚反应①加聚反应:指一种或几种单体,打开双键以共价键相互结合成大分子的一种反应例如:乙烯→聚乙烯(均聚)②分类:均聚:同种单体聚合共聚:两种或两种以上单体聚合(非金属合金丁二烯+苯乙烯→丁苯橡胶二元共聚三元共聚ABS:丙烯脂:耐腐蚀表面致密丁二烯:呈橡胶韧性苯乙烯:热塑加工)特点:反应进行很快链节的化学结构和单体的相同反应中没有小分子副产物生成②缩聚反应:指一种或几种单体相互混合儿连接成聚合物,同时析出(缩去)某种低分子物质的反应。

例:尼龙(聚酰胺)氨基酸,缩去一个水分子聚合而成。

特点:由若干步聚合反应构成,逐步进行。

链节化学结构与单体不完全相同,反应中有小分子副产物生成。

总结:目前80%的高分子材料由加聚反应得到。

四、聚合物的分类与命名①按聚合物分子的结构分类a.碳链聚合物:这一类聚合物分子主链是由碳原子一种元素所组成{ }侧基有多种,主要是聚烯烃、聚二烯烃(橡胶)b. 条链聚合物,器结构特点是除碳原子外,还有氧、氮、硫原子。

高分子材料成型加工原理

高分子材料成型加工原理

⾼分⼦材料成型加⼯原理第⼀章绪论1.按所属成型加⼯阶段划分,塑料成型加⼯可分为⼏种类型?分别说明其特点。

(1)⼀次成型技术⼀次成型技术,是指能将塑料原材料转变成有⼀定形状和尺⼨制品或半制品的各种⼯艺操作⽅法。

⽬前⽣产上⼴泛采⽤的挤塑、注塑、压延、压制、浇铸和涂覆等。

(2)⼆次成型技术⼆次成型技术,是指既能改变⼀次成型所得塑料半制品(如型材和坯件等)的形状和尺⼨,⼜不会使其整体性受到破坏的各种⼯艺操作⽅法。

⽬前⽣产上采⽤的只有双轴拉伸成型、中空吹塑成型和热成型等少数⼏种⼆次成型技术。

(3)⼆次加⼯技术这是⼀类在保持⼀次成型或⼆次成型产物硬固状态不变的条件下,为改变其形状、尺⼨和表观性质所进⾏的各种⼯艺操作⽅法。

也称作“后加⼯技术”。

⼤致可分为机械加⼯、连接加⼯和修饰加⼯三类⽅法。

2.成型⼯⼚对⽣产设备的布置有⼏种类型?(1)过程集中制⽣产设备集中;宜于品种多、产量⼩、变化快的制品;衔接⽣产⼯序时所需的运输设备多、费时、费⼯、不易连续化。

(2)产品集中制⼀种产品⽣产过程配套;宜于单⼀、量⼤、永久性强的制品、连续性强;物料运输⽅便,易实现机械化和⾃动化,成本降低。

3.塑料制品都应⽤到那些⽅⾯?(1)农牧、渔业(2)包装(3)交通运输(4)电⽓⼯业(5)化学⼯业(6)仪表⼯业(7)建筑⼯业(8)航空⼯业(9)国防与尖端⼯业(10)家具(11)体育⽤品和⽇⽤百货4.如何⽣产出⼀种新制品?(1)熟悉该种制品在物理、机械、热、电及化学性能等⽅⾯所应具备的指标;(2)根据要求,选定合适的塑料,从⽽决定成型⽅法;(3)成本估算;(4)试制并确定⽣产⼯艺规程、不断完善。

第⼆章塑料成型的理论基础1.什么是聚合物的结晶和取向?它们有何不同?研究结晶和取向对⾼分⼦材料加⼯有何实际意义?2.请说出晶态与⾮晶态聚合物的熔融加⼯温度范围,并讨论两者作为材料的耐热性好坏。

晶态聚合物:Tm——Td;⾮晶态聚合物:Tf——Td。

对于作为塑料使⽤的⾼聚物来说,在不结晶或结晶度低时最⾼使⽤温度是Tg,当结晶度达到40%以上时,晶区互相连接,形成贯穿整个材料的连接相,因此在Tg以上仍不会软化,其最⾼使⽤温度可提⾼到结晶熔点。

