实验一 MATLAB运算基础
实验一 matlab的基本操作
实验一:MATLAB 的基本操作 实验名称: MA TLAB 操作实验日期: 2020 年 4 月 18 日姓名: 班级学号:成绩:一、实验目的1、熟悉MATLAB 的界面和基本操作;2、掌握MATLAB 的基本运算方法;3、掌握MATLAB 中帮助命令的使用方法。
二、实验内容及步骤1、进入Matlab 工作环境,熟悉各窗口的功能。
(1)双击桌面图标,或从“开始”菜单打开MATLAB.exe ,启动MATLAB 。
(2)查看MA TLAB 界面各窗口的布局、了解其功能,并完成各窗口之间的切换。
(3)设置当前工作目录。
在D 盘创建mymatlab 目录,并将其作为当前工作目录。
今后的实验过程中以此目录作为当前工作目录。
2、计算225.389.1753cos 54.5e -÷⎪⎭⎫ ⎝⎛+π的值。
(1)在命令窗口(Command Window )中输入程序:5.54^2+cos(3/5*pi)*sqrt(17.89)/3.5-exp(2)(2)按回车键运行,如果出现“Error ”(出错信息),则应找出原因并改正,再运行。
(3)运行结果: 22.9291 3、输入矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=913652824A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333222111B ,在命令窗口中执行下列表达式,掌握其含义:A(2,3) A(:,2) A(3,:) A(:,1:2:3) A(:,3).*B(:,2) A(:,3)*B(2,:) A*B A.*B A^2 A.^2 B/A B./A(1)在命令窗口键入 A=[4,2,8;2,5,6;3,1,9] ,生成矩阵A ;键入B=[1,1,1;2,2,2;3,3,3] ,生成矩阵B ;(2)记录执行以下表达式的结果:A(2, 3)= 6 A(6)= 1 A(:,2)= [2;5; 1] A(3,:) = [3 1 9] A(:,1:2:3)= [4 8;2 6;3 9] A(:,3).*B(:,2)= [8;12;27]A(:,3)*B(2,:)= [16 16 16;12 12 12;18 18 18]A*B= [32 32 32;30 30 30;32 32 32] A.*B= [4 2 8;4 10 12;9 3 27] A^2= [44 26 116;36 35 100;41 20 111]A.^2= [16 4 64;4 25 36;9 1 81]B/A= [0.5000 0.0769 -0.3846;1.0000 0.1538 -0.7692;1.5000 0.2308 -1.1538]B./A= [0.2500 0.5000 0.1250;1.000 0.4000 0.3333;1.0000 3.0000 0.3333]B.\A= [4.0000 2.0000 8.0000;1.0000 2.5000 3.0000;1.0000 0.3333 3.0000]4、产生一个5阶魔方矩阵,将矩阵的第3行4列元素赋值给变量a ;将由矩阵第2,3,4行第2,5列构成的子矩阵赋值给变量b 。
数字信号处理 Matlab实验一 Matlab 基本功能和基础知识操作
温州大学物理与电子信息工程学院Matlab 仿真及其应用 实验报告实验一Matlab 基本功能和基础知识操作 [实验目的和要求]1、 熟练掌握Matlab 的启动与退出2、 熟悉Matlab 的命令窗口、常用命令、帮助系统3、 熟悉Matlab 的数据类型、基本矩阵操作、运算符和字符串处理[实验内容]1、 用逻辑表达式球下列分段函数的值 22201112,=0:0.5:2.52123t t y t t t t t t ⎧≤<⎪=-≤<⎨⎪-+≤<⎩其中2、 求[100,999]之间能被32整除的数的个数3、 建立一个字符串向量,删除其中的小写字母。
4、 输入矩阵1234514789A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,求出此矩阵的行列式,逆和特征根,并找出A 中大于5和小于9的元素,用行列式表示。
5、 不采用循环的形式求出和式63230034ii i i S ===+∑∑6、 给定矩阵E=rand (4,4),计算C+E ,C*E ,C\E实验结果及分析:经过Matlab 软件的程序编辑和测试分析,得出以下实验结果: 详见程序代码、注释及屏幕截图:【题1】程序代码:t=0:0.5:2.5y=t.^2.*((t>=0)&(t<1))+(t.^2-1).*((t>=1)&(t<2))+(t.^2-2*t+1).*((t>=2)&(t<3)) 效果截图:【题2】程序代码:p=rem([100:999],32)==0;sum(p)效果截图:【题3】程序代码:ch='dfghjGUIJKVC',k=find(ch>'a'&ch<='z'),ch(k)=[]效果截图:【题4】程序代码:A=[1 2 3;4 5 14;7 8 9];[i,j]=find(A>5&A<9) %定位for n=1:length(i)m(n)=A(i(n),j(n))endDA=det(A) %行列式IA=inv(A) %逆矩阵EA=eig(A) %特征根效果截图:【题5】程序代码:E=rand(4,4); %产生随机数0~1 C=rand(4,4);B1=C+E;B2=C*E;B3=C/E;B1B2B3效果截图:【题6】程序代码:E=rand(4,4); %产生随机数0~1 C=rand(4,4);B1=C+E;B2=C*E;B3=C/E;B1B2B3效果截图:4、心得:通过本次Matlab课程实验,我已熟练Matlab的命令窗口、常用命令、帮助系统,并掌握Matlab的数据类型、基本矩阵操作、运算符和字符串处理。
实验一 Matlab基本操作及运算
实验一Matlab基本操作及运算一、实验目的:1.熟悉MATLAB基本操作2.掌握矩阵、变量、表达式的各种基本运算二、实验基本知识:1.熟悉MATLAB环境熟悉MATLAB桌面和命令窗口、命令历史窗口、帮助信息浏览器、工作空间浏览器文件和搜索路径浏览器。
2.掌握MATLAB常用命令3.MATLAB变量与运算符变量命名规则如下:(1)变量名可以由英语字母、数字和下划线组成(2)变量名应以英文字母开头(3)长度不大于31个(4)区分大小写MATLAB中设置了一些特殊的变量与常量,列于下表。
MATLAB运算符,通过下面几个表来说明MATLAB的各种常用运算符表2 MATLAB算术运算符表3 MATLAB关系运算符表4 MATLAB逻辑运算符表5 MATLAB特殊运算4. MATLAB的一维、二维数组的访问表6 子数组访问与赋值常用的相关指令格式5. MATLAB的基本运算表7 两种运算指令形式和实质内涵的异同表6.MATLAB的常用函数表8 标准数组生成函数表9 数组操作函数7.多项式运算poly——产生特征多项式系数向量roots——求多项式的根p=poly2str(c,‘x’)—(将特征多项式系数向量c转换为以习惯方式显示是多项式)conv, convs——多项式乘运算deconv——多项式除运算polyder(p)——求p的微分polyder(a, b)——求多项式a,b乘积的微分[p,q]=polyder(p1,p2)——求解多项式p1/p2微分的有理分式poly(p,A)——按数组运算规则求多项式p在自变量A的值polym(p,A)——按矩阵运算规则求多项式p在自变量A的值三、实验内容1、新建一个文件夹(自己的名字命名)2、启动MATLAB,将该文件夹添加到MATLAB路径管理器中。
方法如下:3、保存,关闭对话框(要求抓取自己实验的图,插入到自己的实验报告中)4、学习使用help命令,例如在命令窗口输入help eye,然后根据帮助说明,学习使用指令eye(其它不会用的指令,依照此方法类推)5、使用clc 、clear ,观察command window 、command history 和workspace等窗口的变化结果。
实验一 MATLAB运算基础
实验一MATLAB运算基础一、实验目的1.熟悉启动和退出MATLAB的方法。
2.熟悉MATLAB命令窗口的组成。
3.掌握建立矩阵的方法。
4.掌握MATLAB各种表达式的书写规则以及常用函数的使用。
二、实验内容1.先求下列表达式的值,然后显示MATLAB工作空间的使用情况并保存全部变量。
