2015年上海市高考数学试卷理科【2020新】.pdf
2015年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)
2015 年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A ∩B=()A.{﹣1,0} B.{0,1} C.{﹣1,0,1} D.{0,1,2} 2.(5分)若a 为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1 B.0 C.1 D.23.(5分)根据如图给出的2004 年至2013 年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008 年减少二氧化硫排放量的效果最显著B.2007 年我国治理二氧化硫排放显现成效C.2006 年以来我国二氧化硫年排放量呈减少趋势D.2006 年以来我国二氧化硫年排放量与年份正相关4.(5 分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21 B.42 C.63 D.845.(5 分)设函数f(x)=,则f(﹣2)+f(log212)=()A.3 B.6 C.9 D.126.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.7.(5 分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y 轴于M,N 两点,则|MN|=()A.2B.8 C.4D.108.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b 分别为14,18,则输出的a=()A.0 B.2 C.4 D.149.(5 分)已知A,B 是球O 的球面上两点,∠AOB=90°,C 为该球面上的动点,若三棱锥O﹣ABC 体积的最大值为36,则球O 的表面积为()A.36πB.64πC.144πD.256π10.(5 分)如图,长方形ABCD 的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC,CD 与DA 运动,记∠BOP=x.将动点P 到A,B 两点距离之和表示为x 的函数f(x),则y=f(x)的图象大致为()A.B.C.D.11.(5 分)已知A,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,顶角为120°,则E 的离心率为()A.B.2 C.D.12.(5 分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x >0 时,xf′(x)﹣f(x)<0,则使得f(x)>0 成立的x 的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)二、填空题(共4 小题,每小题5 分,满分20 分)13.(5 分)设向量,不平行,向量λ+与+2平行,则实数λ=.14.(5 分)若x,y 满足约束条件,则z=x+y 的最大值为.15.(5 分)(a+x)(1+x)4的展开式中x 的奇数次幂项的系数之和为32,则a= .16.(5 分)设数列{a n}的前n 项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=.三、解答题(共5 小题,满分60 分)17.(12 分)△ABC 中,D 是BC 上的点,AD 平分∠BAC,△ABD 面积是△ADC 面积的2 倍.(1)求;(2)若AD=1,DC=,求BD 和AC 的长.18.(12 分)某公司为了解用户对其产品的满意度,从A,B 两地区分别随机调查了20 个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70 分70 分到89 分不低于90 分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B 地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.19.(12 分)如图,长方体ABCD﹣A1B1C1D1 中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1 上,A1E=D1F=4,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF 与平面α所成角的正弦值.20.(12 分)已知椭圆C:9x2+y2=m2(m>0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A,B,线段AB 的中点为M.(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点(,m),延长线段OM 与C 交于点P,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由.21.(12 分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m 的取值范围.四、选做题.选修4-1:几何证明选讲22.(10 分)如图,O 为等腰三角形ABC 内一点,⊙O 与△ABC 的底边BC 交于M,N 两点,与底边上的高AD 交于点G,且与AB,AC 分别相切于E,F 两点.(1)证明:EF∥BC;(2)若AG 等于⊙O 的半径,且AE=MN=2,求四边形EBCF 的面积.选修4-4:坐标系与参数方程23.在直角坐标系xOy 中,曲线C1:(t 为参数,t≠0),其中0≤α≤π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2 与C3 交点的直角坐标;(2)若C1 与C2 相交于点A,C1 与C3 相交于点B,求|AB|的最大值.选修4-5:不等式选讲24.设a,b,c,d 均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.2015 年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A ∩B=()A.{﹣1,0} B.{0,1} C.{﹣1,0,1} D.{0,1,2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】解一元二次不等式,求出集合B,然后进行交集的运算即可.【解答】解:B={x|﹣2<x<1},A={﹣2,﹣1,0,1,2};∴A∩B={﹣1,0}.故选:A.【点评】考查列举法、描述法表示集合,解一元二次不等式,以及交集的运算.2.(5 分)若a 为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1 B.0 C.1 D.2【考点】A1:虚数单位i、复数.【专题】5N:数系的扩充和复数.【分析】首先将坐标展开,然后利用复数相等解之.【解答】解:因为(2+ai)(a﹣2i)=﹣4i,所以4a+(a2﹣4)i=﹣4i,4a=0,并且a2﹣4=﹣4,所以a=0;故选:B.【点评】本题考查了复数的运算以及复数相等的条件,熟记运算法则以及复数相等的条件是关键.3.(5分)根据如图给出的2004 年至2013 年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008 年减少二氧化硫排放量的效果最显著B.2007 年我国治理二氧化硫排放显现成效C.2006 年以来我国二氧化硫年排放量呈减少趋势D.2006 年以来我国二氧化硫年排放量与年份正相关【考点】B8:频率分布直方图.【专题】5I:概率与统计.【分析】A 从图中明显看出2008 年二氧化硫排放量比2007 年的二氧化硫排放量减少的最多,故A 正确;B 从2007 年开始二氧化硫排放量变少,故B 正确;C 从图中看出,2006 年以来我国二氧化硫年排放量越来越少,故C 正确;D2006 年以来我国二氧化硫年排放量越来越少,与年份负相关,故D 错误.【解答】解:A 从图中明显看出2008 年二氧化硫排放量比2007 年的二氧化硫排放量明显减少,且减少的最多,故A 正确;B2004﹣2006 年二氧化硫排放量越来越多,从2007 年开始二氧化硫排放量变少,故B 正确;C 从图中看出,2006 年以来我国二氧化硫年排放量越来越少,故C 正确;D2006 年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D 错误.故选:D.【点评】本题考查了学生识图的能力,能够从图中提取出所需要的信息,属于基础题.4.(5 分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21 B.42 C.63 D.84【考点】88:等比数列的通项公式.【专题】11:计算题;54:等差数列与等比数列.【分析】由已知,a1=3,a1+a3+a5=21,利用等比数列的通项公式可求q,然后在代入等比数列通项公式即可求.【解答】解:∵a1=3,a1+a3+a5=21,∴,∴q4+q2+1=7,∴q4+q2﹣6=0,∴q2=2,∴a3+a5+a7= =3×(2+4+8)=42.故选:B.【点评】本题主要考查了等比数列通项公式的应用,属于基础试题.5.(5 分)设函数f(x)=,则f(﹣2)+f(log212)=()A.3 B.6 C.9 D.12【考点】3T:函数的值.【专题】11:计算题;51:函数的性质及应用.【分析】先求f(﹣2)=1+log2(2+2)=1+2=3,再由对数恒等式,求得f(log212)=6,进而得到所求和.【解答】解:函数f(x)= ,即有f(﹣2)=1+log2(2+2)=1+2=3,f(log212)= =2 ×=12×=6,则有f(﹣2)+f(log212)=3+6=9.故选:C.【点评】本题考查分段函数的求值,主要考查对数的运算性质,属于基础题.6.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】11:计算题;5F:空间位置关系与距离.【分析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.【点评】本题考查了由三视图判断几何体的形状,求几何体的体积.7.(5 分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y 轴于M,N 两点,则|MN|=()A.2B.8 C.4D.10【考点】IR:两点间的距离公式.【专题】11:计算题;5B:直线与圆.【分析】设圆的方程为x2+y2+Dx+Ey+F=0,代入点的坐标,求出D,E,F,令x=0,即可得出结论.【解答】解:设圆的方程为x2+y2+Dx+Ey+F=0,则,∴D=﹣2,E=4,F=﹣20,∴x2+y2﹣2x+4y﹣20=0,令x=0,可得y2+4y﹣20=0,∴y=﹣2±2,∴|MN|=4.故选:C.【点评】本题考查圆的方程,考查学生的计算能力,确定圆的方程是关键.8.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b 分别为14,18,则输出的a=()A.0 B.2 C.4 D.14【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】由循环结构的特点,先判断,再执行,分别计算出当前的a,b 的值,即可得到结论.【解答】解:由a=14,b=18,a<b,则b 变为18﹣14=4,由a>b,则a 变为14﹣4=10,由a>b,则a 变为10﹣4=6,由a>b,则a 变为6﹣4=2,由a<b,则b 变为4﹣2=2,由a=b=2,则输出的a=2.故选:B.【点评】本题考查算法和程序框图,主要考查循环结构的理解和运用,以及赋值语句的运用,属于基础题.9.(5分)已知A,B 是球O 的球面上两点,∠AOB=90°,C 为该球面上的动点,若三棱锥O﹣ABC 体积的最大值为36,则球O 的表面积为()A.36πB.64πC.144πD.256π【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】当点C 位于垂直于面AOB 的直径端点时,三棱锥O﹣ABC 的体积最大,利用三棱锥O﹣ABC 体积的最大值为36,求出半径,即可求出球O 的表面积.【解答】解:如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O﹣ABC 的体积最大,设球O 的半径为R ,此时V O ﹣ABC=V C ﹣AOB===36,故R=6,则球O 的表面积为4πR2=144π,故选:C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C 位于垂直于面AOB 的直径端点时,三棱锥O﹣ABC 的体积最大是关键.10.(5 分)如图,长方形ABCD 的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC,CD 与DA 运动,记∠BOP=x.将动点P 到A,B 两点距离之和表示为x 的函数f(x),则y=f(x)的图象大致为()A.B.C.D.【考点】HC:正切函数的图象.【分析】根据函数图象关系,利用排除法进行求解即可.【解答】解:当0≤x≤时,BP=tanx,AP==,此时f(x)=+tanx,0≤x≤,此时单调递增,当P 在CD 边上运动时,≤x≤且x≠时,如图所示,tan∠POB=tan(π﹣∠POQ)=tanx=﹣tan∠POQ=﹣=﹣,∴OQ=﹣,∴PD=AO﹣OQ=1+,PC=BO+OQ=1﹣,∴PA+PB=,当x=时,PA+PB=2 ,当P 在AD 边上运动时,≤x≤π,PA+PB=﹣tanx,由对称性可知函数f(x)关于x=对称,且f()>f(),且轨迹为非线型,排除A,C,D,故选:B.【点评】本题主要考查函数图象的识别和判断,根据条件先求出0≤x≤时的解析式是解决本题的关键.11.(5 分)已知A,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,顶角为120°,则E 的离心率为()A.B.2 C.D.【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】设M 在双曲线﹣=1 的左支上,由题意可得M 的坐标为(﹣2a,a),代入双曲线方程可得a=b,再由离心率公式即可得到所求值.【解答】解:设M 在双曲线﹣=1 的左支上,且MA=AB=2a,∠MAB=120°,则M 的坐标为(﹣2a,a),代入双曲线方程可得,-=1,可得a=b,c==a,即有e==.故选:D.【点评】本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,运用任意角的三角函数的定义求得M 的坐标是解题的关键.12.(5 分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x >0 时,xf′(x)﹣f(x)<0,则使得f(x)>0 成立的x 的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)【考点】6B:利用导数研究函数的单调性.【专题】2:创新题型;51:函数的性质及应用;53:导数的综合应用.【分析】由已知当x>0 时总有xf(′x)﹣f(x)<0 成立,可判断函数g(x)= 为减函数,由已知f(x)是定义在R 上的奇函数,可证明g(x)为(﹣∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0 等价于x•g(x)>0,数形结合解不等式组即可.【解答】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0 时总有xf′(x)<f(x)成立,即当x>0 时,g′(x)恒小于0,∴当x>0 时,函数g(x)=为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数又∵g(﹣1)==0,∴函数g(x)的图象性质类似如图:数形结合可得,不等式f(x)>0⇔x•g(x)>0⇔或,⇔0<x<1 或x<﹣1.故选:A.【点评】本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题.二、填空题(共4 小题,每小题5 分,满分20 分)13.(5 分)设向量,不平行,向量λ+与+2平行,则实数λ=.【考点】96:平行向量(共线).【专题】11:计算题;34:方程思想;4O:定义法;5A:平面向量及应用.【分析】利用向量平行的条件直接求解.【解答】解:∵向量,不平行,向量λ+与+2平行,∴λ+=t(+2)= ,∴,解得实数λ=.故答案为:.【点评】本题考查实数值的解法,考查平面向量平行的条件及应用,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.14.(5 分)若x,y 满足约束条件,则z=x+y 的最大值为.【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】首先画出平面区域,然后将目标函数变形为直线的斜截式,求在y 轴的截距最大值.【解答】解:不等式组表示的平面区域如图阴影部分,当直线经过 D 点时,z 最大,由得D(1,),所以z=x+y 的最大值为1+;故答案为:.【点评】本题考查了简单线性规划;一般步骤是:①画出平面区域;②分析目标函数,确定求最值的条件.15.(5 分)(a+x)(1+x)4的展开式中x 的奇数次幂项的系数之和为32,则a=3 .【考点】DA:二项式定理.【专题】11:计算题;5P:二项式定理.【分析】给展开式中的x 分别赋值1,﹣1,可得两个等式,两式相减,再除以2 得到答案.【解答】解:设 f (x )=(a +x )(1+x )4=a 0+a 1x +a 2x 2+…+a 5x 5,令 x=1,则 a 0+a 1+a 2+…+a 5=f (1)=16(a +1),① 令 x=﹣1,则 a 0﹣a 1+a 2﹣…﹣a 5=f (﹣1)=0.② ①﹣②得,2(a 1+a 3+a 5)=16(a +1),所以 2×32=16(a +1), 所以 a=3. 故答案为:3.【点评】本题考查解决展开式的系数和问题时,一般先设出展开式,再用赋值法代入特殊值,相加或相减.16.(5 分)设数列{a n}的前 n 项和为 Sn,且a1=﹣1,a【考点】8H :数列递推式. 【专题】54:等差数列与等比数列. 【分析】通过 S n +1﹣S n =a n +1 可知 S n +1﹣S n =S n +1S n ,两边同时除以 S n +1S n 可知﹣ =1,进而可知数列{}是以首项、公差均为﹣1 的等差数列,计算即得结论. 【解答】解:∵a n +1=S n +1S n , ∴S n +1﹣S n =S n +1S n , ∴﹣=1, 又∵a 1=﹣1,即=﹣1, ∴数列{}是以首项是﹣1、公差为﹣1 的等差数列, ∴=﹣n , ∴S n =﹣, 故答案为:﹣. 【点评】本题考查数列的通项,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.三、解答题(共5 小题,满分60 分)17.(12 分)△ABC 中,D 是BC 上的点,AD 平分∠BAC,△ABD 面积是△ADC 面积的2 倍.(1)求;(2)若AD=1,DC=,求BD 和AC 的长.【考点】HP:正弦定理;HT:三角形中的几何计算.【专题】58:解三角形.【分析】(1)如图,过A 作AE⊥BC 于E,由已知及面积公式可得BD=2DC,由AD平分∠BAC 及正弦定理可得sin ∠B= ,sin ∠ C=,从而得解.(2)由(1)可求BD=.过D 作DM⊥AB 于M,作DN⊥AC 于N,由AD 平分∠BAC,可求AB=2AC,令AC=x,则AB=2x,利用余弦定理即可解得BD 和AC 的长.【解答】解:(1)如图,过A 作AE⊥BC 于E,∵= =2∴BD=2DC,∵AD 平分∠BAC∴∠BAD=∠DAC在△ABD 中,=,∴sin∠B=在△ADC 中,=,∴sin∠C=;∴==.…6分(2)由(1)知,BD=2DC=2×=.过D 作DM⊥AB 于M,作DN⊥AC 于N,∵AD 平分∠BAC,∴DM=DN,∴= =2,∴AB=2AC,令AC=x,则AB=2x,∵∠BAD=∠DAC,∴cos∠BAD=cos∠DAC,∴由余弦定理可得:=,∴x=1,∴AC=1,∴BD 的长为,AC 的长为1.【点评】本题主要考查了三角形面积公式,正弦定理,余弦定理等知识的应用,属于基本知识的考查.18.(12 分)某公司为了解用户对其产品的满意度,从A,B 两地区分别随机调查了20 个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70 分70 分到89 分不低于90 分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B 地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.【考点】BA:茎叶图;CB:古典概型及其概率计算公式.【专题】5I:概率与统计.【分析】(1)根据茎叶图的画法,以及有关茎叶图的知识,比较即可;(2)根据概率的互斥和对立,以及概率的运算公式,计算即可.【解答】解:(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A 地区用户满意评分的平均值高于B 地区用户满意评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散;(2)记C A1 表示事件“A地区用户满意度等级为满意或非常满意”,记C A2 表示事件“A 地区用户满意度等级为非常满意”,记C B1 表示事件“B地区用户满意度等级为不满意”,记C B2 表示事件“B 地区用户满意度等级为满意”,则C A1 与C B1 独立,C A2 与C B2 独立,C B1 与C B2 互斥,则C=C A1C B1∪C A2C B2,P(C)=P(C A1C B1)+P(C A2C B2)=P(C A1)P(C B1)+P(C A2)P(C B2),由所给的数据C A1,C A2,C B1,C B2,发生的频率为,,,,所以P(C A1)=,P(C A2)=,P(C B1)=,P(C B2)=,所以P(C)=×+×=0.48.【点评】本题考查了茎叶图,概率的互斥与对立,用频率来估计概率,属于中档题.19.(12 分)如图,长方体ABCD﹣A1B1C1D1 中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1 上,A1E=D1F=4,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF 与平面α所成角的正弦值.【考点】MI:直线与平面所成的角.【专题】5G:空间角;5H:空间向量及应用.【分析】(1)容易知道所围成正方形的边长为10,再结合长方体各边的长度,即可找出正方形的位置,从而画出这个正方形;(2)分别以直线DA,DC,DD1 为x,y,z 轴,建立空间直角坐标系,考虑用空间向量解决本问,能够确定A,H,E,F 几点的坐标.设平面EFGH 的法向量为,根据即可求出法向量,坐标可以求出,可设直线AF 与平面EFGH 所成角为θ,由sinθ=即可求得直线AF 与平面α所成角的正弦值.【解答】解:(1)交线围成的正方形EFGH 如图:(2)作EM⊥AB,垂足为M,则:EH=EF=BC=10,EM=AA1=8;∴,∴AH=10;以边DA,DC,DD1 所在直线为x,y,z 轴,建立如图所示空间直角坐标系,则:A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8);∴;设为平面EFGH 的法向量,则:,取z=3,则;若设直线AF 和平面EFGH 所成的角为θ,则:sinθ==;∴直线AF 与平面α所成角的正弦值为.【点评】考查直角三角形边的关系,通过建立空间直角坐标系,利用空间向量解决线面角问题的方法,弄清直线和平面所成角与直线的方向向量和平面法向量所成角的关系,以及向量夹角余弦的坐标公式.20.(12 分)已知椭圆C:9x2+y2=m2(m>0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A,B,线段AB 的中点为M.(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点(,m),延长线段OM 与C 交于点P,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由.【考点】I3:直线的斜率;KH:直线与圆锥曲线的综合.【专题】2:创新题型;5E:圆锥曲线中的最值与范围问题.【分析】(1)联立直线方程和椭圆方程,求出对应的直线斜率即可得到结论.(2)四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P=2x M,建立方程关系即可得到结论.【解答】解:(1)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M (x M,y M),将y=kx+b 代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2﹣m2=0,则判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,则x1+x2= ,则x M== ,y M=kx M+b=,于是直线OM 的斜率k OM== ,即k OM•k=﹣9,∴直线OM 的斜率与l 的斜率的乘积为定值.(2)四边形OAPB 能为平行四边形.∵直线l 过点(,m),∴由判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,即k2m2>9b2﹣9m2,∵b=m﹣m,∴k2m2>9(m﹣m)2﹣9m2,即k2>k2﹣6k,即6k>0,则k>0,∴l 不过原点且与C 有两个交点的充要条件是k>0,k≠3,由(1)知OM 的方程为y= x,设P 的横坐标为x P,由得,即x P= ,将点(,m)的坐标代入l 的方程得b=,即l 的方程为y=kx+,将y= x,代入y=kx+,得kx+= x解得x M=,四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P=2x M,于是=2×,解得k1=4﹣或k2=4+,∵k i>0,k i≠3,i=1,2,∴当l 的斜率为4﹣或4+时,四边形OAPB 能为平行四边形.【点评】本题主要考查直线和圆锥曲线的相交问题,联立方程组转化为一元二次方程,利用根与系数之间的关系是解决本题的关键.综合性较强,难度较大.21.(12 分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m 的取值范围.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】2:创新题型;52:导数的概念及应用.【分析】(1)利用f′(x)≥0 说明函数为增函数,利用f′(x)≤0 说明函数为减函数.注意参数m 的讨论;(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,则恒成立问题转化为最大值和最小值问题.从而求得m 的取值范围.【解答】解:(1)证明:f′(x)=m(e mx﹣1)+2x.若m≥0,则当x∈(﹣∞,0)时,e mx﹣1≤0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1≥0,f′(x)>0.若m<0,则当x∈(﹣∞,0)时,e mx﹣1>0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1<0,f′(x)>0.所以,f(x)在(﹣∞,0)时单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,故f(x)在x=0 处取得最小值.所以对于任意x1,x2∈[﹣1,1],|f(x1)﹣f(x2)|≤e﹣1 的充要条件是即设函数g(t)=e t﹣t﹣e+1,则g′(t)=e t﹣1.当t<0 时,g′(t)<0;当t>0 时,g′(t)>0.故g(t)在(﹣∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故当t∈[﹣1,1]时,g(t)≤0.当m∈[﹣1,1]时,g(m)≤0,g(﹣m)≤0,即合式成立;当m>1 时,由g(t)的单调性,g(m)>0,即e m﹣m>e﹣1.当m<﹣1 时,g(﹣m)>0,即e﹣m+m>e﹣1.综上,m 的取值范围是[﹣1,1]【点评】本题主要考查导数在求单调函数中的应用和恒成立在求参数中的应用.属于难题,高考压轴题.四、选做题.选修4-1:几何证明选讲22.(10 分)如图,O 为等腰三角形ABC 内一点,⊙O 与△ABC 的底边BC 交于M,N 两点,与底边上的高AD 交于点G,且与AB,AC 分别相切于E,F 两点.(1)证明:EF∥BC;(2)若AG 等于⊙O 的半径,且AE=MN=2,求四边形EBCF 的面积.【考点】N4:相似三角形的判定.【专题】26:开放型;5F:空间位置关系与距离.【分析】(1)通过AD 是∠CAB 的角平分线及圆O 分别与AB、AC 相切于点E、F,利用相似的性质即得结论;(2)通过(1)知AD 是EF 的垂直平分线,连结OE、OM,则OE⊥AE,利用S△ABC ﹣S△AEF计算即可.【解答】(1)证明:∵△ABC 为等腰三角形,AD⊥BC,∴AD 是∠CAB 的角平分线,又∵圆O 分别与AB、AC 相切于点E、F,∴AE=AF,∴AD⊥EF,∴EF∥BC;(2)解:由(1)知AE=AF,AD⊥EF,∴AD 是EF 的垂直平分线,又∵EF 为圆O 的弦,∴O 在AD 上,连结OE、OM,则OE⊥AE,由AG 等于圆O 的半径可得AO=2OE,∴∠OAE=30°,∴△ABC 与△AEF 都是等边三角形,∵AE=2,∴AO=4,OE=2,∵OM=OE=2,DM=MN= ,∴OD=1,∴AD=5,AB=,∴四边形EBCF 的面积为×﹣××=.【点评】本题考查空间中线与线之间的位置关系,考查四边形面积的计算,注意解题方法的积累,属于中档题.选修4-4:坐标系与参数方程23.在直角坐标系xOy 中,曲线C1:(t 为参数,t≠0),其中0≤α≤π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2 与C3 交点的直角坐标;(2)若C1 与C2 相交于点A,C1 与C3 相交于点B,求|AB|的最大值.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,把代入可得直角坐标方程.同理由C3:ρ=2cosθ.可得直角坐标方程,联立解出可得C2与C3 交点的直角坐标.(2)由曲线C1 的参数方程,消去参数t,化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠ 0),利用|AB|= 即可得出.【解答】解:(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,∴x2+y2=2y.同理由C3:ρ=2cosθ.可得直角坐标方程:,联立,解得,,∴C2 与C3 交点的直角坐标为(0,0),.(2)曲线C1:(t 为参数,t≠0),化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),∵A,B 都在C1 上,∴A(2sinα,α),B.∴|AB|= =4 ,当时,|AB|取得最大值4.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、曲线的交点、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.选修4-5:不等式选讲24.设a,b,c,d 均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.【考点】29:充分条件、必要条件、充要条件;R6:不等式的证明.【专题】59:不等式的解法及应用;5L:简易逻辑.【分析】(1)运用不等式的性质,结合条件a,b,c,d 均为正数,且a+b=c+d,ab>cd,即可得证;(2)从两方面证,①若+>+,证得|a﹣b|<|c﹣d|,②若|a﹣b|<|c﹣d|,证得+>+,注意运用不等式的性质,即可得证.【解答】证明:(1)由于(+)2=a+b+2,(+)2=c+d+2,由a,b,c,d 均为正数,且a+b=c+d,ab>cd,则>,即有(+)2>(+)2,则+>+;(2)①若+>+,则(+)2>(+)2,即为a+b+2>c+d+2,由a+b=c+d,则ab>cd,于是(a﹣b)2=(a+b)2﹣4ab,(c﹣d)2=(c+d)2﹣4cd,即有(a﹣b)2<(c﹣d)2,即为|a﹣b|<|c﹣d|;②若|a﹣b|<|c﹣d|,则(a﹣b)2<(c﹣d)2,即有(a+b)2﹣4ab<(c+d)2﹣4cd,由a+b=c+d,则ab>cd,则有(+)2>(+)2.综上可得,+>+是|a﹣b|<|c﹣d|的充要条件.【点评】本题考查不等式的证明,主要考查不等式的性质的运用,同时考查充要条件的判断,属于基础题.。
2020年全国统一高考数学试卷(理科)与答案(新课标Ⅰ)
当 b = 2 时,f(a) - f(b2) =-1 < 0,此时 f(a) < f(b2),有 a < b2,所以 C、D 错误 .
故选:B.
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
2x + y - 2 ≤ 0, 13. 若 x,y 满足约束条件 x - y - 1 ≥ 0, 则 z = x + 7y 的最大值为 ______________.
型的是 ( )
A. y = a + bx
B. y = a + bx2
C. y = a + bex
D. y = a + blnx
【答案】D
【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近,
因此,最适合作为发芽率 y 和温度 x 的回归方程类型的是 y = a + blnx.
故选:D.
6. 函数 f(x) = x4 - 2x3 的图像在点 (1,f(1)) 处的切线方程为 ( )
求解一次不等式 2x + a ≤ 0 可得:B = x|x ≤-a2 .
由于 A ∩ B = x| -2 ≤ x ≤ 1 ,故:-a2 = 1,解得:a =-2.
故选:B.