高分子材料加工流变学

高分子材料加工流变学

黏流活化能
黏流活化能影响因素 ✓ 分子链的柔顺性 ✓ 分子链的极性 ✓ 取代基的大小 ✓ 相对分子量分布 ✓ 剪切速率、剪切应力 ✓ 温度 ✓ 补强剂
黏流活化能
✓ 粘流活化能的测定 ✓ 一些高分子化合物黏流活化能举例
高分子化合 物
NR IR CR SBR NBR
Eη, kJ/mol
1.05 1.05 5.63 13.0 23.0
通过加热使玻璃态的高聚物变为黏流态。 2.流动成型
通过高压使熔体流动并通过模具成型 3.冷却固化
通过冷却使熔体固化成玻璃态并定型
第三节 高分子熔体的黏性流动与弹性
高分子材料加工过程的特点 1.使用高分子材料的黏流态进行流动变形加工 2.加工温度低 3.加工容易 以上特点决定高分子材料的应用非常广泛
牛顿流体
关于黏度的讨论 1)物理意义:促使流体产生单位速度梯度的剪
切力 2)黏度的影响因素 ➢ 流体本身的性质:如流体的结构、组成等 ➢ 温度:温度上升导致黏度下降 ➢ 压顿液体的流动
根据流体的流变方程式或流变曲线图,可将非牛顿型流体分类
例:吹塑薄膜的生产;双向拉伸薄膜的生产
一、拉伸流动与拉伸黏度
拉伸流动的数学描述 1.牛顿流体
λ=σ/ε σ=λ ε λ:拉伸黏度 σ:拉伸应力 ε:拉伸应变
一、拉伸流动与拉伸黏度
拉伸流动的数学描述 2.非牛顿流体 ✓ 低拉伸速率时,高分子材料熔体的拉伸流动行
为符合牛顿流体的拉伸流动公式 ✓ 高拉伸速率时,高分子材料熔体的拉伸流动行
涨塑性流体的数学描述-指数定律
(2)涨塑性(膨胀性)流体
涨塑性流体流变行为的解释
(2)涨塑性(膨胀性)流体
涨塑性流体流变行为的解释