(1)z1=2sin85°1+e2(2)z2=12ln(x+1+x2),其中x=21+2i−0.455(3)z3=e0.3a−e−0.3a2sin(a+0.3)+ln0.3+a2,a=−3.0,−2.9,…,,2.9,3.0(4)z4=t2,t2-1,t2-2t+1,0≤t<11≤t<22≤t<3,其中t=0:0.5:2.5解:(1)z1=2*sin(85*pi/180)/(1+exp(1)*exp(1));(2)x=[2,1+2i;-0.45,5];z2=0.5*log(x+sqrt(1+x*x));(3)a=-3.0:0.1:3.0;z3=(exp(0.3*a)-exp(-0.3*a))/2.*sin(a+0.3)+log((0.3+a)/2); (4)t=0:0.5:2.5;z4=t.^2-(1-2.*t).*(t<3&t>=2)-(t<2&t>=1);运行结果:z1 =0.2375z2 =0.7114 - 0.0253i 0.8968 + 0.3658i0.2139 + 0.9343i 1.1541 - 0.0044iz3=Columns 1 through 270.7388 + 3.1416i 0.7696 + 3.1416i 0.7871 + 3.1416i0.7913 + 3.1416i 0.7822 + 3.1416i 0.7602 + 3.1416i0.7254 + 3.1416i 0.6784 + 3.1416i 0.6196 + 3.1416i0.5496 + 3.1416i 0.4688 + 3.1416i 0.3780 + 3.1416i0.2775 + 3.1416i 0.1680 + 3.1416i 0.0497 + 3.1416i-0.0771 + 3.1416i-0.2124 + 3.1416i -0.3566 + 3.1416i-0.5104 + 3.1416i -0.6752 + 3.1416i -0.8536 + 3.1416i-1.0497 + 3.1416i -1.2701 + 3.1416i -1.5271 + 3.1416i-1.8436 + 3.1416i -2.2727 + 3.1416i -2.9837 + 3.1416iColumns 28 through 61-37.0245 -3.0017 -2.3085 -1.8971-1.5978 -1.3575 -1.1531 -0.9723 -0.8083 -0.6567 -0.5151 -0.3819-0.2561 -0.1374 -0.02550.07920.1766 0.2663 0.3478 0.42060.4841 0.5379 0.5815 0.61450.6366 0.6474 0.6470 0.63510.6119 0.5777 0.5327 0.47740.4126 0.3388z4 =Columns 1 through 60 0.2500 0 1.2500 7.0000 10.2500 使用情况:a 1x61 488 doublet 1x6 48 doublex 2x2 64 double complexz1 1x1 8 doublez2 2x2 64 double complexz3 1x61 976 double complexz4 1x6 48 double2.已知:A=1234−4347873657,B=13−12033−27求下列表达式的值:(1)A+6*B和A−B+I(其中I为单位矩阵)(2)A*B和A.*B(3)A^3和A.^3(4)A/B及A\B(5)[A,B]和[A([1,3],:);B^2]解:A=[12,34,-4;34,7,87;3,65,7];B=[1,3,-1;2,0,3;3,-2,7];I=eye(3);(1)A+6*B;A-B+I;(2)A*B;A.*B(3)A^3;A.^3;(4)A/B;A\B(5)[A,B];[A([1,3],:);B^2];运行结果:(1)ans =18 52 -1046 7 10521 53 49ans =12 31 -332 8 840 67 1(2)ans =68 44 62309 -72 596154 -5 241ans =12 102 468 0 2619 -130 49(3)ans =37226 233824 48604247370 149188 60076678688 454142 118820ans =1728 39304 -6439304 343 65850327 274625 343(4)ans =16.4000 -13.6000 7.600035.8000 -76.2000 50.200067.0000 -134.0000 68.0000ans =-0.0313 0.3029 -0.33240.0442 -0.0323 0.10630.0317 -0.1158 0.1558(5)ans =12 34 -4 1 3 -134 7 87 2 0 33 65 7 3 -2 7ans =12 34 -43 65 74 5 111 0 1920 -5 403.设有矩阵A和BA=12367811121349145101516171819202122232425, B=301617−699423713−411(1)求它们的乘积C。
MATLAB)课后实验答案[1]
实验一 MATLAB 运算基础1。
先求下列表达式的值,然后显示MATLAB 工作空间的使用情况并保存全部变量。
(1) 0122sin 851z e =+(2) 21ln(2z x =,其中2120.455i x +⎡⎤=⎢⎥-⎣⎦ (3) 0.30.330.3sin(0.3)ln , 3.0, 2.9,,2.9,3.022a a e e az a a --+=++=--(4) 2242011122123t t z t t t t t ⎧≤<⎪=-≤<⎨⎪-+≤<⎩,其中t =0:0.5:2.5 解:4. 完成下列操作:(1)求[100,999]之间能被21整除的数的个数. (2) 建立一个字符串向量,删除其中的大写字母。
解:(1) 结果:(2)。
建立一个字符串向量例如:ch=’ABC123d4e56Fg9';则要求结果是:实验二 MATLAB 矩阵分析与处理1. 设有分块矩阵33322322E R A O S ⨯⨯⨯⨯⎡⎤=⎢⎥⎣⎦,其中E 、R 、O 、S 分别为单位矩阵、随机矩阵、零矩阵和对角阵,试通过数值计算验证22E R RS A OS +⎡⎤=⎢⎥⎣⎦。
解: M 文件如下;5。
下面是一个线性方程组:1231112340.951110.673450.52111456x x x ⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦ch =123d4e56g9(1) 求方程的解。
(2) 将方程右边向量元素b 3改为0。
53再求解,并比较b 3的变化和解的相对变化。
(3) 计算系数矩阵A 的条件数并分析结论。
解: M 文件如下:实验三 选择结构程序设计1. 求分段函数的值.2226035605231x x x x y x x x x x x x ⎧+-<≠-⎪=-+≤<≠≠⎨⎪--⎩且且及其他用if 语句实现,分别输出x=-5.0,—3.0,1.0,2。
2021年MATLAB)课后实验答案[1]
实验一 MATLAB运算基础欧阳光明(2021.03.07)1. 先求下列表达式的值,然后显示MATLAB工作空间的使用情况并保存全部变量。
(1)0 122sin851ze =+(2)21ln( 2z x=+,其中2120.455i x+⎡⎤=⎢⎥-⎣⎦(3)0.30.330.3sin(0.3)ln, 3.0, 2.9,,2.9,3.0 22a ae e az a a--+=++=--(4)2242011122123t tz t tt t t⎧≤<⎪=-≤<⎨⎪-+≤<⎩,其中t=0:0.5:2.5解:4. 完成下列操作:(1) 求[100,999]之间能被21整除的数的个数。
(2) 建立一个字符串向量,删除其中的大写字母。
解:(1) 结果:(2). 建立一个字符串向量 例如:ch='ABC123d4e56Fg9';则要求结果是:实验二 MATLAB 矩阵分析与处理1. 设有分块矩阵33322322E R A O S ⨯⨯⨯⨯⎡⎤=⎢⎥⎣⎦,其中E 、R 、O 、S 分别为单位矩阵、随机矩阵、零矩阵和对角阵,试通过数值计算验证22E R RS A O S +⎡⎤=⎢⎥⎣⎦。
解: M 文件如下;5. 下面是一个线性方程组:(1) 求方程的解。
(2) 将方程右边向量元素b 3改为0.53再求解,并比较b 3的变化和解的相对变化。
(3) 计算系数矩阵A 的条件数并分析结论。
解: M文件如下:实验三选择结构程序设计1. 求分段函数的值。
用if语句实现,分别输出x=-5.0,-3.0,1.0,2.0,2.5,3.0,5.0时的y值。
解:M文件如下:2. 输入一个百分制成绩,要求输出成绩等级A、B、C、D、E。
其中90分~100分为A,80分~89分为B,79分~79分为C,60分~69分为D,60分以下为E。
要求:(1) 分别用if语句和switch语句实现。
(2) 输入百分制成绩后要判断该成绩的合理性,对不合理的成绩应输出出错信息。
matlab实验一
实验一、MATLAB基本操作一、基本操作1、命令窗口的简单使用(1)简单矩阵的输入(2)求[12+2×(7-4)]÷32的算术运算结果2、有关向量、矩阵或数组的一些运算(1)设A=15;B=20;求C=A+B与c=a+b?(2)设A=[1 2 3;4 5 6;7 8 9],B=[9 8 7;6 5 4;3 2 1];求A*B与A.*B?说明*与.*的运算特点A=[1 2 3;4 5 6;7 8 9],B=[9 8 7;6 5 4;3 2 1](3)设a=10,b=20;求i=a/b与j=a\b?a=10,b=20(4)设a=[1 -2 3;4 5 -4;5 -6 7];请设计出程序,分别找出小于0的矩阵元素及其位置。