3. 埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正 方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值 为( )
A. a > 2b
B. a < 2b
C. a > b2
D. a < b2
【答案】B
【详解】设 f(x) = 2x + log2x,则 f(x) 为增函数,因为 2a + log2a = 4b + 2log4b = 22b + log2b
2020年上海高考数学试卷(参考答案)
2020年普通高等学校招生全国统一考试数学卷(上海卷)一、填空题(本题共12小题,满分54分,其中1-6题每题4分,7-12题每题5分)1. 已知集合,,求_______2. ________3. 已知复数z 满足(为虚数单位),则_______4. 已知行列式,则行列式_______5.已知,则_______6.已知a 、b 、1、2的中位数为3,平均数为4,则ab=________7.已知,则的最大值为___________8.已知是公差不为零的等差数列,且,则___________9.从6人中挑选4人去值班,每人值班1天,第一天需要1人,第二天需要1人,第三天需要2人,则有____种排法。
10.椭圆,过右焦点F 作直线交椭圆于P 、Q 两点,P 在第二象限已知都在椭圆上,且,,则直线的方程为______11.设,若存在定义域的函数既满足“对于任意,的值为或”又满足“关于的方程无实数解”,则的取值范围为______12、已知是平面内两两互不平等的向量,满足,{}1,2,4A ={}2,3,4B =A B =1lim31n n n →∞+=-12z i =-i z =126300a cd b =a c d b=()3f x x =()1f x -=20230x y y x y +≥⎧⎪≥⎨⎪+-≤⎩2z y x =-{}n a 1109a a a +=12910a a a a ++⋅⋅⋅=22143x y +=l ()(),,'','Q Q Q Q Q x y Q x y y'0Q Q y +='FQ PQ ⊥l a R ∈R ()f x 0x R ∈()0f x 20x 0x x ()f x a =α且(其中),则K 的最大值为________二、选择题(本题共有4小题,每题5分,共计20分) 13、下列不等式恒成立的是() A 、 B 、 C 、 D 、14、已知直线的解析式为,则下列各式是的参数方程的是()A 、B 、C 、D 、15、在棱长为10的正方体.中,为左侧面上一点,已知点到的距离为3,点到的距离为2,则过点且与平行的直线交正方体于、1,21,2,...i j k ==,,222a b ab +≤22-2a b ab +≥2a b ab +≥-2a b ab +≤l 3410x y -+=l 4334x ty t=+⎧⎨=-⎩4334x t y t =+⎧⎨=+⎩1413x ty t =-⎧⎨=+⎩1413x ty t =+⎧⎨=+⎩1111ABCD A B C D -P 11ADD A P 11A D P 1AA P 1A C P两点,则点所在的平面是( )A. B. C. D.16.、若存在,对任意的,均有恒成立,则称函数具有性质,已知:单调递减,且恒成立;单调递增,存在使得,则是具有性质的充分条件是()A 、只有B 、只有C 、D 、都不是三、解答题(本题共5小题,共计76分) 综合题分割17、已知边长为1的正方形ABCD ,沿BC 旋转一周得到圆柱体。
2015年上海市高考数学试卷(理科)
2015年上海市高考数学试卷(理科)一、填空题(本大题共有14题,满分48分.)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对4分,否则一律得零分.1.(4分)设全集U=R .若集合Α={1,2,3,4},Β={x |2≤x ≤3},则Α∩∁U Β= . 2.(4分)若复数z 满足3z +z =1+i ,其中i 是虚数单位,则z= . 3.(4分)若线性方程组的增广矩阵为(23c 101c 2)解为{x =3y =5,则c 1﹣c 2= .4.(4分)若正三棱柱的所有棱长均为a ,且其体积为16√3,则a= . 5.(4分)抛物线y 2=2px (p >0)上的动点Q 到焦点的距离的最小值为1,则p= .6.(4分)若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为 .7.(4分)方程log 2(9x ﹣1﹣5)=log 2(3x ﹣1﹣2)+2的解为 .8.(4分)在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示). 9.已知点 P 和Q 的横坐标相同,P 的纵坐标是Q 的纵坐标的2倍,P 和Q 的轨迹分别为双曲线C 1和C 2.若C 1的渐近线方程为y=±√3x ,则C 2的渐近线方程为 .10.(4分)设f ﹣1(x )为f (x )=2x ﹣2+x 2,x ∈[0,2]的反函数,则y=f (x )+f ﹣1(x )的最大值为 .11.(4分)在(1+x +1x 2015)10的展开式中,x 2项的系数为 (结果用数值表示).12.(4分)赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量ξ1和ξ2分别表示赌客在一局赌博中的赌金和奖金,则 Eξ1﹣Eξ2= (元).13.(4分)已知函数f (x )=sinx .若存在x 1,x 2,…,x m 满足0≤x 1<x 2<…<x m≤6π,且|f (x 1)﹣f (x 2)|+|f (x 2)﹣f (x 3)|+…+|f (x m ﹣1)﹣f (x m )|=12(m ≥2,m ∈N *),则m 的最小值为 .14.在锐角三角形 A BC 中,tanA=12,D 为边 BC 上的点,△A BD 与△ACD 的面积分别为2和4.过D 作D E ⊥A B 于 E ,DF ⊥AC 于F ,则DE →•DF →= .二、选择题(本大题共有4题,满分15分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.(5分)设z 1,z 2∈C ,则“z 1、z 2中至少有一个数是虚数”是“z 1﹣z 2是虚数”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件16.(5分)已知点A 的坐标为(4√3,1),将OA 绕坐标原点O 逆时针旋转π3至OB ,则点B 的纵坐标为( )A .3√32B .5√32C .112D .13217.记方程①:x 2+a 1x +1=0,方程②:x 2+a 2x +2=0,方程③:x 2+a 3x +4=0,其中a 1,a 2,a 3是正实数.当a 1,a 2,a 3成等比数列时,下列选项中,能推出方程③无实根的是( )A .方程①有实根,且②有实根B .方程①有实根,且②无实根C .方程①无实根,且②有实根D .方程①无实根,且②无实根 18.(5分)设 P n (x n ,y n )是直线2x ﹣y=nn+1(n ∈N *)与圆x 2+y 2=2在第一象限的交点,则极限lim n→∞y n −1x n−1=( )A .﹣1B .﹣12C .1D .2三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AA 1=1,AB=AD=2,E 、F 分别是AB、BC的中点,证明A1、C1、F、E四点共面,并求直线CD1与平面A1C1FE 所成的角的大小.20.(14分)如图,A,B,C三地有直道相通,AB=5千米,AC=3千米,BC=4千米.现甲、乙两警员同时从A地出发匀速前往B地,经过t小时,他们之间的距离为f(t)(单位:千米).甲的路线是AB,速度为5千米/小时,乙的路线是ACB,速度为8千米/小时.乙到达B地后原地等待.设t=t1时乙到达C地.(1)求t1与f(t1)的值;(2)已知警员的对讲机的有效通话距离是3千米.当t1≤t≤1时,求f(t)的表达式,并判断f(t)在[t1,1]上的最大值是否超过3?说明理由.21.(14分)已知椭圆x2+2y2=1,过原点的两条直线l1和l2分别于椭圆交于A、B 和C、D,记得到的平行四边形ACBD的面积为S.(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明S=2|x1y2﹣x2y1|;(2)设l1与l2的斜率之积为﹣12,求面积S的值.22.(16分)已知数列{a n}与{b n}满足a n+1﹣a n=2(b n+1﹣b n),n∈N*.(1)若b n=3n+5,且a1=1,求数列{a n}的通项公式;(2)设{a n}的第n0项是最大项,即a n≥a n(n∈N*),求证:数列{b n}的第n0项是最大项;(3)设a1=λ<0,b n=λn(n∈N*),求λ的取值范围,使得{a n}有最大值M与最小值m,且Mm∈(﹣2,2).23.(18分)对于定义域为R的函数g(x),若存在正常数T,使得cosg(x)是以T为周期的函数,则称g(x)为余弦周期函数,且称T为其余弦周期.已知f (x)是以T为余弦周期的余弦周期函数,其值域为R.设f(x)单调递增,f(0)=0,f(T)=4π.(1)验证g(x)=x+sin x3是以6π为周期的余弦周期函数;(2)设a<b,证明对任意c∈[f(a),f(b)],存在x0∈[a,b],使得f(x0)=c;(3)证明:“u0为方程cosf(x)=1在[0,T]上得解,”的充要条件是“u0+T为方程cosf(x)=1在区间[T,2T]上的解”,并证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T).2015年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(本大题共有14题,满分48分.)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对4分,否则一律得零分.1.(4分)设全集U=R .若集合Α={1,2,3,4},Β={x |2≤x ≤3},则Α∩∁U Β= {1,4} .【解答】解:∵全集U=R ,集合Α={1,2,3,4},Β={x |2≤x ≤3}, ∴(∁U B )={x |x >3或x <2}, ∴A ∩(∁U B )={1,4}, 故答案为:{1,4}.2.(4分)若复数z 满足3z +z =1+i ,其中i 是虚数单位,则z= 14+12i .【解答】解:设z=a +bi ,则z =a ﹣bi (a ,b ∈R ), 又3z +z =1+i ,∴3(a +bi )+(a ﹣bi )=1+i , 化为4a +2bi=1+i , ∴4a=1,2b=1,解得a=14,b=12.∴z=14+12i .故答案为:14+12i .3.(4分)若线性方程组的增广矩阵为(23c 101c 2)解为{x =3y =5,则c 1﹣c 2= 16 .【解答】解:由题意知{x =3y =5,是方程组{2x +3y =c 1y =c 2的解,即{c 1=6+15=21c 2=5,则c 1﹣c 2=21﹣5=16, 故答案为:16.4.(4分)若正三棱柱的所有棱长均为a ,且其体积为16√3,则a= 4 . 【解答】解:由题意可得,正棱柱的底面是变长等于a 的等边三角形,面积为12•a•a•sin60°,正棱柱的高为a , ∴(12•a•a•sin60°)•a=16√3,∴a=4,故答案为:4.5.(4分)抛物线y 2=2px (p >0)上的动点Q 到焦点的距离的最小值为1,则p= 2 .【解答】解:因为抛物线y 2=2px (p >0)上的动点Q 到焦点的距离的最小值为1,所以p2=1,所以p=2. 故答案为:2.6.(4分)若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为π3.【解答】解:设圆锥的底面半径为r ,高为h ,母线长为l , 则圆锥的侧面积为:πrl ,过轴的截面面积为:rh , ∵圆锥的侧面积与过轴的截面面积之比为2π, ∴l=2h ,设母线与轴的夹角为θ,则cosθ=ℎl =12,故θ=π3,故答案为:π3.7.(4分)方程log 2(9x ﹣1﹣5)=log 2(3x ﹣1﹣2)+2的解为 2 .【解答】解:∵log 2(9x ﹣1﹣5)=log 2(3x ﹣1﹣2)+2,∴log 2(9x ﹣1﹣5)=log 2[4×(3x ﹣1﹣2)],∴9x ﹣1﹣5=4(3x ﹣1﹣2), 化为(3x )2﹣12•3x +27=0,因式分解为:(3x ﹣3)(3x ﹣9)=0, ∴3x =3,3x =9, 解得x=1或2.经过验证:x=1不满足条件,舍去. ∴x=2. 故答案为:2.8.(4分)在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 120 (结果用数值表示). 【解答】解:根据题意,报名的有3名男老师和6名女教师,共9名老师, 在9名老师中选取5人,参加义务献血,有C 95=126种; 其中只有女教师的有C 65=6种情况;则男、女教师都有的选取方式的种数为126﹣6=120种; 故答案为:120.9.已知点 P 和Q 的横坐标相同,P 的纵坐标是Q 的纵坐标的2倍,P 和Q 的轨迹分别为双曲线C 1和C 2.若C 1的渐近线方程为y=±√3x ,则C 2的渐近线方程为 .【解答】解:设C 1的方程为y 2﹣3x 2=λ,设Q (x ,y ),则P (x ,2y ),代入y 2﹣3x 2=λ,可得4y 2﹣3x 2=λ, ∴C 2的渐近线方程为4y 2﹣3x 2=0,即. 故答案为:.10.(4分)设f ﹣1(x )为f (x )=2x ﹣2+x 2,x ∈[0,2]的反函数,则y=f (x )+f ﹣1(x )的最大值为 4 .【解答】解:由f (x )=2x ﹣2+x 2在x ∈[0,2]上为增函数,得其值域为[14,2],可得y=f ﹣1(x )在[14,2]上为增函数,因此y=f (x )+f ﹣1(x )在[14,2]上为增函数,∴y=f (x )+f ﹣1(x )的最大值为f (2)+f ﹣1(2)=1+1+2=4. 故答案为:4.11.(4分)在(1+x +1x2015)10的展开式中,x 2项的系数为 45 (结果用数值表示).【解答】解:∵(1+x +1x2015)10 =C 100(1+x)10⋅(1x 2015)0+C 101(1+x)9⋅(1x 2015)1+⋯, ∴仅在第一部分中出现x 2项的系数.再由T r+1=C 10r x r ,令r=2,可得,x 2项的系数为C 102=45. 故答案为:45.12.(4分)赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量ξ1和ξ2分别表示赌客在一局赌博中的赌金和奖金,则 Eξ1﹣Eξ2= 0.2 (元). 【解答】解:赌金的分布列为ξ1 12345P15 15 15 15 15所以 Eξ1=15(1+2+3+4+5)=3,奖金的分布列为:若两张卡片上数字之差的绝对值为1,则有(1,2),(2,3),(3,4),(4,5),4种,若两张卡片上数字之差的绝对值为2,则有(1,3),(2,4),(3,5),3种, 若两张卡片上数字之差的绝对值为3,则有(1,4),(2,5),2种,若两张卡片上数字之差的绝对值为4,则有(1,5),1种,则P (ξ2=1.4)=4C 52=25,P (ξ2=2.8)=3C 52=310,P (ξ2=4.2)=2C 52=15,P (ξ2=5.6)=1C 52=110ξ2 1.42.84.25.6P25 310 15 110所以 Eξ2=1.4×(25×1+310×2+15×3+110×4)=2.8,则 Eξ1﹣Eξ2=3﹣2.8=0.2元. 故答案为:0.213.(4分)已知函数f (x )=sinx .若存在x 1,x 2,…,x m 满足0≤x 1<x 2<…<x m ≤6π,且|f (x 1)﹣f (x 2)|+|f (x 2)﹣f (x 3)|+…+|f (x m ﹣1)﹣f (x m )|=12(m ≥2,m ∈N *),则m 的最小值为 8 .【解答】解:∵y=sinx 对任意x i ,x j (i ,j=1,2,3,…,m ),都有|f (x i )﹣f (x j )|≤f (x )max ﹣f (x )min =2,要使m 取得最小值,尽可能多让x i (i=1,2,3,…,m )取得最高点,考虑0≤x 1<x 2<…<x m ≤6π,|f (x 1)﹣f (x 2)|+|f (x 2)﹣f (x 3)|+…+|f (x m ﹣1)﹣f (x m )|=12,按下图取值即可满足条件,∴m 的最小值为8. 故答案为:8.14.在锐角三角形 A BC 中,tanA=12,D 为边 BC 上的点,△A BD 与△ACD 的面积分别为2和4.过D 作D E ⊥A B 于 E ,DF ⊥AC 于F ,则DE →•DF →= ﹣1615. 【解答】解:如图,∵△ABD 与△ACD 的面积分别为2和4,∴12|AB →|⋅|DE →|=2,12|AC →|⋅|DF →|=4,可得|DE →|=4|AB →|,|DF →|=8|AC →|,∴|DE →|⋅|DF →|=32|AB →|⋅|AC →|. 又tanA=12,∴sinA cosA =12,联立sin 2A +cos 2A=1,得sinA =√55,cosA=2√55. 由12|AB →|⋅|AC →|sinA =6,得|AB →|⋅|AC →|=12√5. 则|DE →|⋅|DF →|=8√515.∴DE →•DF →=|DE →|⋅|DF →|cos <DE →,DF →>=8√515×(−2√55)=−1615.故答案为:−1615.二、选择题(本大题共有4题,满分15分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.(5分)设z 1,z 2∈C ,则“z 1、z 2中至少有一个数是虚数”是“z 1﹣z 2是虚数”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件【解答】解:设z 1=1+i ,z 2=i ,满足z 1、z 2中至少有一个数是虚数,则z 1﹣z 2=1是实数,则z 1﹣z 2是虚数不成立,若z 1、z 2都是实数,则z 1﹣z 2一定不是虚数,因此当z 1﹣z 2是虚数时, 则z 1、z 2中至少有一个数是虚数,即必要性成立,故“z 1、z 2中至少有一个数是虚数”是“z 1﹣z 2是虚数”的必要不充分条件,故选:B .16.(5分)已知点A 的坐标为(4√3,1),将OA 绕坐标原点O 逆时针旋转π3至OB ,则点B 的纵坐标为( )A .3√32B .5√32C .112D .132【解答】解:∵点 A 的坐标为(4√3,1),∴设∠xOA=θ,则sinθ=√1+(4√3)2=√49=17,cosθ=√3√1+(4√3)2=4√37,将OA 绕坐标原点O 逆时针旋转π3至OB ,则OB 的倾斜角为θ+π3,则|OB |=|OA |=√1+(4√3)2=√49=7,则点B 的纵坐标为y=|OB |sin (θ+π3)=7(sinθcos π3+cosθsin π3)=7(17×12+√32×4√37)=12+6=132, 故选:D .17.记方程①:x 2+a 1x +1=0,方程②:x 2+a 2x +2=0,方程③:x 2+a 3x +4=0,其中a 1,a 2,a 3是正实数.当a 1,a 2,a 3成等比数列时,下列选项中,能推出方程③无实根的是( )A .方程①有实根,且②有实根B .方程①有实根,且②无实根C .方程①无实根,且②有实根D .方程①无实根,且②无实根【解答】解:当方程①有实根,且②无实根时,△1=a 12﹣4≥0,△2=a 22﹣8<0, 即a 12≥4,a 22<8, ∵a 1,a 2,a 3成等比数列, ∴a 22=a 1a 3, 即a 3=a 22a 1,则a 32=(a 22a 1)2=a 24a 12<824=16,即方程③的判别式△3=a32﹣16<0,此时方程③无实根,故选:B18.(5分)设P n(x n,y n)是直线2x﹣y=nn+1(n∈N*)与圆x2+y2=2在第一象限的交点,则极限limn→∞y n−1x n−1=()A.﹣1 B.﹣12C.1 D.2【解答】解:当n→+∞时,直线2x﹣y=nn+1趋近于2x﹣y=1,与圆x2+y2=2在第一象限的交点无限靠近(1,1),而y n−1x n−1可看作点P n(x n,y n)与(1,1)连线的斜率,其值会无限接近圆x2+y2=2在点(1,1)处的切线的斜率,其斜率为﹣1.∴limn→∞y n−1x n−1=﹣1.故选:A.三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)如图,在长方体ABCD﹣A1B1C1D1中,AA1=1,AB=AD=2,E、F分别是AB、BC的中点,证明A1、C1、F、E四点共面,并求直线CD1与平面A1C1FE 所成的角的大小.【解答】解:连接AC,因为E,F分别是AB,BC的中点,所以EF是△ABC的中位线,所以EF∥AC.由长方体的性质知AC∥A1C1,所以EF∥A1C1,所以A1、C1、F、E四点共面.以D为坐标原点,DA、DC、DD1分别为x、y、z轴,建立空间直角坐标系,易求得D 1C→=(0,2,−1)A 1C 1→=(−2,2,0),A 1E →=(0,1,−1) 设平面A 1C 1EF 的法向量为n →=(x ,y ,z)则{n →⋅A 1C 1→=0n →⋅A 1E →=0,所以{(x ,y ,z)⋅(−2,2,0)=0(x ,y ,z)(0,1,−1)=0,即{−2x +2y =0y −z =0,z=1,得x=1,y=1,所以n →=(1,1,1),所以|cos <n →,D 1C →>|=|n →⋅D 1C →||n →||D 1C →|=√3√5=√1515, 所以直线CD 1与平面A 1C 1FE 所成的角的大小arcsin √1515.20.(14分)如图,A ,B ,C 三地有直道相通,AB=5千米,AC=3千米,BC=4千米.现甲、乙两警员同时从A 地出发匀速前往B 地,经过t 小时,他们之间的距离为f (t )(单位:千米).甲的路线是AB ,速度为5千米/小时,乙的路线是ACB ,速度为8千米/小时.乙到达B 地后原地等待.设t=t 1时乙到达C 地. (1)求t 1与f (t 1)的值;(2)已知警员的对讲机的有效通话距离是3千米.当t 1≤t ≤1时,求f (t )的表达式,并判断f (t )在[t 1,1]上的最大值是否超过3?说明理由.【解答】解:(1)由题意可得t 1=AC v 乙=38h ,设此时甲运动到点P ,则AP=v 甲t 1=5×38=158千米,∴f (t 1)=PC=√AC 2+AP 2−2AC ⋅AP ⋅cosA=√32+(158)2−2×3×158×35=3√418千米;(2)当t 1≤t ≤78时,乙在CB 上的Q 点,设甲在P 点,∴QB=AC +CB ﹣8t=7﹣8t ,PB=AB ﹣AP=5﹣5t ,∴f (t )=PQ=√QB 2+PB 2−2QB ⋅PB ⋅cosB =√(7−8t)2+(5−5t)2−2(7−8t)(5−5t)0.8 =√25t 2−42t +18,当78<t ≤1时,乙在B 点不动,设此时甲在点P , ∴f (t )=PB=AB ﹣AP=5﹣5t∴f (t )={√25t 2−42t +18,38≤t ≤785−5t ,78<t ≤1∴当38<t ≤1时,f (t )∈[0,3√418],故f (t )的最大值没有超过3千米.21.(14分)已知椭圆x 2+2y 2=1,过原点的两条直线l 1和l 2分别于椭圆交于A 、B 和C 、D ,记得到的平行四边形ACBD 的面积为S .(1)设A (x 1,y 1),C (x 2,y 2),用A 、C 的坐标表示点C 到直线l 1的距离,并证明S=2|x 1y 2﹣x 2y 1|;(2)设l 1与l 2的斜率之积为﹣12,求面积S 的值.【解答】解:(1)依题意,直线l 1的方程为y=y 1x 1x ,由点到直线间的距离公式得:点C 到直线l 1的距离d=|y 1x 2x 1−y 2|√1+(y 1x 1)2=1212√x 12+y 12,因为|AB |=2|AO |=2√x 12+y 12,所以S=|AB |d=2|x 1y 2﹣x 2y 1|; 当l 1与l 2时的斜率之一不存在时,同理可知结论成立; (2)方法一:设直线l 1的斜率为k ,则直线l 2的斜率为﹣12k,设直线l 1的方程为y=kx ,联立方程组{y =kxx 2+2y 2=1,消去y 解得x=±√1+2k2, 根据对称性,设x 1=√1+2k 2,则y 1=√1+2k 2,同理可得x 2=√2k √1+2k 2,y 2=−√22√1+2k 2,所以S=2|x 1y 2﹣x 2y 1|=√2.方法二:设直线l1、l2的斜率分别为y1x1、y2x2,则y1y2x1x2=﹣12,所以x1x2=﹣2y1y2,∴x12x22=4y12y22=﹣2x1x2y1y2,∵A(x1,y1)、C(x2,y2)在椭圆x2+2y2=1上,∴(x12+2y12)(x22+2y22)=x12x22+4y12y22+2(x12y22+x22y12)=1,即﹣4x1x2y1y2+2(x12y22+x22y12)=1,所以(x1y2﹣x2y1)2=12,即|x1y2﹣x2y1|=√22,所以S=2|x1y2﹣x2y1|=√2.22.(16分)已知数列{a n}与{b n}满足a n+1﹣a n=2(b n+1﹣b n),n∈N*.(1)若b n=3n+5,且a1=1,求数列{a n}的通项公式;(2)设{a n}的第n0项是最大项,即a n≥a n(n∈N*),求证:数列{b n}的第n0项是最大项;(3)设a1=λ<0,b n=λn(n∈N*),求λ的取值范围,使得{a n}有最大值M与最小值m,且Mm∈(﹣2,2).【解答】(1)解:∵a n+1﹣a n=2(b n+1﹣b n),b n=3n+5,∴a n+1﹣a n=2(b n+1﹣b n)=2(3n+8﹣3n﹣5)=6,∴{a n}是等差数列,首项为a1=1,公差为6,则a n=1+(n﹣1)×6=6n﹣5;(2)∵a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1 =2(b n﹣b n﹣1)+2(b n﹣1﹣b n﹣2)+…+2(b2﹣b1)+a1=2b n+a1﹣2b1,∴b n=12(a n+2b1−a1),∴b n0=12(a n+2b1−a1)≥12(a n+2b1−a1).∴数列{b n}的第n0项是最大项;(3)由(2)可得a n=2λn−λ,①当﹣1<λ<0时,a2n=2(λ2)n−λ单调递减,有最大值M=a2=2λ2−λ;a2n−1=2λ2n−1−λ单调递增,有最小值m=a1=λ,∴Mm=2λ−1∈(﹣2,2),∴λ∈(−12,32),∴λ∈(−12,0).②当λ=﹣1时,a2n=3,a2n﹣1=﹣1,∴M=3,m=﹣1,Mm=−3∉(﹣2,2),不满足条件.③当λ<﹣1时,当n→+∞时,a2n→+∞,无最大值;当n→+∞时,a2n﹣1→﹣∞,无最小值.综上所述,λ∈(﹣12,0)时满足条件.23.(18分)对于定义域为R的函数g(x),若存在正常数T,使得cosg(x)是以T为周期的函数,则称g(x)为余弦周期函数,且称T为其余弦周期.已知f (x)是以T为余弦周期的余弦周期函数,其值域为R.设f(x)单调递增,f(0)=0,f(T)=4π.(1)验证g(x)=x+sin x3是以6π为周期的余弦周期函数;(2)设a<b,证明对任意c∈[f(a),f(b)],存在x0∈[a,b],使得f(x0)=c;(3)证明:“u0为方程cosf(x)=1在[0,T]上得解,”的充要条件是“u0+T为方程cosf(x)=1在区间[T,2T]上的解”,并证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T).【解答】解:(1)g(x)=x+sin x 3;∴cosg(x+6π)=cos(x+6π+sin x+6π3)=cos(x+sinx3)=cosg(x)∴g(x)是以6π为周期的余弦周期函数;(2)∵f(x)的值域为R;∴存在x0,使f(x0)=c;又c∈[f(a),f(b)];∴f(a)≤f(x0)≤f(b),而f(x)为增函数;∴a≤x0≤b;即存在x0∈[a,b],使f(x0)=c;(3)证明:若u0+T为方程cosf(x)=1在区间[T,2T]上的解;则:cosf(u0+T)=1,T≤u0+T≤2T;∴cosf(u0)=1,且0≤u0≤T;∴u0为方程cosf(x)=1在[0,T]上的解;∴“u0为方程cosf(x)=1在[0,T]上得解”的充分条件是“u0+T为方程cosf(x)=1在区间[T,2T]上的解”;下面证明对任意x∈[0,T],都有f(x+T)=f(x)+f (T):①当x=0时,f(0)=0,∴显然成立;②当x=T时,cosf(2T)=cosf(T)=1;∴f(2T)=2k1π,(k1∈Z),f(T)=4π,且2k1π>4π,∴k1>2;1)若k1=3,f(2T)=6π,由(2)知存在x0∈(0,T),使f(x0)=2π;cosf(x0+T)=cosf(x0)=1⇒f(x0+T)=2k2π,k2∈Z;∴f(T)<f(x0+T)<f(2T);∴4π<2k2π<6π;∴2<k2<3,无解;2)若k1≥5,f(2T)≥10π,则存在T<x1<x2<2T,使得f(x1)=6π,f(x2)=8π;则T,x1,x2,2T为cosf(x)=1在[T,2T]上的4个解;但方程cosf(x)=1在[0,2T]上只有f(x)=0,2π,4π,3个解,矛盾;3)当k1=4时,f(2T)=8π=f(T)+f(T),结论成立;③当x∈(0,T)时,f(x)∈(0,4π),考查方程cosf(x)=c在(0,T)上的解;设其解为f(x1),f(x2),…,f(x n),(x1<x2<…<x n);则f(x1+T),f(x2+T),…,f(x n+T)为方程cosf(x)=c在(T,2T)上的解;又f(x+T)∈(4π,8π);而f(x1)+4π,f(x2)+4π,…,f(x n)+4π∈(4π,8π)为方程cosf(x)=c在(T,2T)上的解;∴f(x i+T)=f(x i)+4π=f(x i)+f(T);∴综上对任意x∈[0,T],都有f(x+T)=f(x)+f(T).。
2020年上海市高考数学试卷(秋季)(全网最专业解析 )
2020年上海市秋季高考数学试卷一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.已知集合{1A =,2,4},集合{2B =,4,5},则A B = .2.计算:1lim31n n n →∞+=- .3.已知复数12(z i i =-为虚数单位),则||z = .4.已知函数3()f x x =,()f x '是()f x 的反函数,则()f x '= . 5.已知x 、y 满足202300x y x y y +-⎧⎪+-⎨⎪⎩,则2z y x =-的最大值为 .6.已知行列式126300a bc d =,则a bc d= . 7.已知有四个数1,2,a ,b ,这四个数的中位数是3,平均数是4,则ab = .8.已知数列{}n a 是公差不为零的等差数列,且1109a a a +=,则12910a a a a ++⋯+= .9.从6个人挑选4个人去值班,每人值班一天,第一天安排1个人,第二天安排1个人,第三天安排2个人,则共有 种安排情况.10.已知椭圆22:143x y C +=的右焦点为F ,直线l 经过椭圆右焦点F ,交椭圆C 于P 、Q 两点(点P 在第二象限),若点Q 关于x 轴对称点为Q ',且满足PQ FQ ⊥',求直线l 的方程是 .11.设a R ∈,若存在定义域为R 的函数()f x 同时满足下列两个条件:(1)对任意的0x R ∈,0()f x 的值为0x 或20x ;(2)关于x 的方程()f x a =无实数解, 则a 的取值范围是 .12.已知1a ,2a ,1b ,2b ,⋯,(*)k b k N ∈是平面内两两互不相等的向量,满足12||1a a -=,且||{1i j a b -∈,2}(其中1i =,2,1j =,2,⋯,)k ,则k 的最大值是 . 二、选择题(本大题共4题,每题5分,共20分) 13.下列等式恒成立的是( ) A .222a b ab + B .222a b ab +- C .2||a b ab + D .222a b ab +-14.已知直线方程3410x y ++=的一个参数方程可以是( )A .1314x t y t =+⎧⎨=--⎩B .1413x ty t =-⎧⎨=-+⎩C .1314x t y t =-⎧⎨=-+⎩D .1413x t y t =+⎧⎨=-⎩15.在棱长为10的正方体1111ABCD A B C D -中,P 为左侧面11ADD A 上一点,已知点P 到11A D 的距离为3,P 到1AA 的距离为2,则过点P 且与1A C 平行的直线相交的面是( )A .面11AAB BB .面11BBC CC .面11CCD DD .面ABCD16.命题p :存在a R ∈且0a ≠,对于任意的x R ∈,使得()()f x a f x f +<+(a ); 命题1:()q f x 单调递减且()0f x >恒成立;命题2:()q f x 单调递增,存在00x <使得0()0f x =, 则下列说法正确的是( ) A .只有1q 是p 的充分条件 B .只有2q 是p 的充分条件 C .1q ,2q 都是p 的充分条件D .1q ,2q 都不是p 的充分条件三、解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)已知ABCD 是边长为1的正方形,正方形ABCD 绕AB 旋转形成一个圆柱. (1)求该圆柱的表面积;(2)正方形ABCD 绕AB 逆时针旋转2π至11ABC D ,求线段1CD 与平面ABCD 所成的角.18.(14分)已知函数()sin f x x ω=,0ω>.(1)()f x 的周期是4π,求ω,并求1()2f x =的解集;(2)已知1ω=,2()()3()()2g x f x x f x π=--,[0x ∈,]4π,求()g x 的值域.19.(14分)在研究某市场交通情况时,道路密度是指该路段上一定时间内通过的车辆数除以时间,车辆密度是该路段一定时间内通过的车辆数除以该路段的长度,现定义交通流量为qv x=,x 为道路密度,q 为车辆密度.1100135(),040()3(40)85,4080x x v f x k x x ⎧-<<⎪==⎨⎪--+⎩. (1)若交通流量95v >,求道路密度x 的取值范围;(2)已知道路密度80x =,交通流量50v =,求车辆密度q 的最大值.20.(16分)已知双曲线2212:14x y bΓ-=与圆2222:4(0)x y b b Γ+=+>交于点(A A x ,)A y (第一象限),曲线Γ为1Γ、2Γ上取满足||A x x >的部分.(1)若A x =b 的值;(2)当b2Γ与x 轴交点记作点1F 、2F ,P 是曲线Γ上一点,且在第一象限,且1||8PF =,求12F PF ∠;(3)过点2(0,2)2b D +斜率为2b-的直线l 与曲线Γ只有两个交点,记为M 、N ,用b 表示OM ON ,并求OM ON 的取值范围.21.(18分)已知数列{}n a 为有限数列,满足12131||||||m a a a a a a --⋯-,则称{}n a 满足性质P .(1)判断数列3、2、5、1和4、3、2、5、1是否具有性质P ,请说明理由; (2)若11a =,公比为q 的等比数列,项数为10,具有性质P ,求q 的取值范围; (3)若{}n a 是1,2,3,⋯,m 的一个排列(4)m ,{}n b 符合1(1k k b a k +==,2,⋯,1)m -,{}n a 、{}n b 都具有性质P ,求所有满足条件的数列{}n a .2020年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.已知集合{1A =,2,4},集合{2B =,4,5},则A B = {2,4} .【思路分析】由交集的定义可得出结论. 【解析】:因为{1A =,2,4},{2B =,4,5}, 则{2AB =,4}.故答案为:{2,4}.【总结与归纳】本题考查交集的定义,属于基础题.2.计算:1lim 31n n n →∞+=-13. 【思路分析】由极限的运算法则和重要数列的极限公式,可得所求值.【解析】:1111lim1101limlim 113130333limn n n n n n n n nn →∞→∞→∞→∞++++====----, 故答案为:13.【总结与归纳】本题考查数列的极限的求法,注意运用极限的运算性质,考查运算能力,是一道基础题.3.已知复数12(z i i =-为虚数单位),则||z【思路分析】由已知直接利用复数模的计算公式求解.【解析】:由12z i=-,得||z . .【总结与归纳】本题考查复数模的求法,是基础的计算题.4.已知函数3()f x x =,()f x '是()f x 的反函数,则()f x '= 13x ,x R ∈ .【思路分析】由已知求解x ,然后把x 与y 互换即可求得原函数的反函数. 【解析】:由3()y f x x ==,得x =,把x 与y互换,可得3()f x x =的反函数为1()f x -=【总结与归纳】本题考查函数的反函数的求法,注意反函数的定义域是原函数的值域,是基础题.5.已知x 、y 满足202300x y x y y +-⎧⎪+-⎨⎪⎩,则2z y x =-的最大值为 1- .【思路分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解析】:由约束条件202300x y x y y +-⎧⎪+-⎨⎪⎩作出可行域如图阴影部分,化目标函数2z y x =-为2y x z =+,由图可知,当直线2y x z =+过A 时,直线在y 轴上的截距最大, 联立20230x y x y +-=⎧⎨+-=⎩,解得11x y =⎧⎨=⎩,即(1,1)A .z 有最大值为1211-⨯=-.故答案为:1-.【总结与归纳】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题. 6.已知行列式126300a bc d =,则a bc d= 2 . 【思路分析】直接利用行列式的运算法则求解即可. 【解析】:行列式126300a bc d =,可得36a b c d =,解得2a bc d=. 故答案为:2.【总结与归纳】本题考查行列式的应用,代数余子式的应用,是基本知识的考查. 7.已知有四个数1,2,a ,b ,这四个数的中位数是3,平均数是4,则ab = 36 .【思路分析】分别由题意结合中位数,平均数计算方法得13a b +=,232a+=,解得a ,b ,再算出答案即可.【解析】:因为四个数的平均数为4,所以441213a b +=⨯--=,因为中位数是3,所以232a+=,解得4a =,代入上式得1349b =-=,所以36ab =, 故答案为:36.【总结与归纳】本题考查样本的数字特征,中位数,平均数,属于基础题.8.已知数列{}n a 是公差不为零的等差数列,且1109a a a +=,则12910a a a a ++⋯+=278.【思路分析】根据等差数列的通项公式可由1109a a a +=,得1a d =-,在利用等差数列前n 项和公式化简12910a a a a ++⋯+即可得出结论.【解析】:根据题意,等差数列{}n a 满足1109a a a +=,即11198a a d a d ++=+,变形可得1a d =-,所以1129110119899369362729998da a a a a d d d a a d a d d d ⨯+++⋯++-+====++-+. 故答案为:278.【总结与归纳】本题考查等差数列的前n 项和与等差数列通项公式的应用,注意分析1a 与d的关系,属于基础题.9.从6个人挑选4个人去值班,每人值班一天,第一天安排1个人,第二天安排1个人,第三天安排2个人,则共有 180 种安排情况.【思路分析】根据题意,由组合公式得共有112654C C C 排法,计算即可得出答案. 【解析】:根据题意,可得排法共有112654180C C C =种. 故答案为:180.【总结与归纳】本题考查组合数公式,解题关键是正确理解题意并熟悉组合数公式,属于基础题.10.已知椭圆22:143x y C +=的右焦点为F ,直线l 经过椭圆右焦点F ,交椭圆C 于P 、Q 两点(点P 在第二象限),若点Q 关于x 轴对称点为Q ',且满足PQ FQ ⊥',求直线l 的方程是10x y +-= .【思路分析】求出椭圆的右焦点坐标,利用已知条件求出直线的斜率,然后求解直线方程.【解析】:椭圆22:143x y C +=的右焦点为(1,0)F ,直线l 经过椭圆右焦点F ,交椭圆C 于P 、Q 两点(点P 在第二象限),若点Q 关于x 轴对称点为Q ',且满足PQ FQ ⊥',可知直线l 的斜率为1-,所以直线l 的方程是:(1)y x =--, 即10x y +-=. 故答案为:10x y +-=.【总结与归纳】本题考查椭圆的简单性质的应用,直线与直线的对称关系的应用,直线方程的求法,是基本知识的考查.11.设a R ∈,若存在定义域为R 的函数()f x 同时满足下列两个条件:(1)对任意的0x R ∈,0()f x 的值为0x 或20x ;(2)关于x 的方程()f x a =无实数解,则a 的取值范围是 (-∞,0)(0⋃,1)(1⋃,)+∞ .【思路分析】根据条件(1)可知00x =或1,进而结合条件(2)可得a 的范围 【解析】:根据条件(1)可得00x =或1,又因为关于x 的方程()f x a =无实数解,所以0a ≠或1, 故(a ∈-∞,0)(0⋃,1)(1⋃,)+∞, 故答案为:(-∞,0)(0⋃,1)(1⋃,)+∞.