高分子材料加工工艺

高分子材料加工工艺

高分子材料加工工艺引言高分子材料是一类具有很高分子量的大分子物质,具有良好的可塑性和可加工性,因此在工业生产中得到广泛应用。

高分子材料的加工工艺对材料的性能和质量具有重要影响。

本文将介绍高分子材料的常见加工工艺及其特点。

压延法压延法是高分子材料加工的基本方法之一。

它通过将高分子材料置于两个连续旋转的辊子之间,通过压力将材料挤压成所需的厚度和形状。

压延法适用于制备薄膜、片材、带材等产品。

压延法的工艺流程包括以下几个步骤:1.原料准备:将高分子材料切碎或研磨成粉末状,准备好所需的添加剂和填充剂。

2.混炼:将高分子材料与添加剂、填充剂加入混炼机中进行混合。

3.炼胶:将混炼好的材料送至炼胶机中进行炼胶,以提高材料的可塑性和可加工性。

4.压延:将炼胶好的材料放入压延机中,通过辊子的旋转和压力的作用,将材料挤压成所需的薄膜、片材或带材。

5.后处理:对压延好的产品进行表面处理、冷却等后续工艺,使其达到所需的性能要求。

压延法的优点是加工速度快、效率高,可以制备出很多种形状的产品。

但是,压延法在某些高分子材料中容易产生气泡、缺陷等问题,需要通过优化工艺参数和加入消泡剂等方式解决。

注塑成型注塑成型是高分子材料加工的常用方法之一,尤其适用于制备大批量的复杂形状产品。

注塑成型通过将高分子材料加热熔融,然后将熔融材料注入模具中,通过模具的冷却固化成型。

注塑成型适用于制备塑料制品、零件、模具等产品。

注塑成型的工艺流程包括以下几个步骤:1.原料准备:将高分子材料切碎或研磨成粉末状,准备好所需的添加剂和填充剂。

2.预处理:将原料加入注塑机的料斗中,通过加热和混合来提高材料的可塑性和可加工性。

3.注塑:将预处理好的材料注入注塑机的料筒中,材料在高温和高压的作用下熔融。

4.冷却:在注塑机的模具中,熔融材料通过冷却固化成型。

5.后处理:将成型好的产品从模具中取出,进行修整、清洁、质检等后续工艺。

注塑成型的优点是生产效率高、制品成型精度高,还可以制备出各种复杂形状的产品。

高分子材料成型加工PPT课件

高分子材料成型加工PPT课件
根据产品需求选择合适的高分子材料,如聚乙烯、聚丙烯、聚氯 乙烯等。
原材料处理
对原材料进行干燥、除湿、清洁等预处理,确保其质量和稳定性。
配料与混合
根据生产需要,将多种原材料按比例混合,制备成适合加工的混 合料。
模具设计
模具材料选择
选用耐高温、耐腐蚀、高硬度的材料制作模具。
模具结构设计
根据产品形状、尺寸和性能要求,设计合理的模具结构。
环保化
总结词
环保意识的提高促使高分子材料成型加工向 更加环保的方向发展。
详细描述
为了降低高分子制品在生产和使用过程中的 环境污染,人们正在积极开发环保型的高分 子材料和加工技术。例如,采用可降解的高 分子材料、开发无毒或低毒的加工助剂、优 化加工工艺以减少能源和资源的消耗等。
智能化
总结词
智能化是高分子材料成型加工的未来重要发展方向。
表面处理
根据需要,对成品进行表面处理,如喷涂、电镀、热压等。
包装与储存
将成品进行包装,并选择适当的储存环境,以防受潮、尘土和紫外 线等因素影响。
04 高分子材料成型加工中的问题与对策
CHAPTER
气泡问题
总结词
气泡问题在高分子材料成型加工中较为常见,主要是由于气体在材料中滞留或挥 发所致。
详细描述
翘曲问题
总结词
翘曲问题是指高分子材料成型加工后 出现弯曲、变形的情况。
详细描述
翘曲问题会影响产品的外观和性能,如 导致不平整的表面或扭曲的形状。解决 翘曲问题的方法包括优化加工工艺、调 整模具设计和选择合适的材料等。
其他问题与对策
总结词
除上述问题外,高分子材料成型加工中还可能遇到其他问题,如裂纹、变色等。
02

通用高分子材料及加工工艺简介

通用高分子材料及加工工艺简介

挑战:技术研发需要投入大量资金和时间,需要克服技术难题;新型高分子材料的研发和应用需要经过严格的测试和验证,需要建立完善的质量控制体系;高分子材料加工工艺的改进和优化需要不断更新设备和技术,需要保持持续的技术创新。
添加标题
高分子材料在各领域的应用将不断扩大
环保、可持续发展成为未来发展的重要方向
新材料、新技术不断涌现,推动高分子材料行业创新发展
应用领域:广泛用于制造电线电缆、管道、门窗、鞋材、玩具等产品
加工工艺:采用挤出、注塑、压延等工艺进行加工成型
简介:聚氯乙烯是一种由氯乙烯单体聚合而成的通用型高分子材料
性质:具有良好的机械性能、电绝缘性能、耐化学腐蚀性能和加工性能
简介:聚苯乙烯是一种热塑性塑料,由苯乙烯单体聚合而成
应用领域:广泛用于包装、建材、家电、玩具、文具等领域
工艺流程:塑料粒子的准备、模具准备、注射、保压、冷却、脱模、后处理等步骤
定义:将塑料粒子注入模具中,通过加热、加压等方式使其熔融并成型为所需形状的工艺
特点:生产效率高、产品尺寸稳定、适用范围广
定义:将塑料原料通过挤出机加热熔融后,吹塑成薄膜,再通过模具吹胀成所需形状的塑料制品
分类:根据吹塑方式不同,可分为挤出吹塑和注射吹塑两种
设备维护与保养:定期对加工设备进行维护和保养,确保设备正常运行和延长使用寿命。
安全生产:在加工过程中注意安全生产,遵守相关操作规程,确保员工和设备安全。
原材料质量控制:确保原材料质量稳定、符合标准
生产工艺控制:严格控制生产工艺参数,确保产品质量
质量检测方法:采用多种检测方法对产品进行全面检测,确保产品质量符合标准
汇报人:
通用高分子材料及加工工艺简介
目录
添加目录标题