(5)在MATLAB命令行窗口运行A=[1,2;3,4]+i*[5,6;7,8];看结果如何?如果改成运行A=[1,2;3,4]+i[5,6;7,8],结果又如何?(6)请写出完成下列计算的指令:a=[1 2 3;3 4 2;5 2 3],求a^2=?,a.^2=?(7)有一段指令如下,请思考并说明运行结果及其原因clearX=[1 2;8 9;3 6];X(:)矩阵变为一维矩阵使用三元组方法,创建下列稀疏矩阵2 0 8 00 0 0 10 4 0 06 0 0 0(8)写出下列指令的运行结果>> A = [ 1 2 3 ]; B = [ 4 5 6 ];>> C = 3.^A >> D = A.^B C =3 9 27 D =1 32 7293、 已知⎪⎭⎫ ⎝⎛+⋅=-334sin 234πt e y t 若需要计算t ∈[-1,1],取间隔为0.01,试计算出相对应的y 值。
二、运算基础1、 设有矩阵A 和B ,A=[1 2 3 4 5;6 7 8 9 10;11 12 13 14 15;1617 18 19 20;21 22 23 24 25],B=[3 0 16;17 -6 9;0 23 -4;9 7 0;4 13 11]; 1) 求它们的乘积C2)将矩阵C的右下角3x2子矩阵赋给D2、完成下列操作1)求[100,999]之间能被61整除的数及其个数(提示:先利用冒号表达式,再利用find和length函数。
实验1 MATLAB基础知识
实验一MATLAB基础知识一、实验目的初步了解Matlab的基本语法规则;掌握Matlab矩阵运算和数组运算的基本规则,以及基本绘图方法。
二、实验环境计算机,Matlab软件三、实验原理1、MATLAB基本语句(1)for循环语法格式:for 循环变量= 起始值:步长:终止值循环体end例1 给矩阵A、B赋值,程序及仿真图如下:(2)while循环语法格式:while 表达式循环体end例2如下:2)条件转移语句条件转移语句有if和switch两种。
2、绘图语句常用的MATLAB绘图语句有figure、plot、subplot、stem等,图形修饰语句有title、axis、text等。
1)figurefigure有两种用法,只用一句figure命令,会创建一个新的图形窗口,并返回一个整数型的窗口编号。
figure(n)表示将第n号图形窗口作为当前的图形窗口,并将其显示在所有窗口的最前面; 如果该图形窗口不存在,则新建一个窗口,并赋以编号n。
2)plot线型绘图函数。
用法为plot(x,y,'s')。
参数x为横轴变量,y为纵轴变量,s用以控制图形的基本特征如颜色、粗细等,通常可以省略,常用方法如表1所示。
3)Stem绘制离散序列图,常用格式stem(y)和stem(x,y)分别和相应的plot函数的绘图规则相同,只是用stem命令绘制的是离散序列图。
4)Subplotsubplot(m,n,i)图形显示时分割窗口命令,把一个图形窗口分为m行,n列,m×n个小窗口,并指定第i个小窗口为当前窗口。
5)绘图修饰命令在绘制图形时,我们通常需要为图形添加各种注记以增加可读性。
在plot语句后使用title('标题')可以在图形上方添加标题,使用xlabel('标记')或ylabel('标记')为X轴或Y轴添加说明,使用text(X值、Y值、'想加的标示')可以在图形中任意位置添加标示。
matlab系统环境与运算基础实验报告总结体会
matlab系统环境与运算基础实验报告总结体会本次实验,我们学习了matlab的系统环境与运算基础。
该实验的重点包括matlab的基本概念、变量与常量、运算符、控制语句以及矩阵与数组的相关操作等。
通过学习和实践,我对matlab这个工具的使用和应用有了更深刻的理解,同时也发现matlab有着强大的数学运算能力, 非常适合用于矩阵运算,数据分析,曲线拟合等高级数学问题。
在实验的过程中,我们先学习了变量和常量的定义及使用。
变量可以在matlab中用一个字母来表示,通过给变量赋值可以动态地改变其值,使用该变量来计算或者完成程序的某些功能。
与变量相对应的是常量,它会默认保留其初始值,不会改变,方便我们在程序中进行对比与计算。
在matlab中,我们学习了大量常用的运算符,包括算数运算符,逻辑运算符,比较运算符以及位运算符。
通过对这些运算符的学习,我们可以方便地进行计算,还可以更好地书写程序,进一步提高编程效率。
控制语句是编写程序中最重要的一部分,控制语句可以帮助我们实现条件分支和循环结构,从而提高程序的可读性和可控性。
通过经验,我们知道减少程序的复杂度对程序的正确运行至关重要。
因此,在进行程序编写时,我们应该仔细设计控制语句,合理利用条件判断和循环语句等技巧,以减少错误。
此外,矩阵和数组也是matlab中非常重要的数据类型。
在实验中,我们以矩阵和数组为重点进行学习,学习了如何定义、处理和使用它们。
我们可以通过使用matlab的矩阵和数组工具,来进行向量和矩阵运算,包括逆矩阵、行列式、广义逆矩阵等操作。
总的来说,在本次实验中,我们学习了matlab的系统环境与运算基础,并在实践中亲自尝试了许多编程操作,对如何使用和应用matlab有了更深入的了解和认识。
我认为matlab无疑是一款强大且实用的数学工具,若能深入掌握其语言特性,结合实际需求做到灵活使用,一定能更好地为学习和工作提供有力的支持。
实验一 常用基本信号的MATLAB表示和运算
一.实验目的1.学会用MATLAB 表示常用连续信号的方法;2.学会用MATLAB 进行信号基本运算的方法; 二.实验原理与步骤 原理:1.信号的MATLAB 表示 (1)向量表示法对于连续时间信号()f t ,可以用两个行向量f 和t 来表示,其中向量t 是用形如12::t t p t =的命令定义的时间范围向量,其中,1t 为信号起始时间,2t 为终止时间,p 为时间间隔。
向量f 为连续信号f(t)在向量t 所定义的时间点上的样值。
例如:对于连续信号sin()()()t f t Sa t t==,同时用绘图命令plot()函数绘制其波形。
其程序如下: t2=-10:0.1:10; %定义时间t 的取值范围:-10~10,取样间隔为0.1,%则t2是一个维数为201的行向量 f2=sin(t2)./t2; %定义信号表达式,求出对应采样点上的样值 %同时生成与向量t2维数相同的行向量f2 figure(2); %打开图形窗口2Plot(t2,f2); %以t2为横坐标,f2为纵坐标绘制f2的波形 运行结果如下:(2)符号运算表示法如果一个信号或函数可以用符号表达式来表示,那么我们就可以用前面介绍的符号函数专用绘图命令ezplot()等函数来绘出信号的波形。
例如:对于连续信号sin()()()t f t Sa t t==,我们也可以用符号表达式来表示它,同时用ezplot()命令绘出其波形。
其MATLAB 程序如下: Syms t; %符号变量说明f=sin (t )/t; %定义函数表达式ezplot (f,[-10,10]); %绘制波形,并且设置坐标轴显示范围 运行结果如下:(3)常见信号的MATLAB 表示 单位阶跃信号:方法一:调用Heaviside(t)函数首先定义函数Heaviside(t)的m函数文件,该文件名应与函数名同名即Heaviside.m。
%定义函数文件,函数名为Heaviside,输入变量为x,输出变量为yfunction y=Heaviside(t)y=(t>0);%定义函数体,即函数所执行指令%此处定义t>0时y=1,t<=0时y=0,注意与实际的阶跃信号定义的区别。
实验1 MATLAB操作基础
实验1 MATLAB 操作基础一、 实验目的1. 熟悉MATLAB 的操作环境及基本操作方法。
2. 掌握MATLAB 的搜索路径及设置方法。
3. 熟悉MATLAB 帮助信息的查阅方法。
二、实验环境(硬/软件要求)PC 机,MATLAB7.0以上。
三、实验内容1. 先建立自己的工作目录,再将自己的工作目录设置到MATLAB 搜索路径下,再试验用help 命令能否查询到自己的工作目录。
2. 在MATLAB 环境下验证例1-1至例1-4,并总结MATLAB 的主要优点。
3. 利用MATLAB 的帮助功能分别查询inv 、plot 、max 、round 等函数的功能及用法。
4. 在命令窗口执行命令完成以下运算,观察workspace 的变化,记录运算结果。
(1)(365-52⨯2-70)÷3(2)>>area=pi*2.5*2.5(3)已知x=3,y=4,在MATLAB 中求z :()232y x y x z -= (4)将下面的矩阵赋值给变量m1,在workspace 中察看m1在内存中占用的字节数。