【总结与归纳】本题考查函数零点与方程根的关系,属于基础题.12.已知1a ,2a ,1b ,2b ,⋯,(*)k b k N ∈是平面内两两互不相等的向量,满足12||1a a -=,且||{1i j a b -∈,2}(其中1i =,2,1j =,2,⋯,)k ,则k 的最大值是 6 . 【思路分析】设11OA a =,22OA a =,结合向量的模等于1和2画出图形,由圆的交点个数即可求得k 的最大值.【解析】:如图,设11OA a =,22OA a =,由12||1a a -=,且||{1i j a b -∈,2}, 分别以1A ,2A 为圆心,以1和2为半径画圆,其中任意两圆的公共点共有6个.故满足条件的k 的最大值为6. 故答案为:6.【总结与归纳】本题考查两向量的线性运算,考查向量模的求法,正确理解题意是关键,是中档题.二、选择题(本大题共4题,每题5分,共20分) 13.下列等式恒成立的是( ) A .222a b ab + B .222a b ab +- C .2||a b ab + D .222a b ab +-【思路分析】利用2()0a b +恒成立,可直接得到222a b ab +-成立,通过举反例可排除ACD .【解析】:A .显然当0a <,0b >时,不等式222a b ab +不成立,故A 错误;B .2()0a b +,2220a b ab ∴++,222a b ab ∴+-,故B 正确;C .显然当0a <,0b <时,不等式2||a b ab +不成立,故C 错误;D .显然当0a >,0b >时,不等式222a b ab +-不成立,故D 错误.故选:B .【总结与归纳】本题考查了基本不等式的应用,考查了转化思想,属基础题. 14.已知直线方程3410x y ++=的一个参数方程可以是( ) A .1314x t y t =+⎧⎨=--⎩B .1413x t y t =-⎧⎨=-+⎩C .1314x t y t=-⎧⎨=-+⎩D .1413x t y t=+⎧⎨=-⎩【思路分析】选项的参数方程,化为普通方程,判断即可.【解析】:1314x t y t=+⎧⎨=--⎩的普通方程为:1314x y -=-+,即4310x y +-=,不正确;1413x t y t=-⎧⎨=-+⎩的普通方程为:1413x y -=-+,即3410x y ++=,正确; 1314x t y t=-⎧⎨=-+⎩的普通方程为:1314x y -=-+,即4310x y +-=,不正确; 1413x t y t=+⎧⎨=-⎩的普通方程为:1413x y -=--,即3470x y +-=,不正确; 故选:B .【总结与归纳】本题考查直线的参数方程与普通方程的互化,是基本知识的考查. 15.在棱长为10的正方体1111ABCD A B C D -中,P 为左侧面11ADD A 上一点,已知点P 到11A D 的距离为3,P 到1AA 的距离为2,则过点P 且与1A C 平行的直线相交的面是( )A .面11AAB BB .面11BBC CC .面11CCD DD .面ABCD 【思路分析】由图可知点P 在△1AA D 内,过P 作1//EF A D ,且1EFAA 于E ,EFAD 于F ,在平面ABCD 中,过F 作//FG CD ,交BC 于G ,由平面与平面平行的判定可得平面//EFG 平面1A DC ,连接AC ,交FG 于M ,连接EM ,再由平面与平面平行的性质得1//EM AC ,在EFM ∆中,过P 作//PN EM ,且PN FM 于N ,可得1//PN AC ,由此说明过点P 且与1A C 平行的直线相交的面是ABCD . 【解析】:如图,由点P 到11A D 的距离为3,P 到1AA 的距离为2, 可得P 在△1AA D 内,过P 作1//EF A D ,且1EF AA 于E ,EFAD 于F ,在平面ABCD 中,过F 作//FG CD ,交BC 于G ,则平面//EFG 平面1A DC .连接AC ,交FG 于M ,连接EM ,平面//EFG 平面1A DC ,平面1A AC ⋂平面11A DC AC =,平面1A AC ⋂平面EFM EM =, 1//EM AC ∴. 在EFM ∆中,过P 作//PN EM ,且PNFM 于N ,则1//PN AC . 线段FM 在四边形ABCD 内,N 在线段FM 上,N ∴在四边形ABCD 内.∴过点P 且与1A C 平行的直线相交的面是ABCD .故选:D .【总结与归纳】本题考查空间中直线与直线位置关系的判定及应用,考查空间想象能力与思维能力,是中档题.16.命题p :存在a R ∈且0a ≠,对于任意的x R ∈,使得()()f x a f x f +<+(a ); 命题1:()q f x 单调递减且()0f x >恒成立;命题2:()q f x 单调递增,存在00x <使得0()0f x =, 则下列说法正确的是( ) A .只有1q 是p 的充分条件 B .只有2q 是p 的充分条件 C .1q ,2q 都是p 的充分条件D .1q ,2q 都不是p 的充分条件【思路分析】对于命题1q :当0a >时,结合()f x 单调递减,可推出()()()f x a f x f x f +<<+(a ),命题1q 是命题p 的充分条件.对于命题2q :当00a x =<时,f (a )0()0f x ==,结合()f x 单调递增,推出()()f x a f x +<,进而()()f x a f x f +<+(a ),命题2q 也是p 的充分条件.【解析】:对于命题1q :当()f x 单调递减且()0f x >恒成立时, 当0a >时,此时x a x +>, 又因为()f x 单调递减, 所以()()f x a f x +< 又因为()0f x >恒成立时, 所以()()f x f x f <+(a ), 所以()()f x a f x f +<+(a ),所以命题1q ⇒命题p ,对于命题2q :当()f x 单调递增,存在00x <使得0()0f x =, 当00a x =<时,此时x a x +<,f (a )0()0f x ==, 又因为()f x 单调递增, 所以()()f x a f x +<, 所以()()f x a f x f +<+(a ), 所以命题2p ⇒命题p , 所以1q ,2q 都是p 的充分条件, 故选:C .【总结与归纳】本题考查命题的真假,及函数的单调性,关键是分析不等式之间关系,属于中档题.三、解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)已知ABCD 是边长为1的正方形,正方形ABCD 绕AB 旋转形成一个圆柱. (1)求该圆柱的表面积;(2)正方形ABCD 绕AB 逆时针旋转2π至11ABC D ,求线段1CD 与平面ABCD 所成的角.【思路分析】(1)该圆柱的表面由上下两个半径为1的圆面和一个长为2π、宽为1的矩形组成,依次求出圆面和矩形的面积,相加即可;(2)先利用线面垂直的判定定理证明1AD ⊥平面ADB ,连接1CD ,则1D CA ∠即为线段1CD 与平面ABCD 所成的角,再利用三角函数的知识求出1cos D CA ∠即可.【解析】:(1)该圆柱的表面由上下两个半径为1的圆面和一个长为2π、宽为1的矩形组成,221214S πππ∴=⨯⨯+⨯=.故该圆柱的表面积为4π.(2)正方形11ABC D ,1AD AB ∴⊥, 又12DAD π∠=,1AD AD ∴⊥,ADAB A =,且AD 、AB ⊂平面ADB ,1AD ∴⊥平面ADB ,即1D 在面ADB 上的投影为A ,连接1CD ,则1D CA ∠即为线段1CD 与平面ABCD 所成的角, 而1126cos 3AC D CA CD ∠===,∴线段1CD 与平面ABCD所成的角为 【总结与归纳】本题考查圆柱的表面积、空间线面夹角问题,熟练掌握线面垂直的判定定理是解题的关键,考查学生的空间立体感和运算能力,属于基础题. 18.(14分)已知函数()sin f x x ω=,0ω>.(1)()f x 的周期是4π,求ω,并求1()2f x =的解集;(2)已知1ω=,2()()()()2g x f x x f x π=--,[0x ∈,]4π,求()g x 的值域.【思路分析】(1)直接利用正弦型函数的性质的应用求出结果. (2)利用三角函数关系式的变换和正弦型函数的性质的应用求出函数的值域.【解析】:(1)由于()f x 的周期是4π,所以2142πωπ==,所以1()sin 2f x x =.令11sin 22x =,故1226x k ππ=+或526k ππ+,整理得43x k ππ=+或543x k ππ=+.故解集为{|43x x k ππ=+或543x k ππ=+,}k Z ∈.(2)由于1ω=,所以()sin f x x =.所以21cos2111()sin )sin()22cos2sin(2)222226x g x x x x x x x x ππ-=--==-+=-+.由于[0x ∈,]4π,所以22663x πππ+. 1sin(2)126x π+, 故11sin(2)62x π--+-,故1()02g x -.所以函数()g x 的值域为1[,0]2-.【总结与归纳】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.19.(14分)在研究某市场交通情况时,道路密度是指该路段上一定时间内通过的车辆数除以时间,车辆密度是该路段一定时间内通过的车辆数除以该路段的长度,现定义交通流量为qv x=,x 为道路密度,q 为车辆密度.1100135(),040()3(40)85,4080x x v f x k x x ⎧-<<⎪==⎨⎪--+⎩. (1)若交通流量95v >,求道路密度x 的取值范围;(2)已知道路密度80x =,交通流量50v =,求车辆密度q 的最大值.【思路分析】(1)易知v 越大,x 越小,所以()v f x =是单调递减函数,0k >,于是只需令1100135()953x ->,解不等式即可;(2)把80x =,50v =代入()v f x =的解析式中,求出k 的值,利用q vx =可得到q 关于x 的函数关系式,分段判断函数的单调性,并求出各自区间上q 的最大值,取较大者即可.【解析】:(1)qv x=,v ∴越大,x 越小,()v f x ∴=是单调递减函数,0k >, 当4080x 时,v 最大为85,于是只需令1100135()953x ->,解得3x >,故道路密度x 的取值范围为(3,40).(2)把80x =,50v =代入()(40)85v f x k x ==--+中,得504085k =-+,解得78k =.1100135(),04037(40)85,40808x x x x q vx x x x x ⎧-<<⎪⎪∴==⎨⎪--+⎪⎩,当040x <<时,q 单调递增,40110040135()4040003q <⨯-⨯⨯≈;当4080x 时,q 是关于x 的二次函数,开口向下,对称轴为4807x =,此时q 有最大值,为2748048028800()12040008777-⨯+⨯=>.故车辆密度q 的最大值为288007.【总结与归纳】本题考查分段函数的实际应用,考查学生分析问题和解决问题的能力,以及运算能力,属于中档题.20.(16分)已知双曲线2212:14x y bΓ-=与圆2222:4(0)x yb b Γ+=+>交于点(A A x ,)A y (第一象限),曲线Γ为1Γ、2Γ上取满足||A x x >的部分.(1)若A x =b 的值;(2)当b 2Γ与x 轴交点记作点1F 、2F ,P 是曲线Γ上一点,且在第一象限,且1||8PF =,求12F PF ∠;(3)过点2(0,2)2b D+斜率为2b-的直线l 与曲线Γ只有两个交点,记为M 、N ,用b 表示OM ON ,并求OM ON 的取值范围.【思路分析】(1)联立曲线1Γ与曲线2Γ的方程,以及A x =,解方程可得b ; (2)由双曲线的定义和三角形的余弦定理,计算可得所求角;(3)设直线24:22b b l y x +=-+,求得O 到直线l 的距离,判断直线l 与圆的关系:相切,可设切点为M ,考虑双曲线的渐近线方程,只有当2A y >时,直线l 才能与曲线Γ有两个交点,解不等式可得b 的范围,由向量投影的定义求得OM ON ,进而得到所求范围.【解析】:(1)由A x =A 为曲线1Γ与曲线2Γ的交点,联立222222144A A A A x y bx y b ⎧-=⎪⎨⎪+=+⎩,解得A y =,2b =;(2)由题意可得1F ,2F 为曲线1Γ的两个焦点,由双曲线的定义可得12||||2PF PF a -=,又1||8PF =,24a =, 所以2||844PF =-=,因为b =3c =, 所以12||6F F =,在△12PF F 中,由余弦定理可得22212121212||||||cos 2||||PF PF F F F PF PF PF +-∠=6416361128416+-==⨯⨯,由120F PF π<∠<,可得1211arccos 16F PF ∠=;(3)设直线24:22b b l y x +=-+,可得原点O 到直线l 的距离24||b d +== 所以直线l 是圆的切线,设切点为M ,所以2OM k b =,并设2:OM y x b =与圆2224x y b +=+联立,可得222244x x b b+=+,可得x b =,2y =,即(,2)M b ,注意直线l 与双曲线的斜率为负的渐近线平行, 所以只有当2A y >时,直线l 才能与曲线Γ有两个交点, 由222222144A A A Ax y b x y b ⎧-=⎪⎨⎪+=+⎩,可得4224A b y b=+, 所以有4244b b<+,解得22b >+22b<-(舍去), 因为OM 为ON 在OM 上的投影可得,24OM ON b =+,所以246OM ON b =+>+, 则(6OM ON ∈+)+∞.【总结与归纳】本题考查双曲线与圆的定义和方程、性质,考查直线和圆的方程、双曲线的方程的联立,以及向量的数量积的几何意义,考查方程思想和化简运算能力,属于中档题. 21.(18分)已知数列{}n a 为有限数列,满足12131||||||m a a a a a a --⋯-,则称{}n a 满足性质P .(1)判断数列3、2、5、1和4、3、2、5、1是否具有性质P ,请说明理由; (2)若11a =,公比为q 的等比数列,项数为10,具有性质P ,求q 的取值范围; (3)若{}n a 是1,2,3,⋯,m 的一个排列(4)m ,{}n b 符合1(1k k b a k +==,2,⋯,1)m -,{}n a 、{}n b 都具有性质P ,求所有满足条件的数列{}n a .【思路分析】(1)根据定义,验证两个数列3、2、5、1和4、3、2、5、1是否具有性质P 即可;(2)假设公比q 的等比数列满足性质p ,可得:11111||||n n a a q a a q ---,推出11(1)[(1)2]0n n q q q q ---+-,通过1q ,01q <时,10q -<时:1q <-时,四种情况讨论求解即可.(3)设1a p =,分1p =时,当p m =时,当2p =时,当1p m =-时,以及{3P ∈,4,⋯,3m -,2}m -,五种情况讨论,判断数列{}n a 的可能情况,分别推出{}n b 判断是否满足性质P 即可.【解析】:(1)对于数列3,2,5,1,有|23|1-=,|53|2-=,|13|2-=,满足题意,该数列满足性质P ;对于第二个数列4、3、2、5、1,|34|1-=,|24|2-=,|54|1-=.不满足题意,该数列不满足性质P . (2)由题意:11111||||n n a a q a a q ---,可得:1|1||1|n n q q ---,{2n ∈,3,⋯,9},两边平方可得:22212121n n n n q q q q ---+-+,整理可得:11(1)[(1)2]0n n q q q q ---+-,当1q 时,得1(1)20n q q -+-此时关于n 恒成立, 所以等价于2n =时,(1)20q q +-,所以,(2)(1)0q q +-,所以2q -,或1q ,所以取1q ,当01q <时,得1(1)20n q q -+-,此时关于n 恒成立,所以等价于2n =时,(1)20q q +-, 所以(2)(1)0q q +-,所以21q -,所以取01q <. 当10q -<时:11[(1)2]0n n q q q --+-,当n 为奇数时,得1(1)20n q q -+-,恒成立,当n 为偶数时,1(1)20n q q -+-,不恒成立; 故当10q -<时,矛盾,舍去.当1q <-时,得11[(1)2]0n n q q q --+-,当n 为奇数时,得1(1)20n q q -+-,恒成立, 当n 为偶数时,1(1)20n q q -+-,恒成立;故等价于2n =时,(1)20q q +-, 所以(2)(1)0q q +-,所以2q -或1q ,所以取2q -, 综上(q ∈-∞,2](0,)-+∞.(3)设1a p =,{3p ∈,4,⋯,3m -,2}m -,因为1a p =,2a 可以取1p -,或1p +,3a 可以取2p -,或2p +,如果2a 或3a 取了3p -或3p +,将使{}n a 不满足性质P ;所以{}n a 的前5项有以下组合: ①1a p =,21a p =-;31a p =+;42a p =-;52a p =+; ②1a p =,21a p =-;31a p =+;42a p =+;52a p =-; ③1a p =,21a p =+;31a p =-;42a p =-;52a p =+; ④1a p =,21a p =+;31a p =-;42a p =+;52a p =-;对于①,11b p =-,21||2b b -=,31||1b b -=,与{}n b 满足性质P 矛盾,舍去;对于②,11b p =-,21||2b b -=,31||3b b -=,41||2b b -=与{}n b 满足性质P 矛盾,舍去; 对于③,11b p =+,21||2b b -=,31||3b b -=,41||1b b -=与{}n b 满足性质P 矛盾,舍去; 对于④11b p =+,21||2b b -=,31||1b b -=,与{}n b 满足性质P 矛盾,舍去; 所以{3P ∈,4,⋯,3m -,2}m -,均不能同时使{}n a 、{}n b 都具有性质P . 当1p =时,有数列{}:1n a ,2,3,⋯,1m -,m 满足题意. 当p m =时,有数列{}:n a m ,m -1,⋯,3,2,1满足题意.当2p =时,有数列{}:2n a ,1,3,⋯,1m -,m 满足题意.当1p m =-时,有数列{}:1n a m -,m ,2m -,3m -,⋯,3,2,1满足题意. 所以满足题意的数列{}n a 只有以上四种.【总结与归纳】本题考查数列的综合应用,不等式以及不等关系,二次函数的性质以及函数的相关性质的综合应用,考查分析问题解决问题的能力是难度大的题目,必须要有较高的数学思维逻辑修养才能解答.。
上海(理科)历年高考数学试卷及答案(2011-2015)
2011年普通高等学校招生全国统一考试(上海卷)理科数学一、填空题(56分) 1.函数1()2f x x =-的反函数为1()f x -= 。
2.若全集U R =,集合{|1}{|0}A x x x x =≥≤,则U C A = 。
3.设m 为常数,若点(0,5)F 是双曲线2219y x m -=的一个焦点,则m = 。
4.不等式13x x+<的解为 。
5.在极坐标系中,直线(2cos sin )2ρθθ+=与直线cos 1ρθ=的夹角大小为 。
6.在相距2千米的A .B 两点处测量目标C ,若075,60CAB CBA ∠=∠=,则A .C 两点之间的距离是 千米。
7.若圆锥的侧面积为2π,底面积为π,则该圆锥的体积为 。
8.函数sin()cos()26y x x ππ=+-的最大值为 。
9.马老师从课本上抄录一个随机变量ε的概率分布律如下表请小牛同学计算ε的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯 定这两个“?”处的数值相同。
据此,小牛给出了正确答案E ε= 。
10.行列式a b c d(,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 。
11.在正三角形ABC 中,D 是BC 上的点,3,1AB BD ==,则AB AD ⋅= 。
12.随机抽取9个同学中,至少有2个同学在同一月出生的概率是 (默认每月天数相同,结果精确到0.001)。
13.设()g x 是定义在R 上.以1为周期的函数,若()()f x x g x =+在[3,4]上的值域为[2,5]-,则()f x 在区间[10,10]-上的值域为 。
!321P(ε=x )x14.已知点(0,0)O .0(0,1)Q 和0(3,1)R ,记00Q R 的中点为1P ,取01Q P 和10P R 中的一条,记其端点为1Q .1R ,使之满足11(||2)(||2)0OQ OR --<;记11Q R 的中点为2P ,取12Q P 和21P R 中的一条,记其端点为2Q .2R ,使之满足22(||2)(||2)0OQ OR --<;依次下去,得到点12,,,,n P P P ,则0lim ||n n Q P →∞= 。
2020年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)
2020年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( )A. 2B. 3C. 4D. 6【答案】C 【解析】 【分析】采用列举法列举出AB 中元素的即可.【详解】由题意,A B 中的元素满足8y xx y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4), 故AB 中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题. 2.复数113i-的虚部是( ) A. 310-B. 110-C. 110D. 310【答案】D【解析】 【分析】利用复数的除法运算求出z 即可. 【详解】因为1131313(13)(13)1010i z i i i i +===+--+, 所以复数113z i =-的虚部为310. 故选:D.【点晴】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题.3.在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是( )A. 14230.1,0.4p p p p ====B. 14230.4,0.1p p p p ====C. 14230.2,0.3p p p p ====D. 14230.3,0.2p p p p ====【答案】B 【解析】 【分析】计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组. 【详解】对于A 选项,该组数据的平均数为()()140.1230.4 2.5A x =+⨯++⨯=, 方差为()()()()222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s =-⨯+-⨯+-⨯+-⨯=;对于B 选项,该组数据的平均数为()()140.4230.1 2.5B x =+⨯++⨯=,方差为()()()()222221 2.50.42 2.50.13 2.50.14 2.50.4 1.85B s =-⨯+-⨯+-⨯+-⨯=;对于C 选项,该组数据的平均数为()()140.2230.3 2.5C x =+⨯++⨯=,方差为()()()()222221 2.50.22 2.50.33 2.50.34 2.50.2 1.05C s =-⨯+-⨯+-⨯+-⨯=;对于D 选项,该组数据的平均数为()()140.3230.2 2.5D x =+⨯++⨯=,方差为()()()()222221 2.50.32 2.50.23 2.50.24 2.50.3 1.45D s =-⨯+-⨯+-⨯+-⨯=.因此,B 选项这一组的标准差最大. 故选:B.【点睛】本题考查标准差的大小比较,考查方差公式的应用,考查计算能力,属于基础题.4.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t --+,其中K 为最大确诊病例数.当I (*t)=0.95K时,标志着已初步遏制疫情,则*t 约为( )(ln19≈3) A. 60 B. 63C. 66D. 69【答案】C 【解析】 【分析】将t t *=代入函数()()0.23531t KI t e--=+结合()0.95I t K *=求得t*即可得解.【详解】()()0.23531t K I t e--=+,所以()()0.23530.951t KI t K e**--==+,则()0.235319t e *-=,所以,()0.2353ln193t *-=≈,解得353660.23t *≈+≈. 故选:C.【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.5.设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( ) A. (14,0) B. (12,0) C. (1,0) D. (2,0)【答案】B 【解析】 【分析】根据题中所给的条件OD OE ⊥,结合抛物线的对称性,可知4COx COx π∠=∠=,从而可以确定出点D 的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.【详解】因为直线2x =与抛物线22(0)y px p =>交于,C D 两点,且OD OE ⊥,根据抛物线的对称性可以确定4DOx COx π∠=∠=,所以(2,2)C ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2, 故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.6.已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=+a a b ( )A. 3135-B. 1935-C.1735D.1935【答案】D 【解析】【分析】计算出()a ab ⋅+、a b +的值,利用平面向量数量积可计算出cos ,a a b <+>的值.【详解】5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=.()2222257a b a ba ab b +=+=+⋅+=-=,因此,()1919cos ,5735a a ba ab a a b⋅+<+>===⨯⋅+. 故选:D.【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题. 7.在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( ) A.19B. 13C. 12D.23【答案】A【解析】 【分析】根据已知条件结合余弦定理求得AB ,再根据222cos 2AB BC AC B AB BC+-=⋅,即可求得答案.【详解】在ABC 中,2cos 3C =,4AC =,3BC = 根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅2224322433AB =+-⨯⨯⨯可得29AB = ,即3AB =由22299161cos 22339AB BC AC B AB BC +-+-===⋅⨯⨯故1cos 9B =. 故选:A.【点睛】本题主要考查了余弦定理解三角形,考查了分析能力和计算能力,属于基础题. 8.下图为某几何体的三视图,则该几何体的表面积是( )【答案】C 【解析】 【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积. 【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△根据勾股定理可得:AB AD DB ===∴ADB △是边长为的等边三角形根据三角形面积公式可得:211sin 6022ADB S AB AD =⋅⋅︒==△∴该几何体的表面积是:632=⨯++.故选:C.【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题. 9.已知2tan θ–tan(θ+π4)=7,则tan θ=( ) A. –2B. –1C. 1D. 2【答案】D 【解析】 【分析】利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案. 【详解】2tan tan 74πθθ⎛⎫-+= ⎪⎝⎭,tan 12tan 71tan θθθ+∴-=-,令tan ,1t t θ=≠,则1271tt t+-=-,整理得2440t t -+=,解得2t =,即tan 2θ=. 故选:D.【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题. 10.若直线l 与曲线yx 2+y 2=15都相切,则l 的方程为( ) A. y =2x +1 B. y =2x +12C. y =12x +1 D. y =12x +12【答案】D 【解析】 【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案. 【详解】设直线l在曲线y =上的切点为(0x ,则00x >,函数y =y '=,则直线l的斜率k =, 设直线l的方程为)0y x x -=-,即00x x -+=, 由于直线l 与圆2215x y +== 两边平方并整理得2005410x x --=,解得01x =,015x =-(舍), 则直线l 的方程为210x y -+=,即1122y x =+. 故选:D.【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.11.设双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1,F 2P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( ) A. 1 B. 2C. 4D. 8【答案】A 【解析】 【分析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案.【详解】5ca=,c ∴=,根据双曲线的定义可得122PF PF a -=, 12121||42PF F PF F S P =⋅=△,即12||8PF PF ⋅=, 12F P F P ⊥,()22212||2PF PF c ∴+=,()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A.【点睛】本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于中档题.12.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A. a <b <c B. b <a <cC. b <c <aD. c <a <b【答案】A 【解析】 【分析】由题意可得a 、b 、()0,1c ∈,利用作商法以及基本不等式可得出a 、b 的大小关系,由8log 5b =,得85b =,结合5458<可得出45b <,由13log 8c =,得138c =,结合45138<,可得出45c >,综合可得出a 、b 、c 的大小关系. 【详解】由题意可知a、b、()0,1c ∈,()222528log 3lg 3lg81lg 3lg8lg 3lg8lg 241log 5lg 5lg 522lg 5lg 25lg 5a b ⎛⎫⎛⎫++⎛⎫==⋅<⋅==< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,a b ∴<; 由8log 5b =,得85b =,由5458<,得5488b <,54b ∴<,可得45b <; 由13log 8c =,得138c =,由45138<,得451313c <,54c ∴>,可得45c >. 综上所述,a b c <<. 故选:A.【点睛】本题考查对数式大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件0,201,x y x y x +≥⎧⎪-≥⎨⎪≤⎩,,则z =3x +2y 的最大值为_________. 【答案】7 【解析】 【分析】作出可行域,利用截距的几何意义解决. 【详解】不等式组所表示的可行域如图因为32z x y =+,所以322x zy =-+,易知截距2z 越大,则z 越大, 平移直线32x y =-,当322x zy =-+经过A 点时截距最大,此时z 最大, 由21y x x =⎧⎨=⎩,得12x y =⎧⎨=⎩,(1,2)A , 所以max 31227z =⨯+⨯= 故答案为:7.【点晴】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,是一道容易题.14.262()x x+的展开式中常数项是__________(用数字作答).【答案】240 【解析】 【分析】写出622x x ⎛⎫+ ⎪⎝⎭二项式展开通项,即可求得常数项. 【详解】622x x ⎛⎫+ ⎪⎝⎭ 其二项式展开通项:()62612rrr r C xx T -+⎛⎫⋅⋅ ⎪⎝⎭= 1226(2)r r r r x C x --⋅=⋅ 1236(2)r r r C x -=⋅当1230r -=,解得4r =∴622x x ⎛⎫+ ⎪⎝⎭的展开式中常数项是:664422161516240C C ⋅=⋅=⨯=.故答案为:240.【点睛】本题考查二项式定理,利用通项公式求二项展开式中的指定项,解题关键是掌握()na b +的展开通项公式1C rn rr r n T ab -+=,考查了分析能力和计算能力,属于基础题.15.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【解析】 【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值. 【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,的其中2,3BC AB AC ===,且点M 为BC 边上的中点, 设内切圆的圆心为O ,由于AM ==,故122S =⨯⨯=△ABC, 设内切圆半径为r ,则:ABC AOB BOC AOCS S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯ ()13322r =⨯++⨯= 解得:22r,其体积:343V r π==.. 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径. 16.关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图像关于y 轴对称. ②f (x )的图像关于原点对称. ③f (x )的图像关于直线x =2π对称.④f (x )的最小值为2.其中所有真命题的序号是__________. 【答案】②③【解析】 【分析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x π-<<可判断命题④的正误.综合可得出结论. 【详解】对于命题①,152622f π⎛⎫=+=⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭, 11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<, 命题④错误. 故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.设数列{a n }满足a 1=3,134n n a a n +=-.(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明; (2)求数列{2n a n }的前n 项和S n .【答案】(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.【解析】 【分析】(1)利用递推公式得出23,a a ,猜想得出{}n a 的通项公式,利用数学归纳法证明即可; (2)由错位相减法求解即可.【详解】(1)由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+, 证明如下:当1n =时,13a =成立; 假设n k =时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立. 则对任意的*n N ∈,都有21n a n =+成立; (2)由(1)可知,2(21)2nnn a n ⋅=+⋅231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅,① 23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅,②由①-②得:()23162222(21)2n n n S n +-=+⨯+++-+⋅ ()21121262(21)212n n n -+-=+⨯-+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+. 【点睛】本题主要考查了求等差数列的通项公式以及利用错位相减法求数列的和,属于中档题.18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见解析. 【解析】 【分析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率; (2)利用每组的中点值乘以频数,相加后除以100可得结果;(3)根据表格中的数据完善22⨯列联表,计算出2K 的观测值,再结合临界值表可得结论.【详解】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=(3)22⨯列联表如下:()221003383722 5.820 3.84155457030K ⨯⨯-⨯=≈>⨯⨯⨯,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.19.如图,在长方体1111ABCD A B C D -中,点,EF 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值. 【答案】(1)证明见解析;(2. 【解析】 【分析】(1)连接1C E 、1C F ,证明出四边形1AEC F 为平行四边形,进而可证得点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立空间直角坐标系1C xyz -,利用空间向量法可计算出二面角1A EF A --的余弦值,进而可求得二面角1A EF A --的正弦值. 【详解】(1)在棱1CC 上取点G ,使得112C G CG =,连接DG 、FG 、1C E 、1C F ,在长方体1111ABCD A B C D -中,//AD BC 且AD BC =,11//BB CC 且11BB CC =,112C G CG =,12BF FB =,112233CG CC BB BF ∴===且CG BF =,所以,四边形BCGF 为平行四边形,则//AF DG 且AF DG =, 同理可证四边形1DEC G 为平行四边形,1//C E DG ∴且1C E DG =,1//C E AF ∴且1C E AF =,则四边形1AEC F 为平行四边形,因此,点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C xyz -,则()2,1,3A 、()12,1,0A 、()2,0,2E 、()0,1,1F ,()0,1,1AE =--,()2,0,2AF =--,()10,1,2A E =-,()12,0,1A F =-,设平面AEF 的法向量为()111,,m x y z =,由0m AE m AF ⎧⋅=⎪⎨⋅=⎪⎩,得11110220y z x z --=⎧⎨--=⎩取11z =-,得111x y ==,则()1,1,1m =-,设平面1A EF 的法向量为()222,,n x y z =,由1100n A E n A F ⎧⋅=⎪⎨⋅=⎪⎩,得22222020y z x z -+=⎧⎨-+=⎩,取22z =,得21x =,24y =,则()1,4,2n =,3cos ,3m n m n m n⋅<>===⨯⋅, 设二面角1A EFA --的平面角为θ,则cos θ=,sin θ∴==因此,二面角1A EF A --. 【点睛】本题考查点在平面的证明,同时也考查了利用空间向量法求解二面角角,考查推理能力与计算能力,属于中等题.20.已知椭圆222:1(05)25x y C m m +=<<A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积.【答案】(1)221612525x y +=;(2)52. 【解析】 【分析】(1)因为222:1(05)25x y C m m +=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案; (2)点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得PMB BNQ ≅△△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积. 