高分子材料加工工艺

高分子材料加工工艺
高分子材料加工工艺
汇报人:
日期:
CATALOGUE
目 录
• 高分子材料概述 • 高分子材料加工工艺概述 • 挤出成型工艺 • 注塑成型工艺 • 压延成型工艺 • 高分子材料加工工艺的发展趋势
和挑战
01
CATALOGUE
高分子材料概述
高分子材料的定义
高分子材料是指由大量重复单元组成的材料,通常由相对分子质量大于10000的 化合物组成。
高分子材料具有相对分子质量高、分子链长、分子结构多样性和材料性能可调等 特点。
高分子材料的分类
根据来源,高分子材料可分为天然高分子材料和合成高分子 材料。
天然高分子材料包括纤维素、淀粉、蛋白质等,而合成高分 子材料则包括塑料、橡胶、纤维等。
高分子材料的应用
高分子材料在日常生活中有着广泛的应用,如家具、建筑 材料、汽车、电子设备等。
将高分子材料加热至熔点以上, 使其成为熔融状态,然后通过压 延设备中的口型或模具进行成型 。
冷却阶段
将已经成型的材料进行冷却,使 其从熔融状态逐渐冷却固化,最 后得到具有特定形状和性能的高 分子材料制品。
压延成型工艺的应用
塑料薄膜
压延成型工艺是制造塑料薄膜最 常用的方法之一,如聚乙烯、聚 丙烯、聚氯乙烯等塑料薄膜均可
01
02
03
材料性能的限制
高分子材料的性能与金属 和无机材料相比仍有较大 差距,需要进一步提高。
加工温度的限制
高分子材料的加工需要高 温环境,这增加了能源消 耗和环境污染。
复合材料的加工
实现不同性质材料的均匀 混合和稳定加工,提高复 合材料的性能。
未来发展的展望
新材料的研发
开发出具有优异性能的高 分子材料,满足各种领域 的需求。

《高分子材料加工工艺》复习资料习题答案

《高分子材料加工工艺》复习资料习题答案

高分子材料加工工艺第一章绪论1.材料的四要素是什么?答:材料的四要素是:材料的制备(加工)、材料的结构、材料的性能和材料的使用性能。

2.什么是工程塑料?区分“通用塑料”和“工程塑料”,“热塑性塑料”和“热固性塑料”。

答:按用途和性能分,又可将塑料分为通用塑料和工程塑料。

工程塑料是指拉伸强度大于50MPa,冲击强度大于6kJ/m2,长期耐热温度超过100℃的、刚性好、蠕变小、自润滑、电绝缘、耐腐蚀性优良等的、可替代金属用作结构件的塑料。

但这种分类并不十分严格,随着通用塑料工程化(亦称优质化)技术的进展,通过改性或合金化的通用塑料,已可在某些应用领域替代工程塑料。

热塑性塑料一般是线型高分子,在溶剂可溶,受热软化、熔融、可塑制成一定形状,冷却后固化定型;当再次受热,仍可软化、熔融,反复多次加工。

热固性塑料一般由线型分子变为体型分子,在溶剂中不能溶解,未成型前受热软化、熔融,可塑制成一定形状,在热或固化剂作用下,一次硬化成型;一当成型后,再次受热不熔融,达到一定温度分解破坏,不能反复加工。