m1=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡11514412679810115133216 >>m1=[16,2,3,13;5,11,10,8;9,7,6,12;4,14,15,1] (5)执行命令>>x=0:0.1:6*pi;>>y=5*sin(x);>>plot(x,y)5. 完成下列操作:(1)在MATLAB 命令窗口输入以下命令:x=0:pi/10:2*pi;y=sin(x);(2)在工作空间窗口选择变量y ,再在工作空间窗口选择绘图菜单命令或在工具栏中单击绘图命令按钮,绘制变量y 的图形,并分析图形的含义。
MATLAB软件与基础数学实验
MATLAB 软件与基础数学实验Saw H.Z实验1 MATLAB 基本特性与基本运算例1-1 求[12+2×(7-4)]÷32的算术运算结果。
>> clear>> s=(12+2*(7-4))/3^2 s = 2例1-2 计算5!,并把运算结果赋给变量y y=1;for i=1:5 y=y*i; end y例1-3 计算2开平方>> s=2^(0.5) s =1.4142 >>例1-4 计算2开平方并赋值给变量x (不显示)查看x 的赋值情况 a=2;x=a^(0.5); x例1-4 设75,24=-=b a ,计算|)tan(||)||sin(|b a b a ++的值。
a=(-24)/180*pi; b=75/180*pi; a1=abs(a); b1=abs(b); c=abs(a+b);s=sin(a1+b1)/(tan(c))^(0.5)例1-5 设三角形三边长为2,3,4===c b a ,求此三角形的面积。
a=4;b=3;c=2; p=(a+b+c)/2;s=(p*(p-a)*(p-b)*(p-c))^(0.5)例1-7 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=101654321A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=112311021B ,计算||,,A AB B A +,1-A 。
a=[1,2,3;4,5,6;1,0,1];b=[-1,2,0;1,1,3;2,1,1]; x=a+b; y=a*b; z=norm(a); q=inv(a); x,y,z,q例1-8 显示上例中矩阵A 的第2行第3列元素,并对其进行修改. a=[1,2,3;4,5,6;1,0,1];x=a(2,3);a(2,3)=input('change into=') x,a例1-9 分别画出函数x x y cos 2=和x xz sin =在区间[-6π,6π]上的图形。
matlab实验:运算基础并且附有答案 (1)
实验二、MATLAB运算基础一、实验目的掌握MATLAB各种表达式的书写规则及常用函数的使用。
掌握MATLAB中字符串、元胞数组和结构的常用函数的使用。
二、实验内容及步骤1、设有矩阵A和B,A=[1 2 3 4 5;6 7 8 9 10;11 12 13 14 15;16 1718 19 20;21 22 23 24 25],B=[3 0 16;17 -6 9;0 23 -4;9 7 0;4 1311]1)求它们的乘积C >>C=A*B2)将矩阵C的右下角3x2子矩阵赋给D >>I=[3 4 5];J=[2 3];D=C(I,J)也可以用>>D=C([3 4 5],[2 3])D =520 397705 557890 7172、完成下列操作1)求[100,999]之间能被61整除的数及其个数(提示:先利用冒号表达式,再利用find和length函数。
)>> a=100:999;find(rem(a,61)==0)ans =23 84 145 206 267 328 389 450 511572 633 694 755 816 877>> b=a(ans)b =122 183 244 305 366 427 488 549 610 671 732 793 854 915 976>> length(b)ans =152)建立一个字符串向量,删除其中的大写字母(提示:利用find函数和空矩阵。
)a=’I am maying’;a( find(a>’A’&a<’Z’))=[]3、已知A=[23 10 -78 0;41 -45 65 5;32 5 0 32;6 -54 92 14],取出其前3行构成矩阵B,其前两列构成矩阵C,其左下角3x2子矩阵构成矩阵D,B与C的乘积构成矩阵E,分别求E<D、E&D、E|D、~E|~D。
实验1 MATLAB基本操作
一、实验目的1.熟悉MATLAB 的使用方法及特点;学会建立MATLAB 搜索路径;熟悉MATLAB 工作空间、MATLAB 集成环境、命令窗口;掌握MATLAB 的通用命令、管理命令和函数、管理变量和工作空间的使用方法;2.掌握MATLAB 基本操作及矩阵基础知识,包括:输入矩阵、矩阵的转置、矩阵元素求和、矩阵下际、矩阵连接、矩阵行列删除、矩阵产生和操作、逻辑和关系运算、操作符和特殊字符、基本矩阵和矩阵操作、基本矩阵和阵列;掌握特殊变量和常数;掌握基本数学函数。
二、实验内容1.利用基本矩阵产生 3x3 和15x8 的单位阵,全1 阵,全0 阵,均匀分布的随机阵([-1,1]之间),正态分布随机阵(方差4,均值1)eye(3),eye(15,8)ones(3),ones(15,8)zeros(3),zeros(15,8)1-2*rand(3),1-2*rand(15,8)2*randn(3)+1, 2*randn(15,8)+12.利用diag()函数和rot90()产生下列矩阵:0 0 8 2 0 4a= 0 -7 5 b= 0 5 02 3 0 7 0 8然后求解a 阵的逆矩阵aa 及b 阵的特征值和对应特征向量,并利用reshape 将aa 阵变换成行向量。
X=diag([2 -7 8]),Y=diag([3 5],-1),a=rot90(X+Y)M=diag([2 5 8]),N=diag([7 0 4]),b=M+rot90(N)aa=inv(a) reshape(aa,1,9) d=eig(b) [V,D]=eig(b)aa =-0.1339 0.2143 0.50000.0893 -0.1429 00.1250 0 0ans = -0.1339 0.0893 0.1250 0.2143 -0.1429 0 0.5000 0 0d =-1.082811.08285.0000V = -0.7921 -0.4030 00 0 1.00000.6104 -0.9152 0D = -1.0828 0 00 11.0828 00 0 5.00003产生一均匀分布在(-5,5)随机阵(50x2),精确到小数点后一位x=5-round(100*rand(50,2))/104.编程实现当α∈[-π,π],间隔为1o 时,求解正弦和余弦的值,并利用plot()函数绘制正弦,余弦曲线。
实验一MATLAB基础资料
if (sum>1000)
break;
end
end
45
2)编写函数文件:分别用for和while循环结构编写程序,求2的0到n次幂的和。
m=0:n;
(m<=n)
3、矩阵的基本操作
(1)设有矩阵A和B
016
2345
69
78910
0234
12131415
、向量乘法
2 3 ; 4 5 6 ; 7 8 9]
2 2 ; 2 2 2 ; 2 2 2]
运行结果为:
2 4 6 D= 2 4 6
%指定2号为活动区
subplot(2,1,1);
01234567-1-0.500.51sin(x)01234567-1-0.500.51cos (x)
123456-1-0.500.51
1234567-1-0.500.51
、多项式运算
数 功 能 函 数 功 能
多项式求根 conv
多项式乘法(卷积) 多项式除法(解卷)
由根式求多项式 residue 分式多项式的部分分式展开(留数)
多项式求值 polyder 多项式求导数
1:求多项式 P (x)=x4+2x3+3x2+4x+5 的根。
21 22 23 24 25
3 0 16
17 -6 9
0 23 -4
9 7 0
4 13 11
93 150 77
258 335 237
…', 'eqn', 'var1', '…', 'varn'):计算方程组,eq1,…eqn为输入的方程组;var1,…varn用来指
实验一Matlab运算基础
利用不同的方法对 =z
x2 − y2 16 9
在(-3,3)上的二维插值效果
进行比较。
三、实验总结
结合平时生活、学习经验,体会本次实验各种 方法的用处和重要性。
实验六 Matlab的基本应用3: 常微分方程求解
一、实验目的
1、学会用Matlab进行常微分方程的求解、 随机试验和统计作图
2、掌握相关数据分析函数库的内容
quit或exit
关闭/推出MATALB
二、实验内容
矩阵创建
直接输入 用语句生成 矩阵连接 创建矩阵函数 矩阵操作 复数
矩阵运算 元素群运算
P86, 4.1,4.2, 4.3,4.10
三、实验分析
1 2 3
4 6 8
矩阵A= 4 5 6 ,B= 5 5 6
7 8 9
3 2 2
(1)计算A*B, A.*B, 并比较两者的区别? (2)expm,sqrtm,logm与exp,sqrt,log的区别?