【详解】(1)222:1(05)25x y C mm +=<<∴5a =,bm =,根据离心率c e a ====, 解得54m =或54m =-(舍), ∴C 的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=;(2)点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥, 过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N 根据题意画出图形,如图||||BP BQ =,BP BQ ⊥,90PMB QNB ∠=∠=︒,又90PBM QBN ∠+∠=︒,90BQN QBN ∠+∠=︒,∴PBM BQN ∠=∠,根据三角形全等条件“AAS ”, 可得:PMB BNQ ≅△△,221612525x y +=, ∴(5,0)B ,∴651PM BN ==-=,设P 点为(,)P P x y ,可得P 点纵坐标为1P y =,将其代入221612525x y+=,可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时, 故532MB =-=,PMB BNQ ≅△△, ∴||||2MB NQ ==,可得:Q 点为(6,2), 画出图象,如图(5,0)A -,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ的距离为:d =, 根据两点间距离公式可得:AQ ==,∴APQ面积为:1522⨯=;②当P 点(3,1)-时,故5+38MB ==,PMB BNQ ≅△△, ∴||||8MB NQ ==,为可得:Q点为(6,8),画出图象,如图(5,0)A-,(6,8)Q,可求得直线AQ的直线方程为:811400x y-+=,根据点到直线距离公式可得P到直线AQ的距离为:d=,根据两点间距离公式可得:AQ ==∴APQ面积为:1522=,综上所述,APQ面积为:52.【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.21.设函数3()f x x bx c=++,曲线()y f x=在点(12,f(12))处的切线与y轴垂直.(1)求b.(2)若()f x有一个绝对值不大于1的零点,证明:()f x所有零点的绝对值都不大于1.【答案】(1)34b=-;(2)证明见解析【解析】【分析】(1)利用导数的几何意义得到'1()02f=,解方程即可;(2)由(1)可得'2311()32()()422f x x x x=-=+-,易知()f x在11(,)22-上单调递减,在1(,)2-∞-,1(,)2+∞上单调递增,且111111(1),(),(),(1)424244f c f c f c f c-=--=+=-=+,采用反证法,推出矛盾即可.【详解】(1)因为'2()3f x x b=+,由题意,'1()02f=,即21302b⎛⎫⨯+=⎪⎝⎭则34b=-;(2)由(1)可得33()4f x x x c=-+,'2311()33()()422f x x x x=-=+-,令'()0f x>,得12x>或21x<-;令'()0f x<,得1122x-<<,所以()f x在11(,)22-上单调递减,在1(,)2-∞-,1(,)2+∞上单调递增,且111111(1),(),(),(1)424244f c f c f c f c-=--=+=-=+,若()f x所有零点中存在一个绝对值大于1的零点x,则(1)0f->或(1)0f<,即14c>或14c<-.当14c>时,111111(1)0,()0,()0,(1)0424244f c f c f c f c-=->-=+>=->=+>,又32(4)6434(116)0f c c c c c c-=-++=-<,由零点存在性定理知()f x在(4,1)c--上存在唯一一个零点x,即()f x在(,1)-∞-上存在唯一一个零点,在(1,)-+∞上不存在零点,此时()f x不存在绝对值不大于1的零点,与题设矛盾;当14c<-时,111111(1)0,()0,()0,(1)0424244f c f c f c f c-=-<-=+<=-<=+<,又32(4)6434(116)0f c c c c c c-=++=->,由零点存在性定理知()f x在(1,4)c-上存在唯一一个零点x',即()f x (1,)+∞上存在唯一一个零点,在(,1)-∞上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾; 综上,()f x 所有零点的绝对值都不大于1.【点晴】本题主要考查利用导数研究函数的零点,涉及到导数的几何意义,反证法,考查学生逻辑推理能力,是一道有一定难度的题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. [选修4—4:坐标系与参数方程](10分)22.在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t ⎧=--⎨=-+⎩(t 为参数且t ≠1),C 与坐标轴交于A 、B 两点. (1)求||AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程. 【答案】(1)(2)3cos sin 120ρθρθ-+=【解析】 【分析】(1)由参数方程得出,A B 的坐标,最后由两点间距离公式,即可得出AB 的值; (2)由,A B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.【详解】(1)令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即(0,12)A .令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即(4,0)B -AB ∴==(2)由(1)可知12030(4)ABk -==--, 则直线AB 的方程为3(4)y x =+,即3120x y -+=.由cos ,sin x y ρθρθ==可得,直线AB 的极坐标方程为3cos sin 120ρθρθ-+=.【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题.[选修4—5:不等式选讲](10分)23.设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c. 【答案】(1)证明见解析(2)证明见解析. 【解析】 【分析】(1)由2222()2220a b c a b c ab ac bc ++=+++++=结合不等式的性质,即可得出证明;(2)不妨设max{,,}a b c a =,由题意得出0,,0a b c ><,由()222322b c b c bc a a a bcbc+++=⋅==,结合基本不等式,即可得出证明. 【详解】(1)2222()2220a b c a b c ab ac bc ++=+++++=, ()22212ab bc ca a b c ∴++=-++. ,,a b c 均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<; (2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--=,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=.当且仅当b c =时,取等号,a ∴≥,即3max{,,}4a b c .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题.在祝福语祝你考试成功!。
2015年上海市高考数学试卷(理科)及答案
2015年上海市高考数学试卷(理科)一、填空题(本大题共有14题,满分48分.)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对4分,否则一律得零分.1.(4分)设全集U=R.若集合Α={1,2,3,4},Β={x|2≤x≤3},则Α∩∁UΒ=.2.(4分)若复数z满足3z+=1+i,其中i是虚数单位,则z=.3.(4分)若线性方程组的增广矩阵为解为,则c1﹣c2=.4.(4分)若正三棱柱的所有棱长均为a,且其体积为16,则a=.5.(4分)抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,则p=.6.(4分)若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为.7.(4分)方程log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2的解为.8.(4分)在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为(结果用数值表示).9.已知点P和Q的横坐标相同,P的纵坐标是Q的纵坐标的2倍,P和Q的轨迹分别为双曲线C1和C2.若C1的渐近线方程为y=±x,则C2的渐近线方程为.10.(4分)设f﹣1(x)为f(x)=2x﹣2+,x∈[0,2]的反函数,则y=f(x)+f﹣1(x)的最大值为.11.(4分)在(1+x+)10的展开式中,x2项的系数为(结果用数值表示).12.(4分)赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量ξ1和ξ2分别表示赌客在一局赌博中的赌金和奖金,则Eξ1﹣Eξ2=(元).13.(4分)已知函数f(x)=sinx.若存在x1,x2,…,x m满足0≤x1<x2<…<x m≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m﹣1)﹣f(x m)|=12(m ≥2,m∈N*),则m的最小值为.14.在锐角三角形A BC中,tanA=,D为边BC上的点,△A BD与△ACD的面积分别为2和4.过D作D E⊥A B于E,DF⊥AC于F,则•=.二、选择题(本大题共有4题,满分15分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.(5分)设z1,z2∈C,则“z1、z2中至少有一个数是虚数”是“z1﹣z2是虚数”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件16.(5分)已知点A的坐标为(4,1),将OA绕坐标原点O逆时针旋转至OB,则点B的纵坐标为()A.B.C.D.17.记方程①:x2+a1x+1=0,方程②:x2+a2x+2=0,方程③:x2+a3x+4=0,其中a1,a2,a3是正实数.当a1,a2,a3成等比数列时,下列选项中,能推出方程③无实根的是()A.方程①有实根,且②有实根B.方程①有实根,且②无实根C.方程①无实根,且②有实根D.方程①无实根,且②无实根18.(5分)设P n(x n,y n)是直线2x﹣y=(n∈N*)与圆x2+y2=2在第一象限的交点,则极限=()A.﹣1 B.﹣ C.1 D.2三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)如图,在长方体ABCD﹣A1B1C1D1中,AA1=1,AB=AD=2,E、F分别是AB、BC的中点,证明A1、C1、F、E四点共面,并求直线CD1与平面A1C1FE 所成的角的大小.20.(14分)如图,A,B,C三地有直道相通,AB=5千米,AC=3千米,BC=4千米.现甲、乙两警员同时从A地出发匀速前往B地,经过t小时,他们之间的距离为f(t)(单位:千米).甲的路线是AB,速度为5千米/小时,乙的路线是ACB,速度为8千米/小时.乙到达B地后原地等待.设t=t1时乙到达C地.(1)求t1与f(t1)的值;(2)已知警员的对讲机的有效通话距离是3千米.当t1≤t≤1时,求f(t)的表达式,并判断f(t)在[t1,1]上的最大值是否超过3?说明理由.21.(14分)已知椭圆x2+2y2=1,过原点的两条直线l1和l2分别于椭圆交于A、B 和C、D,记得到的平行四边形ACBD的面积为S.(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明S=2|x1y2﹣x2y1|;(2)设l1与l2的斜率之积为﹣,求面积S的值.22.(16分)已知数列{a n}与{b n}满足a n+1﹣a n=2(b n+1﹣b n),n∈N*.(1)若b n=3n+5,且a1=1,求数列{a n}的通项公式;(2)设{a n}的第n0项是最大项,即a≥a n(n∈N*),求证:数列{b n}的第n0项是最大项;(3)设a1=λ<0,b n=λn(n∈N*),求λ的取值范围,使得{a n}有最大值M与最小值m,且∈(﹣2,2).23.(18分)对于定义域为R的函数g(x),若存在正常数T,使得cosg(x)是以T为周期的函数,则称g(x)为余弦周期函数,且称T为其余弦周期.已知f (x)是以T为余弦周期的余弦周期函数,其值域为R.设f(x)单调递增,f(0)=0,f(T)=4π.(1)验证g(x)=x+sin是以6π为周期的余弦周期函数;(2)设a<b,证明对任意c∈[f(a),f(b)],存在x0∈[a,b],使得f(x0)=c;(3)证明:“u0为方程cosf(x)=1在[0,T]上得解,”的充分条件是“u0+T为方程cosf(x)=1在区间[T,2T]上的解”,并证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T).2015年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(本大题共有14题,满分48分.)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对4分,否则一律得零分.1.(4分)(2015•上海)设全集U=R.若集合Α={1,2,3,4},Β={x|2≤x≤3},则Α∩∁UΒ={1,4} .【分析】本题考查集合的运算,由于两个集合已经化简,故直接运算得出答案即可.【解答】解:∵全集U=R,集合Α={1,2,3,4},Β={x|2≤x≤3},∴(∁U B)={x|x>3或x<2},∴A∩(∁U B)={1,4},故答案为:{1,4}.2.(4分)(2015•上海)若复数z满足3z+=1+i,其中i是虚数单位,则z=.【分析】设z=a+bi,则=a﹣bi(a,b∈R),利用复数的运算法则、复数相等即可得出.【解答】解:设z=a+bi,则=a﹣bi(a,b∈R),又3z+=1+i,∴3(a+bi)+(a﹣bi)=1+i,化为4a+2bi=1+i,∴4a=1,2b=1,解得a=,b=.∴z=.故答案为:.3.(4分)(2015•上海)若线性方程组的增广矩阵为解为,则c1﹣c2=16.【分析】根据增广矩阵的定义得到,是方程组的解,解方程组即可.【解答】解:由题意知,是方程组的解,即,则c1﹣c2=21﹣5=16,故答案为:16.4.(4分)(2015•上海)若正三棱柱的所有棱长均为a,且其体积为16,则a=4.【分析】由题意可得(•a•a•sin60°)•a=16,由此求得a的值.【解答】解:由题意可得,正棱柱的底面是变长等于a的等边三角形,面积为•a•a•sin60°,正棱柱的高为a,∴(•a•a•sin60°)•a=16,∴a=4,故答案为:4.5.(4分)(2015•上海)抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,则p=2.【分析】利用抛物线的顶点到焦点的距离最小,即可得出结论.【解答】解:因为抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,所以=1,所以p=2.故答案为:2.6.(4分)(2015•上海)若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为.【分析】设圆锥的底面半径为r,高为h,母线长为l,由已知中圆锥的侧面积与过轴的截面面积之比为2π,可得l=2h,进而可得其母线与轴的夹角的余弦值,进而得到答案.【解答】解:设圆锥的底面半径为r,高为h,母线长为l,则圆锥的侧面积为:πrl,过轴的截面面积为:rh,∵圆锥的侧面积与过轴的截面面积之比为2π,∴l=2h,设母线与轴的夹角为θ,则cosθ==,故θ=,故答案为:.7.(4分)(2015•上海)方程log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2的解为2.【分析】利用对数的运算性质化为指数类型方程,解出并验证即可.【解答】解:∵log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2,∴log2(9x﹣1﹣5)=log2[4×(3x﹣1﹣2)],∴9x﹣1﹣5=4(3x﹣1﹣2),化为(3x)2﹣12•3x+27=0,因式分解为:(3x﹣3)(3x﹣9)=0,∴3x=3,3x=9,解得x=1或2.经过验证:x=1不满足条件,舍去.∴x=2.故答案为:2.8.(4分)(2015•上海)在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为120(结果用数值表示).【分析】根据题意,运用排除法分析,先在9名老师中选取5人,参加义务献血,由组合数公式可得其选法数目,再排除其中只有女教师的情况;即可得答案.【解答】解:根据题意,报名的有3名男老师和6名女教师,共9名老师,在9名老师中选取5人,参加义务献血,有C95=126种;其中只有女教师的有C65=6种情况;则男、女教师都有的选取方式的种数为126﹣6=120种;故答案为:120.9.(2015•上海)已知点P和Q的横坐标相同,P的纵坐标是Q的纵坐标的2倍,P和Q的轨迹分别为双曲线C1和C2.若C1的渐近线方程为y=±x,则C2的渐近线方程为.【分析】设C1的方程为y2﹣3x2=λ,利用坐标间的关系,求出Q的轨迹方程,即可求出C2的渐近线方程.【解答】解:设C1的方程为y2﹣3x2=λ,设Q(x,y),则P(x,2y),代入y2﹣3x2=λ,可得4y2﹣3x2=λ,∴C2的渐近线方程为4y2﹣3x2=0,即.故答案为:.10.(4分)(2015•上海)设f﹣1(x)为f(x)=2x﹣2+,x∈[0,2]的反函数,则y=f(x)+f﹣1(x)的最大值为4.【分析】由f(x)=2x﹣2+在x∈[0,2]上为增函数可得其值域,得到y=f﹣1(x)在[]上为增函数,由函数的单调性求得y=f(x)+f﹣1(x)的最大值.【解答】解:由f(x)=2x﹣2+在x∈[0,2]上为增函数,得其值域为[],可得y=f﹣1(x)在[]上为增函数,因此y=f(x)+f﹣1(x)在[]上为增函数,∴y=f(x)+f﹣1(x)的最大值为f(2)+f﹣1(2)=1+1+2=4.故答案为:4.11.(4分)(2015•上海)在(1+x+)10的展开式中,x2项的系数为45(结果用数值表示).【分析】先把原式前两项结合展开,分析可知仅有展开后的第一项含有x2项,然后写出第一项二项展开式的通项,由x的指数为2求得r值,则答案可求.【解答】解:∵(1+x+)10 =,∴仅在第一部分中出现x2项的系数.再由,令r=2,可得,x2项的系数为.故答案为:45.12.(4分)(2015•上海)赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量ξ1和ξ2分别表示赌客在一局赌博中的赌金和奖金,则Eξ1﹣Eξ2=0.2(元).【分析】分别求出赌金的分布列和奖金的分布列,计算出对应的均值,即可得到结论.【解答】解:赌金的分布列为ξ112345P所以Eξ1=(1+2+3+4+5)=3,奖金的分布列为:若两张卡片上数字之差的绝对值为1,则有(1,2),(2,3),(3,4),(4,5),4种,若两张卡片上数字之差的绝对值为2,则有(1,3),(2,4),(3,5),3种,若两张卡片上数字之差的绝对值为3,则有(1,4),(2,5),2种,若两张卡片上数字之差的绝对值为4,则有(1,5),1种,则P(ξ2=1.4)==,P(ξ2=2.8)==,P(ξ2=4.2)==,P(ξ2=5.6)==ξ2 1.4 2.8 4.2 5.6P所以Eξ2=1.4×(×1+×2+×3+×4)=2.8,则Eξ1﹣Eξ2=3﹣2.8=0.2元.故答案为:0.213.(4分)(2015•上海)已知函数f(x)=sinx.若存在x1,x2,…,x m满足0≤x1<x2<…<x m≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m﹣1)﹣f (x m)|=12(m≥2,m∈N*),则m的最小值为8.【分析】由正弦函数的有界性可得,对任意x i,x j(i,j=1,2,3,…,m),都有|f(x i)﹣f(x j)|≤f(x)max﹣f(x)min=2,要使m取得最小值,尽可能多让x i (i=1,2,3,…,m)取得最高点,然后作图可得满足条件的最小m值.【解答】解:∵y=sinx对任意x i,x j(i,j=1,2,3,…,m),都有|f(x i)﹣f(x j)|≤f(x)max﹣f(x)min=2,要使m取得最小值,尽可能多让x i(i=1,2,3,…,m)取得最高点,考虑0≤x1<x2<…<x m≤6π,|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m﹣1)﹣f(x m)|=12,按下图取值即可满足条件,∴m的最小值为8.故答案为:8.14.(2015•上海)在锐角三角形A BC中,tanA=,D为边BC上的点,△A BD 与△ACD的面积分别为2和4.过D作D E⊥A B于E,DF⊥AC于F,则•=﹣.【分析】由题意画出图形,结合面积求出cosA=,,然后代入数量积公式得答案.【解答】解:如图,∵△ABD与△ACD的面积分别为2和4,∴,,可得,,∴.又tanA=,∴,联立sin2A+cos2A=1,得,cosA=.由,得.则.∴•==.故答案为:.二、选择题(本大题共有4题,满分15分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.(5分)(2015•上海)设z1,z2∈C,则“z1、z2中至少有一个数是虚数”是“z1﹣z2是虚数”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件【分析】根据充分条件和必要条件的定义结合复数的有关概念进行判断即可.【解答】解:设z1=1+i,z2=i,满足z1、z2中至少有一个数是虚数,则z1﹣z2=1是实数,则z1﹣z2是虚数不成立,若z1、z2都是实数,则z1﹣z2一定不是虚数,因此当z1﹣z2是虚数时,则z1、z2中至少有一个数是虚数,即必要性成立,故“z1、z2中至少有一个数是虚数”是“z1﹣z2是虚数”的必要不充分条件,故选:B.16.(5分)(2015•上海)已知点A的坐标为(4,1),将OA绕坐标原点O逆时针旋转至OB,则点B的纵坐标为()A.B.C.D.【分析】根据三角函数的定义,求出∠xOA的三角函数值,利用两角和差的正弦公式进行求解即可.【解答】解:∵点A的坐标为(4,1),∴设∠xOA=θ,则sinθ==,cosθ==,将OA绕坐标原点O逆时针旋转至OB,则OB的倾斜角为θ+,则|OB|=|OA|=,则点B的纵坐标为y=|OB|sin(θ+)=7(sinθcos+cosθsin)=7(×+)=+6=,故选:D.17.(2015•上海)记方程①:x2+a1x+1=0,方程②:x2+a2x+2=0,方程③:x2+a3x+4=0,其中a1,a2,a3是正实数.当a1,a2,a3成等比数列时,下列选项中,能推出方程③无实根的是()A.方程①有实根,且②有实根B.方程①有实根,且②无实根C.方程①无实根,且②有实根D.方程①无实根,且②无实根【分析】根据方程根与判别式△之间的关系求出a12≥4,a22<8,结合a1,a2,a3成等比数列求出方程③的判别式△的取值即可得到结论.【解答】解:当方程①有实根,且②无实根时,△1=a12﹣4≥0,△2=a22﹣8<0,即a12≥4,a22<8,∵a1,a2,a3成等比数列,∴a22=a1a3,即a3=,则a32=()2=,即方程③的判别式△3=a32﹣16<0,此时方程③无实根,故选:B18.(5分)(2015•上海)设P n(x n,y n)是直线2x﹣y=(n∈N*)与圆x2+y2=2在第一象限的交点,则极限=()A.﹣1 B.﹣ C.1 D.2【分析】当n→+∞时,直线2x﹣y=趋近于2x﹣y=1,与圆x2+y2=2在第一象限的交点无限靠近(1,1),利用圆的切线的斜率、斜率计算公式即可得出.【解答】解:当n→+∞时,直线2x﹣y=趋近于2x﹣y=1,与圆x2+y2=2在第一象限的交点无限靠近(1,1),而可看作点P n(x n,y n)与(1,1)连线的斜率,其值会无限接近圆x2+y2=2在点(1,1)处的切线的斜率,其斜率为﹣1.∴=﹣1.故选:A.三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)(2015•上海)如图,在长方体ABCD﹣A1B1C1D1中,AA1=1,AB=AD=2,E、F分别是AB、BC的中点,证明A1、C1、F、E四点共面,并求直线CD1与平面A1C1FE所成的角的大小.【分析】利用长方体的几何关系建立直角坐标系.利用向量方法求空间角.【解答】解:连接AC,因为E,F分别是AB,BC的中点,所以EF是△ABC的中位线,所以EF∥AC.由长方体的性质知AC∥A1C1,所以EF∥A1C1,所以A1、C1、F、E四点共面.以D为坐标原点,DA、DC、DD1分别为x、y、z轴,建立空间直角坐标系,易求得,设平面A1C1EF的法向量为则,所以,即,z=1,得x=1,y=1,所以,所以=,所以直线CD1与平面A1C1FE所成的角的大小arcsin.20.(14分)(2015•上海)如图,A,B,C三地有直道相通,AB=5千米,AC=3千米,BC=4千米.现甲、乙两警员同时从A地出发匀速前往B地,经过t小时,他们之间的距离为f(t)(单位:千米).甲的路线是AB,速度为5千米/小时,乙的路线是ACB,速度为8千米/小时.乙到达B地后原地等待.设t=t1时乙到达C地.(1)求t1与f(t1)的值;(2)已知警员的对讲机的有效通话距离是3千米.当t1≤t≤1时,求f(t)的表达式,并判断f(t)在[t1,1]上的最大值是否超过3?说明理由.【分析】(1)由题意可得t1==h,由余弦定理可得f(t1)=PC=,代值计算可得;(2)当t1≤t≤时,由已知数据和余弦定理可得f(t)=PQ=,当<t≤1时,f(t)=PB=5﹣5t,综合可得当<t≤1时,f(t)∈[0,],可得结论.【解答】解:(1)由题意可得t1==h,设此时甲运动到点P,则AP=vt1=5×=千米,甲∴f(t1)=PC===千米;(2)当t1≤t≤时,乙在CB上的Q点,设甲在P点,∴QB=AC+CB﹣8t=7﹣8t,PB=AB﹣AP=5﹣5t,∴f(t)=PQ===,当<t≤1时,乙在B点不动,设此时甲在点P,∴f(t)=PB=AB﹣AP=5﹣5t∴f(t)=∴当<t≤1时,f(t)∈[0,],故f(t)的最大值没有超过3千米.21.(14分)(2015•上海)已知椭圆x2+2y2=1,过原点的两条直线l1和l2分别于椭圆交于A、B和C、D,记得到的平行四边形ACBD的面积为S.(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明S=2|x1y2﹣x2y1|;(2)设l1与l2的斜率之积为﹣,求面积S的值.【分析】(1)依题意,直线l1的方程为y=x,利用点到直线间的距离公式可求得点C到直线l1的距离d=,再利用|AB|=2|AO|=2,可证得S=|AB|d=2|x1y2﹣x2y1|;当l1与l2时的斜率之一不存在时,同理可知结论成立;(2)方法一:设直线l1的斜率为k,则直线l2的斜率为﹣,可得直线l1与l2的方程,联立方程组,可求得x1、x2、y1、y2,继而可求得答案.方法二:设直线l1、l2的斜率分别为、,则=﹣,利用A(x1,y1)、C(x2,y2)在椭圆x2+2y2=1上,可求得面积S的值.【解答】解:(1)依题意,直线l1的方程为y=x,由点到直线间的距离公式得:点C到直线l1的距离d==,因为|AB|=2|AO|=2,所以S=|AB|d=2|x1y2﹣x2y1|;当l1与l2时的斜率之一不存在时,同理可知结论成立;(2)方法一:设直线l1的斜率为k,则直线l2的斜率为﹣,设直线l1的方程为y=kx,联立方程组,消去y解得x=±,根据对称性,设x1=,则y1=,同理可得x2=,y2=,所以S=2|x1y2﹣x2y1|=.方法二:设直线l1、l2的斜率分别为、,则=﹣,所以x1x2=﹣2y1y2,∴=4=﹣2x1x2y1y2,∵A(x1,y1)、C(x2,y2)在椭圆x2+2y2=1上,∴()()=+4+2(+)=1,即﹣4x1x2y1y2+2(+)=1,所以(x1y2﹣x2y1)2=,即|x1y2﹣x2y1|=,所以S=2|x1y2﹣x2y1|=.22.(16分)(2015•上海)已知数列{a n}与{b n}满足a n+1﹣a n=2(b n+1﹣b n),n∈N*.(1)若b n=3n+5,且a1=1,求数列{a n}的通项公式;(2)设{a n}的第n0项是最大项,即a≥a n(n∈N*),求证:数列{b n}的第n0项是最大项;(3)设a1=λ<0,b n=λn(n∈N*),求λ的取值范围,使得{a n}有最大值M与最小值m,且∈(﹣2,2).【分析】(1)把b n=3n+5代入已知递推式可得a n+1﹣a n=6,由此得到{a n}是等差数列,则a n可求;(2)由a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1,结合递推式累加得到a n=2b n+a1﹣2b1,求得,进一步得到得答案;(3)由(2)可得,然后分﹣1<λ<0,λ=﹣1,λ<﹣1三种情况求得a n的最大值M和最小值m,再由∈(﹣2,2)列式求得λ的范围.﹣a n=2(b n+1﹣b n),b n=3n+5,【解答】(1)解:∵a n+1﹣a n=2(b n+1﹣b n)=2(3n+8﹣3n﹣5)=6,∴a n+1∴{a n}是等差数列,首项为a1=1,公差为6,则a n=1+(n﹣1)×6=6n﹣5;(2)∵a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=2(b n﹣b n﹣1)+2(b n﹣1﹣b n﹣2)+…+2(b2﹣b1)+a1=2b n+a1﹣2b1,∴,∴.∴数列{b n}的第n0项是最大项;(3)由(2)可得,①当﹣1<λ<0时,单调递减,有最大值;单调递增,有最小值m=a1=λ,∴∈(﹣2,2),∴λ∈,∴.②当λ=﹣1时,a2n=3,a2n﹣1=﹣1,∴M=3,m=﹣1,(﹣2,2),不满足条件.③当λ<﹣1时,当n→+∞时,a2n→+∞,无最大值;→﹣∞,无最小值.当n→+∞时,a2n﹣1综上所述,λ∈(﹣,0)时满足条件.23.(18分)(2015•上海)对于定义域为R的函数g(x),若存在正常数T,使得cosg(x)是以T为周期的函数,则称g(x)为余弦周期函数,且称T为其余弦周期.已知f(x)是以T为余弦周期的余弦周期函数,其值域为R.设f(x)单调递增,f(0)=0,f(T)=4π.(1)验证g(x)=x+sin是以6π为周期的余弦周期函数;(2)设a<b,证明对任意c∈[f(a),f(b)],存在x0∈[a,b],使得f(x0)=c;(3)证明:“u0为方程cosf(x)=1在[0,T]上得解,”的充分条件是“u0+T为方程cosf(x)=1在区间[T,2T]上的解”,并证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T).【分析】(1)根据余弦函数的周期定义,判断cosg(x+6π)是否等于cosg(x)即可;(2)根据f(x)的值域为R,便可得到存在x0,使得f(x0)=c,而根据f(x)在R上单调递增即可说明x0∈[a,b],从而完成证明;(3)只需证明u0+T为方程cosf(x)=1在区间[T,2T]上的解得出u0为方程cosf (x)=1在[0,T]上的解,是否为方程的解,带入方程,使方程成立便是方程的解.证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T),可讨论x=0,x=T,x ∈(0,T)三种情况:x=0时是显然成立的;x=T时,可得出cosf(2T)=1,从而得到f(2T)=2k1π,k1∈Z,根据f(x)单调递增便能得到k1>2,然后根据f (x)的单调性及方程cosf(x)=1在[T,2T]和它在[0,T]上解的个数的情况说明k1=3,和k1≥5是不存在的,而k1=4时结论成立,这便说明x=T时结论成立;而对于x∈(0,T)时,通过考查cosf(x)=c的解得到f(x+T)=f(x)+f(T),综合以上的三种情况,最后得出结论即可.【解答】解:(1)g(x)=x+sin;∴==cosg(x)∴g(x)是以6π为周期的余弦周期函数;(2)∵f(x)的值域为R;∴存在x0,使f(x0)=c;又c∈[f(a),f(b)];∴f(a)≤f(x0)≤f(b),而f(x)为增函数;∴a≤x0≤b;即存在x0∈[a,b],使f(x0)=c;(3)证明:若u0+T为方程cosf(x)=1在区间[T,2T]上的解;则:cosf(u0+T)=1,T≤u0+T≤2T;∴cosf(u0)=1,且0≤u0≤T;∴u0为方程cosf(x)=1在[0,T]上的解;∴“u0为方程cosf(x)=1在[0,T]上得解”的充分条件是“u0+T为方程cosf(x)=1在区间[T,2T]上的解”;下面证明对任意x∈[0,T],都有f(x+T)=f(x)+f (T):①当x=0时,f(0)=0,∴显然成立;②当x=T时,cosf(2T)=cosf(T)=1;∴f(2T)=2k1π,(k1∈Z),f(T)=4π,且2k1π>4π,∴k1>2;1)若k1=3,f(2T)=6π,由(2)知存在x0∈(0,T),使f(x0)=2π;cosf(x0+T)=cosf(x0)=1⇒f(x0+T)=2k2π,k2∈Z;∴f(T)<f(x0+T)<f(2T);∴4π<2k2π<6π;∴2<k2<3,无解;2)若k1≥5,f(2T)≥10π,则存在T<x1<x2<2T,使得f(x1)=6π,f(x2)=8π;则T,x1,x2,2T为cosf(x)=1在[T,2T]上的4个解;但方程cosf(x)=1在[0,2T]上只有f(x)=0,2π,4π,3个解,矛盾;3)当k1=4时,f(2T)=8π=f(T)+f(T),结论成立;③当x∈(0,T)时,f(x)∈(0,4π),考查方程cosf(x)=c在(0,T)上的解;设其解为f(x1),f(x2),…,f(x n),(x1<x2<…<x n);则f(x1+T),f(x2+T),…,f(x n+T)为方程cosf(x)=c在(T,2T)上的解;又f(x+T)∈(4π,8π);而f(x1)+4π,f(x2)+4π,…,f(x n)+4π∈(4π,8π)为方程cosf(x)=c在(T,2T)上的解;∴f(x i+T)=f(x i)+4π=f(x i)+f(T);∴综上对任意x∈[0,T],都有f(x+T)=f(x)+f(T).。
2020年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)
2020年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={(x,y)|x,y∈N*,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为()A.2B.3C.4D.62.(5分)复数的虚部是()A .﹣B .﹣C .D .3.(5分)在一组样本数据中,1,2,3,4出现的频率分别为p1,p2,p3,p4,且p i=1,则下面四种情形中,对应样本的标准差最大的一组是()A.p1=p4=0.1,p2=p3=0.4B.p1=p4=0.4,p2=p3=0.1C.p1=p4=0.2,p2=p3=0.3D.p1=p4=0.3,p2=p3=0.24.(5分)Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t )=,其中K为最大确诊病例数.当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为()(ln19≈3)A.60B.63C.66D.695.(5分)设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于D,E两点,若OD⊥OE,则C的焦点坐标为()A.(,0)B.(,0)C.(1,0)D.(2,0)6.(5分)已知向量,满足||=5,||=6,•=﹣6,则cos <,+>=()A .﹣B .﹣C .D .7.(5分)在△ABC中,cos C =,AC=4,BC=3,则cos B=()A .B .C .D .8.(5分)如图为某几何体的三视图,则该几何体的表面积是()A.6+4B.4+4C.6+2D.4+29.(5分)已知2tanθ﹣tan(θ+)=7,则tanθ=()A.﹣2B.﹣1C.1D.210.(5分)若直线l与曲线y =和圆x2+y2=都相切,则l的方程为()A.y=2x+1B.y=2x +C.y =x+1D.y =x +11.(5分)设双曲线C :﹣=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为.P是C上一点,且F1P⊥F2P.若△PF1F2的面积为4,则a=()A.1B.2C.4D.812.(5分)已知55<84,134<85.设a=log53,b=log85,c=log138,则()A.a<b<c B.b<a<c C.b<c<a D.c<a<b二、填空题:本题共4小题,每小题5分,共20分。
2020年上海市高考数学试卷+参考答案+详情解析