3.与其它材料相比,高分子材料具有那些特征(以塑料为例)?答:与其他材料相比,高分子材料有以下特性(以塑料为例)。

(1)质轻。

(2)拉伸强度和拉伸模量较低,韧性较优良。

(3)传热系数小,可用作优良的绝热材料。

(4)电气绝缘性优良。

(5)成型加工性优良。

(6)减震、消音性能良好。

(7)某些塑料具有优良的减磨、耐磨和自润滑性能。

(8)耐腐蚀性能优良。

(9)透光性良好可作透明或半透明材料。

(10)着色性良好。

(11)可赋予各种特殊的功能如透气性、难燃性、粘结性、离子交换性、生物降解性以及光、热、电、磁等各种特殊性能。

(12)使用过程中易产生蠕变、疲劳、冷流、结晶等现象,长期使用性能较差。

(13)热膨胀系数大。

(14)耐热性(熔点、玻璃化转变温度)较低,使用温度不高。

(15)易燃烧。

4.获取高分子的手段有那些?答:高分子化合物的制造:获取高分子化合物的方法大致可分为三种;聚合反应、利用高分子反向和复合化。

第一章高分子材料的基础知识

第一章高分子材料的基础知识

2、大分子链的立体构型(同分异构)
构型:是指分子链中由化学键所固定的原子在空间的几何排 列。这种排列是化学稳定的,要改变分子构型必须经过化学 键的断裂和重建。
由构型不同而形成的异构体有两类: ①旋光异构体
②几何异构体
①旋光异构体
正四面体的中心原子(如C、Si、P、N)上四个取代 基或原子如果是不对称的,则可能产生异构体。 结构单元为—CH2C*HR—的高分子,每一链节有两种旋 光异构体。假如高分子全部由一种旋光异构体单元组成,称 为全同立构;由两种旋光异构体交替间接,称为间同立构; 两种旋光异构体完全无规键接时,称为无规立构。 立体异构体之间的性能差别很大。例如:全同立构聚苯 乙烯能结晶,熔点240 ℃,而无规立构聚苯乙烯不能结晶, 软化点仅为80 ℃。 全同立构和间同立构聚合物统称为“等规聚合物”
CH O O ( Si C CH O) n
O ( CH )
O
C ( CH )
聚酯涂料
有机硅橡胶
√主链含有芳杂环时,内旋转难,链柔性差
CH3 O C CH3 O
O C
聚苯 聚碳酸酯PC
√主链中含有孤立C=C双键时,链柔顺性好, 如:聚丁二烯等橡胶
-CH2-CH=CH-CH2-CH=CH-CH2-
√主链中含有共轭双键时,则只有刚性无柔性,如:聚乙炔
只有当化合物的分子量达到一定数值,产生了量变到质变的飞跃, 即在物理、机械等性能具有与低分子化合物有较大差别时,才能称 为高分子化合物,方可作为高分子材料在工程上应用。
高分子化合物分子量的分散性
高分子化合物及大多数天然高分子化合物则是各种长度不同、分子量 不同、化学组成相同的同系高分子混合物,即高分子化合物总是由不 同大小的分子组成。这一现象称为高分子化合物分子量的多分散性。

高分子材料基础第一二章

高分子材料基础第一二章

2.挤出过程
(P222-232)
注塑成型过程及注塑模具计算机辅助设计中的流变学问题 高分子熔体流动不稳定性及滑壁现象
1.注塑成型过程的流变分析(P255-262)
1.挤出成型过程中的熔体破裂行为
(P286-292)
4
高分子材料基础 第一、二章
第一章
1.1 1.2
材料科学概论
材料与材料科学 材料结构简述
例: 聚甲醛 ━ O ━ CH2 ━
尼龙6
━ NH ━(CH2)5 ━ CO ━
元素有机聚合物:是指大分子主链中没有碳原子,主要由硅、硼、铝、
氧、氮、硫、磷等原子组成,但侧基却由有机团如甲基、乙基、芳基等组 成。 CH3 │ 例:硅橡胶 ━ O ━ Si ━ │ CH3 22 高分子材料基础 第一、二章
缩写
聚合物
聚丙烯
缩写
ABS
PVC
PP
聚酰胺
PA
聚乙烯
PE
聚苯乙烯
PS
21
高分子材料基础 第一、二章
2.1.3
分类
2.1.3.1 按大分子链结构分类
碳链聚合物:是指大分子链完全由碳原子组成。
例:聚乙烯 ━CH2━CH2━ 聚丙烯 ━CH2━CH━ │ CH3
杂链聚合物:是指大分子链中除碳原子外,还有氧、氮、硫等杂质。
金属材料 黑色金属——主要以铁—碳为基的合金,包括碳钢、合金钢、不锈钢、 铸铁。钢的性能主要由渗碳体的数量、尺寸、形状
及分布决定的。
有色金属——除铁之外的纯金属或以其为基的合金。
如铝合 金、铜合金、镁合金、钛合金等
无机材料——是由无机化合物构成的材料,其中包括如锗、硅、碳之类的单质所构成的料。 有机材料(高分子材料)——是由脂肪族和芳香族的C—C 共价键为基本结构的高分子构成的,也

高分子材料加工工艺

高分子材料加工工艺

高分子材料加工工艺第九章压延成型教学目的:掌握压延成型的定义,主要成型对象及在各领域中的应用;压延成型的工序及各设备;压延机的组成及结构;压延成型的原理;压延成型的工艺及操作工艺;影响压延制品性能的因素;橡胶制品的压延工艺。

重点内容:压延成型的原理、压延成型的工艺及影响压延制品性能的因素。

难点内容:压延成型的原理。

熟悉内容:压延成型工艺的适用范围及应用领域;压延成型工艺的设备。

主要英文词汇:calendering----压延Calendered film---压延薄膜calender----压延机roll—辊筒plasticizing ---塑化film---薄膜sheet---片状embossed film---压化薄膜embossed sheet---压花片材参考教材或资料:1、《高分子材料成型加工》,周达飞,唐颂超主编,中国轻工业出版社,2005年第2版。