二、实验内容
(1)已知矩阵A=
5 9
2 1
,B=
1 9
2 2
,
做简单的关系运算A>B, A==B, A<B, 并做逻辑 运算(A==B)&(A<B), (A==B)&(A>B)。
(2)编写程序(分别用for 和while),实现:
用公式 π =1− 1 + 1 − 1 +…… 求π 的近似值,
4 357
直到某一项的绝对值小于10-6 为止。
三、实验分析与总结
对流程控制语句和结构进行分析和总结。
实验三 Matlab绘图
一、实验目的
1、了解并掌握matlab的基本绘图
试验一MATLAB语言基础实验
试验一MATLAB 语言基础实验(软件仿真)一、MATLAB的基本操作1、实验目的(1)学习了解MATLAB语言环境(2)练习MATLAB命令的基本操作(3)练习m文件的基本操作2、实验内容(练习MATLAB命令的基本操作中的内容)1)常规矩阵输入>> a=[1 2 3]a =1 2 3>> a=[1;2;3]a =123>> b=[1 2 5]b =1 2 5>> b=[1 2 5];>> aa =123>> a'ans =1 2 3>> bb =1 2 5>> b'ans =125>> c=a*bc =1 2 52 4 103 6 15>> c=a*b'??? Error using ==> *Inner matrix dimensions must agree.>> a=[1 2 3;4 5 6;7 8 0]a =1 2 34 5 67 8 0>> a^2ans =30 36 1566 81 4239 54 69>> a^0.5ans =0.5977 + 0.7678i 0.7519 + 0.0979i 0.5200 - 0.4680i1.4102 + 0.1013i 1.7741 + 0.6326i 1.2271 - 0.7467i1.2757 - 1.0289i 1.6049 - 1.0272i 1.1100 + 1.6175i 2)作循环命令程序>> makesum=0;for i=1:1:100makesum=makesum+i;end>> makesummakesum =50503)分别执行下列命令>> a=[1 2 3;4 5 6;7 8 0]a =1 2 34 5 67 8 0>> poly(a)ans =1.0000 -6.0000 -72.0000 -27.0000>> rank(a)ans =3>> det(a)ans =27>> trace(a)ans =6>> inv(a)ans =-1.7778 0.8889 -0.11111.5556 -0.7778 0.2222-0.1111 0.2222 -0.1111 >> eig(a)ans =12.1229-0.3884-5.73454)练习m文件的基本操作>> penddemo倒立摆控制系统:二、MATLAB的数值运算1、实验目的(1)学习MATLAB语言的基本矩阵运算(2)学习MATLAB语言的点运算(3)学习复杂运算2、实验内容(1)基本矩阵运算1)创建数值矩阵>>a=[1 2 3;4 5 6;7 8 9];>> aa =1 2 34 5 67 8 9>> a(3,2)ans =8>> a(:,1)ans =147>>t=0:10t =Columns 1 through 100 1 2 3 4 5 6 7 8 9 Column 1110>> u=0:0.1:10u =Columns 1 through 60 0.1000 0.2000 0.3000 0.4000 0.5000 Columns 7 through 120.6000 0.7000 0.8000 0.9000 1.0000 1.1000 Columns 13 through 181.2000 1.3000 1.4000 1.5000 1.6000 1.7000 Columns 19 through 241.8000 1.90002.0000 2.1000 2.2000 2.3000 Columns 25 through 302.4000 2.5000 2.6000 2.7000 2.8000 2.9000 Columns 31 through 363.0000 3.1000 3.2000 3.3000 3.4000 3.5000 Columns 37 through 423.6000 3.7000 3.8000 3.90004.0000 4.1000Columns 43 through 484.2000 4.3000 4.4000 4.5000 4.6000 4.7000 Columns 49 through 544.8000 4.90005.0000 5.1000 5.2000 5.3000 Columns 55 through 605.4000 5.5000 5.6000 5.7000 5.8000 5.9000 Columns 61 through 666.0000 6.1000 6.2000 6.3000 6.4000 6.5000 Columns 67 through 726.6000 6.7000 6.8000 6.90007.0000 7.1000 Columns 73 through 787.2000 7.3000 7.4000 7.5000 7.6000 7.7000 Columns 79 through 847.8000 7.9000 8.0000 8.1000 8.2000 8.3000 Columns 85 through 908.4000 8.5000 8.6000 8.7000 8.8000 8.9000 Columns 91 through 969.0000 9.1000 9.2000 9.3000 9.4000 9.5000 Columns 97 through 1019.6000 9.7000 9.8000 9.9000 10.0000>>a(:,3)=[2;3;4]a =1 2 24 5 37 8 4>>b=[1 1+2i;3+4i 3]b =1.0000 1.0000 +2.0000i3.0000 +4.0000i 3.00002)创建特殊矩阵>> a=ones(3,3)a =1 1 11 1 11 1 1>> b=zeros(2,2)b =0 00 0>> c=eye(4)c =1 0 0 00 1 0 00 0 1 00 0 0 1>> magic(4)ans =16 2 3 135 11 10 89 7 6 124 14 15 13)练习矩阵运算>>a=[0 1 0;0 0 1;-6 -11 -6];>> b=[1 2;3 4;5 6];>> c=[1 1 0;0 1 1];>> v1=c*av1 =0 1 1-6 -11 -5>> v2=a*bv2 =3 45 6-69 -92>> v3=c*a*bv3 =8 10-64 -86>> v4=b*cv4 =1 3 23 7 45 11 6>> v5=c*bv5 =4 68 10>> a^2ans =0 0 1-6 -11 -636 60 25>> a^(1/2)ans =0.0000 + 0.4894i -0.0000 - 0.5588i -0.0000 - 0.0482i0.0000 + 0.2891i 0.0000 + 1.0195i -0.0000 - 0.2696i0.0000 + 1.6179i 0.0000 + 3.2553i 0.0000 + 2.6374i >> a1=a+b*ca1 =1 4 23 7 5-1 0 0>> a2=c*b-a(1:2,1:2)a2 =4 58 10>> a3=a(1:2,2:3)+c*ba3 =5 68 11>> ar=c/aar =-0.8333 -1.0000 -0.16671.0000 1.0000 0 >> al=a\bal =-5.6667 -8.66671.00002.00003.00004.00004)练习矩阵特征运算>> a'ans =0 0 -61 0 -110 1 -6>> inv(a)ans =-1.8333 -1.0000 -0.16671.0000 0 00 1.0000 0 >> diag(a)ans =-6>> tril(a)ans =0 0 00 0 0-6 -11 -6>> inv(a)ans =-1.8333 -1.0000 -0.16671.0000 0 00 1.0000 0>> poly(a)ans =1.0000 6.0000 11.0000 6.0000>> rank(a)ans =3>> det(a)ans =-6>> trace(a)ans =-6>> eig(a)ans =-1.0000-2.0000-3.0000(2)MATLAB语言点的运算1)练习点乘与点除>>a1=[1 2;3 4];>> a2=0.2*a1;>> [a1 a2]ans =1.00002.0000 0.2000 0.40003.00004.0000 0.6000 0.8000>> [a1.*a2 a1./a2]ans =0.2000 0.8000 5.0000 5.00001.8000 3.2000 5.0000 5.00002)由点运算完成标量函数运算与作图>>t=0:2*pi/180:2*pit =Columns 1 through 60 0.0349 0.0698 0.1047 0.1396 0.1745Columns 7 through 120.2094 0.2443 0.2793 0.3142 0.3491 0.3840Columns 13 through 180.4189 0.4538 0.4887 0.5236 0.5585 0.5934Columns 19 through 240.6283 0.6632 0.6981 0.7330 0.7679 0.8029Columns 25 through 300.8378 0.8727 0.9076 0.9425 0.9774 1.0123 Columns 31 through 361.0472 1.0821 1.1170 1.1519 1.1868 1.2217 Columns 37 through 421.2566 1.2915 1.3265 1.3614 1.3963 1.4312 Columns 43 through 481.4661 1.5010 1.5359 1.5708 1.6057 1.6406 Columns 49 through 541.6755 1.7104 1.7453 1.7802 1.8151 1.8500 Columns 55 through 601.8850 1.9199 1.9548 1.98972.0246 2.0595 Columns 61 through 662.0944 2.1293 2.1642 2.1991 2.2340 2.2689 Columns 67 through 722.3038 2.3387 2.3736 2.4086 2.4435 2.4784 Columns 73 through 782.5133 2.5482 2.5831 2.6180 2.6529 2.6878 Columns 79 through 842.7227 2.7576 2.7925 2.8274 2.8623 2.8972 Columns 85 through 902.9322 2.96713.0020 3.0369 3.0718 