2020年上海市高考数学试卷一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.(4分)已知集合A={1,2,4},集合B={2,4,5},则A∩B=.2.(4分)计算:=.3.(4分)已知复数z=1﹣2i(i为虚数单位),则|z|=.4.(4分)已知函数f(x)=x3,f′(x)是f(x)的反函数,则f′(x)=.5.(4分)已知x、y满足,则z=y﹣2x的最大值为.6.(4分)已知行列式=6,则=.7.(5分)已知有四个数1,2,a,b,这四个数的中位数是3,平均数是4,则ab=.8.(5分)已知数列{a n}是公差不为零的等差数列,且a1+a10=a9,则=.9.(5分)从6个人挑选4个人去值班,每人值班一天,第一天安排1个人,第二天安排1个人,第三天安排2个人,则共有种安排情况.10.(5分)已知椭圆C:+=1的右焦点为F,直线l经过椭圆右焦点F,交椭圆C 于P、Q两点(点P在第二象限),若点Q关于x轴对称点为Q′,且满足PQ⊥FQ′,求直线l的方程是.11.(5分)设a∈R,若存在定义域为R的函数f(x)同时满足下列两个条件:(1)对任意的x0∈R,f(x0)的值为x0或x02;(2)关于x的方程f(x)=a无实数解,则a的取值范围是.12.(5分)已知,,,,…,(k∈N*)是平面内两两互不相等的向量,满足||=1,且|﹣|∈{1,2}(其中i=1,2,j=1,2,…,k),则k的最大值是.二、选择题(本大题共4题,每题5分,共20分)13.(5分)下列等式恒成立的是()A.a2+b2≤2ab B.a2+b2≥﹣2ab C.a+b≥2D.a2+b2≤﹣2ab 14.(5分)已知直线方程3x+4y+1=0的一个参数方程可以是()A.B.C.D.15.(5分)在棱长为10的正方体ABCD﹣A1B1C1D1中,P为左侧面ADD1A1上一点,已知点P到A1D1的距离为3,P到AA1的距离为2,则过点P且与A1C平行的直线相交的面是()A.AA1B1B B.BB1C1C C.CC1D1D D.ABCD 16.(5分)命题p:存在a∈R且a≠0,对于任意的x∈R,使得f(x+a)<f(x)+f(a);命题q1:f(x)单调递减且f(x)>0恒成立;命题q2:f(x)单调递增,存在x0<0使得f(x0)=0,则下列说法正确的是()A.只有q1是p的充分条件B.只有q2是p的充分条件C.q1,q2都是p的充分条件D.q1,q2都不是p的充分条件三、解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)已知ABCD是边长为1的正方形,正方形ABCD绕AB旋转形成一个圆柱.(1)求该圆柱的表面积;(2)正方形ABCD绕AB逆时针旋转至ABC1D1,求线段CD1与平面ABCD所成的角.18.(14分)已知函数f(x)=sinωx,ω>0.(1)f(x)的周期是4π,求ω,并求f(x)=的解集;(2)已知ω=1,g(x)=f2(x)+f(﹣x)f(﹣x),x∈[0,],求g(x)的值域.19.(14分)在研究某市场交通情况时,道路密度是指该路段上一定时间内通过的车辆数除以时间,车辆密度是该路段一定时间内通过的车辆数除以该路段的长度,现定义交通流量为v=,x为道路密度,q为车辆密度.v=f(x)=.(1)若交通流量v>95,求道路密度x的取值范围;(2)已知道路密度x=80,交通流量v=50,求车辆密度q的最大值.20.(16分)已知双曲线Γ1:﹣=1与圆Γ2:x2+y2=4+b2(b>0)交于点A(x A,y A)(第一象限),曲线Γ为Γ1、Γ2上取满足x>|x A|的部分.(1)若x A=,求b的值;(2)当b=,Γ2与x轴交点记作点F1、F2,P是曲线Γ上一点,且在第一象限,且|PF1|=8,求∠F1PF2;(3)过点D(0,+2)斜率为﹣的直线l与曲线Γ只有两个交点,记为M、N,用b表示•,并求•的取值范围.21.(18分)已知数列{a n}为有限数列,满足|a1﹣a2|≤|a1﹣a3|≤…≤|a1﹣a m|,则称{a n}满足性质P.(1)判断数列3、2、5、1和4、3、2、5、1是否具有性质P,请说明理由;(2)若a1=1,公比为q的等比数列,项数为10,具有性质P,求q的取值范围;(3)若{a n}是1,2,3,…,m的一个排列(m≥4),{b n}符合b k=a k+1(k=1,2,…,m﹣1),{a n}、{b n}都具有性质P,求所有满足条件的数列{a n}.2020年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.(4分)已知集合A={1,2,4},集合B={2,4,5},则A∩B={2,4} .【分析】由交集的定义可得出结论.【解答】解:因为A={1,2,3},B={2,4,5},则A∩B={2,4}.故答案为:{2,4}.【点评】本题考查交集的定义,属于基础题.2.(4分)计算:=.【分析】由极限的运算法则和重要数列的极限公式,可得所求值.【解答】解:====,故答案为:.【点评】本题考查数列的极限的求法,注意运用极限的运算性质,考查运算能力,是一道基础题.3.(4分)已知复数z=1﹣2i(i为虚数单位),则|z|=.【分析】由已知直接利用复数模的计算公式求解.【解答】解:由z=1﹣2i,得|z|=.故答案为:.【点评】本题考查复数模的求法,是基础的计算题.4.(4分)已知函数f(x)=x3,f′(x)是f(x)的反函数,则f′(x)=x,x∈R.【分析】由已知求解x,然后把x与y互换即可求得原函数的反函数.【解答】解:由y=f(x)=x3,得x=,把x与y互换,可得f(x)=x3的反函数为f﹣1(x)=.故答案为:.【点评】本题考查函数的反函数的求法,注意反函数的定义域是原函数的值域,是基础题.5.(4分)已知x、y满足,则z=y﹣2x的最大值为﹣1 .【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图阴影部分,化目标函数z=y﹣2x为y=2x+z,由图可知,当直线y=2x+z过A时,直线在y轴上的截距最大,联立,解得,即A(1,1).z有最大值为1﹣2×1=﹣1.故答案为:﹣1.【点评】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.6.(4分)已知行列式=6,则= 2 .【分析】直接利用行列式的运算法则求解即可.【解答】解:行列式=6,可得3=6,解得=2.故答案为:2.【点评】本题考查行列式的应用,代数余子式的应用,是基本知识的考查.7.(5分)已知有四个数1,2,a,b,这四个数的中位数是3,平均数是4,则ab=36 .【分析】分别由题意结合中位数,平均数计算方法得a+b=13,=3,解得a,b,再算出答案即可.【解答】解:因为四个数的平均数为4,所以a+b=4×4﹣1﹣2=13,因为中位数是3,所以=3,解得a=4,代入上式得b=13﹣4=9,所以ab=36,故答案为:36.【点评】本题考查样本的数字特征,中位数,平均数,属于基础题.8.(5分)已知数列{a n}是公差不为零的等差数列,且a1+a10=a9,则=.【分析】根据等差数列的通项公式可由a1+a10=a9,得a1=﹣d,在利用等差数列前n 项和公式化简即可得出结论.【解答】解:根据题意,等差数列{a n}满足a1+a10=a9,即a1+a1+9d=a1+8d,变形可得a1=﹣d,所以====.故答案为:.【点评】本题考查等差数列的前n项和与等差数列通项公式的应用,注意分析a1与d的关系,属于基础题.9.(5分)从6个人挑选4个人去值班,每人值班一天,第一天安排1个人,第二天安排1个人,第三天安排2个人,则共有180 种安排情况.【分析】根据题意,由组合公式得共有排法,计算即可得出答案.【解答】解:根据题意,可得排法共有=180种.故答案为:180.【点评】本题考查组合数公式,解题关键是正确理解题意并熟悉组合数公式,属于基础题.10.(5分)已知椭圆C:+=1的右焦点为F,直线l经过椭圆右焦点F,交椭圆C于P、Q两点(点P在第二象限),若点Q关于x轴对称点为Q′,且满足PQ⊥FQ′,求直线l的方程是x+y﹣1=0 .【分析】求出椭圆的右焦点坐标,利用已知条件求出直线的斜率,然后求解直线方程.【解答】解:椭圆C:+=1的右焦点为F(1,0),直线l经过椭圆右焦点F,交椭圆C于P、Q两点(点P在第二象限),若点Q关于x轴对称点为Q′,且满足PQ⊥FQ′,可知直线l的斜率为﹣1,所以直线l的方程是:y=﹣(x﹣1),即x+y﹣1=0.故答案为:x+y﹣1=0.【点评】本题考查椭圆的简单性质的应用直线与直线的对称关系的应用,直线方程的求法,是基本知识的考查.11.(5分)设a∈R,若存在定义域为R的函数f(x)同时满足下列两个条件:(1)对任意的x0∈R,f(x0)的值为x0或x02;(2)关于x的方程f(x)=a无实数解,则a的取值范围是(﹣∞,0)∪(0,1)∪(1,+∞).【分析】根据条件(1)可知x0=0或1,进而结合条件(2)可得a的范围【解答】解:根据条件(1)可得x0=0或1,又因为关于x的方程f(x)=a无实数解,所以a≠0或1,故a∈(﹣∞,0)∪(0,1)∪(1,+∞),故答案为:(﹣∞,0)∪(0,1)∪(1,+∞).【点评】本题考查函数零点与方程根的关系,属于基础题.12.(5分)已知,,,,…,(k∈N*)是平面内两两互不相等的向量,满足||=1,且|﹣|∈{1,2}(其中i=1,2,j=1,2,…,k),则k的最大值是 6 .【分析】设,,结合向量的模等于1和2画出图形,由圆的交点个数即可求得k的最大值.【解答】解:如图,设,,由||=1,且|﹣|∈{1,2},分别以A1,A2为圆心,以1和2为半径画圆,其中任意两圆的公共点共有6个.故满足条件的k的最大值为6.故答案为:6.【点评】本题考查两向量的线性运算,考查向量模的求法,正确理解题意是关键,是中档题.二、选择题(本大题共4题,每题5分,共20分)13.(5分)下列等式恒成立的是()A.a2+b2≤2ab B.a2+b2≥﹣2ab C.a+b≥2D.a2+b2≤﹣2ab 【分析】利用(a+b)2≥0恒成立,可直接得到a2+b2≥﹣2ab成立,通过举反例可排除ACD.【解答】解:A.显然当a<0,b>0时,不等式a2+b2≤2ab不成立,故A错误;B.∵(a+b)2≥0,∴a2+b2+2ab≥0,∴a2+b2≥﹣2ab,故B正确;C.显然当a<0,b<0时,不等式a+b≥2不成立,故C错误;D.显然当a>0,b>0时,不等式a2+b2≤﹣2ab不成立,故D错误.故选:B.【点评】本题考查了基本不等式的应用,考查了转化思想,属基础题.14.(5分)已知直线方程3x+4y+1=0的一个参数方程可以是()A.B.C.D.【分析】选项的参数方程,化为普通方程,判断即可.【解答】解:的普通方程为:,即4x+3y﹣1=0,不正确;的普通方程为:,即3x+4y+1=0,正确;的普通方程为:,即4x+3y﹣1=0,不正确;的普通方程为:,即3x+4y﹣7=0,不正确;故选:B.【点评】本题考查直线的参数方程与普通方程的互化,是基本知识的考查.15.(5分)在棱长为10的正方体ABCD﹣A1B1C1D1中,P为左侧面ADD1A1上一点,已知点P到A1D1的距离为3,P到AA1的距离为2,则过点P且与A1C平行的直线相交的面是()A.AA1B1B B.BB1C1C C.CC1D1D D.ABCD【分析】由图可知点P在△AA1D内,过P作EF∥A1D,且EF∩AA1于E,EF∩AD于F,在平面ABCD中,过F作FG∥CD,交BC于G,由平面与平面平行的判定可得平面EFG ∥平面A1DC,连接AC,交FG于M,连接EM,再由平面与平面平行的性质得EM∥A1C,在△EFM中,过P作PN∥EM,且PN∩FM于N,可得PN∥A1C,由此说明过点P且与A1C平行的直线相交的面是ABCD.【解答】解:如图,由点P到A1D1的距离为3,P到AA1的距离为2,可得P在△AA1D内,过P作EF∥A1D,且EF∩AA1于E,EF∩AD于F,在平面ABCD中,过F作FG∥CD,交BC于G,则平面EFG∥平面A1DC.连接AC,交FG于M,连接EM,∵平面EFG∥平面A1DC,平面A1AC∩平面A1DC=A1C,平面A1AC∩平面EFM=EM,∴EM∥A1C.在△EFM中,过P作PN∥EM,且PN∩FM于N,则PN∥A1C.∵线段FM在四边形ABCD内,N在线段FM上,∴N在四边形ABCD内.∴过点P且与A1C平行的直线相交的面是ABCD.故选:D.【点评】本题考查空间中直线与直线位置关系的判定及应用,考查空间想象能力与思维能力,是中档题.16.(5分)命题p:存在a∈R且a≠0,对于任意的x∈R,使得f(x+a)<f(x)+f(a);命题q1:f(x)单调递减且f(x)>0恒成立;命题q2:f(x)单调递增,存在x0<0使得f(x0)=0,则下列说法正确的是()A.只有q1是p的充分条件B.只有q2是p的充分条件C.q1,q2都是p的充分条件D.q1,q2都不是p的充分条件【分析】对于命题q1:当a>0时,结合f(x)单调递减,可推出f(x+a)<f(x)<f(x)+f(a),命题q1是命题p的充分条件.对于命题q2:当a=x0<0时,f(a)=f(x0)=0,结合f(x)单调递增,推出f(x+a)<f(x),进而f(x+a)<f(x)+f (a),命题q2都是p的充分条件.【解答】解:对于命题q1:当f(x)单调递减且f(x)>0恒成立时,当a>0时,此时x+a>x,又因为f(x)单调递减,所以f(x+a)<f(x)又因为f(x)>0恒成立时,所以f(x)<f(x)+f(a),所以f(x+a)<f(x)+f(a),所以命题q1⇒命题p,对于命题q2:当f(x)单调递增,存在x0<0使得f(x0)=0,当a=x0<0时,此时x+a<x,f(a)=f(x0)=0,又因为f(x)单调递增,所以f(x+a)<f(x),所以f(x+a)<f(x)+f(a),所以命题p2⇒命题p,所以q1,q2都是p的充分条件,故选:C.【点评】本题考查命题的真假,及函数的单调性,关键是分析不等式之间关系,属于中档题.三、解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)已知ABCD是边长为1的正方形,正方形ABCD绕AB旋转形成一个圆柱.(1)求该圆柱的表面积;(2)正方形ABCD绕AB逆时针旋转至ABC1D1,求线段CD1与平面ABCD所成的角.【分析】(1)该圆柱的表面由上下两个半径为1的圆面和一个长为2π、宽为1的矩形组成,依次求出圆面和矩形的面积,相加即可;(2)先利用线面垂直的判定定理证明AD1⊥平面ADB,连接CD1,则∠D1CA即为线段CD1与平面ABCD所成的角,再利用三角函数的知识求出cos∠D1CA即可.【解答】解:(1)该圆柱的表面由上下两个半径为1的圆面和一个长为2π、宽为1的矩形组成,∴S=2×π×12+2π×1=4π.故该圆柱的表面积为4π.(2)∵正方形ABC1D1,∴AD1⊥AB,又∠DAD1=,∴AD1⊥AD,∵AD∩AB=A,且AD、AB⊂平面ADB,∴AD1⊥平面ADB,即D1在面ADB上的投影为A,连接CD1,则∠D1CA即为线段CD1与平面ABCD所成的角,而cos∠D1CA==,∴线段CD1与平面ABCD所成的角为arccos.【点评】本题考查圆柱的表面积、空间线面夹角问题,熟练掌握线面垂直的判定定理是解题的关键,考查学生的空间立体感和运算能力,属于基础题.18.(14分)已知函数f(x)=sinωx,ω>0.(1)f(x)的周期是4π,求ω,并求f(x)=的解集;(2)已知ω=1,g(x)=f2(x)+f(﹣x)f(﹣x),x∈[0,],求g(x)的值域.【分析】(1)直接利用正弦型函数的性质的应用求出结果.(2)利用三角函数关系式的变换和正弦型函数的性质的应用求出函数的值域.【解答】解:(1)由于f(x)的周期是4π,所以ω=,所以f(x)=sin.令sin,故或,整理得或.故解集为{x|或,k∈Z}.(2)由于ω=1,所以f(x)=sin x.所以g(x)===﹣=﹣sin(2x+).由于x∈[0,],所以.,故,故.所以函数g(x)的值域为[﹣.【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.19.(14分)在研究某市场交通情况时,道路密度是指该路段上一定时间内通过的车辆数除以时间,车辆密度是该路段一定时间内通过的车辆数除以该路段的长度,现定义交通流量为v=,x为道路密度,q为车辆密度.v=f(x)=.(1)若交通流量v>95,求道路密度x的取值范围;(2)已知道路密度x=80,交通流量v=50,求车辆密度q的最大值.【分析】(1)易知v越大,x越小,所以v=f(x)是单调递减函数,k>0,于是只需令,解不等式即可;(2)把x=80,v=50代入v=f(x)的解析式中,求出k的值,利用q=vx可得到q 关于x的函数关系式,分段判断函数的单调性,并求出各自区间上q的最大值,取较大者即可.【解答】解:(1)∵v=,∴v越大,x越小,∴v=f(x)是单调递减函数,k>0,当40≤x≤80时,v最大为85,于是只需令,解得x>3,故道路密度x的取值范围为(3,40).(2)把x=80,v=50代入v=f(x)=﹣k(x﹣40)+85中,得50=﹣k•40+85,解得k=.∴q=vx=,当0<x<40时,q单调递增,q<100×40﹣135×≈4000;当40≤x≤80时,q是关于x的二次函数,开口向下,对称轴为x=,此时q有最大值,为>4000.故车辆密度q的最大值为.【点评】本题考查分段函数的实际应用,考查学生分析问题和解决问题的能力,以及运算能力,属于中档题.20.(16分)已知双曲线Γ1:﹣=1与圆Γ2:x2+y2=4+b2(b>0)交于点A(x A,y A)(第一象限),曲线Γ为Γ1、Γ2上取满足x>|x A|的部分.(1)若x A=,求b的值;(2)当b=,Γ2与x轴交点记作点F1、F2,P是曲线Γ上一点,且在第一象限,且|PF1|=8,求∠F1PF2;(3)过点D(0,+2)斜率为﹣的直线l与曲线Γ只有两个交点,记为M、N,用b表示•,并求•的取值范围.【分析】(1)联立曲线Γ1与曲线Γ2的方程,以及x A=,解方程可得b;(2)由双曲线的定义和三角形的余弦定理,计算可得所求角;(3)设直线l:y=﹣x+,求得O到直线l的距离,判断直线l与圆的关系:相切,可设切点为M,考虑双曲线的渐近线方程,只有当y A>2时,直线l才能与曲线Γ有两个交点,解不等式可得b的范围,由向量投影的定义求得•,进而得到所求范围.【解答】解:(1)由x A=,点A为曲线Γ1与曲线Γ2的交点,联立,解得y A=,b=2;(2)由题意可得F1,F2为曲线Γ1的两个焦点,由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=8,2a=4,所以|PF2|=8﹣4=4,因为b=,则c==3,所以|F1F2|=6,在△PF1F2中,由余弦定理可得cos∠F1PF2===,由0<∠F1PF2<π,可得∠F1PF2=arccos;(3)设直线l:y=﹣x+,可得原点O到直线l的距离d==,所以直线l是圆的切线,设切点为M,所以k OM=,并设OM:y=x与圆x2+y2=4+b2联立,可得x2+x2=4+b2,可得x=b,y=2,即M(b,2),注意直线l与双曲线的斜率为负的渐近线平行,所以只有当y A>2时,直线l才能与曲线Γ有两个交点,由,可得y A2=,所以有4<,解得b2>2+2或b2<2﹣2(舍去),因为为在上的投影可得,•=4+b2,所以•=4+b2>6+2,则•∈(6+2,+∞).【点评】本题考查双曲线与圆的定义和方程、性质,考查直线和圆的方程、双曲线的方程的联立,以及向量的数量积的几何意义,考查方程思想和化简运算能力,属于中档题.21.(18分)已知数列{a n}为有限数列,满足|a1﹣a2|≤|a1﹣a3|≤…≤|a1﹣a m|,则称{a n}满足性质P.(1)判断数列3、2、5、1和4、3、2、5、1是否具有性质P,请说明理由;(2)若a1=1,公比为q的等比数列,项数为10,具有性质P,求q的取值范围;(3)若{a n}是1,2,3,…,m的一个排列(m≥4),{b n}符合b k=a k+1(k=1,2,…,m﹣1),{a n}、{b n}都具有性质P,求所有满足条件的数列{a n}.【分析】(1)根据定义,验证两个数列3、2、5、1和4、3、2、5、1是否具有性质P 即可;(2)假设公比q的等比数列满足性质p,可得:|a1﹣a1q n|≥|a1﹣a1q n﹣1|,推出(q﹣1)q n﹣1[q n﹣1(q+1)﹣2]≥0,通过q≥1,0<q≤1时,﹣1≤q<0时:q<﹣1时,四种情况讨论求解即可.(3)设a1=p,分p=1时,当p=m时,当p=2时,当p=m﹣1时,以及P∈{3,4,…,m﹣3,m﹣2},五种情况讨论,判断数列{a n}的可能情况,分别推出{b n}判断是否满足性质P即可.【解答】解:(1)对于数列3,2,5,1,有|2﹣3|=1,|5﹣3|=2,|1﹣3|=2,满足题意,该数列满足性质P;对于第二个数列4、3、2、5、1,|3﹣4|=1,|2﹣4|=2,|5﹣4|=1.不满足题意,该数列不满足性质P.(2)由题意:|a1﹣a1q n|≥|a1﹣a1q n﹣1|,可得:|q n﹣1|≥|q n﹣1﹣1|,n∈{2,3,…,9},两边平方可得:q2n﹣2q n+1≥q2n﹣2﹣2q n﹣1+1,整理可得:(q﹣1)q n﹣1[q n﹣1(q+1)﹣2]≥0,当q≥1时,得q n﹣1(q+1)﹣2≥0此时关于n恒成立,所以等价于n=2时,q(q+1)﹣2≥0,所以,(q+2)(q﹣1)≥0,所以q≤﹣2,或q≥1,所以取q≥1,当0<q≤1时,得q n﹣1(q+1)﹣2≤0,此时关于n恒成立,所以等价于n=2时,q (q+1)﹣2≤0,所以(q+2)(q﹣1)≤0,所以﹣2≤q≤1,所以取0<q≤1.当﹣1≤q<0时:q n﹣1[q n﹣1(q+1)﹣2]≤0,当n为奇数时,得q n﹣1(q+1)﹣2≤0,恒成立,当n为偶数时,q n﹣1(q+1)﹣2≥0,不恒成立;故当﹣1≤q<0时,矛盾,舍去.当q<﹣1时,得q n﹣1[q n﹣1(q+1)﹣2]≤0,当n为奇数时,得q n﹣1(q+1)﹣2≤0,恒成立,当n为偶数时,q n﹣1(q+1)﹣2≥0,恒成立;故等价于n=2时,q(q+1)﹣2≥0,所以(q+2)(q﹣1)≥0,所以q≤﹣2或q≥1,所以取q≤﹣2,综上q∈(﹣∞,﹣2]∪(0,+∞).(3)设a1=p,p∈{3,4,…,m﹣3,m﹣2},因为a1=p,a2可以取p﹣1,或p+1,a3可以取p﹣2,或p+2,如果a2或a3取了p﹣3或p+3,将使{a n}不满足性质P;所以{a n}的前5项有以下组合:①a1=p,a2=p﹣1;a3=p+1;a4=p﹣2;a5=p+2;②a1=p,a2=p﹣1;a3=p+1;a4=p+2;a5=p﹣2;③a1=p,a2=p+1;a3=p﹣1;a4=p﹣2;a5=p+2;④a1=p,a2=p+1;a3=p﹣1;a4=p+2;a5=p﹣2;对于①,b1=p﹣1,|b2﹣b1|=2,|b3﹣b1|=1,与{b n}满足性质P矛盾,舍去;对于②,b1=p﹣1,|b2﹣b1|=2,|b3﹣b1|=3,|b4﹣b1|=2与{b n}满足性质P矛盾,舍去;对于③,b1=p+1,|b2﹣b1|=2,|b3﹣b1|=3,|b4﹣b1|=1与{b n}满足性质P矛盾,舍去;对于④b1=p+1,|b2﹣b1|=2,|b3﹣b1|=1,与{b n}满足性质P矛盾,舍去;所以P∈{3,4,…,m﹣3,m﹣2},均不能同时使{a n}、{b n}都具有性质P.当p=1时,有数列{a n}:1,2,3,…,m﹣1,m满足题意.当p=m时,有数列{a n}:m,m﹣,…,3,2,1满足题意.当p=2时,有数列{a n}:2,1,3,…,m﹣1,m满足题意.当p=m﹣1时,有数列{a n}:m﹣1,m,m﹣2,m﹣3,…,3,2,1满足题意.所以满足题意的数列{a n}只有以上四种.【点评】本题考查数列的综合应用,不等式以及不等关系,二次函数的性质以及函数的相关性质的综合应用,考查分析问题解决问题的能力是难度大的题目,必须由高的数学思维逻辑修养才能解答.。
2015年上海市长宁区高考数学一模试卷(理科)含详解
2015年上海市长宁区高考数学一模试卷(理科)一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸的相应编号的空格内填写结果,每题填对得4分,否则一律得零分.1.(4分)函数y=sin2xcos2x的最小正周期是.2.(4分)若集合M={x||x|≤2},N={x|x2﹣3x≤0},则M∩N=.3.(4分)复数=.(i是虚数单位)4.(4分)已知数列{a n}的前n项和S n=5﹣4×2﹣n,则其通项公式为.5.(4分),则a=.6.(4分)已知a,b∈{﹣3,﹣2,﹣1,1,2,3}且a≠b,则复数z=a+bi对应点在第二象限的概率为.(用最简分数表示)7.(4分)已知函数f(x)=1+log a x,y=f﹣1(x)是函数y=f(x)的反函数,若y=f ﹣1(x)的图象过点(2,4),则a的值为.8.(4分)如图,圆锥的侧面展开图恰好是一个半圆,则该圆锥的母线与底面所成的角的大小是.9.(4分)根据如图的框图,打印的最后一个数据是.10.(4分)已知数列{a n}是以﹣2为公差的等差数列,S n是其前n项和,若S7是数列{S n}中的唯一最大项,则数列{a n}的首项a1的取值范围是.11.(4分)五位同学各自制作了一张贺卡,分别装入5个空白信封内,这五位同学每人随机地抽取一封,则恰好有两人抽取到的贺卡是其本人制作的概率是.12.(4分)已知△ABC中,角A,B,C的对边分别为a,b,c,且5tanB=,则sinB的值是.13.(4分)如图,在△ABC中,点O是BC的中点.过点O的直线分别交直线AB、AC于不同的两点M、N,若=m,=n,则m+n的值为.14.(4分)已知的展开式中的常数项为T,f(x)是以T为周期的偶函数,且当x∈[0,1]时,f(x)=x,若在区间[﹣1,3]内,函数g(x)=f (x)﹣kx﹣k有4个零点,则实数k的取值范围是.二.选择题(本大题满分20分)本大题共有4题,每题都给出代号为A、B、C、D的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得5分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分.15.(5分)设z1、z2∈C,则“z12+z22=0”是“z1=z2=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件16.(5分)函数y=a|x+b|,(0<a<1,﹣1<b<0)的图象为()A.B.C.D.17.(5分)O是△ABC所在的平面内的一点,且满足(﹣)•(+﹣2)=0,则△ABC的形状一定为()A.正三角形B.直角三角形C.等腰三角形D.斜三角形18.(5分)下面有五个命题:①函数y=sin4x﹣cos4x的最小正周期是2π;②终边在y轴上的角的集合是{a|a=,k∈z};③在同一坐标系中,函数y=sinx的图象和函数y=x的图象有一个公共点;④把函数y=3sin(2x+)的图象向右平移得到y=3sin2x的图象;⑤在△ABC中,若acosB=bcosA,则△ABC是等腰三角形;其中真命题的序号是()A.①②③B.②③④C.③④⑤D.①④⑤三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸的相应编号规定区域内写出必须的步骤.19.(12分)如图:三棱锥P﹣ABC中,PA⊥底面ABC,若底面ABC是边长为2的正三角形,且PB与底面ABC所成的角为.若M是BC的中点,求:(1)三棱锥P﹣ABC的体积;(2)异面直线PM与AC所成角的大小(结果用反三角函数值表示).20.(12分)已知(1)求tanα的值;(2)求的值.21.(14分)已知函数f(x)=x2+(2﹣n)x﹣2n的图象与x轴正半轴的交点为A (a n,0),n=1,2,3,….(1)求数列{a n}的通项公式;(2)令为正整数),问是否存在非零整数λ,使得>b n?若存在,求出λ的值,若不存在,请说明理对任意正整数n,都有b n+1由.22.(18分)已知函数f(x)=ax2﹣x+c(a、c∈R),满足f(1)=0,且f(x)≥0在x∈R时恒成立.(1)求a、c的值;(2)若h(x)=x2﹣bx+﹣,解不等式f(x)+h(x)<0;(3)是否存在实数m,使函数g(x)=f(x)﹣mx在区间[m,m+2]上有最小值﹣5?若存在,请求出m的值;若不存在,请说明理由.23.(18分)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值;(2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k;(3)设,.当b1=1时,求数列{b n}的通项公式.2015年上海市长宁区高考数学一模试卷(理科)参考答案与试题解析一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸的相应编号的空格内填写结果,每题填对得4分,否则一律得零分.1.(4分)函数y=sin2xcos2x的最小正周期是.【考点】GS:二倍角的三角函数;H1:三角函数的周期性.【专题】57:三角函数的图像与性质.【分析】先利用二倍角公式化简函数,再求函数的周期.【解答】解:函数y=sin2xcos2x=,∴函数y=sin2xcos2x的最小正周期是=.故答案为:.【点评】本题考查二倍角公式,考查三角函数的周期,考查学生的计算能力,正确化简函数是关键.2.(4分)若集合M={x||x|≤2},N={x|x2﹣3x≤0},则M∩N=[0,2] .【考点】1E:交集及其运算.【专题】5J:集合.【分析】利用不等式的性质和交集的定义求解.【解答】解:∵集合M={x||x|≤2}={x|﹣2≤x≤2},N={x|x2﹣3x≤0}={x|0≤x≤3},∴M∩N={x|0≤x≤2}=[0,2].故答案为:[0,2].【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意不等式性质的合理运用.3.(4分)复数=2i.(i是虚数单位)【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】利用复数的运算法则即可得出.【解答】解:复数==2i,故答案为:2i.【点评】本题考查了复数的运算法则,属于基础题.4.(4分)已知数列{a n}的前n项和S n=5﹣4×2﹣n,则其通项公式为.【考点】82:数列的函数特性.【专题】11:计算题.【分析】由数列{a n}的前n项和S n=5﹣4×2﹣n,利用公式直接求解.【解答】解:a1=S1=5﹣4×2﹣1=3,a n=S n﹣S n﹣1=(5﹣4×2﹣n)﹣(5﹣4×2﹣n+1)==22﹣n.当n=1时,,∴.故答案为:.【点评】本题考查数列的通项公式的求法,解题时要认真审题,仔细解答,注意公式的灵活运用.5.(4分),则a=28.【考点】6F:极限及其运算.【专题】11:计算题.【分析】由等差数列的前n项和公式,把等价转化为=6,进而得到=6,所以,由此能求出a.【解答】解:∵,∴=6,=6,∴,解得a=28.故答案为:28.【点评】本题考查数列的极限的运算,角题时要认真审题,仔细解答,注意等差数列前n项和公式的灵活运用.6.(4分)已知a,b∈{﹣3,﹣2,﹣1,1,2,3}且a≠b,则复数z=a+bi对应点在第二象限的概率为.(用最简分数表示)【考点】CB:古典概型及其概率计算公式.【专题】11:计算题.【分析】由已知中a,b∈{﹣3,﹣2,﹣1,1,2,3}且a≠b,我们可以列举出所有(a,b)点的个数及复数z=a+bi对应点在第二象限的基本事件个数,代入古典概型概率计算公式,即可得到答案.【解答】解:∵a,b∈{﹣3,﹣2,﹣1,1,2,3}且a≠b,则(a,b)点共有(﹣3,﹣2),(﹣3,﹣1),(﹣3,1),(﹣3,2),(﹣3,3),(﹣2,﹣3),(﹣2,﹣1),(﹣2,1),(﹣2,2),(﹣2,3),(﹣1,﹣3),(﹣1,﹣2),(﹣1,1),(﹣1,2),(﹣1,3),(1,﹣3),(1,﹣2),(1,﹣1),(1,2),(1,3),(2,﹣3),(2,﹣2),(2,﹣1),(2,1),(3,1),(3,﹣3),(3,﹣2),(3,﹣1),(3,1),(3,2),共30种情况其中a<0,b>0,即复数z=a+bi对应点在第二象限共有:(﹣3,1),(﹣3,2),(﹣3,3),(﹣2,1),(﹣2,2),(﹣2,3),(﹣1,1),(﹣1,2),(﹣1,3),共9种情况故复数z=a+bi对应点在第二象限的概率P==故答案为:【点评】本题考查的知识点是古典概型及其概率计算公式,其中分别计算出基本事件的总数及满足条件的基本事件个数是解答本题的关键.7.(4分)已知函数f(x)=1+log a x,y=f﹣1(x)是函数y=f(x)的反函数,若y=f ﹣1(x)的图象过点(2,4),则a的值为4.【考点】4R:反函数.【专题】51:函数的性质及应用.【分析】由y=f﹣1(x)的图象过点(2,4)得函数y=f(x)的图象过点(4,2),把点(4,2)代入y=f(x)的解析式求得a的值.【解答】解:∵y=f﹣1(x)的图象过点(2,4),∴函数y=f(x)的图象过点(4,2),又f(x)=1+log a x,∴2=1+log a4,即a=4.故答案为:4.【点评】本题考查了互为反函数的两个函数图象间的关系,是基础的计算题.8.(4分)如图,圆锥的侧面展开图恰好是一个半圆,则该圆锥的母线与底面所成的角的大小是60°.【考点】MI:直线与平面所成的角.【专题】5G:空间角.【分析】设出圆锥的半径与母线长,利用圆锥的底面周长等于侧面展开图的弧长得到圆锥的半径与母线长,进而表示出圆锥的母线与底面所成角的余弦值,也就求出了夹角的度数.【解答】解:设圆锥的母线长为R,底面半径为r,则:πR=2πr,∴R=2r,∴母线与底面所成角的余弦值==,∴母线与底面所成角是60°.故答案为:60°.【点评】本题用到的知识点为:圆锥的侧面展开图的弧长等于圆锥的底面周长;注意利用一个角相应的三角函数值求得角的度数.9.(4分)根据如图的框图,打印的最后一个数据是63.【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】执行程序框图,写出每次循环得到的A的值,当A=63,不满足条件A <35,结束.【解答】解:执行程序框图,有A=1,A=3,输出A的值为3,满足条件A<35,A=7,输出A的值为7,满足条件A<35,A=15,输出A的值为15,满足条件A<35,A=31,输出A的值为31,满足条件A<35,A=63,输出A的值为63,不满足条件A<35,结束.故打印的最后一个数据是63.故答案为:63.【点评】本题主要考查了程序框图和算法,属于基本知识的考查.10.(4分)已知数列{a n}是以﹣2为公差的等差数列,S n是其前n项和,若S7是数列{S n}中的唯一最大项,则数列{a n}的首项a1的取值范围是(12,14).【考点】83:等差数列的性质;85:等差数列的前n项和.【专题】11:计算题.【分析】因为S7是数列{S n}中的唯一最大项所以a7大于0 而a8小于0.由此可导出首项a1的取值范围.【解答】解:∵S7是数列{S n}中的唯一最大项所以a7大于0,而a8小于0,a1+6d>0,a1+7d<0,即a1﹣12>0,a1﹣14<0得到a1的范围12<a1<14.故答案:(12,14).【点评】本题考查等差数列的性质和应用,解题时要认真审题,注意公式的灵活运用.11.(4分)五位同学各自制作了一张贺卡,分别装入5个空白信封内,这五位同学每人随机地抽取一封,则恰好有两人抽取到的贺卡是其本人制作的概率是.【考点】C6:等可能事件和等可能事件的概率.【专题】5I:概率与统计.【分析】根据题意,首先由排列数公式分析可得5位同学每人随机地抽取1张卡片的情况;进而分两步分析5人中恰好有2人抽取到的贺卡是其本人制作的情况数目,①先在5人中抽出2人,使其抽取到的贺卡是其本人制作的,②分析抽到的都不是其本人制作的3人,由分步计数原理可得其情况数目,由等可能事件的概率公式,计算可得答案.【解答】解:根据题意,共5张贺卡,5位同学每人随机地抽取1张,有A55=120种情况,要满足5人中恰好有2人抽取到的贺卡是其本人制作,可以先在5人中抽出2人,使其抽取到的贺卡是其本人制作的,有C52=10种情况,则剩余的3人,抽到的都不是其本人制作的,有2种情况,则5人中恰好有2人抽取到的贺卡是其本人制作的情况有10×2=20种,其概率P==.故答案为.【点评】本题考查等可能事件概率计算,关键是正确理解“恰好有两人抽取到的贺卡是其本人制作的”的含义.12.(4分)已知△ABC中,角A,B,C的对边分别为a,b,c,且5tanB=,则sinB的值是.【考点】HR:余弦定理.【专题】11:计算题;35:转化思想.【分析】利用余弦定理可得cosB=,代入已知,化简后即可得结果【解答】解:∵cosB=,∴==∴5sinB=3∴sinB=故答案为【点评】本题考查了余弦定理的应用,解题时要认真观察,发现已知条件和余弦定理的关系,整体代入解决问题13.(4分)如图,在△ABC中,点O是BC的中点.过点O的直线分别交直线AB、AC于不同的两点M、N,若=m,=n,则m+n的值为2.【考点】96:平行向量(共线).【专题】16:压轴题.【分析】三点共线时,以任意点为起点,这三点为终点的三向量,其中一向量可用另外两向量线性表示,其系数和为一.【解答】解:=()=+,∵M、O、N三点共线,∴+=1,∴m+n=2.故答案:2【点评】本题考查三点共线的充要条件.14.(4分)已知的展开式中的常数项为T,f(x)是以T为周期的偶函数,且当x∈[0,1]时,f(x)=x,若在区间[﹣1,3]内,函数g(x)=f (x)﹣kx﹣k有4个零点,则实数k的取值范围是.【考点】52:函数零点的判定定理;DA:二项式定理.【专题】15:综合题;35:转化思想;49:综合法.【分析】先求出展开式中的常数项T,求得函数的周期是2,由于g(x)=f(x)﹣kx﹣k有4个零点,即函数f(x)与r(x)=kx+k有四个交点,根据两个函数的图象特征转化出等价条件,得到关于k的不等式,求解易得.【解答】解:∵的常数项为=2∴f(x)是以2为周期的偶函数∵区间[﹣1,3]是两个周期∴区间[﹣1,3]内,函数g(x)=f(x)﹣kx﹣k有4个零点可转化为f(x)与r (x)=kx+k有四个交点当k=0时,两函数图象只有两个交点,不合题意当k≠0时,∵r(﹣1)=0,两函数图象有四个交点,必有0<r(3)≤1解得0<k≤故答案为:【点评】本题考点二项式定理,主要考查依据题设条件灵活转化的能力,如g(x)=f(x)﹣kx﹣k有4个零点,即函数f(x)与r(x)=kx+k有四个交点,灵活转化是正确转化是解题的关键.二.选择题(本大题满分20分)本大题共有4题,每题都给出代号为A、B、C、D的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得5分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分.15.(5分)设z1、z2∈C,则“z12+z22=0”是“z1=z2=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】29:充分条件、必要条件、充要条件.【专题】5N:数系的扩充和复数.【分析】根据充分条件和必要条件的定义进行判断即可.【解答】解:若z1=i,z2=1,满足设“z12+z22=0”,但“z1=z2=0”不成立,若z1=z2=0,则z12+z22=0成立,故“z12+z22=0”是“z1=z2=0”的必要不充分条件,故选:B.【点评】本题主要考查充分条件和必要条件的判断,根据复数的概念是解决本题的关键.16.(5分)函数y=a|x+b|,(0<a<1,﹣1<b<0)的图象为()A.B.C.D.【考点】3A:函数的图象与图象的变换;49:指数函数的图象与性质.【专题】31:数形结合.【分析】先考查y=a|x|的图象特征,y=a|x+b|的图象可看成把y=a x的图象向右平移﹣b(0<﹣b<1)个单位得到的,即可得到y=a|x+b|的图象特征.【解答】解:∵0<a<1,∴y=a x的图象过第一、第二象限,且是单调减函数,经过(0,1),y=a|x|的图象可看成把y=a x的图象在y 轴的右铡的不变,再将右侧的图象作关于y轴的图象得到的,y=a|x+b|的图象可看成把y=a x的图象向右平移﹣b(0<﹣b<1)个单位得到的,故选:C.【点评】本题考查函数图象的变换,指数函数的图象特征,体现了转化的数学思想.17.(5分)O是△ABC所在的平面内的一点,且满足(﹣)•(+﹣2)=0,则△ABC的形状一定为()A.正三角形B.直角三角形C.等腰三角形D.斜三角形【考点】GZ:三角形的形状判断.【专题】11:计算题.【分析】利用向量的运算法则将等式中的向量用三角形的各边对应的向量表示,得到边的关系,得出三角形的形状.【解答】解:∵====0,∴∴△ABC为等腰三角形.故选:C.【点评】此题考查了三角形形状的判断,涉及的知识有平面向量的平行四边形法则,平面向量的数量积运算,向量模的计算,以及等腰三角形的判定方法,熟练掌握平面向量的数量积运算法则是解本题的关键.18.(5分)下面有五个命题:①函数y=sin4x﹣cos4x的最小正周期是2π;②终边在y轴上的角的集合是{a|a=,k∈z};③在同一坐标系中,函数y=sinx的图象和函数y=x的图象有一个公共点;④把函数y=3sin(2x+)的图象向右平移得到y=3sin2x的图象;⑤在△ABC中,若acosB=bcosA,则△ABC是等腰三角形;其中真命题的序号是()A.①②③B.②③④C.③④⑤D.①④⑤【考点】2K:命题的真假判断与应用.【分析】化简函数的解析式求出函数的周期,可判断①的真假;写出指定角的集合,比照后可判断②的真假;在同一坐标系中画出两个函数的图象,可判断③的真假;根据函数图象的平移法则,可判断④的真假;由正弦定理及正切函数的性质,可判断⑤的真假;进而得到答案.【解答】解:①函数y=sin4x﹣cos4x=﹣cos2x的最小正周期是π,故①错误;②终边在y轴上的角的集合是{a|a=≠,k∈z},故②错误;③在同一坐标系中,函数y=sinx的图象和函数y=x的图象有(0,0)一个公共点,故③正确;④把函数y=3sin(2x+)的图象向右平移得到y=3sin[2(x﹣)+]=3sin(2x)的图象,故④正确;⑤在△ABC中,若acosB=bcosA,即sinA•cosB=sinB•cosA,即tanA=tanB,即A=B,则△ABC是等腰三角形,故⑤正确;故选:C.【点评】本题考查的知识点是命题的真假判断与应用,熟练掌握三角函数的定义,图象,性质是解答本题的关键.三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸的相应编号规定区域内写出必须的步骤.19.(12分)如图:三棱锥P﹣ABC中,PA⊥底面ABC,若底面ABC是边长为2的正三角形,且PB与底面ABC所成的角为.若M是BC的中点,求:(1)三棱锥P﹣ABC的体积;(2)异面直线PM与AC所成角的大小(结果用反三角函数值表示).【考点】LF:棱柱、棱锥、棱台的体积;LM:异面直线及其所成的角.【分析】(1)欲求三棱锥P﹣ABC的体积,只需求出底面积和高即可,因为底面ABC是边长为2的正三角形,所以底面积可用来计算,其中a是正三角形的边长,又因为PA⊥底面ABC,所以三棱锥的高就是PA长,再代入三棱锥的体积公式即可.(2)欲求异面直线所成角,只需平移两条异面直线中的一条,是它们成为相交直线即可,由M为BC中点,可借助三角形的中位线平行于第三边的性质,做出△ABC的中位线,就可平移BC,把异面直线所成角转化为平面角,再放入△PMN中,求出角即可.【解答】解:(1)因为PA⊥底面ABC,PB与底面ABC所成的角为所以因为AB=2,所以(2)连接PM,取AB的中点,记为N,连接MN,则MN∥AC所以∠PMN为异面直线PM与AC所成的角计算可得:,MN=1,异面直线PM与AC所成的角为【点评】本题主要考查了在几何体中求异面直线角的能力.解题关键再与找平行线,本题主要通过三角形的中位线找平行线,如果试题的已知中涉及到多个中点,则找中点是出现平行线的关键技巧.20.(12分)已知(1)求tanα的值;(2)求的值.【考点】GP:两角和与差的三角函数.【专题】11:计算题;56:三角函数的求值.【分析】(1)运用同角的倒数关系,解方程,即可得到;(2)运用诱导公式和二倍角的余弦公式及同角的平方关系和商数关系,计算即可得到.【解答】解:(1)由于,则有3tan2α+8tanα﹣3=0,解得或tanα=﹣3,∵,∴tanα=﹣3;(2)=﹣cos2α=﹣(cos2α﹣sin2α)====.【点评】本题考查同角的平方关系和商数关系、倒数关系及诱导公式、二倍角的余弦公式,考查运算能力,属于基础题.21.(14分)已知函数f(x)=x2+(2﹣n)x﹣2n的图象与x轴正半轴的交点为A (a n,0),n=1,2,3,….(1)求数列{a n}的通项公式;(2)令为正整数),问是否存在非零整数λ,使得对任意正整数n,都有b n>b n?若存在,求出λ的值,若不存在,请说明理+1由.【考点】84:等差数列的通项公式;8K:数列与不等式的综合.【专题】11:计算题.【分析】(1)函数f(x)=x2+(2﹣n)x﹣2n的图象与x轴正半轴的交点横坐标只需令y=0求出x即为数列{a n}的通项公式;(2)若存在λ≠0,满足b n>b n恒成立,然后讨论n的奇偶将λ进行分离,利+1用恒成立的方法求出λ的范围即可.【解答】解:(1)设f(x)=0,x2+(2﹣n)x﹣2n=0得x1=﹣2,x2=n.所以a n=n(4分)(2)b n=3n+(﹣1)n﹣1•λ•2n,若存在λ≠0,满足b n+1>b n恒成立即:3n+1+(﹣1)n•λ•2n+1>3n+(﹣1)n﹣1•λ•2n,(6分)恒成立(8分)当n为奇数时,⇒λ<1(10分)当n为偶数时,⇒(12分)所以(13分),故:λ=﹣1(14分)【点评】本题主要考查了等差数列的通项公式,以及数列与不等式的综合和恒成立问题的应用,属于中档题.22.(18分)已知函数f(x)=ax2﹣x+c(a、c∈R),满足f(1)=0,且f(x)≥0在x∈R时恒成立.(1)求a、c的值;(2)若h(x)=x2﹣bx+﹣,解不等式f(x)+h(x)<0;(3)是否存在实数m,使函数g(x)=f(x)﹣mx在区间[m,m+2]上有最小值﹣5?若存在,请求出m的值;若不存在,请说明理由.【考点】3R:函数恒成立问题;3V:二次函数的性质与图象.【专题】11:计算题;51:函数的性质及应用;59:不等式的解法及应用.【分析】(1)由f(1)=0得a+c=,再由恒成立得a>0且△=﹣4ac≤0,从而解得a=c=.(2)由(1)得f(x)=x2﹣x+,从而化不等式为(x﹣b)(x﹣)<0,从而讨论解得;(3)g(x)=x2﹣(+m)x+,假设存在实数m,使函数g(x)在区间[m,m+2]上有最小值﹣5.从而讨论单调性以确定最小值,从而解得.【解答】解:(1)由f(1)=0,得a+c=,因为f(x)≥0在R上恒成立,所以a>0且△=﹣4ac≤0,ac≥,即a(﹣a)≥,即(a﹣)2≤0,所以a=c=.(2)由(1)得f(x)=x2﹣x+,由f(x)+h(x)<0,得x2﹣(b+)x+<0,即(x﹣b)(x﹣)<0,所以,当b<时,原不等式解集为(b,);当b>时,原不等式解集为(,b);当b=时,原不等式解集为空集.(3)g(x)=x2﹣(+m)x+,g(x)的图象是开口向上的抛物线,对称轴为直线x=2m+1.假设存在实数m,使函数g(x)在区间[m,m+2]上有最小值﹣5.①当2m+1<m,即m<﹣1时,函数g(x)在区间[m,m+2]上是增函数,所以g(m)=﹣5,即m2﹣(+m)m+=﹣5,解得m=﹣3或m=,因为m<﹣1,所以m=﹣3;②当m≤2m+1≤m+2,即﹣1≤m≤1时,函数g(x)的最小值为g(2m+1)=﹣5,即(2m+1)2﹣(+m)(2m+1)+=﹣5,解得m=﹣﹣或m=﹣+,均舍去;③当2m+1>m+2,即m>1时,g(x)在区间[m,m+2]上是减函数,所以g(m+2)=﹣5,即(m+2)2﹣(+m)(m+2)+=﹣5,解得m=﹣1﹣2或m=﹣1+2,因m>1,所以m=﹣1+2.综上,存在实数m,m=﹣3或m=﹣1+2时,函数g(x)在区间[m,m+2]上有最小值﹣5.…(18分)【点评】本题考查了函数的性质应用及恒成立问题,同时考查了分类讨论的数学思想.属于中档题.23.(18分)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值;(2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k;(3)设,.当b1=1时,求数列{b n}的通项公式.【考点】82:数列的函数特性;8H:数列递推式.【专题】11:计算题;16:压轴题;32:分类讨论.【分析】(1)先根据条件得到数列{b n}的递推关系式,即可求出结论;(2)先根据条件得到数列{b n}的递推关系式;进而判断出其增减性,即可求出结论;(3)先根据条件得到数列{b n}的递推关系式;再结合叠加法以及分类讨论分情况求出数列{b n}的通项公式,最后综合即可.【解答】解:(1)∵a n﹣a n=3,+1﹣b n=n+2,∴b n+1∵b1=1,∴b2=4,b3=8.(2)∵.﹣a n=2n﹣7,∴a n+1﹣b n=,∴b n+1﹣b n>0,解得n≥4,即b4<b5<b6…;由b n+1﹣b n<0,解得n≤3,即b1>b2>b3>b4.由b n+1∴k=4.(3)∵a n﹣a n=(﹣1)n+1,+1﹣b n=(﹣1)n+1(2n+n).∴b n+1∴b n﹣b n﹣1=(﹣1)n(2n﹣1+n﹣1)(n≥2).故b2﹣b1=21+1;b3﹣b2=(﹣1)(22+2),…b n﹣1﹣b n﹣2=(﹣1)n﹣1(2n﹣2+n﹣2).b n﹣b n﹣1=(﹣1)n(2n﹣1+n﹣1).当n=2k时,以上各式相加得b n﹣b1=(2﹣22+…﹣2n﹣2+2n﹣1)+[1﹣2+…﹣(n﹣2)+(n﹣1)]=+=+.∴b n==++.当n=2k﹣1时,=++﹣(2n+n)=﹣﹣+∴b n=.【点评】本题主要考察数列递推关系式在求解数列通项中的应用.是对数列知识的综合考察,属于难度较高的题目.。