2、《橡胶及塑料加工工艺》,张海,赵素合主编,化学工业出版社,1997年第1版。

3、《高分子材料加工工艺》讲义,青岛科技大学印刷厂,2000年。

压延成型是生产高分子材料薄膜和片材的主要方法,它是将接近粘流温度的物料通过一系列相向旋转着的平行辊筒的间隙,使其受到挤压和延展作用,成为具有一定厚度和宽度的薄片状制品。

压延成型与前面的模压成型、挤出成型、注射成型并列为四大高分子材料加工方法。

压延成型广泛应用于橡胶和热塑性塑料的成型加工中。

橡胶的压延是橡胶制品生产的基本工艺过程之一,是制成胶片或与骨架材料制成胶布半成品的工艺过程,它包括压片、压型、贴胶和擦胶等作业。

塑料的压延成型主要适用于热塑性塑料,其中以非晶型的聚氯乙烯及其共聚物最多,其次是ABS,乙烯-醋酸乙烯共聚物以及改性聚苯乙烯等塑料,近年来也有压延聚丙烯、聚乙烯等结晶型塑料。

压延成型产品除了薄膜和片材外,还有人造革和其他涂层制品。

塑料压延成型一般适用于生产厚度为0.05~0.5mm的软质PVC薄膜和厚度为0.3~1.00mm的硬质PVC片材。

高分子材料加工及流变学

高分子材料加工及流变学

高分子材料基础及加工流变学第一章材料科学概述材料(Materials)具有满足指定工作条件下使用要求的形态和物理性状的物质称为材料。

材料化过程(Material Process)由化学物质或原料转变成适于一定用场的材料,这一转变过程称为材料化过程(材料工艺过程).材料是物质,但不是所有物质都可以称为材料。

大多数的物质需通过一定的工艺过程才能转化为材料.材料可由一种物质或若干种物质构成.同一种物质,由于制备或加工方法不同,可成为用途不同—不同类型的材料.材料、能源、信息是当代社会文明和国民经济的三大支柱,是人类社会进步和科学技术发展的物质基础和技术先导。

材料是全球新技术革命的四大标志之一:新材料技术、新能源技术、信息技术、生物技术未来新一代材料主要表现在:a. 既是结构材料又具有多种功能的材料;b. 具有感知、自我调节和反馈等能力的智能型材料c. 制作和废弃过程中尽可能减少污染的绿色材料;d. 充分利用自然资源,能循环作用的可再生材料;e. 少维修或不维修的长寿命材料。

第二章高分子材料的制备反应结构单元有时也称为单体单元 (Monomer unit)、重复单元 (Repeating unit)、链节 (Chain element)n 表示重复单元数,也称为链节数,在此等于聚合度,聚合度(Degree of polymerization)是衡量高分子大小的一个指标均聚物(Homopolymer):只含有一种重复单元的聚合物。

共聚物(Copolymer):含有两种以上重复单元的聚合物。

高分子化合物的基本特征:1.高分子的溶液性质——难溶,甚至不溶,溶解过程往往要经过溶胀阶段2.溶液粘度比同浓度的小分子高得多3.分子之间的作用力大,只有液态和固态,不能汽化4.高分子固态具有多种力学性质高分子材料的组成和成型加工:1.在成型加工过程中,物料的形态、结构都会发生显著变化,从而改变材料的性能。