3.1067 Columns 91 through 963.1416 3.1765 3.2114 3.2463 3.2812 3.3161 Columns 97 through 1023.3510 3.3859 3.4208 3.4558 3.4907 3.5256 Columns 103 through 1083.5605 3.5954 3.6303 3.6652 3.7001 3.7350 Columns 109 through 1143.7699 3.8048 3.8397 3.8746 3.9095 3.9444 Columns 115 through 1203.97944.0143 4.0492 4.0841 4.1190 4.1539 Columns 121 through 1264.1888 4.2237 4.2586 4.2935 4.3284 4.3633 Columns 127 through 1324.3982 4.4331 4.4680 4.5029 4.5379 4.5728 Columns 133 through 1384.6077 4.6426 4.6775 4.7124 4.7473 4.7822 Columns 139 through 1444.8171 4.8520 4.8869 4.9218 4.9567 4.9916 Columns 145 through 1505.0265 5.0615 5.0964 5.1313 5.1662 5.2011 Columns 151 through 1565.2360 5.2709 5.3058 5.3407 5.3756 5.4105 Columns 157 through 1625.4454 5.4803 5.5152 5.5501 5.5851 5.6200Columns 163 through 1685.6549 5.6898 5.7247 5.7596 5.7945 5.8294Columns 169 through 1745.8643 5.8992 5.9341 5.96906.0039 6.0388Columns 175 through 1806.0737 6.1087 6.1436 6.1785 6.2134 6.2483Column 1816.2832>>y1=sin(t)y1 =Columns 1 through 60 0.0349 0.0698 0.1045 0.1392 0.1736Columns 7 through 120.2079 0.2419 0.2756 0.3090 0.3420 0.3746Columns 13 through 180.4067 0.4384 0.4695 0.5000 0.5299 0.5592Columns 19 through 240.5878 0.6157 0.6428 0.6691 0.6947 0.7193Columns 25 through 300.7431 0.7660 0.7880 0.8090 0.8290 0.8480Columns 31 through 360.8660 0.8829 0.8988 0.9135 0.9272 0.9397Columns 37 through 420.9511 0.9613 0.9703 0.9781 0.9848 0.9903Columns 43 through 480.9945 0.9976 0.9994 1.0000 0.9994 0.9976Columns 49 through 540.9945 0.9903 0.9848 0.9781 0.9703 0.9613Columns 55 through 600.9511 0.9397 0.9272 0.9135 0.8988 0.8829Columns 61 through 660.8660 0.8480 0.8290 0.8090 0.7880 0.7660Columns 67 through 720.7431 0.7193 0.6947 0.6691 0.6428 0.6157Columns 73 through 780.5878 0.5592 0.5299 0.5000 0.4695 0.4384Columns 79 through 840.4067 0.3746 0.3420 0.3090 0.2756 0.2419Columns 85 through 900.2079 0.1736 0.1392 0.1045 0.0698 0.0349Columns 91 through 960.0000 -0.0349 -0.0698 -0.1045 -0.1392 -0.1736Columns 97 through 102-0.2079 -0.2419 -0.2756 -0.3090 -0.3420 -0.3746 Columns 103 through 108-0.4067 -0.4384 -0.4695 -0.5000 -0.5299 -0.5592 Columns 109 through 114-0.5878 -0.6157 -0.6428 -0.6691 -0.6947 -0.7193 Columns 115 through 120-0.7431 -0.7660 -0.7880 -0.8090 -0.8290 -0.8480 Columns 121 through 126-0.8660 -0.8829 -0.8988 -0.9135 -0.9272 -0.9397 Columns 127 through 132-0.9511 -0.9613 -0.9703 -0.9781 -0.9848 -0.9903 Columns 133 through 138-0.9945 -0.9976 -0.9994 -1.0000 -0.9994 -0.9976 Columns 139 through 144-0.9945 -0.9903 -0.9848 -0.9781 -0.9703 -0.9613 Columns 145 through 150-0.9511 -0.9397 -0.9272 -0.9135 -0.8988 -0.8829 Columns 151 through 156-0.8660 -0.8480 -0.8290 -0.8090 -0.7880 -0.7660 Columns 157 through 162-0.7431 -0.7193 -0.6947 -0.6691 -0.6428 -0.6157 Columns 163 through 168-0.5878 -0.5592 -0.5299 -0.5000 -0.4695 -0.4384 Columns 169 through 174-0.4067 -0.3746 -0.3420 -0.3090 -0.2756 -0.2419 Columns 175 through 180-0.2079 -0.1736 -0.1392 -0.1045 -0.0698 -0.0349 Column 181-0.0000>> y2=cos(t)y2 =Columns 1 through 61.0000 0.9994 0.9976 0.9945 0.9903 0.9848 Columns 7 through 120.9781 0.9703 0.9613 0.9511 0.9397 0.9272 Columns 13 through 180.9135 0.8988 0.8829 0.8660 0.8480 0.8290 Columns 19 through 240.8090 0.7880 0.7660 0.7431 0.7193 0.6947 Columns 25 through 300.6691 0.6428 0.6157 0.5878 0.5592 0.5299 Columns 31 through 360.5000 0.4695 0.4384 0.4067 0.3746 0.3420 Columns 37 through 420.3090 0.2756 0.2419 0.2079 0.1736 0.1392 Columns 43 through 480.1045 0.0698 0.0349 0.0000 -0.0349 -0.0698 Columns 49 through 54-0.1045 -0.1392 -0.1736 -0.2079 -0.2419 -0.2756 Columns 55 through 60-0.3090 -0.3420 -0.3746 -0.4067 -0.4384 -0.4695 Columns 61 through 66-0.5000 -0.5299 -0.5592 -0.5878 -0.6157 -0.6428 Columns 67 through 72-0.6691 -0.6947 -0.7193 -0.7431 -0.7660 -0.7880 Columns 73 through 78-0.8090 -0.8290 -0.8480 -0.8660 -0.8829 -0.8988 Columns 79 through 84-0.9135 -0.9272 -0.9397 -0.9511 -0.9613 -0.9703 Columns 85 through 90-0.9781 -0.9848 -0.9903 -0.9945 -0.9976 -0.9994 Columns 91 through 96-1.0000 -0.9994 -0.9976 -0.9945 -0.9903 -0.9848 Columns 97 through 102-0.9781 -0.9703 -0.9613 -0.9511 -0.9397 -0.9272 Columns 103 through 108-0.9135 -0.8988 -0.8829 -0.8660 -0.8480 -0.8290 Columns 109 through 114-0.8090 -0.7880 -0.7660 -0.7431 -0.7193 -0.6947 Columns 115 through 120-0.6691 -0.6428 -0.6157 -0.5878 -0.5592 -0.5299 Columns 121 through 126-0.5000 -0.4695 -0.4384 -0.4067 -0.3746 -0.3420 Columns 127 through 132-0.3090 -0.2756 -0.2419 -0.2079 -0.1736 -0.1392 Columns 133 through 138-0.1045 -0.0698 -0.0349 -0.0000 0.0349 0.0698 Columns 139 through 1440.1045 0.1392 0.1736 0.2079 0.2419 0.2756 Columns 145 through 1500.3090 0.3420 0.3746 0.4067 0.4384 0.4695 Columns 151 through 1560.5000 0.5299 0.5592 0.5878 0.6157 0.6428 Columns 157 through 1620.6691 0.6947 0.7193 0.7431 0.7660 0.7880 Columns 163 through 1680.8090 0.8290 0.8480 0.8660 0.8829 0.8988 Columns 169 through 1740.9135 0.9272 0.9397 0.9511 0.9613 0.9703 Columns 175 through 1800.9781 0.9848 0.9903 0.9945 0.9976 0.9994 Column 1811.0000>>y=y1.