2020年高考真题——数学试卷(理科)(新课标Ⅱ)(解析版)
2020年普通高等学校招生全国统一考试理科数学注意事项:1.答题前,考生务必将自己的姓名、考生号、座位号填写在答题卡上.本试卷满分150分.2.作答时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题目:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B ð()A.{−2,3}B.{−2,2,3}C.{−2,−1,0,3}D.{−2,−1,0,2,3}【答案】A 【解析】【分析】首先进行并集运算,然后计算补集即可.【详解】由题意可得: 1,0,1,2A B ,则 U 2,3A B ð.故选:A.【点睛】本题主要考查并集、补集的定义与应用,属于基础题.2.若α为第四象限角,则()A.cos2α>0 B.cos2α<0C.sin2α>0D.sin2α<0【答案】D 【解析】【分析】由题意结合二倍角公式确定所给的选项是否正确即可.【详解】当6时,cos 2cos 03,选项B 错误;当3时,2cos 2cos 03,选项A 错误;由 在第四象限可得:sin 0,cos 0 ,则sin 22sin cos 0 ,选项C 错误,选项D 正确;故选:D.【点睛】本题主要考查三角函数的符号,二倍角公式,特殊角的三角函数值等知识,意在考查学生的转化能力和计算求解能力.3.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A.10名B.18名C.24名D.32名【答案】B 【解析】【分析】算出第二天订单数,除以志愿者每天能完成的订单配货数即可.【详解】由题意,第二天新增订单数为50016001200900 ,故需要志愿者9001850名.故选:B【点晴】本题主要考查函数模型的简单应用,属于基础题.4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块【答案】C 【解析】【分析】第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,设n S 为{}n a 的前n 项和,由题意可得322729n n n n S S S S ,解方程即可得到n ,进一步得到3n S .【详解】设第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,9(1)99n a n n ,设n S 为{}n a 的前n 项和,则第一层、第二层、第三层的块数分别为232,,n n n n n S S S S S ,因为下层比中层多729块,所以322729n n n n S S S S ,即3(927)2(918)2(918)(99)7292222n n n n n n n n 即29729n ,解得9n ,所以32727(9927)34022n S S .故选:C【点晴】本题主要考查等差数列前n 项和有关的计算问题,考查学生数学运算能力,是一道容易题.5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y 的距离为()A.5B.5C.5D.455【答案】B 【解析】【分析】由题意可知圆心在第一象限,设圆心的坐标为 ,,0a a a ,可得圆的半径为a ,写出圆的标准方程,利用点 2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y 的距离.【详解】由于圆上的点 2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必第一象限,设圆心的坐标为,a a ,则圆的半径为a ,圆的标准方程为 222x a y a a .由题意可得 22221a a a ,可得2650a a ,解得1a 或5a ,所以圆心的坐标为 1,1或 5,5,圆心到直线230x y 距离均为255d;所以,圆心到直线230x y 的距离为5.故选:B.【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.6.数列{}n a 中,12a ,m n m n a a a ,若155121022k k k a a a ,则k ()A.2B.3C.4D.5【答案】C 【解析】分析】取1m ,可得出数列 n a 是等比数列,求得数列 n a 的通项公式,利用等比数列求和公式可得出关于k 的等式,由k N 可求得k 的值.【详解】在等式m n m n a a a 中,令1m ,可得112n n n a a a a ,12n na a,所以,数列 n a 是以2为首项,以2为公比的等比数列,则1222n n n a ,1011011105101210122122212211212k k k k k k a a a a,1522k ,则15k ,解得4k .故选:C.【点睛】本题考查利用等比数列求和求参数的值,解答的关键就是求出数列的通项公式,考查计算能力,属于中等题.7.如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为()A.EB.FC.GD.H【答案】A 【解析】【分析】根据三视图,画出多面体立体图形,即可求得M 点在侧视图中对应的点.【详解】根据三视图,画出多面体立体图形,图中标出了根据三视图M 点所在位置,可知在侧视图中所对应的点为E 故选:A【点睛】本题主要考查了根据三视图判断点的位置,解题关键是掌握三视图的基础知识和根据三视图能还原立体图形的方法,考查了分析能力和空间想象,属于基础题.8.设O 为坐标原点,直线x a 与双曲线2222:1(0,0)x y C a b a b的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为()A.4B.8C.16D.32【答案】B 【解析】【分析】因为2222:1(0,0)x y C a b a b ,可得双曲线的渐近线方程是b y x a,与直线x a 联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab 值,根据2c ,结合均值不等式,即可求得答案.【详解】∵2222:1(0,0)x y C a b a b双曲线的渐近线方程是by x a∵直线x a 与双曲线2222:1(0,0)x y C a b a b的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限联立x ab y x a,解得x a y b故(,)D a b 联立x ab y x a,解得x a y b故(,)E a b ||2ED bODE 面积为:1282ODE S a b ab△∵双曲线2222:1(0,0)x y C a b a b其焦距为28c当且仅当a b C 的焦距的最小值:8故选:B.【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.9.设函数()ln |21|ln |21|f x x x ,则f (x )()A.是偶函数,且在1(,)2 单调递增B.是奇函数,且在11(,)22单调递减C.是偶函数,且在1(,)2单调递增D.是奇函数,且在1(,)2单调递减【答案】D 【解析】【分析】根据奇偶性的定义可判断出 f x 为奇函数,排除AC ;当11,22x时,利用函数单调性的性质可判断出 f x 单调递增,排除B ;当1,2x时,利用复合函数单调性可判断出 f x 单调递减,从而得到结果.【详解】由 ln 21ln 21f x x x 得 f x 定义域为12x x,关于坐标原点对称,又 ln 12ln 21ln 21ln 21f x x x x x f x ,f x 为定义域上的奇函数,可排除AC ;当11,22x时, ln 21ln 12f x x x , ln 21y x Q 在11,22 上单调递增, ln 12y x 在11,22上单调递减,f x 在11,22上单调递增,排除B ;当1,2x时, 212ln 21ln 12ln ln 12121x f x x x x x,2121x∵在1,2上单调递减, ln f 在定义域内单调递增,根据复合函数单调性可知: f x 在1,2上单调递减,D 正确.故选:D.【点睛】本题考查函数奇偶性和单调性的判断;判断奇偶性的方法是在定义域关于原点对称的前提下,根据 f x 与 f x 的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.10.已知△ABC 是面积为4的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为()A.B.32C.1D.2【答案】C【解析】【分析】根据球O 的表面积和ABC 的面积可求得球O 的半径R 和ABC 外接圆半径r ,由球的性质可知所求距离d【详解】设球O 的半径为R ,则2416R ,解得:2R .设ABC 外接圆半径为r ,边长为a ,ABC ∵ 是面积为4的等边三角形,21393224a ,解得:3a ,2233r球心O 到平面ABC 的距离1d .故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.11.若2233x y x y ,则()A.ln(1)0y x B.ln(1)0y x C.ln ||0x y D.ln ||0x y 【答案】A 【解析】【分析】将不等式变为2323x x y y ,根据 23t tf t 的单调性知x y ,以此去判断各个选项中真数与1的大小关系,进而得到结果.【详解】由2233x y x y 得:2323x x y y ,令 23ttf t ,2x y ∵为R 上的增函数,3x y 为R 上的减函数, f t 为R 上的增函数,x y ,0y x Q ,11y x , ln 10y x ,则A 正确,B 错误;x y Q 与1的大小不确定,故CD 无法确定.故选:A.【点睛】本题考查对数式的大小的判断问题,解题关键是能够通过构造函数的方式,利用函数的单调性得到,x y 的大小关系,考查了转化与化归的数学思想.12.0-1周期序列在通信技术中有着重要应用.若序列12n a a a 满足{0,1}(1,2,)i a i ,且存在正整数m ,使得(1,2,)i m i a a i 成立,则称其为0-1周期序列,并称满足(1,2,)i m i a a i 的最小正整数m 为这个序列的周期.对于周期为m 的0-1序列12n a a a ,11()(1,2,,1)mi i k i C k a a k m m 是描述其性质的重要指标,下列周期为5的0-1序列中,满足1()(1,2,3,4)5C k k 的序列是()A 11010 B.11011C.10001D.11001【答案】C 【解析】【详解】由i m i a a 知,序列i a 的周期为m ,由已知,5m ,511(),1,2,3,45i i k i C k a a k 对于选项A ,511223344556111111(1)()(10000)55555i i i C a a a a a a a a a a a a52132435465711112(2)()(01010)5555i i i C a a a a a a a a a a a a ,不满足;对于选项B ,51122334455611113(1)()(10011)5555i i i C a a a a a a a a a a a a ,不满足;对于选项D ,51122334455611112(1)()(10001)5555i i i C a a a a a a a a a a a a ,不满足;故选:C【点晴】本题考查数列的新定义问题,涉及到周期数列,考查学生对新定义的理解能力以及数学运算能力,是一道中档题.二、填空题目:本题共4小题,每小题5分,共20分.13.已知单位向量a ,b 的夹角为45°,ka –b 与a 垂直,则k =__________.【答案】2【解析】【分析】首先求得向量的数量积,然后结合向量垂直的充分必要条件即可求得实数k 的值.【详解】由题意可得:211cos 452a b ,由向量垂直的充分必要条件可得:0k a b a,即:202k a a b k ,解得:2k .故答案为:2.【点睛】本题主要考查平面向量的数量积定义与运算法则,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.14.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.【答案】36【解析】【分析】根据题意,采用捆绑法,先取2名同学看作一组,现在可看成是3组同学分配到3个小区,即可求得答案.【详解】∵4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学先取2名同学看作一组,选法有:246C 现在可看成是3组同学分配到3个小区,分法有:336A根据分步乘法原理,可得不同的安排方法6636 种故答案为:36.【点睛】本题主要考查了计数原理的实际应用,解题关键是掌握分步乘法原理和捆绑法的使用,考查了分析能力和计算能力,属于中档题.15.设复数1z ,2z 满足12||=||=2z z ,12i z z ,则12||z z =__________.【答案】【解析】【分析】令12cos 2sin z i ,22cos 2sin z i ,根据复数的相等可求得1cos cos sin sin 2,代入复数模长的公式中即可得到结果.【详解】122z z ∵,可设12cos 2sin z i ,22cos 2sin z i ,122cos cos 2sin sin z z i i ,2cos cos 2sin sin 1,两式平方作和得: 422cos cos 2sin sin 4 ,化简得:1cos cos sin sin 2122cos cos 2sin sin z z i故答案为:.【点睛】本题考查复数模长的求解,涉及到复数相等的应用;关键是能够采用假设的方式,将问题转化为三角函数的运算问题.16.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p :若空间两条直线不相交,则这两条直线平行.p 4:若直线l 平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ②12p p ③23p p ④34p p 【答案】①③④【解析】【分析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为 ;若3l 与1l 相交,则交点A 在平面 内,同理,3l 与2l 的交点B 也在平面 内,所以,AB ,即3l ,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m 平面 ,则m 垂直于平面 内所有直线,∵直线l 平面 , 直线m 直线l ,命题4p 为真命题.综上可知,14p p 为真命题,12p p 为假命题,23p p 为真命题,34p p 为真命题.故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C.(1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23;(2)3 【解析】【分析】(1)利用正弦定理角化边,配凑出cos A 的形式,进而求得A ;(2)利用余弦定理可得到 29AC AB AC AB ,利用基本不等式可求得AC AB 的最大值,进而得到结果.【详解】(1)由正弦定理可得:222BC AC AB AC AB ,2221cos 22AC AB BC A AC AB , 0,A ∵,23A .(2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB ,即 29AC AB AC AB .22AC AB AC AB∵(当且仅当AC AB 时取等号), 22223924AC AB AC AB AC AB AC AB AC AB ,解得:AC AB (当且仅当AC AB 时取等号),ABC周长3L AC AB BC ,ABC周长的最大值为3 .【点睛】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值.18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i i x ,2011200i i y,202180i i x x (,20219000i i y y (,201))800i i i x y x y ((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r)ni i x y x y((=1.414.【答案】(1)12000;(2)0.94;(3)详见解析【解析】【分析】(1)利用野生动物数量的估计值等于样区野生动物平均数乘以地块数,代入数据即可;(2)利用公式20()()ii x x y y r 计算即可;(3)各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样.【详解】(1)样区野生动物平均数为201111200602020i i y ,地块数为200,该地区这种野生动物的估计值为2006012000(2)样本(,)i i x y的相关系数为20()()0.943i i x x y y r (3)由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.【点晴】本题主要考查平均数的估计值、相关系数的计算以及抽样方法的选取,考查学生数学运算能力,是一道容易题.19.已知椭圆C 1:22221x y a b(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)221:13627x y C ,22:12C y x .【解析】【分析】(1)求出AB 、CD ,利用43CD AB可得出关于a 、c 的齐次等式,可解得椭圆1C 的离心率的值;(2)由(1)可得出1C 的方程为2222143x y c c,联立曲线1C 与2C 的方程,求出点M 的坐标,利用抛物线的定义结合5MF 可求得c 的值,进而可得出1C 与2C 的标准方程.【详解】(1) ,0F c ∵,AB x 轴且与椭圆1C 相交于A 、B 两点,则直线AB 的方程为x c ,联立22222221x c x y a b a b c,解得2x c b y a ,则22b AB a,抛物线2C 的方程为24y cx ,联立24x c y cx,解得2x c y c ,4CD c ,43CD AB ∵,即2843b c a,223b ac ,即222320c ac a ,即22320e e ,01e Q ,解得12e ,因此,椭圆1C 的离心率为12;(2)由(1)知2a c,b ,椭圆1C 的方程为2222143x y c c,联立222224143y cx x y c c,消去y 并整理得22316120x cx c ,解得23x c 或6x c (舍去),由抛物线的定义可得25533c MF c c ,解得3c .因此,曲线1C 的标准方程为2213627x y ,曲线2C 的标准方程为212y x .【点睛】本题考查椭圆离心率的求解,同时也考查了利用抛物线的定义求抛物线和椭圆的标准方程,考查计算能力,属于中等题.20.如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.【答案】(1)证明见解析;(2)10.【解析】【分析】(1)由,M N 分别为BC ,11B C 的中点,1//MN CC ,根据条件可得11//AA BB ,可证1MN AA //,要证平面11EB C F 平面1A AMN ,只需证明EF 平面1A AMN 即可;(2)连接NP ,先求证四边形ONPA 是平行四边形,根据几何关系求得EP ,在11B C 截取1B Q EP ,由(1)BC ⊥平面1A AMN ,可得QPN 为1B E 与平面1A AMN 所成角,即可求得答案.【详解】(1)∵,M N 分别为BC ,11B C 的中点,1//MN BB 又11//AA BB 1//MN AA 在ABC 中,M 为BC 中点,则BC AM又∵侧面11BB C C 为矩形,1BC BB 1//MN BB ∵MN BC由MN AM M ,,MN AM 平面1A AMNBC ⊥平面1A AMN又∵11//B C BC ,且11B C 平面ABC ,BC 平面ABC ,11//B C 平面ABC又∵11B C 平面11EB C F ,且平面11EB C F 平面ABC EF 11//B C EF//EF BC又BC ∵平面1A AMNEF 平面1A AMNEF ∵平面11EB C F平面11EB C F 平面1A AMN(2)连接NP∵//AO 平面11EB C F ,平面AONP 平面11EB C F NP //AO NP根据三棱柱上下底面平行,其面1A NMA 平面ABC AM ,面1A NMA 平面1111A B C A N //ON AP故:四边形ONPA 是平行四边形设ABC 边长是6m (0m )可得:ON AP ,6NP AO AB m∵O 为111A B C △的中心,且111A B C △边长为6m 16sin 603ON故:ON AP ∵//EF BC AP EP AM BM3EP 解得:EP m在11B C 截取1B Q EP m ,故2QN m∵1B Q EP 且1//B Q EP四边形1B QPE 是平行四边形,1//B E PQ由(1)11B C 平面1A AMN故QPN 为1B E 与平面1A AMN 所成角在Rt QPN △,根据勾股定理可得:PQsin10QN QPN PQ 直线1B E 与平面1A AMN 所成角的正弦值:1010.【点睛】本题主要考查了证明线线平行和面面垂直,及其线面角,解题关键是掌握面面垂直转为求证线面垂直的证法和线面角的定义,考查了分析能力和空间想象能力,属于难题.21.已知函数f (x )=sin 2x sin2x .(1)讨论f (x )在区间(0,π)的单调性;(2)证明:()8f x ;(3)设n ∈N *,证明:sin 2x sin 22x sin 24x …sin 22n x ≤34nn .【答案】(1)当0,3x时, '0,f x f x 单调递增,当2,33x 时, '0,f x f x 单调递减,当2,3x时, '0,f x f x 单调递增.(2)证明见解析;(3)证明见解析.【解析】【分析】(1)首先求得导函数的解析式,然后由导函数的零点确定其在各个区间上的符号,最后确定原函数的单调性即可;(2)首先确定函数的周期性,然后结合(1)中的结论确定函数在一个周期内的最大值和最小值即可证得题中的不等式;(3)对所给的不等式左侧进行恒等变形可得2222123sin sin sin 2sin 2sin 4sin 2sin 2sin 2n n n f x x x x x x x x x ,然后结合(2)的结论和三角函数的有界性进行放缩即可证得题中的不等式.【详解】(1)由函数的解析式可得: 32sin cos f x x x ,则: 224'23sin cos sin f x x x x2222sin 3cos sin x x x 222sin 4cos 1x x 22sin 2cos 12cos 1x x x ,'0f x 在 0,x 上的根为:122,33x x,当0,3x时, '0,f x f x 单调递增,当2,33x时, '0,f x f x 单调递减,当2,3x时, '0,f x f x 单调递增.(2)注意到 22sinsin 2sin sin 2f x x x x x f x ,故函数 f x 是周期为 的函数,结合(1)的结论,计算可得: 00f f ,233333228f ,2233333228f ,据此可得: max 338f x, min 338f x ,即 338f x .(3)结合(2)的结论有:2222sin sin 2sin 4sin 2n x x x x 233333sin sin 2sin 4sin 2n x x x x2222123sin sin sin 2sin 2sin 4sin 2sin 2sin 2n n n x x x x x x x x232sin sin 2888n x x 23338n 34n .【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.(二)选考题:共10分.请考生在第22、23题中任选一题作答.并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分.如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程]22.已知曲线C 1,C 2的参数方程分别为C 1:224cos 4sin x y ,(θ为参数),C 2:1,1x t t y t t(t 为参数).(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【答案】(1)1:4C x y ;222:4C x y ;(2)17cos 5.【解析】【分析】(1)分别消去参数 和t 即可得到所求普通方程;(2)两方程联立求得点P ,求得所求圆的直角坐标方程后,根据直角坐标与极坐标的互化即可得到所求极坐标方程.【详解】(1)由22cos sin 1 得1C 的普通方程为:4x y ;由11x t t y t t 得:2222221212x t t y t t,两式作差可得2C 的普通方程为:224x y .(2)由2244x y x y 得:5232x y ,即53,22P ;设所求圆圆心的直角坐标为 ,0a ,其中0a ,则22253022a a,解得:1710a , 所求圆的半径1710r , 所求圆的直角坐标方程为:22217171010x y ,即22175x y x , 所求圆的极坐标方程为17cos 5.【点睛】本题考查极坐标与参数方程的综合应用问题,涉及到参数方程化普通方程、直角坐标方程化极坐标方程等知识,属于常考题型.[选修4—5:不等式选讲]23.已知函数2()|21|f x x a x a .(1)当2a 时,求不等式()4f x 的解集;(2)若()4f x ,求a 的取值范围.【答案】(1)32x x或112x;(2) ,13, .【解析】【分析】(1)分别在3x 、34x 和4x 三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到 21f x a ,由此构造不等式求得结果.【详解】(1)当2a 时, 43f x x x .当3x 时, 43724f x x x x ,解得:32x ≤;当34x 时, 4314f x x x ,无解;当4x 时, 43274f x x x x ,解得:112x;综上所述: 4f x 的解集为32x x或112x .(2) 22222121211f x x a x a x ax a a a a (当且仅当221a x a 时取等号), 214a ,解得:1a 或3a ,a 的取值范围为 ,13, .【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型.祝福语祝你马到成功,万事顺意!。
2015年新课标1高考数学试题及答案(理科)【解析版】
2015年全国统一高考数学试卷(理科)(新课标1)一.选择题(共12小题)1.【2015新课标1】设复数z满足=i,则|z|=()A.1B.C.D.2考点:复数求模.专题:计算题;数系的扩充和复数.分析:先化简复数,再求模即可.解答:解:∵复数z满足=i,∴z==i,∴|z|=1,故选:A.点评:本题考查复数的运算,考查学生的计算能力,比较基础.2.【2015新课标1】sin20°cos10°﹣cos160°sin10°=()A.B.C.D.考点:两角和与差的正弦函数.专题:三角函数的求值.分析:直接利用诱导公式以及两角和的正弦函数,化简求解即可.解答:解:sin20°cos10°﹣cos160°sin10°=sin20°cos10°+cos20°sin10°=sin30°=.故选:D.点评:本题考查诱导公式以及两角和的正弦函数的应用,基本知识的考查.3.【2015新课标1】设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n考点:命题的否定.专题:简易逻辑.分析:根据特称命题的否定是全称命题即可得到结论.解答:解:命题的否定是:∀n∈N,n2≤2n,故选:C.点评:本题主要考查含有量词的命题的否定,比较基础.4.【2015新课标1】投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432 C.0.36 D.0.312考点: n次独立重复试验中恰好发生k次的概率.专题:概率与统计.分析:判断该同学投篮投中是独立重复试验,然后求解概率即可.解答:解:由题意可知:同学3次测试满足X∽B(3,0.6),该同学通过测试的概率为=0.648.故选:A.点评:本题考查独立重复试验概率的求法,基本知识的考查.5.【2015新课标1】已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的两个焦点,若<0,则y0的取值范围是()A.B.C.D.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:利用向量的数量积公式,结合双曲线方程,即可确定y0的取值范围.解答:解:由题意,=(﹣x0,﹣y0)•(﹣﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.点评:本题考查向量的数量积公式,考查双曲线方程,考查学生的计算能力,比较基础.6.【2015新课标1】《九章算术》是我国古代内容极为丰富的数学明著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:根据圆锥的体积公式计算出对应的体积即可.解答:解:设圆锥的底面半径为r,则×2×3r=8,解得r=,故米堆的体积为××3×()2×5=,∵1斛米的体积约为1.62立方,∴÷1.62≈22,故选:B.点评:本题主要考查椎体的体积的计算,比较基础.7.【2015新课标1】设D为△ABC所在平面内一点,,则()A.B.C.D.考点:平行向量与共线向量.专题:平面向量及应用.分析:将向量利用向量的三角形法则首先表示为,然后结合已知表示为的形式.解答:解:由已知得到如图由===;故选:A.点评:本题考查了向量的三角形法则的运用;关键是想法将向量表示为.8.【2015新课标1】函数f(x)=cos(ωx+ϕ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+,),k∈z B.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈z D.(,2k+),k∈z考点:余弦函数的单调性.专题:三角函数的图像与性质.分析:由周期求出ω,由五点法作图求出φ,可得f(x)的解析式,再根据余弦函数的单调性,求得f(x)的减区间.解答:解:由函数f(x)=cos(ωx+ϕ)的部分图象,可得函数的周期为=2(﹣)=2,∴ω=π,f (x)=cos(πx+ϕ).再根据函数的图象以及五点法作图,可得+ϕ=,k∈z,即ϕ=,f(x)=cos(πx+).由2kπ≤πx+≤2kπ+π,求得2k﹣≤x≤2k+,故f(x)的单调递减区间为(,2k+),k∈z,故选:D.点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值;还考查了余弦函数的单调性,属于基础题.9.【2015新课标1】执行如图的程序框图,如果输入的t=0.01,则输出的n=()A.5B.6C.7D.8考点:程序框图.专题:算法和程序框图.分析:由题意可得,算法的功能是求S=1﹣﹣≤t 时n的最小值,由此可得结论.解答:解:由程序框图知:算法的功能是求S=1﹣﹣≤t 时n的最小值,再根据t=0.01,可得当n=6时,S=1﹣﹣=>0.01,而当n=7时,S=1﹣﹣=≤0.01,故输出的n值为7,故选:C.点评:本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键,属于基础题.10.【2015新课标1】(x2+x+y)5的展开式中,x5y2的系数为()A.10 B.20 C.30 D.60考点:二项式定理的应用.专题:计算题;二项式定理.分析:利用展开式的通项,即可得出结论.解答:解:(x2+x+y)5的展开式的通项为T r+1=,令r=2,则(x2+x)3的通项为=,令6﹣k=5,则k=1,∴(x2+x+y)5的展开式中,x5y2的系数为=30.故选:C.点评:本题考查二项式定理的运用,考查学生的计算能力,确定通项是关键.11.【2015新课标1】圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.8考点:由三视图求面积、体积.专题:立体几何.分析:通过三视图可知该几何体是一个半球拼接半个圆柱,计算即可.解答:解:由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱,∴其表面积为:×4πr2+×πr22r×2πr+2r×2r+×πr2=5πr2+4r2,又∵该几何体的表面积为16+20π,∴5πr2+4r2=16+20π,解得r=2,故选:B.点评:本题考查由三视图求表面积问题,考查空间想象能力,注意解题方法的积累,属于中档题.12.【2015新课标1】设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)考点:利用导数研究函数的极值;函数的零点.专题:创新题型;导数的综合应用.分析:设g(x)=e x(2x﹣1),y=ax﹣a,问题转化为存在唯一的整数x0使得g(x0)在直线y=ax﹣a的下方,求导数可得函数的极值,数形结合可得﹣a>g(0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解关于a的不等式组可得.解答:解:设g(x)=e x(2x﹣1),y=ax﹣a,由题意知存在唯一的整数x0使得g(x0)在直线y=ax﹣a的下方,∵g′(x)=e x(2x﹣1)+2e x=e x(2x+1),∴当x<﹣时,g′(x)<0,当x>﹣时,g′(x)>0,∴当x=﹣时,g(x)取最小值﹣2,当x=0时,g(0)=﹣1,当x=1时,g(1)=e>0,直线y=ax﹣a恒过定点(1,0)且斜率为a,故﹣a>g(0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解得≤a<1故选:D点评:本题考查导数和极值,涉及数形结合和转化的思想,属中档题.二.填空题(共4小题)13.【2015新课标1】若函数f(x)=xln(x+)为偶函数.则a=1.考点:函数奇偶性的性质.专题:计算题;函数的性质及应用.分析:由题意可得,f(﹣x)=f(x),代入根据对数的运算性质即可求解解答:解:∵f(x)=xln(x+)为偶函数,∴f(﹣x)=f(x),∴(﹣x)ln(﹣x+)=xln(x+),∴﹣ln(﹣x+)=ln(x+),∴ln(﹣x+)+ln(x+)=0,∴,∴lna=0,∴a=1.故答案为:1.点评:本题主要考查了偶函数的定义及对数的运算性质的简单应用,属于基础试题.14.【2015新课标1】一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为(x﹣)2+y2=.考点:椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:利用椭圆的方程求出顶点坐标,然后求出圆心坐标,求出半径即可得到圆的方程.解答:解:一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.可知椭圆的右顶点坐标(4,0),上下顶点坐标(0,±2),设圆的圆心(a,0),则,解得a=,圆的半径为:,所求圆的方程为:(x﹣)2+y2=.故答案为:(x﹣)2+y2=.点评:本题考查椭圆的简单性质的应用,圆的方程的求法,考查计算能力.15.【2015新课标1】若x,y满足约束条件.则的最大值为3.考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定的最大值.解答:解:作出不等式组对应的平面区域如图:(阴影部分ABC).设k=,则k的几何意义为区域内的点到原点的斜率,由图象知OA的斜率最大,由,解得,即A(1,3),则k OA==3,即的最大值为3.故答案为:3.点评:本题主要考查线性规划的应用,结合目标函数的几何意义以及直线的斜率,利用数形结合的数学思想是解决此类问题的基本方法.16.