2.当选择某种高分子材料时,不仅要考虑其潜在的优越性能,还必须考虑其成型加工工艺的可能性和难易。

高分子材料学

高分子材料学

结晶温度: Tg< T < Tm
T>Tm 分子热运动自由能大于内能,难以形成有序结构。 T<Tg 链段运动被冻结,不能分子发生重排和形成结晶。
2 结晶与性能 ①结晶对力学性能的影响 ②密度 ③结晶度对阻隔性能的影响:
随着结晶度增加,透水性、透氧性变小。
④光学性质:物质的折光率与密度有关。
两相并存的聚合物--呈乳白色,不透明 结晶度减少时--透明性增加 完全非晶的聚合物--透明
PC PA POM ABS PET
特种工程塑料
导电、导磁、感光、压电等材料 ►共混型特种塑料合金 ①塑料共混 PE/PA-降低PA吸水性 PE/PC-改善PC耐应力开裂 ②橡塑共混 NR/PS-改善PS脆性 NBR/PVC-改善耐油、耐热及冲击性 ③塑料与其他材料共混 :可制成导电、导磁、增强、 耐热耐磨、减震等材料 ►共混制特种塑料合金的目的 ①提高塑料自身物理机械性能、电性能 ②改善耐老化性及环境应力开裂性能 ③改善某些塑料的成型工艺性能 ④废物回用,防污染,降低成本
含氯,极性,双键不易活动。 耐老化、耐油,但耐低温性下降。
CI
2 端基 端基的产生:引发剂的残基 链终止方式 链转移 未反应的残留官能团 端基对聚合物性能的影响: ①热性能-对熔点的影响 ②光热稳定性:PVC--不饱和端基引发脱HCI POM--降解从端基开始 ③利用端基对聚合物改性和功能化 PP-g-MAH与PA6的-NH2端基反应
4 热性能 脆化温度Tc 使用温度 热塑 50-90C° 玻璃化温度Tg 热固100-200C° 流动(粘流)温度Tf 晶性聚合物熔点温度Tm 分解温度Td 5 电性能 一般比玻璃、陶瓷好 ► 介电常数及介质损耗小可减少电能消耗 ► 体积电阻及表面电阻大是理想绝缘材料 ► 某些塑料不受频率影响,用于雷达、电视等高频技术中 6 稳定性能 ► 耐化学腐蚀性:耐酸、碱、溶剂、油类 ► 耐光化性:光、热、射线等会使塑料老化变形,须加防 老剂阻缓其老化 ► 收缩性:收缩率绝对值较大且易波动
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 等,产量占塑料总产量的75%以上。
• 工程塑料:具有较高性能,能替代金 属制造机械零件和工程构件的塑料。聚 酰胺、ABS、聚甲醛、聚碳酸酯、聚砜、 聚四氟乙烯、聚甲基丙烯酸甲酯、环氧 树脂等。
• 功能塑料:导电塑料、导磁塑料、 感光塑料等。
三、几种常见塑料
• 世界五大塑料品种:聚乙烯、聚丙烯、聚氯乙烯、 聚苯乙烯、ABS( 丙烯腈-丁二烯-苯乙烯共聚物)
(二)、聚乙烯的结构与性能
• 右图:
• (a)高密度PE分子 链
• (b)低密度PE分子 链
• (c)线性低密度PE 分子链
CH2 CH2
n
(三)、聚乙烯的用途
低密度聚乙烯(LDPE) :日用制品、薄膜、软质 包装材料、层压板、电线电缆包覆等。 高密度聚乙烯(HDPE) :小负荷齿轮和轴承、 化工管道、阀门、高频电缆绝缘层、硬质包装 材料等。
• 7)固化剂: 与树脂发生交联反应,使受 热可塑的线型结构变成热稳定好的体型 结构。
• 8)其他: 还有发泡剂、催化剂、阻 燃剂等。
二、塑料的分类
• 1)按塑料热性能分类:
• 热塑性塑料:受热时软化或熔融、冷 却后硬化,韧性好,可反复成形。它包 括聚乙烯、聚氯乙烯、聚丙烯、聚苯乙 烯、聚酰胺、聚苯醚、聚甲醛、聚四氟 乙烯等。
• 工业方面:绝缘材料和封装材料;传动齿轮、 轴承、轴瓦及许多零部件代替金属制品;在化 学工业中用塑料作管道、各种容器及其它防腐 材料;
• 在建筑工业中作门窗、楼梯扶手、地板砖、天 花板、隔热隔音板、壁纸、落水管件及坑管、
装饰板和卫生洁具等。
• 一、塑料的组成
• 塑料的概念
• 塑料是由合成树脂加入(或不加)填料、 增塑剂及其他添加剂,经过加工而成的 塑性材料或固化交联形成的刚性材料。
• 1. 聚乙烯 • 聚乙烯塑料是乙烯单体的聚合物。生产原料是石
油、焦炉气或酒精。聚乙烯的英文缩写为PE ( polyethylene )。目前产量居世界塑料首位。 • (一)聚乙烯的分类 • (1) LDPE:低密度聚乙烯、高压聚乙烯 • (2) LLDPE:线形低密度聚乙烯 • (3) HDPE:高密度聚乙烯、低压聚乙烯 • (4) UHMWPE:超高分子量聚乙烯
• (二)用途
• 软质聚氯乙烯可制成较好的农用薄膜,常用 来制作雨衣、台布、窗帘、票夹、手提袋等。
• 硬质聚氯乙烯能制成透明、半透明及各种颜色 的珠光制品。常用来制作皂盒、梳子、洗衣板、 文具盒、各种管材等。
5.ABS塑料
典型结构式:
( CH2CH )x ( CH2CH = CHCH2 )y ( CH2CH )z CN n
(一)、
(二)、聚苯乙烯的 性能: 无毒、无味、无色透明状固体。电绝缘性优
良,介电损耗极小;耐化学腐蚀性优良,但不耐 苯、汽油等有机溶剂;强度较低,硬度高,脆性
大,不耐冲击,耐热性差,易燃。
(三)、聚苯乙烯的应用
• 通用级聚苯乙烯,可用于日用品、电气、仪表 外壳、玩具、灯具、家用电器、文具、化妆品 容器、室内外装饰品、果盘、光学零件(如三 棱镜、透镜)透镜窗镜和模塑、车灯、电讯配 件,电频电容器薄膜,高频绝缘材料、电视机 等集装箱、波导管,化工容器等。低发泡塑料 可制成合成木材做家具等。
塑料的组成
• 1)树脂: 塑料的主要组分。它胶粘着塑料中的其 它一切组成部分,并使其具有成型性能。绝大多 数塑料就是以所用树脂命名的。
• 2)填充剂(填料): 提高塑料的力学、电学性能 或降低成本等。它在塑料占有相当大的比例。 常 用填充剂有云母粉、石墨粉、炭粉、氧化铝粉、 木屑、玻璃纤维、碳纤维等。
4.聚氯乙烯
• (一)聚氯乙烯塑料是由氯乙烯单体聚合 而成的,是常用的热塑性塑料之一。英文 缩写为PVC。
• 纯聚氯乙烯树脂是坚硬的热塑性物质, 其分解温度与塑化温度极为接近,而且机 械强度较差。因此,无法用聚氯乙烯树脂 来塑制产品,必须加入增塑剂、稳定剂、 填料等以改善性能,制成聚氯乙烯塑料, 然后再加工成各类产品。
• 3)增塑剂: 提高塑料的可塑性和柔软性。
• 4)稳定剂: 提高塑料对热、光、氧等的稳定性, 延长使用寿命。