*y2y =Columns 1 through 60 0.0349 0.0696 0.1040 0.1378 0.1710 Columns 7 through 120.2034 0.2347 0.2650 0.2939 0.3214 0.3473 Columns 13 through 180.3716 0.3940 0.4145 0.4330 0.4494 0.4636 Columns 19 through 240.4755 0.4851 0.4924 0.4973 0.4997 0.4997 Columns 25 through 300.4973 0.4924 0.4851 0.4755 0.4636 0.4494 Columns 31 through 360.4330 0.4145 0.3940 0.3716 0.3473 0.3214 Columns 37 through 420.2939 0.2650 0.2347 0.2034 0.1710 0.1378 Columns 43 through 480.1040 0.0696 0.0349 0.0000 -0.0349 -0.0696 Columns 49 through 54-0.1040 -0.1378 -0.1710 -0.2034 -0.2347 -0.2650 Columns 55 through 60-0.2939 -0.3214 -0.3473 -0.3716 -0.3940 -0.4145 Columns 61 through 66-0.4330 -0.4494 -0.4636 -0.4755 -0.4851 -0.4924 Columns 67 through 72-0.4973 -0.4997 -0.4997 -0.4973 -0.4924 -0.4851 Columns 73 through 78-0.4755 -0.4636 -0.4494 -0.4330 -0.4145 -0.3940 Columns 79 through 84-0.3716 -0.3473 -0.3214 -0.2939 -0.2650 -0.2347 Columns 85 through 90-0.2034 -0.1710 -0.1378 -0.1040 -0.0696 -0.0349 Columns 91 through 96-0.0000 0.0349 0.0696 0.1040 0.1378 0.1710 Columns 97 through 1020.2034 0.2347 0.2650 0.2939 0.3214 0.3473 Columns 103 through 1080.3716 0.3940 0.4145 0.4330 0.4494 0.4636 Columns 109 through 1140.4755 0.4851 0.4924 0.4973 0.4997 0.4997 Columns 115 through 1200.4973 0.4924 0.4851 0.4755 0.4636 0.4494 Columns 121 through 1260.4330 0.4145 0.3940 0.3716 0.3473 0.3214 Columns 127 through 1320.2939 0.2650 0.2347 0.2034 0.1710 0.1378 Columns 133 through 1380.1040 0.0696 0.0349 0.0000 -0.0349 -0.0696 Columns 139 through 144-0.1040 -0.1378 -0.1710 -0.2034 -0.2347 -0.2650 Columns 145 through 150-0.2939 -0.3214 -0.3473 -0.3716 -0.3940 -0.4145 Columns 151 through 156-0.4330 -0.4494 -0.4636 -0.4755 -0.4851 -0.4924 Columns 157 through 162-0.4973 -0.4997 -0.4997 -0.4973 -0.4924 -0.4851 Columns 163 through 168-0.4755 -0.4636 -0.4494 -0.4330 -0.4145 -0.3940 Columns 169 through 174-0.3716 -0.3473 -0.3214 -0.2939 -0.2650 -0.2347 Columns 175 through 180-0.2034 -0.1710 -0.1378 -0.1040 -0.0696 -0.0349 Column 181-0.0000>> plot(t,[y' y1' y2']);>> w=0.1:0.1:2w =Columns 1 through 60.1000 0.2000 0.3000 0.4000 0.5000 0.6000 Columns 7 through 120.7000 0.8000 0.9000 1.0000 1.1000 1.2000 Columns 13 through 181.3000 1.4000 1.5000 1.6000 1.7000 1.8000 Columns 19 through 201.90002.0000>> g1=(1+0.5*w*i)/(1-0.5*w*i)g1 =-1.0296>>g2=(1+0.5*w*i)./(1-0.5*w*i)g2 =Columns 1 through 6-1.5000 -1.2222 -1.1429 -1.1053 -1.0833 -1.0690 Columns 7 through 12-1.0588 -1.0513 -1.0455 -1.0408 -1.0370 -1.0339 Columns 13 through 18-1.0313 -1.0290 -1.0270 -1.0253 -1.0238 -1.0225 Columns 19 through 20-1.0213 -1.0202>>plot(g2)>>xlabel('real g2(w)')>>ylabel('imag g2(w)')>>axis('square')(3)多项式运算1)建立多项式向量>>ap=[1 3 3 1]a p=1 3 3 1>> b=[-1 -2 -3]b =-1 -2 -3>>bp=poly(b)bp =1 6 11 62)练习多项式乘与求根>>p=conv(ap,bp)p =1 9 32 58 57 29 6 >> roots(p)ans =-3.0000-2.0000-1.0003-1.0000 + 0.0003i-1.0000 - 0.0003i-0.99973)练习多项式运算>>a=[1 2 3 4]a =1 2 3 4>> b=[1 -1]b =1-1>>c=a+[zeros(1,length(a)-length(b)) b]c =1 2 4 3>>poly2str(c,'x')ans =x^3 + 2 x^2 + 4 x + 3>> polyvalm(a,3)ans =58三、MATLAB的符号运算1、实验目的(1)学习MATLAB语言的基本符号运算(2)学习MATLAB语言的矩阵符号运算2、实验内容(1)基本符号运算1)符号微分、积分>>syms t>> f1=sin(2*t)f1 =sin(2*t)>> df1=diff(f1)df1 =2*cos(2*t)>> if1=int(f1)if1 =-1/2*cos(2*t)2)泰勒级数展开>>tf1=taylor(f1,8)tf1 =2*t-4/3*t^3+4/15*t^5-8/315*t^73)符号代数方程求解>>syms a b c x>> f=a*x^2+b*x+cf =a*x^2+b*x+c>> ef=solve(f)ef =[ 1/2/a*(-b+(b^2-4*a*c)^(1/2))][ 1/2/a*(-b-(b^2-4*a*c)^(1/2))]4)符号微分方程求解>>f='D2x+2*Dx+10*x=0'f =D2x+2*Dx+10*x=0>> g='Dx(0)=1,x(0)=0'g =Dx(0)=1,x(0)=0>> dfg=dsolve(f,g)dfg =1/3*exp(-t)*sin(3*t)5)积分变换>>syms t>>f1=exp(-2*t)*sin(5*t)>>F1=laplace(f1)F1=5/((s+2)^2+25)>>syms s>>F2=1/(s+2)^2>>f2=ilaplace(F2)>>f2=t*exp(-2*t)>>syms t>>f1=sin(t)>>Fz1=ztrans(f1)Fz1=-z*sin(1)/(2*z*cos(1)-z^2-1)>>syms z>>Fz2=z/(z-2)+z/(z-3)>>fz2=iztrans(Fz2)fz2=2^n+3^n6)计算精度>>g=sym('[pi/2 2;3 exp(1)]')g=[pi/2, 2][ 3,exp(1)]>>g1=vpa(g)g1=[1.570796326794897...,2. ][ 3.,2.718281828459045...] >>digitsDigits=32>>g1=vpa(g,5)g1=[1.5708, 2.][ 3.,2.7183](2)符号矩阵运算1)创建与修改符号矩阵>>G1=sym('[1/(s+1),s/(s+1)/(s+2);1/(s+1)/(s+2),s/(s+2)]') G1 =[ 1/(s+1), s/(s+1)/(s+2)][ 1/(s+1)/(s+2), s/(s+2)]>> G2=subs(G1,G1(2,2),'0')G2 =[ 1/(s+1), s/(s+1)/(s+2)][ 1/(s+1)/(s+2), 0]>> G3=G1(1,1)G3 =1/(s+1)2)符号线性代数>> a=[1 2 3 4];>> inv aans =0.0103>> det aans =97>> eig aans =97>> transpose aans =a3)常规符号运算>>syms s>> d1=1/(s+1);d2=1/(s+2);d=d1*d2d =1/(s+1)/(s+2)>> ad=sym('[s+1 s;0 s+2]');G=d*adG =[ 1/(s+2), s/(s+1)/(s+2)][ 0, 1/(s+1)]>> n1=[1 2 3 4 5];n2=[1 2 3];>> p1=poly2sym(n1);p2=poly2sym(n2);>> p=p1+p2p =x^4+2*x^3+4*x^2+6*x+8>> pn=sym2poly(p)pn =1 2 4 6 8>> a=[0 1;-2 -3];>> gcha=poly2sym(poly(eig(a)))gcha =x^2+3*x+2>> sym sans =s>> mg=s*eye(2)-amg =[ s, -1][ 2, s+3]>> geig=transpose(eig(mg))geig =[ s+1, s+2]>> gdet=det(mg)gdet =s^2+3*s+2>> groot=transpose(solve(gdet))groot =[ -2, -1]>> G=inv(mg)G =[ (s+3)/(s^2+3*s+2), 1/(s^2+3*s+2)][ -2/(s^2+3*s+2), s/(s^2+3*s+2)]>> g11=ilaplace(G(1,1));>> g12=ilaplace(G(1,2));>> g21=ilaplace(G(2,1));>> g22=ilaplace(G(2,2));>> g=[g11 g12;g21 g22]g =[ -exp(-2*t)+2*exp(-t), exp(-t)-exp(-2*t)] [ -2*exp(-t)+2*exp(-2*t), 2*exp(-2*t)-exp(-t)]。