【2015新课标1】在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是(﹣,+).考点:三角形中的几何计算.专题:综合题;创新题型;解三角形.分析:如图所示,延长BA,CD交于点E,设AD=x,AE=x,DE=x,CD=m,求出x+m=+,即可求出AB的取值范围.解答:解:如图所示,延长BA,CD交于点E,则在△ADE中,∠DAE=105°,∠ADE=45°,∠E=30°,∴设AD=x,AE=x,DE=x,CD=m,∵BC=2,∴(x+m)sin15°=1,∴x+m=+,∴0<x<4,而AB=x+m﹣x=+﹣x,∴AB的取值范围是(﹣,+).故答案为:(﹣,+).点评:本题考查求AB的取值范围,考查三角形中的几何计算,考查学生的计算能力,属于中档题.三.解答题(共8小题)17.【2015新课标1】S n为数列{a n}的前n项和,己知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:(I)根据数列的递推关系,利用作差法即可求{a n}的通项公式:(Ⅱ)求出b n=,利用裂项法即可求数列{b n}的前n项和.解答:解:(I)由a n2+2a n=4S n+3,可知a n+12+2a n+1=4S n+1+3两式相减得a n+12﹣a n2+2(a n+1﹣a n)=4a n+1,即2(a n+1+a n)=a n+12﹣a n2=(a n+1+a n)(a n+1﹣a n),∵a n>0,∴a n+1﹣a n=2,∵a12+2a1=4a1+3,∴a1=﹣1(舍)或a1=3,则{a n}是首项为3,公差d=2的等差数列,∴{a n}的通项公式a n=3+2(n﹣1)=2n+1:(Ⅱ)∵a n=2n+1,∴b n===(﹣),∴数列{b n}的前n项和T n=(﹣+…+﹣)=(﹣)=.点评:本题主要考查数列的通项公式以及数列求和的计算,利用裂项法是解决本题的关键.18.【2015新课标1】如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.考点:异面直线及其所成的角;平面与平面垂直的判定.专题:空间位置关系与距离;空间角;空间向量及应用.分析:(Ⅰ)连接BD,设BD∩AC=G,连接EG、EF、FG,运用线面垂直的判定定理得到EG⊥平面AFC,再由面面垂直的判定定理,即可得到;(Ⅱ)以G为坐标原点,分别以GB,GC为x轴,y轴,|GB|为单位长度,建立空间直角坐标系G ﹣xyz,求得A,E,F,C的坐标,运用向量的数量积的定义,计算即可得到所求角的余弦值.解答:解:(Ⅰ)连接BD,设BD∩AC=G,连接EG、EF、FG,在菱形ABCD中,不妨设BG=1,由∠ABC=120°,可得AG=GC=,BE⊥平面ABCD,AB=BC=2,可知AE=EC,又AE⊥EC,所以EG=,且EG⊥AC,在直角△EBG中,可得BE=,故DF=,在直角三角形FDG中,可得FG=,在直角梯形BDFE中,由BD=2,BE=,FD=,可得EF=,从而EG2+FG2=EF2,则EG⊥FG,AC∩FG=G,可得EG⊥平面AFC,由EG⊂平面AEC,所以平面AEC⊥平面AFC;(Ⅱ)如图,以G为坐标原点,分别以GB,GC为x轴,y轴,|GB|为单位长度,建立空间直角坐标系G﹣xyz,由(Ⅰ)可得A(0,﹣,0),E(1,0,),F(﹣1,0,),C(0,,0),即有=(1,,),=(﹣1,﹣,),故cos<,>===﹣.则有直线AE与直线CF所成角的余弦值为.点评:本题考查空间直线和平面的位置关系和空间角的求法,主要考查面面垂直的判定定理和异面直线所成的角的求法:向量法,考查运算能力,属于中档题.19.【2015新课标1】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i﹣)2(w i﹣)2(x i﹣)(y i﹣)(w i﹣)(y i﹣)46.6 563 6.8 289.8 1.6 1469 108.8表中w i=1,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)以知这种产品的年利率z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利率的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.考点:线性回归方程.专题:概率与统计.分析:(Ⅰ)根据散点图,即可判断出,(Ⅱ)先建立中间量w=,建立y关于w的线性回归方程,根据公式求出w,问题得以解决;(Ⅲ)(i)年宣传费x=49时,代入到回归方程,计算即可,(ii)求出预报值得方程,根据函数的性质,即可求出.解答:解:(Ⅰ)由散点图可以判断,y=c+d适宜作为年销售量y关于年宣传费x的回归方程类型;(Ⅱ)令w=,先建立y关于w的线性回归方程,由于==68,=﹣=563﹣68×6.8=100.6,所以y关于w的线性回归方程为=100.6+68w,因此y关于x的回归方程为=100.6+68,(Ⅲ)(i)由(Ⅱ)知,当x=49时,年销售量y的预报值=100.6+68=576.6,年利润z的预报值=576.6×0.2﹣49=66.32,(ii)根据(Ⅱ)的结果可知,年利润z的预报值=0.2(100.6+68)﹣x=﹣x+13.6+20.12,当==6.8时,年利润的预报值最大.点评:本题主要考查了线性回归方程和散点图的问题,准确的计算是本题的关键,属于中档题.20.【2015新课标1】在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)考点:利用导数研究曲线上某点切线方程.专题:创新题型;导数的综合应用.分析:(I)联立,可得交点M,N的坐标,由曲线C:y=,利用导数的运算法则可得:y′=,利用导数的几何意义、点斜式即可得出切线方程.(II)存在符合条件的点(0,﹣a),设P(0,b)满足∠OPM=∠OPN.M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为:k1,k2.直线方程与抛物线方程联立化为x2﹣4kx﹣4a=0,利用根与系数的关系、斜率计算公式可得k1+k2=﹣.k1+k2=0⇔直线PM,PN的倾斜角互补⇔∠OPM=∠OPN.即可证明.解答:解:(I)联立,不妨取M,N,由曲线C:y=可得:y′=,∴曲线C在M点处的切线斜率为=,其切线方程为:y﹣a=,化为.同理可得曲线C在点N处的切线方程为:.(II)存在符合条件的点(0,﹣a),下面给出证明:设P(0,b)满足∠OPM=∠OPN.M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为:k1,k2.联立,化为x2﹣4kx﹣4a=0,∴x1+x2=4k,x1x2=﹣4a.∴k1+k2=+==﹣.当b=﹣a时,k1+k2=0,直线PM,PN的倾斜角互补,∴∠OPM=∠OPN.∴点P(0,﹣a)符合条件.点评:本题考查了导数的运算法则、利用导数的几何意义研究切线方程、直线与抛物线相交问题转化为方程联立可得根与系数的关系、斜率计算公式,考查了推理能力与计算能力,属于难题.21.【2015新课标1】已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.考点:利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用.专题:创新题型;导数的综合应用.分析:(i)f′(x)=3x2+a.设曲线y=f(x)与x轴相切于点P(x0,0),则f(x0)=0,f′(x0)=0解出即可.(ii)对x分类讨论:当x∈(1,+∞)时,g(x)=﹣lnx<0,可得函数h(x)=min { f(x),g(x)}≤g(x)<0,即可得出零点的个数.当x=1时,对a分类讨论:a≥﹣,a<﹣,即可得出零点的个数;当x∈(0,1)时,g(x)=﹣lnx>0,因此只考虑f(x)在(0,1)内的零点个数即可.对a分类讨论:①当a≤﹣3或a≥0时,②当﹣3<a<0时,利用导数研究其单调性极值即可得出.解答:解:(i)f′(x)=3x2+a.设曲线y=f(x)与x轴相切于点P(x0,0),则f(x0)=0,f′(x0)=0,∴,解得,a=.因此当a=﹣时,x轴为曲线y=f(x)的切线;(ii)当x∈(1,+∞)时,g(x)=﹣lnx<0,∴函数h(x)=min { f(x),g(x)}≤g(x)<0,故h(x)在x∈(1,+∞)时无零点.当x=1时,若a≥﹣,则f(1)=a+≥0,∴h(x)=min { f(1),g(1)}=g(1)=0,故x=1是函数h(x)的一个零点;若a<﹣,则f(1)=a+<0,∴h(x)=min { f(1),g(1)}=f(1)<0,故x=1不是函数h(x)的零点;当x∈(0,1)时,g(x)=﹣lnx>0,因此只考虑f(x)在(0,1)内的零点个数即可.①当a≤﹣3或a≥0时,f′(x)=3x2+a在(0,1)内无零点,因此f(x)在区间(0,1)内单调,而f(0)=,f(1)=a+,∴当a≤﹣3时,函数f(x)在区间(0,1)内有一个零点,当a≥0时,函数f(x)在区间(0,1)内没有零点.②当﹣3<a<0时,函数f(x)在内单调递减,在内单调递增,故当x=时,f(x)取得最小值=.若>0,即,则f(x)在(0,1)内无零点.若=0,即a=﹣,则f(x)在(0,1)内有唯一零点.若<0,即,由f(0)=,f(1)=a+,∴当时,f(x)在(0,1)内有两个零点.当﹣3<a时,f(x)在(0,1)内有一个零点.综上可得:当或a<时,h(x)有一个零点;当a=或时,h(x)有两个零点;当时,函数h(x)有三个零点.点评:本题考查了导数的运算法则、利用导数的几何意义研究切线方程、利用导数研究函数的单调性极值,考查了分类讨论思想方法、推理能力与计算能力,属于难题.22.【2015新课标1】如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.考点:圆的切线的判定定理的证明.专题:直线与圆.分析:(Ⅰ)连接AE和OE,由三角形和圆的知识易得∠OED=90°,可得DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由射影定理可得关于x的方程x2=,解方程可得x值,可得所求角度.解答:解:(Ⅰ)连接AE,由已知得AE⊥BC,AC⊥AB,在RT△ABC中,由已知可得DE=DC,∴∠DEC=∠DCE,连接OE,则∠OBE=∠OEB,又∠ACB+∠ABC=90°,∴∠DEC+∠OEB=90°,∴∠OED=90°,∴DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由已知得AB=2,BE=,由射影定理可得AE2=CE•BE,∴x2=,即x4+x2﹣12=0,解方程可得x=∴∠ACB=60°点评:本题考查圆的切线的判定,涉及射影定理和三角形的知识,属基础题.23.【2015新课标1】在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(Ⅰ)由条件根据x=ρcosθ,y=ρsinθ求得C1,C2的极坐标方程.(Ⅱ)把直线C3的极坐标方程代入ρ2﹣3ρ+4=0,求得ρ1和ρ2的值,结合圆的半径可得C2M⊥C2N,从而求得△C2MN的面积•C2M•C2N的值.解答:解:(Ⅰ)由于x=ρcosθ,y=ρsinθ,∴C1:x=﹣2 的极坐标方程为ρcosθ=﹣2,故C2:(x﹣1)2+(y﹣2)2=1的极坐标方程为:(ρcosθ﹣1)2+(ρsinθ﹣2)2=1,化简可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0.(Ⅱ)把直线C3的极坐标方程θ=(ρ∈R)代入ρ2﹣(2ρcosθ+4ρsinθ)+4=0,求得ρ1=2,ρ2=,∴|MN|=ρ1﹣ρ2=,由于圆C2的半径为1,∴C2M⊥C2N,△C2MN的面积为•C2M•C2N=.点评:本题主要考查简单曲线的极坐标方程,点的极坐标的定义,属于基础题.24.【2015新课标1】已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.考点:绝对值不等式的解法.专题:不等式的解法及应用.分析:(Ⅰ)当a=1时,把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.(Ⅱ)化简函数f(x)的解析式,求得它的图象与x轴围成的三角形的三个顶点的坐标,从而求得f(x)的图象与x轴围成的三角形面积;再根据f(x)的图象与x轴围成的三角形面积大于6,从而求得a的取值范围.解答:解:(Ⅰ)当a=1时,不等式f(x)>1,即|x+1|﹣2|x﹣1|>1,即①,或②,或③.解①求得x∈∅,解②求得<x<1,解③求得1≤x<2.综上可得,原不等式的解集为(,2).(Ⅱ)函数f(x)=|x+1|﹣2|x﹣a|=,由此求得f(x)的图象与x轴的交点A (,0),B(2a+1,0),故f(x)的图象与x轴围成的三角形的第三个顶点C(a,a+1),由△ABC的面积大于6,可得[2a+1﹣]•(a+1)>6,求得a>2.故要求的a的范围为(2,+∞).点评:本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.2015年全国统一高考数学试卷(理科)(新课标1)一.选择题(共12小题)1.【2015新课标1】设复数z满足=i,则|z|=()A.1B.C.D.22.【2015新课标1】sin20°cos10°﹣cos160°sin10°=()A.B.C.D.3.【2015新课标1】设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n 4.【2015新课标1】投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432 C.0.36 D.0.3125.【2015新课标1】已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的两个焦点,若<0,则y0的取值范围是()A.B.C.D.6.【2015新课标1】《九章算术》是我国古代内容极为丰富的数学明著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛7.【2015新课标1】设D为△ABC所在平面内一点,,则()A.B.C.D.8.【2015新课标1】函数f(x)=cos(ωx+ϕ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+,),k∈z B.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈z D.(,2k+),k∈z9.【2015新课标1】执行如图的程序框图,如果输入的t=0.01,则输出的n=()A.5B.6C.7D.810.【2015新课标1】(x2+x+y)5的展开式中,x5y2的系数为()A.10 B.20C.30 D.6011.【2015新课标1】圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.812.【2015新课标1】设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)二.填空题(共4小题)13.【2015新课标1】若函数f(x)=xln(x+)为偶函数.则a=.14.【2015新课标1】一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为.15.【2015新课标1】若x,y满足约束条件.则的最大值为.16.【2015新课标1】在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.三.解答题(共8小题)17.【2015新课标1】S n为数列{a n}的前n项和,己知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.18.【2015新课标1】如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE 丄平面ABCD,DF丄平面ABCD,BE=2DF,AE丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.19.【2015新课标1】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i﹣)2(w i﹣)2(x i﹣)(y i﹣)(w i﹣)(y i﹣)46.6 563 6.8 289.8 1.6 1469 108.8表中w i=1,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)以知这种产品的年利率z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利率的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.20.【2015新课标1】在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)21.【2015新课标1】已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.选做题22.【2015新课标1】(2015春•从化市校级期末)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O 于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.23.【2015新课标1】在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.24.【2015新课标1】已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.。
2015年全国统一高考数学试卷(理科)(新课标ⅰ)
2015年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足=i,则|z|=()A.1 B.C.D.22.(5分)sin20°cos10°﹣cos160°sin10°=()A.B.C.D.3.(5分)设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n 4.(5分)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432 C.0.36 D.0.3125.(5分)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的两个焦点,若<0,则y0的取值范围是()A.B.C.D.6.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛7.(5分)设D为△ABC所在平面内一点,,则()A.B.C.D.8.(5分)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+,),k∈z B.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈z D.(,2k+),k∈z9.(5分)执行如图所示的程序框图,如果输入的t=0.01,则输出的n=()A.5 B.6 C.7 D.810.(5分)(x2+x+y)5的展开式中,x5y2的系数为()A.10 B.20 C.30 D.6011.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2 C.4 D.812.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)二、填空题(本大题共有4小题,每小题5分)13.(5分)若函数f(x)=xln(x+)为偶函数.则a=.14.(5分)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为.15.(5分)若x,y满足约束条件.则的最大值为.16.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.三、解答题:17.(12分)S n为数列{a n}的前n项和,己知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.18.(12分)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i﹣)2(w i ﹣)2(x i ﹣)(y i﹣)(w i﹣)(y i﹣)46.6563 6.8289.8 1.61469108.8表中w i=1,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.20.(12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)21.(12分)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.选修4一1:几何证明选讲22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.选修4一4:坐标系与参数方程23.(10分)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.选修4一5:不等式选讲24.(10分)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.2015年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2015•新课标Ⅰ)设复数z满足=i,则|z|=()A.1 B.C.D.2【分析】先化简复数,再求模即可.【解答】解:∵复数z满足=i,∴1+z=i﹣zi,∴z(1+i)=i﹣1,∴z==i,∴|z|=1,故选:A.2.(5分)(2015•新课标Ⅰ)sin20°cos10°﹣cos160°sin10°=()A.B.C.D.【分析】直接利用诱导公式以及两角和的正弦函数,化简求解即可.【解答】解:sin20°cos10°﹣cos160°sin10°=sin20°cos10°+cos20°sin10°=sin30°=.故选:D.3.(5分)(2015•新课标Ⅰ)设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n 【分析】根据特称命题的否定是全称命题即可得到结论.【解答】解:命题的否定是:∀n∈N,n2≤2n,故选:C.4.(5分)(2015•新课标Ⅰ)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432 C.0.36 D.0.312【分析】判断该同学投篮投中是独立重复试验,然后求解概率即可.【解答】解:由题意可知:同学3次测试满足X∽B(3,0.6),该同学通过测试的概率为=0.648.故选:A.5.(5分)(2015•新课标Ⅰ)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的两个焦点,若<0,则y0的取值范围是()A.B.C.D.【分析】利用向量的数量积公式,结合双曲线方程,即可确定y0的取值范围.【解答】解:由题意,=(﹣x0,﹣y0)•(﹣﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.6.(5分)(2015•新课标Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛【分析】根据圆锥的体积公式计算出对应的体积即可.【解答】解:设圆锥的底面半径为r,则r=8,解得r=,故米堆的体积为××π×()2×5≈,∵1斛米的体积约为1.62立方,∴÷1.62≈22,故选:B.7.(5分)(2015•新课标Ⅰ)设D为△ABC所在平面内一点,,则()A.B.C.D.【分析】将向量利用向量的三角形法则首先表示为,然后结合已知表示为的形式.【解答】解:由已知得到如图由===;故选:A.8.(5分)(2015•新课标Ⅰ)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+,),k∈z B.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈z D.(,2k+),k∈z【分析】由周期求出ω,由五点法作图求出φ,可得f(x)的解析式,再根据余弦函数的单调性,求得f(x)的减区间.【解答】解:由函数f(x)=cos(ωx+ϕ)的部分图象,可得函数的周期为=2(﹣)=2,∴ω=π,f(x)=cos(πx+ϕ).再根据函数的图象以及五点法作图,可得+ϕ=,k∈z,即ϕ=,f(x)=cos (πx+).由2kπ≤πx+≤2kπ+π,求得2k﹣≤x≤2k+,故f(x)的单调递减区间为(,2k+),k∈z,故选:D.9.(5分)(2015•新课标Ⅰ)执行如图所示的程序框图,如果输入的t=0.01,则输出的n=()A.5 B.6 C.7 D.8【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体后,S=,m=,n=1,不满足退出循环的条件;再次执行循环体后,S=,m=,n=2,不满足退出循环的条件;再次执行循环体后,S=,m=,n=3,不满足退出循环的条件;再次执行循环体后,S=,m=,n=4,不满足退出循环的条件;再次执行循环体后,S=,m=,n=5,不满足退出循环的条件;再次执行循环体后,S=,m=,n=6,不满足退出循环的条件;再次执行循环体后,S=,m=,n=7,满足退出循环的条件;故输出的n值为7,故选:C10.(5分)(2015•新课标Ⅰ)(x2+x+y)5的展开式中,x5y2的系数为()A.10 B.20 C.30 D.60【分析】利用展开式的通项,即可得出结论.=,【解答】解:(x2+x+y)5的展开式的通项为T r+1令r=2,则(x2+x)3的通项为=,令6﹣k=5,则k=1,∴(x2+x+y)5的展开式中,x5y2的系数为=30.故选:C.11.(5分)(2015•新课标Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2 C.4 D.8【分析】通过三视图可知该几何体是一个半球拼接半个圆柱,计算即可.【解答】解:由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱,∴其表面积为:×4πr2+×πr22r×2πr+2r×2r+×πr2=5πr2+4r2,又∵该几何体的表面积为16+20π,∴5πr2+4r2=16+20π,解得r=2,故选:B.12.(5分)(2015•新课标Ⅰ)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)【分析】设g(x)=e x(2x﹣1),y=ax﹣a,问题转化为存在唯一的整数x0使得g (x0)在直线y=ax﹣a的下方,求导数可得函数的极值,数形结合可得﹣a>g(0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解关于a的不等式组可得.【解答】解:设g(x)=e x(2x﹣1),y=ax﹣a,由题意知存在唯一的整数x0使得g(x0)在直线y=ax﹣a的下方,∵g′(x)=e x(2x﹣1)+2e x=e x(2x+1),∴当x<﹣时,g′(x)<0,当x>﹣时,g′(x)>0,∴当x=﹣时,g(x)取最小值﹣2,当x=0时,g(0)=﹣1,当x=1时,g(1)=e>0,直线y=ax﹣a恒过定点(1,0)且斜率为a,故﹣a>g(0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解得≤a<1故选:D二、填空题(本大题共有4小题,每小题5分)13.(5分)(2015•新课标Ⅰ)若函数f(x)=xln(x+)为偶函数.则a= 1.【分析】由题意可得,f(﹣x)=f(x),代入根据对数的运算性质即可求解【解答】解:∵f(x)=xln(x+)为偶函数,∴f(﹣x)=f(x),∴(﹣x)ln(﹣x+)=xln(x+),∴﹣ln(﹣x+)=ln(x+),∴ln(﹣x+)+ln(x+)=0,∴,∴lna=0,∴a=1.故答案为:1.14.(5分)(2015•新课标Ⅰ)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为(x﹣)2+y2=.【分析】利用椭圆的方程求出顶点坐标,然后求出圆心坐标,求出半径即可得到圆的方程.【解答】解:一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.可知椭圆的右顶点坐标(4,0),上下顶点坐标(0,±2),设圆的圆心(a,0),则,解得a=,圆的半径为:,所求圆的方程为:(x﹣)2+y2=.故答案为:(x﹣)2+y2=.15.(5分)(2015•新课标Ⅰ)若x,y满足约束条件.则的最大值为3.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).设k=,则k的几何意义为区域内的点到原点的斜率,由图象知OA的斜率最大,由,解得,即A(1,3),则k OA==3,即的最大值为3.故答案为:3.16.(5分)(2015•新课标Ⅰ)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是(﹣,+).【分析】如图所示,延长BA,CD交于点E,设AD=x,AE=x,DE=x,CD=m,求出x+m=+,即可求出AB的取值范围.【解答】解:方法一:如图所示,延长BA,CD交于点E,则在△ADE中,∠DAE=105°,∠ADE=45°,∠E=30°,∴设AD=x,AE=x,DE=x,CD=m,∵BC=2,∴(x+m)sin15°=1,∴x+m=+,∴0<x<4,而AB=x+m﹣x=+﹣x,∴AB的取值范围是(﹣,+).故答案为:(﹣,+).方法二:如下图,作出底边BC=2的等腰三角形EBC,B=C=75°,倾斜角为150°的直线在平面内移动,分别交EB、EC于A、D,则四边形ABCD即为满足题意的四边形;当直线移动时,运用极限思想,①直线接近点C时,AB趋近最小,为﹣;②直线接近点E时,AB趋近最大值,为+;故答案为:(﹣,+).三、解答题:17.(12分)(2015•新课标Ⅰ)S n为数列{a n}的前n项和,己知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.【分析】(I)根据数列的递推关系,利用作差法即可求{a n}的通项公式:(Ⅱ)求出b n=,利用裂项法即可求数列{b n}的前n项和.【解答】解:(I)由a n2+2a n=4S n+3,可知a n+12+2a n+1=4S n+1+3两式相减得a n+12﹣a n2+2(a n+1﹣a n)=4a n+1,即2(a n+1+a n)=a n+12﹣a n2=(a n+1+a n)(a n+1﹣a n),∵a n>0,∴a n+1﹣a n=2,∵a12+2a1=4a1+3,∴a1=﹣1(舍)或a1=3,则{a n}是首项为3,公差d=2的等差数列,∴{a n}的通项公式a n=3+2(n﹣1)=2n+1:(Ⅱ)∵a n=2n+1,∴b n===(﹣),∴数列{b n}的前n项和T n=(﹣+…+﹣)=(﹣)=.18.(12分)(2015•新课标Ⅰ)如图,四边形ABCD为菱形,∠ABC=120°,E,F 是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE 丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.【分析】(Ⅰ)连接BD,设BD∩AC=G,连接EG、EF、FG,运用线面垂直的判定定理得到EG⊥平面AFC,再由面面垂直的判定定理,即可得到;(Ⅱ)以G为坐标原点,分别以GB,GC为x轴,y轴,|GB|为单位长度,建立空间直角坐标系G﹣xyz,求得A,E,F,C的坐标,运用向量的数量积的定义,计算即可得到所求角的余弦值.【解答】解:(Ⅰ)连接BD,设BD∩AC=G,连接EG、EF、FG,在菱形ABCD中,不妨设BG=1,由∠ABC=120°,可得AG=GC=,BE⊥平面ABCD,AB=BC=2,可知AE=EC,又AE⊥EC,所以EG=,且EG⊥AC,在直角△EBG中,可得BE=,故DF=,在直角三角形FDG中,可得FG=,在直角梯形BDFE中,由BD=2,BE=,FD=,可得EF=,从而EG2+FG2=EF2,则EG⊥FG,AC∩FG=G,可得EG⊥平面AFC,由EG⊂平面AEC,所以平面AEC⊥平面AFC;(Ⅱ)如图,以G为坐标原点,分别以GB,GC为x轴,y轴,|GB|为单位长度,建立空间直角坐标系G﹣xyz,由(Ⅰ)可得A(0,﹣,0),E(1,0,),F(﹣1,0,),C(0,,0),即有=(1,,),=(﹣1,﹣,),故cos<,>===﹣.则有直线AE与直线CF所成角的余弦值为.19.(12分)(2015•新课标Ⅰ)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i﹣)2(w i﹣)2(x i﹣)(y i﹣)(w i﹣)(y i﹣)46.6563 6.8289.8 1.61469108.8表中w i=1,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu 的斜率和截距的最小二乘估计分别为:=,=﹣.【分析】(Ⅰ)根据散点图,即可判断出,(Ⅱ)先建立中间量w=,建立y关于w的线性回归方程,根据公式求出w,问题得以解决;(Ⅲ)(i)年宣传费x=49时,代入到回归方程,计算即可,(ii)求出预报值得方程,根据函数的性质,即可求出.【解答】解:(Ⅰ)由散点图可以判断,y=c+d适宜作为年销售量y关于年宣传费x的回归方程类型;(Ⅱ)令w=,先建立y关于w的线性回归方程,由于==68,=﹣=563﹣68×6.8=100.6,所以y关于w的线性回归方程为=100.6+68w,因此y关于x的回归方程为=100.6+68,(Ⅲ)(i)由(Ⅱ)知,当x=49时,年销售量y的预报值=100.6+68=576.6,年利润z的预报值=576.6×0.2﹣49=66.32,(ii)根据(Ⅱ)的结果可知,年利润z的预报值=0.2(100.6+68)﹣x=﹣x+13.6+20.12,当==6.8时,即当x=46.24时,年利润的预报值最大.20.(12分)(2015•新课标Ⅰ)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)【分析】(I)联立,可得交点M,N的坐标,由曲线C:y=,利用导数的运算法则可得:y′=,利用导数的几何意义、点斜式即可得出切线方程.(II)存在符合条件的点(0,﹣a),设P(0,b)满足∠OPM=∠OPN.M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为:k1,k2.直线方程与抛物线方程联立化为x2﹣4kx﹣4a=0,利用根与系数的关系、斜率计算公式可得k1+k2=.k1+k2=0⇔直线PM,PN的倾斜角互补⇔∠OPM=∠OPN.即可证明.【解答】解:(I)联立,不妨取M,N,由曲线C:y=可得:y′=,∴曲线C在M点处的切线斜率为=,其切线方程为:y﹣a=,化为.同理可得曲线C在点N处的切线方程为:.(II)存在符合条件的点(0,﹣a),下面给出证明:设P(0,b)满足∠OPM=∠OPN.M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为:k1,k2.联立,化为x2﹣4kx﹣4a=0,∴x1+x2=4k,x1x2=﹣4a.∴k1+k2=+==.当b=﹣a时,k1+k2=0,直线PM,PN的倾斜角互补,∴∠OPM=∠OPN.∴点P(0,﹣a)符合条件.21.(12分)(2015•新课标Ⅰ)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.【分析】(i)f′(x)=3x2+a.设曲线y=f(x)与x轴相切于点P(x0,0),则f(x0)=0,f′(x0)=0解出即可.(ii)对x分类讨论:当x∈(1,+∞)时,g(x)=﹣lnx<0,可得函数h(x)=min { f(x),g(x)}≤g(x)<0,即可得出零点的个数.当x=1时,对a分类讨论:a≥﹣,a<﹣,即可得出零点的个数;当x∈(0,1)时,g(x)=﹣lnx>0,因此只考虑f(x)在(0,1)内的零点个数即可.对a分类讨论:①当a≤﹣3或a≥0时,②当﹣3<a<0时,利用导数研究其单调性极值即可得出.【解答】解:(i)f′(x)=3x2+a.设曲线y=f(x)与x轴相切于点P(x0,0),则f(x0)=0,f′(x0)=0,∴,解得,a=.因此当a=﹣时,x轴为曲线y=f(x)的切线;(ii)当x∈(1,+∞)时,g(x)=﹣lnx<0,∴函数h(x)=min { f(x),g(x)}≤g(x)<0,故h(x)在x∈(1,+∞)时无零点.当x=1时,若a≥﹣,则f(1)=a+≥0,∴h(x)=min { f(1),g(1)}=g(1)=0,故x=1是函数h(x)的一个零点;若a<﹣,则f(1)=a+<0,∴h(x)=min { f(1),g(1)}=f(1)<0,故x=1不是函数h(x)的零点;当x∈(0,1)时,g(x)=﹣lnx>0,因此只考虑f(x)在(0,1)内的零点个数即可.①当a≤﹣3或a≥0时,f′(x)=3x2+a在(0,1)内无零点,因此f(x)在区间(0,1)内单调,而f(0)=,f(1)=a+,∴当a≤﹣3时,函数f(x)在区间(0,1)内有一个零点,当a≥0时,函数f(x)在区间(0,1)内没有零点.②当﹣3<a<0时,函数f(x)在内单调递减,在内单调递增,故当x=时,f(x)取得最小值=.若>0,即,则f(x)在(0,1)内无零点.若=0,即a=﹣,则f(x)在(0,1)内有唯一零点.若<0,即,由f(0)=,f(1)=a+,∴当时,f(x)在(0,1)内有两个零点.当﹣3<a时,f (x)在(0,1)内有一个零点.综上可得:当或a<时,h(x)有一个零点;当a=或时,h(x)有两个零点;当时,函数h(x)有三个零点.选修4一1:几何证明选讲22.(10分)(2015•新课标Ⅰ)如图,AB是⊙O的直径,AC是⊙O的切线,BC 交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.【分析】(Ⅰ)连接AE和OE,由三角形和圆的知识易得∠OED=90°,可得DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由射影定理可得关于x的方程x2=,解方程可得x值,可得所求角度.【解答】解:(Ⅰ)连接AE,由已知得AE⊥BC,AC⊥AB,在RT△ABC中,由已知可得DE=DC,∴∠DEC=∠DCE,连接OE,则∠OBE=∠OEB,又∠ACB+∠ABC=90°,∴∠DEC+∠OEB=90°,∴∠OED=90°,∴DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由已知得AB=2,BE=,由射影定理可得AE2=CE•BE,∴x2=,即x4+x2﹣12=0,解方程可得x=∴∠ACB=60°选修4一4:坐标系与参数方程23.(10分)(2015•新课标Ⅰ)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.【分析】(Ⅰ)由条件根据x=ρcosθ,y=ρsinθ求得C1,C2的极坐标方程.(Ⅱ)把直线C3的极坐标方程代入ρ2﹣3ρ+4=0,求得ρ1和ρ2的值,结合圆的半径可得C2M⊥C2N,从而求得△C2MN的面积•C2M•C2N的值.【解答】解:(Ⅰ)由于x=ρcosθ,y=ρsinθ,∴C1:x=﹣2 的极坐标方程为ρcosθ=﹣2,故C2:(x﹣1)2+(y﹣2)2=1的极坐标方程为:(ρcosθ﹣1)2+(ρsinθ﹣2)2=1,化简可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0.(Ⅱ)把直线C3的极坐标方程θ=(ρ∈R)代入圆C2:(x﹣1)2+(y﹣2)2=1,可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0,求得ρ1=2,ρ2=,∴|MN|=|ρ1﹣ρ2|=,由于圆C2的半径为1,∴C2M⊥C2N,△C2MN的面积为•C2M•C2N=•1•1=.选修4一5:不等式选讲24.(10分)(2015•新课标Ⅰ)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.【分析】(Ⅰ)当a=1时,把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.(Ⅱ)化简函数f (x)的解析式,求得它的图象与x轴围成的三角形的三个顶点的坐标,从而求得f(x)的图象与x轴围成的三角形面积;再根据f(x)的图象与x轴围成的三角形面积大于6,从而求得a的取值范围.【解答】解:(Ⅰ)当a=1时,不等式f(x)>1,即|x+1|﹣2|x﹣1|>1,即①,或②,或③.解①求得x∈∅,解②求得<x<1,解③求得1≤x<2.综上可得,原不等式的解集为(,2).(Ⅱ)函数f(x)=|x+1|﹣2|x﹣a|=,由此求得f(x)的图象与x轴的交点A (,0),B(2a+1,0),故f(x)的图象与x轴围成的三角形的第三个顶点C(a,a+1),由△ABC的面积大于6,可得[2a+1﹣]•(a+1)>6,求得a>2.故要求的a的范围为(2,+∞).。