• 5)增色剂: 赋予塑料制品各种色彩。
• 常用的着色剂是一些有机染料和无 机颜料。有时也采用能产生荧光或磷光 的颜料。
• 6)润滑剂: 提高塑料在加工成形过程中 的流动性和脱模能力,同并经过一定 时间后即固化为不溶、不熔的坚硬制品, 不可再生。具有更好耐热性和抗蠕变能 力。常用热固性塑料有酚醛树脂、环氧 树脂、氨基树脂、呋喃树脂等。
• 2)按塑料的功能和用途分类:
• 通用塑料:产量大用途广价格低的塑 料。主要包括聚乙烯、聚氯乙烯、聚苯 乙烯、聚丙烯、酚醛塑料、氨基塑料
性能: 无毒、无味,易溶于酮、醛、酯等有机溶剂。耐磨性、抗冲 击性能好 用途: 用于家用电器、箱包、装饰板材、汽车收音机等零部件
(三)、聚丙烯的用途 主要用于家庭厨房用具、包装薄膜、医疗器械、
高频绝缘材料;化工管道、家用电器部件等,以及汽 车及机械零部件,如车门、方向盘、齿轮、接头等;
做海上用品,如缆绳、渔网;制作衣衬、毯子、棉制 品、工作服、地毯、滤布,防水布等。
3. 聚苯乙烯( PS-polystyrene ) 产量居第三位,仅次于聚乙烯和聚氯乙烯
2. 聚丙烯
• (一)、聚丙烯( PP-polypropylene)的 结构
结构单元:
—[—CH2—CH—]—

CH3
• 等规聚丙烯、间规聚丙烯、无规聚丙烯
(二)、聚丙烯的性能
• 无毒、无味、无臭、白色蜡状固体。密度小, 是常用塑料中密度最小的。力学性能高于聚 乙烯;耐热性、耐水性良好,化学稳定性好; 但不耐芳香族和氯化烃溶剂,耐寒性差,易 老化。
第一章 常用高分子材料
➢塑料 ➢橡胶 ➢纤维 ➢热塑性弹性体
首页 上一页 下一页 末页
高分子材料
第一节 塑料
聚苯乙烯
聚丙烯
我被高分子 聚氯乙烯 包围了呀!
塑料
酚醛塑料 聚四氟乙烯
塑料的用途
• 塑料巳被广泛用于农业、工业、建筑、包装、 国防尖端工业以及人们日常生活等各个领域。
• 农业方面:大量塑料被用于制造地膜、育秧薄 膜、大棚膜和排灌管道、鱼网等。
相关文档
最新文档