实验指导书matlab基础
《MATLAB基础实验指导书》哈尔滨理工大学自动化学院电子信息科学与技术系2018.4实验一 MATLAB 的基本操作一、 实验目的:1. 掌握Matlab 软件使用的基本方法;2. 熟悉常用命令的操作;3. 熟悉Matlab 的数据表示和基本运算二、 实验内容:1. 计算 y =x 3 (x-0.98)2/(x 1.35)3-5(x I, x)当 x =2 和 x =4 的值2. 计算 cos60; -3;9-「2_ 2 2 3. 已知 a =3,A =4,b =a ,B =b -1,c =a A -2B,C =a 2B c ,求C4. 创建一个3*3矩阵,然后用矩阵编辑器将其扩充为 4*5矩阵5. 创建一个3*3矩阵魔方阵和相应的随机矩阵,将两个矩阵并接起来,然后提 取任意两个列向量矩阵,计算矩阵的5次方 - _1 4 813〕 一5 4 3 -2〕 7.设A = -3 6 -5 _9 ,B = 6 -2 3 -8 2 —7 -12 _8—1 3 _9 7」 C = *A 1 。
B D AB2 8. 求23(s 4)(s 1)的“商”及“余”多项式。
s 3 +s + 19. 建立矩阵A ,然后找出在[10,20]区间的元素的位置10. 创建一个有7个元素的一维数组,并做如下处理:1) 直接寻访一维数组的第6个元素;2) 寻访一维数组的第1、3、5个元素;3) 寻访一维数组中第4个至最后1个元素;4) 寻访一维数组中大于70的元素。
三、实验要求:1. 撰写预习报告。
6找出数组A =;42 41中所有绝对值大于3 53的元素。
利用上题的3.撰写实验报告,简述实验目的,提供实验结果和数据。
4.分析算法,并简要给出算法设计小结和心得。
实验二数据和函数的可视化一、实验目的:1.熟悉Matlab绘图命令及基本绘图控制;2.熟悉Matlab程序设计的基本方法。
二、实验内容:1.设y = cosx 0.5 + 3sin:",把x=0~2x区间分为125点,画出以x为横坐L (1+x2)」标,y为纵坐标的曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一 MATLAB 运算基础
一、实验目的
1.熟悉启动和退出MATLAB 的方法;
2.熟悉MATLAB 命令窗口的组成;
3.掌握建立矩阵的方法;
4.掌握MATLAB 各种表达式的书写规则以及常用函数的使用。
二、实验内容
1.先求下列表达式的值,然后显示MATLAB 工作空间的使用情况并保存全部变量。
⑴21185sin 2e
z +︒=; >> z1=2*sin(85*pi/180)/(1+exp(2))
z1 =
0.2375 ⑵)1ln(2122x x z ++=,其中⎥⎦
⎤⎢⎣⎡-+=545.0212i x ; >> x=[2 1+2i;-0.45 5];
>> z2=1/2*log(x+sqrt(1+x^2))
z2 =
0.7114 - 0.0253i 0.8968 + 0.3658i
0.2139 + 0.9343i 1.1541 - 0.0044i ⑶0.3,9.2,8.2,,8.2,9.2,0.3,2
3.0ln )3.0sin(23.03.03 ---=+++-=-a a a e e z a a >> a=(-3.0:0.1:3.0);
>> z3=(exp(0.3.*a)-exp(-0.3.*a))./2.*sin(a+0.3)+log((0.3+a)./2)
z3 =
Columns 1 through 3
0.7388 + 3.1416i 0.7696 + 3.1416i 0.7871 + 3.1416i
Columns 4 through 6
0.7913 + 3.1416i 0.7822 + 3.1416i 0.7602 + 3.1416i
Columns 7 through 9
0.7254 + 3.1416i 0.6784 + 3.1416i 0.6196 + 3.1416i Columns 10 through 12
0.5496 + 3.1416i 0.4688 + 3.1416i 0.3780 + 3.1416i Columns 13 through 15
0.2775 + 3.1416i 0.1680 + 3.1416i 0.0497 + 3.1416i Columns 16 through 18
-0.0771 + 3.1416i -0.2124 + 3.1416i -0.3566 + 3.1416i Columns 19 through 21
-0.5104 + 3.1416i -0.6752 + 3.1416i -0.8536 + 3.1416i Columns 22 through 24
-1.0497 + 3.1416i -1.2701 + 3.1416i -1.5271 + 3.1416i Columns 25 through 27
-1.8436 + 3.1416i -2.2727 + 3.1416i -2.9837 + 3.1416i Columns 28 through 30
-37.0245 -3.0017 -2.3085 Columns 31 through 33
-1.8971 -1.5978 -1.3575 Columns 34 through 36
-1.1531 -0.9723 -0.8083 Columns 37 through 39
-0.6567 -0.5151 -0.3819 Columns 40 through 42
-0.2561 -0.1374 -0.0255
Columns 43 through 45
0.0792 0.1766 0.2663
Columns 46 through 48
0.3478 0.4206 0.4841
Columns 49 through 51
0.5379 0.5815 0.6145
Columns 52 through 54
0.6366 0.6474 0.6470
Columns 55 through 57
0.6351 0.6119 0.5777
Columns 58 through 60
0.5327 0.4774 0.4126
Column 61
0.3388
⑷⎪⎩
⎪⎨⎧+--=,1212224t t t t z 322110<≤<≤<≤t t t ,其中5.2:5.0:0=t
>> t=(0:0.5:2.5);
>> z4=(t>=0&t<1).*(t.^2)+(t>=1&t<2).*(t.^2-1)+(2<=t&t<3).*(t.^2-2.*t+1)
z4 =
0 0.2500 0 1.2500 1.0000 2.2500
2.已知:⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=723302131,76538773443412B A ,求下列表达式的值:
⑴I B A B A +-+和*6(其中I 为单位矩阵);⑵B A B A *.*和;
⑶3.^3^A A 和;⑷B A B A \/和;⑸]2^:);]),3,1([[],[B A B A 和.
>> A=[12 34 -4;34 7 87;3 65 7];
>> B=[1 3 -1;2 0 3;3 -2 7];
>> I=[1 0 0;0 1 0;0 0 1];
>> A+6*B
ans =
18 52 -10
46 7 105
21 53 49
>> A-B+I
ans =
12 31 -3
32 8 84
0 67 1
>> A^3
ans =
37226 233824 48604
247370 149188 600766
78688 454142 118820
>> A.^3
ans =
1728 39304 -64
39304 343 658503
27 274625 343
>> A/B
ans =
16.4000 -13.6000 7.6000
35.8000 -76.2000 50.2000
67.0000 -134.0000 68.0000
>> B\A
ans =
109.4000 -131.2000 322.8000
-53.0000 85.0000 -171.0000
-61.6000 89.8000 -186.2000
>> [A,B]
ans =
12 34 -4 1 3 -1
34 7 87 2 0 3
3 65 7 3 -2 7
>> [A([1,3],:);B^2]
ans =
12 34 -4
3 65 7
4 5 1
11 0 19
20 -5 40
3.设有矩阵A 和B :⎥⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢
⎢⎣⎡--=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=1113
407
9423096171603,25242322212019181716151413121110987654321B A ⑴求它们的乘积C ;⑵将矩阵C 的右下角23⨯子矩阵赋给D ; ⑶查看MATLAB 工作空间的使用情况。
>> A=[1 2 3 4 5;6 7 8 9 10;11 12 13 14 15;16 17 18 19 20;21 22 23 24 25]; >> B=[3 0 16;17 -6 9 ;0 23 -4;9 7 0;4 13 11];
>> C=A*B
C =
93 150 77
258 335 237
423 520 397
588 705 557
753 890 717
>> D=C([3,4,5],[2,3])
D =
520 397
705 557
890 717
>> whos
Name Size Bytes Class Attributes
A 5x5 200 double
B 5x3 120 double
C 5x3 120 double
D 3x2 48 double
4.完成下列操作:
⑴求[100,999]之间能被21整除的数的个数;
⑵建立一个字符串向量,删除其中的大写字母。
>> A=100:1:999;
K=find(rem(A,21)==0);
length(K)
ans =
43
>> ch='aHDJLK143663CFHI';
>> H=find(ch>='A'&ch<'Z');
>> ch(H)=[ ]
ch =
a143663。