2015年上海高考数学(理科)试题(解析版)
2015年上海高考数学(理科)试题一、填空题(本大题共14小题,每题4分,满分56分)1、设全集U R =,若集合{}4,3,2,1=A ,{}32|≤≤=x x B ,则=B C A U _________. 分析:本题考查了学生的集合运算,属于基础题目和常考题目 。
答案:{1,4}2、若复数z 满足i z z +=+13_,其中i 为虚数单位,则z =___________. 分析:考查复数基本形式及共轭复数的概念,属于基础题目和常规题目。
答案:1142i+3、若线性方程组的增广矩阵为⎪⎪⎭⎫⎝⎛211302c c ,解为⎩⎨⎧==53yx ,则=-21c c ___________.分析:考查了二元一次方程组增广矩阵的概念,属于基础知识,但考前这个小知识点被遗漏的学校较多。
答案:164、若正三棱柱的所有棱长均为a ,且其体积为316,则=a ___________.分析:首先考查了学生对于正三棱柱的认识,其次考查了棱柱的体积公式,题型和知识点较为常规。
答案:45、抛物线()022>=p px y 上的动点Q 到其焦点距离的最小值为1,则=p ___________. 分析:考查了抛物线上的点到焦点的距离问题,可以通过第一定义,将到焦点的距离转化成到准线的距离,这样题目就非常容易解决掉。
答案:26、若圆锥的侧面积与过轴的截面面积之比为1:2π,则其母线与轴的夹角的大小为 _______.7、方程()()223log 59log 1212+-=---x x 的解为___________.分析:考查了对数方程的知识点,通过对数运算,去掉对数符号,解出方程的根,易错点为根的验证。
答案:28、在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示)分析:排列组合知识点出现在第十题这个位置,相比较模拟卷和往年高考卷,难度不算大,可以用容易来形容。
2020年(理科数学)(新课标Ⅰ)试卷真题+参考答案+详细解析
2020年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)若1z i =+,则2|2|(z z -= ) A .0B .1C .2D .22.(5分)设集合2{|40}A x x =-,{|20}B x x a =+,且{|21}A B x x =-,则(a = )A .4-B .2-C .2D .43.(5分)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A 51-B 51-C 51+D 51+4.(5分)已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则(p = ) A .2B .3C .6D .95.(5分)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C)︒的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据()(1,i i x y i =,2,⋯,20)得到下面的散点图:由此散点图,在10C ︒至40C ︒之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( ) A .y a bx =+B .2y a bx =+C .x y a be =+D .y a blnx =+6.(5分)函数43()2f x x x =-的图象在点(1,(1))f 处的切线方程为( ) A .21y x =--B .21y x =-+C .23y x =-D .21y x =+7.(5分)设函数()cos()6f x x πω=+在[,]ππ-的图象大致如图,则()f x 的最小正周期为( )A .109πB .76π C .43π D .32π 8.(5分)25()()y x x y x++的展开式中33x y 的系数为( )A .5B .10C .15D .209.(5分)已知(0,)απ∈,且3cos28cos 5αα-=,则sin (α= ) A 5B .23 C .13D 5 10.(5分)已知A ,B ,C 为球O 的球面上的三个点,1O 为ABC ∆的外接圆.若1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π11.(5分)已知22:2220M x y x y +---=,直线:220l x y ++=,P 为l 上的动点.过点P 作M 的切线PA ,PB ,切点为A ,B ,当||||PM AB 最小时,直线AB 的方程为( ) A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=12.(5分)若242log 42log a b a b +=+,则( ) A .2a b >B .2a b <C .2a b >D .2a b <二、填空题:本题共4小题,每小题5分,共20分。
最新上海市高考数学试卷(理科)解析
2015年上海市高考数学试卷(理科)一、填空题(本大题共有14题,满分48分.)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对4分,否则一律得零分.1.(4分)(2015•上海)设全集U=R.若集合Α={1,2,3,4},Β={x|2≤x≤3},则Α∩∁UΒ=.2.(4分)(2015•上海)若复数z满足3z+=1+i,其中i是虚数单位,则z=.3.(4分)(2015•上海)若线性方程组的增广矩阵为解为,则c1﹣c2=.4.(4分)(2015•上海)若正三棱柱的所有棱长均为a,且其体积为16,则a=.5.(4分)(2015•上海)抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,则p=.6.(4分)(2015•上海)若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为.7.(4分)(2015•上海)方程log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2的解为.8.(4分)(2015•上海)在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为(结果用数值表示).9.(2015•上海)已知点P和Q的横坐标相同,P的纵坐标是Q的纵坐标的2倍,P和Q的轨迹分别为双曲线C1和C2.若C1的渐近线方程为y=±x,则C2的渐近线方程为.10.(4分)(2015•上海)设f﹣1(x)为f(x)=2x﹣2+,x∈[0,2]的反函数,则y=f(x)+f﹣1(x)的最大值为.11.(4分)(2015•上海)在(1+x+)10的展开式中,x2项的系数为(结果用数值表示).12.(4分)(2015•上海)赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量ξ1和ξ2分别表示赌客在一局赌博中的赌金和奖金,则Eξ1﹣Eξ2=(元).13.(4分)(2015•上海)已知函数f(x)=sinx.若存在x1,x2,…,x m满足0≤x1<x2<…<x m≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m﹣1)﹣f(x m)|=12(m≥12,m∈N*),则m的最小值为.14.(2015•上海)在锐角三角形A BC中,tanA=,D为边BC上的点,△A BD与△ACD 的面积分别为2和4.过D作D E⊥A B于E,DF⊥AC于F,则•=.二、选择题(本大题共有4题,满分15分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.(5分)(2015•上海)设z1,z2∈C,则“z1、z2中至少有一个数是虚数”是“z1﹣z2是虚数”16.(5分)(2015•上海)已知点A的坐标为(4,1),将OA绕坐标原点O逆时针旋转至OB,则点B的纵坐标为()....17.(2015•上海)记方程①:x2+a1x+1=0,方程②:x2+a2x+2=0,方程③:x2+a3x+4=0,其中a1,a2,a3是正实数.当a1,a2,a3成等比数列时,下列选项中,能推出方程③无实18.(5分)(2015•上海)设P n(x n,y n)是直线2x﹣y=(n∈N*)与圆x2+y2=2在第一象限的交点,则极限=()三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)(2015•上海)如图,在长方体ABCD﹣A1B1C1D1中,AA1=1,AB=AD=2,E、F分别是AB、BC的中点,证明A1、C1、F、E四点共面,并求直线CD1与平面A1C1FE所成的角的大小.20.(14分)(2015•上海)如图,A,B,C三地有直道相通,AB=5千米,AC=3千米,BC=4千米.现甲、乙两警员同时从A地出发匀速前往B地,经过t小时,他们之间的距离为f (t)(单位:千米).甲的路线是AB,速度为5千米/小时,乙的路线是ACB,速度为8千米/小时.乙到达B地后原地等待.设t=t1时乙到达C地.(1)求t1与f(t1)的值;(2)已知警员的对讲机的有效通话距离是3千米.当t1≤t≤1时,求f(t)的表达式,并判断f(t)在[t1,1]上的最大值是否超过3?说明理由.21.(14分)(2015•上海)已知椭圆x2+2y2=1,过原点的两条直线l1和l2分别于椭圆交于A、B和C、D,记得到的平行四边形ABCD的面积为S.(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明S=2|x1y2﹣x2y1|;(2)设l1与l2的斜率之积为﹣,求面积S的值.22.(16分)(2015•上海)已知数列{a n}与{b n}满足a n+1﹣a n=2(b n+1﹣b n),n∈N*.(1)若b n=3n+5,且a1=1,求数列{a n}的通项公式;(2)设{a n}的第n0项是最大项,即a≥a n(n∈N*),求证:数列{b n}的第n0项是最大项;(3)设a1=λ<0,b n=λn(n∈N*),求λ的取值范围,使得{a n}有最大值M与最小值m,且∈(﹣2,2).23.(18分)(2015•上海)对于定义域为R的函数g(x),若存在正常数T,使得cosg(x)是以T为周期的函数,则称g(x)为余弦周期函数,且称T为其余弦周期.已知f(x)是以T为余弦周期的余弦周期函数,其值域为R.设f(x)单调递增,f(0)=0,f(T)=4π.(1)验证g(x)=x+sin是以6π为周期的余弦周期函数;(2)设a<b,证明对任意c∈[f(a),f(b)],存在x0∈[a,b],使得f(x0)=c;(3)证明:“u0为方程cosf(x)=1在[0,T]上得解,”的充分条件是“u0+T为方程cosf(x)=1在区间[T,2T]上的解”,并证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T).2015年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(本大题共有14题,满分48分.)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对4分,否则一律得零分.1.(4分)(2015•上海)设全集U=R.若集合Α={1,2,3,4},Β={x|2≤x≤3},则Α∩∁UΒ= {1,4}.2.(4分)(2015•上海)若复数z满足3z+=1+i,其中i是虚数单位,则z=.=1+i,.3.(4分)(2015•上海)若线性方程组的增广矩阵为解为,则c1﹣c2=16.4.(4分)(2015•上海)若正三棱柱的所有棱长均为a,且其体积为16,则a=4.,由,5.(4分)(2015•上海)抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,则p=2.=16.(4分)(2015•上海)若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为.==故答案为:7.(4分)(2015•上海)方程log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2的解为2.8.(4分)(2015•上海)在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为120(结果用数值表示).9.(2015•上海)已知点P和Q的横坐标相同,P的纵坐标是Q的纵坐标的2倍,P和Q 的轨迹分别为双曲线C1和C2.若C1的渐近线方程为y=±x,则C2的渐近线方程为.10.(4分)(2015•上海)设f﹣1(x)为f(x)=2x﹣2+,x∈[0,2]的反函数,则y=f(x)+f﹣1(x)的最大值为4.[]][[]11.(4分)(2015•上海)在(1+x+)10的展开式中,x2项的系数为45(结果用数值表示).12.(4分)(2015•上海)赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量ξ1和ξ2分别表示赌客在一局赌博中的赌金和奖金,则Eξ1﹣Eξ2=0.2(元).=×3+13.(4分)(2015•上海)已知函数f(x)=sinx.若存在x1,x2,…,x m满足0≤x1<x2<…<x m≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m﹣1)﹣f(x m)|=12(m≥12,m∈N*),则m的最小值为8.14.(2015•上海)在锐角三角形A BC中,tanA=,D为边BC上的点,△A BD与△ACD 的面积分别为2和4.过D作D E⊥A B于E,DF⊥AC于F,则•=﹣.cosA=,,得.•二、选择题(本大题共有4题,满分15分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.(5分)(2015•上海)设z1,z2∈C,则“z1、z2中至少有一个数是虚数”是“z1﹣z2是虚数”16.(5分)(2015•上海)已知点A的坐标为(4,1),将OA绕坐标原点O逆时针旋转至OB,则点B的纵坐标为()....4cos+cosin×+6=17.(2015•上海)记方程①:x2+a1x+1=0,方程②:x2+a2x+2=0,方程③:x2+a3x+4=0,其中a1,a2,a3是正实数.当a1,a2,a3成等比数列时,下列选项中,能推出方程③无实,)18.(5分)(2015•上海)设P n(x n,y n)是直线2x﹣y=(n∈N*)与圆x2+y2=2在第一象限的交点,则极限=()y=趋近于三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)(2015•上海)如图,在长方体ABCD﹣A1B1C1D1中,AA1=1,AB=AD=2,E、F分别是AB、BC的中点,证明A1、C1、F、E四点共面,并求直线CD1与平面A1C1FE所成的角的大小..20.(14分)(2015•上海)如图,A,B,C三地有直道相通,AB=5千米,AC=3千米,BC=4千米.现甲、乙两警员同时从A地出发匀速前往B地,经过t小时,他们之间的距离为f (t)(单位:千米).甲的路线是AB,速度为5千米/小时,乙的路线是ACB,速度为8千米/小时.乙到达B地后原地等待.设t=t1时乙到达C地.(1)求t1与f(t1)的值;(2)已知警员的对讲机的有效通话距离是3千米.当t1≤t≤1时,求f(t)的表达式,并判断f(t)在[t1,1]上的最大值是否超过3?说明理由.=<=×=千<21.(14分)(2015•上海)已知椭圆x2+2y2=1,过原点的两条直线l1和l2分别于椭圆交于A、B和C、D,记得到的平行四边形ABCD的面积为S.(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明S=2|x1y2﹣x2y1|;(2)设l1与l2的斜率之积为﹣,求面积S的值.x、﹣x±、﹣,即22.(16分)(2015•上海)已知数列{a n}与{b n}满足a n+1﹣a n=2(b n+1﹣b n),n∈N*.(1)若b n=3n+5,且a1=1,求数列{a n}的通项公式;(2)设{a n}的第n0项是最大项,即a≥a n(n∈N*),求证:数列{b n}的第n0项是最大项;(3)设a1=λ<0,b n=λn(n∈N*),求λ的取值范围,使得{a n}有最大值M与最小值m,且∈(﹣2,2).∈,23.(18分)(2015•上海)对于定义域为R的函数g(x),若存在正常数T,使得cosg(x)是以T为周期的函数,则称g(x)为余弦周期函数,且称T为其余弦周期.已知f(x)是以T为余弦周期的余弦周期函数,其值域为R.设f(x)单调递增,f(0)=0,f(T)=4π.(1)验证g(x)=x+sin是以6π为周期的余弦周期函数;(2)设a<b,证明对任意c∈[f(a),f(b)],存在x0∈[a,b],使得f(x0)=c;(3)证明:“u0为方程cosf(x)=1在[0,T]上得解,”的充分条件是“u0+T为方程cosf(x)=1在区间[T,2T]上的解”,并证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T).=x+sin参与本试卷答题和审题的老师有:whgcn;孙佑中;maths;caoqz;刘长柏;翔宇老师;danbo7801;sxs123;海燕;雪狼王;lincy;wfy814;wkl197822(排名不分先后)菁优网2015年6月25日。
2015年高考数学试卷真题附详细解析
2015年高考数学试卷一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(真题卷)数学(理科)1.(5分)(2015•真题)已知集合P={x|x2﹣2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=()A .[0,1)B.(0,2]C.(1,2)D.[1,2]2.(5分)(2015•真题)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A .8cm3B.12cm3C.D.3.(5分)(2015•真题)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则()A .a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>04.(5分)(2015•真题)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>n B.∀n∈N*,f(n)∉N*或f(n)>nC.∂n0∈N*,f(n0)∉N*且f(n0)>n0D.∂n0∈N*,f(n0)∉N*或f(n0)>n05.(5分)(2015•真题)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()A .B.C.D.6.(5分)(2015•真题)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立7.(5分)(2015•真题)存在函数f(x)满足,对任意x∈R都有()A .f(sin2x)=sinx B.f(sin2x)=x2+xC.f(x2+1)=|x+1| D.f(x2+2x)=|x+1|8.(5分)(2015•真题)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()A .∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)(2015•真题)双曲线=1的焦距是,渐近线方程是.10.(6分)(2015•真题)已知函数f(x)=,则f(f(﹣3))=,f(x)的最小值是.11.(6分)(2015•真题)函数f(x)=sin2x+sinxcosx+1的最小正周期是,单调递减区间是.12.(4分)(2015•真题)若a=log43,则2a+2﹣a=.13.(4分)(2015•真题)如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.14.(4分)(2015•真题)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是.15.(6分)(2015•真题)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,,则x0=,y0=,|=.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)(2015•真题)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.17.(15分)(2015•真题)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.18.(15分)(2015•真题)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.19.(15分)(2015•真题)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).20.(15分)(2015•真题)已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).高考数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(真题卷)数学(理科)1.(5分)考点:交、并、补集的混合运算.专题:集合.分析:求出P中不等式的解集确定出P,求出P补集与Q的交集即可.解答:解:由P中不等式变形得:x(x﹣2)≥0,解得:x≤0或x≥2,即P=(﹣∞,0]∪[2,+∞),∴∁R P=(0,2),∵Q=(1,2],∴(∁R P)∩Q=(1,2),故选:C.点评:此题考查了交、并、补集的混合运算,熟练掌握运算法则是解本题的关键.2.(5分)考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:判断几何体的形状,利用三视图的数据,求几何体的体积即可.解答:解:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形奥为2的正四棱锥,所求几何体的体积为:23+×2×2×2=.故选:C.点评:本题考查三视图与直观图的关系的判断,几何体的体积的求法,考查计算能力.3.(5分)考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:由a3,a4,a8成等比数列,得到首项和公差的关系,即可判断a1d和dS4的符号.解答:解:设等差数列{a n}的首项为a1,则a3=a1+2d,a4=a1+3d,a8=a1+7d,由a3,a4,a8成等比数列,得,整理得:.∵d≠0,∴,∴,=<0.故选:B.点评:本题考查了等差数列和等比数列的性质,考查了等差数列的前n项和,是基础题.4.(5分)考点:命题的否定.专题:简易逻辑.分析:根据全称命题的否定是特称命题即可得到结论.解答:解:命题为全称命题,则命题的否定为:∂n0∈N*,f(n0)∉N*或f(n0)>n0,故选:D.点评:本题主要考查含有量词的命题的否定,比较基础.5.(5分)考点:直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:根据抛物线的定义,将三角形的面积关系转化为的关系进行求解即可.解答:解:如图所示,抛物线的准线DE的方程为x=﹣1,过A,B分别作AE⊥DE于E,交y轴于N,BD⊥DE于E,交y轴于M,由抛物线的定义知BF=BD,AF=AE,则|BM|=|BD|﹣1=|BF|﹣1,|AN|=|AE|﹣1=|AF|﹣1,则===,故选:A点评:本题主要考查三角形的面积关系,利用抛物线的定义进行转化是解决本题的关键.6.(5分)考点:复合命题的真假.专题:集合;简易逻辑.分析:命题①根据充要条件分充分性和必要性判断即可,③借助新定义,根据集合的运算,判断即可.解答:解:命题①:对任意有限集A,B,若“A≠B”,则A∪B≠A∩B,则card(A∪B)>card(A∩B),故“d(A,B)>0”成立,若d(A,B)>0”,则card(A∪B)>card(A∩B),则A∪B≠A∩B,故A≠B成立,故命题①成立,命题②,d(A,B)=card(A∪B)﹣card(A∩B),d(B,C)=card(B∪C)﹣card(B∩C),∴d(A,B)+d(B,C)=card(A∪B)﹣card(A∩B)+card(B∪C)﹣card(B∩C)=[card (A∪B)+card(B∪C)]﹣[card(A∩B)+card(B∩C)]≥card(A∪C)﹣card(A∩C)=d(A,C),故命题②成立,故选:A点评:本题考查了,元素和集合的关系,以及逻辑关系,分清集合之间的关系与各集合元素个数之间的关系,注意本题对充要条件的考查.集合的元素个数,体现两个集合的关系,但仅凭借元素个数不能判断集合间的关系,属于基础题.7.(5分)考点:函数解析式的求解及常用方法.专题:函数的性质及应用.分析:利用x取特殊值,通过函数的定义判断正误即可.解答:解:A.取x=0,则sin2x=0,∴f(0)=0;取x=,则sin2x=0,∴f(0)=1;∴f(0)=0,和1,不符合函数的定义;∴不存在函数f(x),对任意x∈R都有f(sin2x)=sinx;B.取x=0,则f(0)=0;取x=π,则f(0)=π2+π;∴f(0)有两个值,不符合函数的定义;∴该选项错误;C.取x=1,则f(2)=2,取x=﹣1,则f(2)=0;这样f(2)有两个值,不符合函数的定义;∴该选项错误;D.令|x+1|=t,t≥0,则f(t2﹣1)=t;令t2﹣1=x,则t=;∴;即存在函数f(x)=,对任意x∈R,都有f(x2+2x)=|x+1|;∴该选项正确.故选:D.点评:本题考查函数的定义的应用,基本知识的考查,但是思考问题解决问题的方法比较难.8.(5分)考点:二面角的平面角及求法.专题:创新题型;空间角.分析:解:画出图形,分AC=BC,AC≠BC两种情况讨论即可.解答:解:①当AC=BC时,∠A′DB=α;②当AC≠BC时,如图,点A′投影在AE上,α=∠A′OE,连结AA′,易得∠ADA′<∠AOA′,∴∠A′DB>∠A′OE,即∠A′DB>α综上所述,∠A′DB≥α,故选:B.点评:本题考查空间角的大小比较,注意解题方法的积累,属于中档题.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)双曲线的简单性质.考点:计算题;圆锥曲线的定义、性质与方程.专题:确定双曲线中的几何量,即可求出焦距、渐近线方程.分析:解解:双曲线=1中,a=,b=1,c=,答:∴焦距是2c=2,渐近线方程是y=±x.故答案为:2;y=±x.本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.点评:10.(6分)函数的值.考点:计算题;函数的性质及应用.专题:分根据已知函数可先求f(﹣3)=1,然后代入可求f(f(﹣3));由于x≥1时,f(x)=,析:当x<1时,f(x)=lg(x2+1),分别求出每段函数的取值范围,即可求解解答:解:∵f(x)=,∴f(﹣3)=lg10=1,则f(f(﹣3))=f(1)=0,当x≥1时,f(x)=,即最小值,当x<1时,x2+1≥1,(x)=lg(x2+1)≥0最小值0,故f(x)的最小值是.故答案为:0;.本题主要考查了分段函数的函数值的求解,属于基础试题.点评:11.(6分)两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的单调性.考点:专三角函数的求值.题:分由三角函数公式化简可得f(x)=sin(2x﹣)+,易得最小正周期,解不等析:式2kπ+≤2x﹣≤2kπ+可得函数的单调递减区间.解答:解:化简可得f(x)=sin2x+sinxcosx+1=(1﹣cos2x)+sin2x+1=sin(2x﹣)+,∴原函数的最小正周期为T==π,由2kπ+≤2x﹣≤2kπ+可得kπ+≤x≤kπ+,∴函数的单调递减区间为[kπ+,kπ+](k∈Z)故答案为:π;[kπ+,kπ+](k∈Z)点评:本题考查三角函数的化简,涉及三角函数的周期性和单调性,属基础题.12.(4分)考点:对数的运算性质.专题:函数的性质及应用.分析:直接把a代入2a+2﹣a,然后利用对数的运算性质得答案.解答:解:∵a=log43,可知4a=3,即2a=,所以2a+2﹣a=+=.故答案为:.点评:本题考查对数的运算性质,是基础的计算题.13.(4分)考点:异面直线及其所成的角.专题:空间角.分析:连结ND,取ND 的中点为:E,连结ME说明异面直线AN,CM所成的角就是∠EMC 通过解三角形,求解即可.解答:解:连结ND,取ND 的中点为:E,连结ME,则ME∥AN,异面直线AN,CM所成的角就是∠EMC,∵AN=2,∴ME==EN,MC=2,又∵EN⊥NC,∴EC==,∴cos∠EMC===.故答案为:.点评:本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.14.(4分)考点:函数的最值及其几何意义.专题:不等式的解法及应用;直线与圆.分析:根据所给x,y的范围,可得|6﹣x﹣3y|=6﹣x﹣3y,再讨论直线2x+y﹣2=0将圆x2+y2=1分成两部分,分别去绝对值,运用线性规划的知识,平移即可得到最小值.解答:解:由x2+y2≤1,可得6﹣x﹣3y>0,即|6﹣x﹣3y|=6﹣x﹣3y,如图直线2x+y﹣2=0将圆x2+y2=1分成两部分,在直线的上方(含直线),即有2x+y﹣2≥0,即|2+y﹣2|=2x+y﹣2,此时|2x+y﹣2|+|6﹣x﹣3y|=(2x+y﹣2)+(6﹣x﹣3y)=x﹣2y+4,利用线性规划可得在A(,)处取得最小值3;在直线的下方(含直线),即有2x+y﹣2≤0,即|2+y﹣2|=﹣(2x+y﹣2),此时|2x+y﹣2|+|6﹣x﹣3y|=﹣(2x+y﹣2)+(6﹣x﹣3y)=8﹣3x﹣4y,利用线性规划可得在A(,)处取得最小值3.综上可得,当x=,y=时,|2x+y﹣2|+|6﹣x﹣3y|的最小值为3.故答案为:3.点本题考查直线和圆的位置关系,主要考查二元函数在可行域内取得最值的方法,属于中档题.评:15.(6分)空间向量的数量积运算;平面向量数量积的运算.考点:专创新题型;空间向量及应用.题:分由题意和数量积的运算可得<•>=,不妨设=(,,0),=(1,0,0),析:由已知可解=(,,t),可得|﹣(|2=(x+)2+(y﹣2)2+t2,由题意可得当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,由模长公式可得|.解解:∵•=||||cos<•>=cos<•>=,答:∴<•>=,不妨设=(,,0),=(1,0,0),=(m,n,t),则由题意可知=m+n=2,=m=,解得m=,n=,∴=(,,t),∵﹣()=(﹣x﹣y,,t),∴|﹣(|2=(﹣x﹣y)2+()2+t2=x2+xy+y2﹣4x﹣5y+t2+7=(x+)2+(y﹣2)2+t2,由题意当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,此时t2=1,故|==2故答案为:1;2;2点本题考查空间向量的数量积,涉及向量的模长公式,属中档题.评:三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)余弦定理.考点:解三角形.专题:分(1)由余弦定理可得:,已知b2﹣a2=c2.可得,a=.利析:用余弦定理可得cosC.可得sinC=,即可得出tanC=.(2)由=×=3,可得c,即可得出b.解解:(1)∵A=,∴由余弦定理可得:,∴b2﹣a2=bc﹣c2,答:又b2﹣a2=c2.∴bc﹣c2=c2.∴b=c.可得,∴a2=b2﹣=,即a=.∴cosC===.∵C∈(0,π),∴sinC==.∴tanC==2.(2)∵=×=3,解得c=2.∴=3.点评:本题考查了正弦定理余弦定理、同角三角形基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.17.(15分)考点:二面角的平面角及求法;直线与平面垂直的判定.专题:空间位置关系与距离;空间角.分析:(1)以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系,通过•=•=0及线面垂直的判定定理即得结论;(2)所求值即为平面A1BD的法向量与平面B1BD的法向量的夹角的余弦值的绝对值的相反数,计算即可.解答:(1)证明:如图,以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系.则BC=AC=2,A1O==,易知A1(0,0,),B(,0,0),C(﹣,0,0),A(0,,0),D(0,﹣,),B1(,﹣,),=(0,﹣,0),=(﹣,﹣,),=(﹣,0,0),=(﹣2,0,0),=(0,0,),∵•=0,∴A1D⊥OA1,又∵•=0,∴A1D⊥BC,又∵OA1∩BC=O,∴A1D⊥平面A1BC;(2)解:设平面A1BD的法向量为=(x,y,z),由,得,取z=1,得=(,0,1),设平面B1BD的法向量为=(x,y,z),由,得,取z=1,得=(0,,1),∴cos<,>===,又∵该二面角为钝角,∴二面角A1﹣BD﹣B1的平面角的余弦值为﹣.点评:本题考查空间中线面垂直的判定定理,考查求二面角的三角函数值,注意解题方法的积累,属于中档题.18.(15分)考点:二次函数在闭区间上的最值.专题:函数的性质及应用.分析:(1)明确二次函数的对称轴,区间的端点值,由a的范围明确函数的单调性,结合已知以及三角不等式变形所求得到证明;(2)讨论a=b=0以及分析M(a,b)≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,进一步求出|a|+|b|的求值.解答:解:(1)由已知可得f(1)=1+a+b,f(﹣1)=1﹣a+b,对称轴为x=﹣,因为|a|≥2,所以或≥1,所以函数f(x)在[﹣1,1]上单调,所以M(a,b)=max{|f(1),|f(﹣1)|}=max{|1+a+b|,|1﹣a+b|},所以M(a,b)≥(|1+a+b|+|1﹣a+b|)≥|(1+a+b)﹣(1﹣a+b)|≥|2a|≥2;(2)当a=b=0时,|a|+|b|=0又|a|+|b|≥0,所以0为最小值,符合题意;又对任意x∈[﹣1,1].有﹣2≤x2+ax+b≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,易知|a|+|b|=max{|a﹣b|,|a+b|}=3,在b=﹣1,a=2时符合题意,所以|a|+|b|的最大值为3.点评:本题考查了二次函数闭区间上的最值求法;解答本题的关键是正确理解M(a,b)是|f(x)|在区间[﹣1,1]上的最大值,以及利用三角不等式变形.19.(15分)考点:直线与圆锥曲线的关系.专题:创新题型;圆锥曲线中的最值与范围问题.分析:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).可得△>0,设线段AB的中点P(x0,y0),利用中点坐标公式及其根与系数的可得P,代入直线y=mx+,可得,代入△>0,即可解出.(2)直线AB与x轴交点横坐标为n,可得S△OAB=,再利用均值不等式即可得出.解答:解:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程,可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).由题意,△=4m2n2﹣4(m2+2)(n2﹣2)=8(m2﹣n2+2)>0,设线段AB的中点P(x0,y0),则.x0=﹣m×+n=,由于点P在直线y=mx+上,∴=+,∴,代入△>0,可得3m4+4m2﹣4>0,解得m2,∴或m.(2)直线AB与x轴交点纵坐标为n,∴S△OAB==|n|•=,由均值不等式可得:n2(m2﹣n2+2)=,∴S△AOB=,当且仅当n2=m2﹣n2+2,即2n2=m2+2,又∵,解得m=,当且仅当m=时,S△AOB取得最大值为.点评:本题考查了椭圆的定义标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、中点坐标公式、线段垂直平分线的性质、三角形面积计算公式、弦长公式、均值不等式的性质,考查了推理能力与计算能力,属于难题.20.(15分)考点:数列的求和;数列与不等式的综合.专题:创新题型;点列、递归数列与数学归纳法.分析:(1)通过题意易得0<a n≤(n∈N*),利用a n﹣a n+1=可得≥1,利用==≤2,即得结论;(2)通过=a n﹣a n+1累加得S n=﹣a n+1,利用数学归纳法可证明≥a n≥(n≥2),从而≥≥,化简即得结论.解答:证明:(1)由题意可知:0<a n≤(n∈N*),又∵a2=a1﹣=,∴==2,又∵a n﹣a n+1=,∴a n>a n+1,∴≥1,∴==≤2,∴1≤≤2(n∈N*);(2)由已知,=a n﹣a n+1,=a n﹣1﹣a n,…,=a1﹣a2,累加,得S n=++…+=a1﹣a n+1=﹣a n+1,易知当n=1时,要证式子显然成立;当n≥2时,=.下面证明:≥a n≥(n≥2).易知当n=2时成立,假设当n=k时也成立,则a k+1=﹣+,由二次函数单调性知:a n+1≥﹣+=≥,a n+1≤﹣+=≤,∴≤≤,即当n=k+1时仍然成立,故对n≥2,均有≥a n≥,∴=≥≥=,即(n∈N*).点评:本题是一道数列与不等式的综合题,考查数学归纳法,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于难题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年上海市高考数学试卷(理科)
一、填空题(本大题共有14题,满分48分.)考生应在答题纸相应编号的空格
内直接填写结果,每个空格填对4分,否则一律得零分.
1.(4分)设全集U=R.若集合Α={1,2,3,4},Β={x|2≤x≤3},则Α∩?UΒ=.2.(4分)若复数z满足3z+=1+i,其中i是虚数单位,则z=.
3.(4分)若线性方程组的增广矩阵为解为,则c1﹣c2=.
4.(4分)若正三棱柱的所有棱长均为a,且其体积为16,则a=.5.(4分)抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,则p=.
6.(4分)若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为.
7.(4分)方程log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2的解为.
8.(4分)在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为(结果用数值表示).9.已知点P和Q的横坐标相同,P的纵坐标是Q的纵坐标的2倍,P和Q的轨迹分别为双曲线C1和C2.若C1的渐近线方程为y=±x,则C2的渐近线方程为.
10.(4分)设f﹣1(x)为f(x)=2x﹣2+,x∈[0,2]的反函数,则y=f(x)+f﹣1(x)的最大值为.
11.(4分)在(1+x+)10的展开式中,x2项的系数为(结果用
数值表示).
12.(4分)赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的 1.4倍作为其奖金(单位:元).若随机变量ξ1和ξ2分别表示赌客在一局赌博中的赌金和奖金,
则Eξ1﹣Eξ2=(元).
13.(4分)已知函数f(x)=sinx.若存在x1,x2,…,x m满足0≤x1<x2<…<x m ≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m﹣1)﹣f(x m)|=12(m ≥2,m∈N*),则m的最小值为.
14.在锐角三角形 A BC中,tanA=,D为边BC上的点,△A BD与△ACD的面积分别为2和4.过D作D E⊥A B于E,DF⊥AC于F,则?=.
二、选择题(本大题共有4题,满分15分.)每题有且只有一个正确答案,考
生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.
15.(5分)设z1,z2∈C,则“z
1、z2中至少有一个数是虚数”是“z
1﹣z2是虚数”的()
A.充分非必要条件 B.必要非充分条件
C.充要条件D.既非充分又非必要条件
16.(5分)已知点A的坐标为(4,1),将OA绕坐标原点O逆时针旋转至OB,则点B的纵坐标为()
A.B.C.D.
17.记方程①:x2+a1x+1=0,方程②:x2+a2x+2=0,方程③:x2+a3x+4=0,其中a1,a2,a3是正实数.当a1,a2,a3成等比数列时,下列选项中,能推出方程③无实
根的是()
A.方程①有实根,且②有实根B.方程①有实根,且②无实根
C.方程①无实根,且②有实根D.方程①无实根,且②无实根
18.(5分)设P n(x n,y n)是直线2x﹣y=(n∈N*)与圆x2+y2=2在第一象限的交点,则极限=()
A.﹣1 B.﹣ C.1 D.2
三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编。