重庆大学高等数学习题2-2
重庆大学高等数学习题3-2
A 组1.用洛必达法则求下列极限:(1)02lim 1cos xxx e e x -→+-- (2)arctan 2lim 1x x xπ→+∞-(3)0cos lim sin x x e x x x →- (4)011limcot ()sin x x x x→- (5)10(1)lim xx x ex→+- (6)210sin lim ()x x x x +→ (7)011lim()sin x x x→- (8)sin 0lim xx x +→(9)lim(1)xx a x→∞+ (10)n 其中n 为正整数解析:考查洛必达法则的应用,洛必达法则主要应用于00,∞∞型极限的求解,当然对于一些能够化简为00,∞∞型极限的同样适用,例如00010⋅∞==∞等等,在求解的过程中,同样可以利用前面已经学到的极限的求解方法,例如等价无穷小、两个重要极限 解:(1)本题为型极限的求解,利用洛必达法则求解得 0002lim lim lim 21cos sin cos x x x x x x x x x e e e e e e x x x---→→→+--+===- (2)本题为型极限的求解,利用洛必达法则求解得 22221arctan 12lim lim lim 1111x x x x x x x x x π→+∞→+∞→+∞--+===+-(3)本题为0型极限的求解,利用洛必达法则求解得000cos sin 1lim lim lim sin sin cos 0x x x x x e x e x x xx x x →→→-+===∞+ (4)先化简,得2300011cos sin sin sin limcot ()lim lim lim sin sin sin sin x x x x x x x x x x xx x x x x x x x x →→→→----=⋅==型极限的求解,利用洛必达法则求解得23220001sin 1cos 12lim lim lim 336x x x xx x x x x x →→→--=== (5)化简1ln(1)00(1)lim limx x xx x x e eexx+→→+--=型极限的求解,利用洛必达法则求解得 0ln(1)ln(1)ln(1)lim 220002000ln(1)(1)ln(1)1lim lim lim(1)(1)ln(1)1ln(1)1ln(1)lim lim lim 222x x x x xxx x x x x x x xx e e x x x x e e x x x x x x x x x e e e e x x x →+++→→→→→→-+--+++=⋅=+-++-+--+====-(6)1∞型极限的求解,首先利用lne ,然后利用洛必达法则求解得222220002322000sin sin sin sin ln ln 11ln 11lim lim lim 001sin cos 112limlimlim 336sin lim ()lim x x x x x x x x x xxx x x x x x x x x x x x x x xxxx e eeexeeee+++→→→+++++→→→⎛⎫⎛⎫⎛⎫+-- ⎪⎪⎪⎝⎭⎝⎭⎝⎭→→----========(7)∞-∞型极限的求解,先化简再利用洛必达法则求解得2200000111sin sin 1cos 2lim()lim lim lim lim 0sin sin 22x x x x x xx x x x x x x x x x x x→→→→→----==== (8)00型极限的求解,先利用lne 化简,再利用洛必达法则求解得22002001ln lim limsin cos 1limlimsin ln sin cos sin sin 0lim lim 1x x x x xx xx x x x xx x x xxx x x e e eee++→→++→→++---→→======(9)1∞型极限的求解,先利用重要极限二化简lim(1)lim(1)lim(1)x x a a x a a ax x x a a a e x x x⋅⋅→∞→∞→∞+=+=+= 当然也可以先化简,再利用洛必达法则求解222ln()ln lim1[ln()ln ]1111limlim112limlim()2lim(1)lim()lim x x x x x x a xx x x x a x x x x x x a x x a x ax axax x a xxx aa x a e e x x eeeee →∞→∞→∞→∞→∞+-+-→∞→∞→∞--++--++++========(10)0∞型极限的求解,先化简,利用洛必达法则求解1ln212lim(2)lim lim1nn n nn n n nn e e→∞→∞→∞====2.已知21lim5sinxx bx cxπ→++=,求b,c的值解析:考查洛必达法则的应用,已知1limsin0xxπ→=,要使极限存在,则21lim()0xx bx c→++=同时可以利用洛必达法则求解解:根据上述分析得10b c++=21122lim limsin cosx xx bx c x b bx xππππ→→++++==-则25bπ+=-,解得52bπ=--则51cπ=+B组1.求下列极限(1)2222lim(1)(1cos)x x x xxxxe xe e ee x→+-+--(2)2lim(arctan)xxxπ→+∞⋅(3)1lnlim(cot)xxx+→(4)1111lim()x x xxxa b ca b c+++→++++(5)1limln1xxx xx x→--+(6)11112limnxx x xnxa a an→∞⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦L,其中12,,,0na a a>L解析:考查极限的求解,求解极限的方法包括洛必达法则、等价无穷小、两个重要极限还可以利用换元求解,下面结合实例说明解:(1)型极限的求解,先化简再利用洛必达法则求解222200023220022(2)(2)(23)(3)lim lim lim11(1)(1cos)22(44)(4)(84)(5)1lim lim333x x x x x x x xxx x xx x x xx xxe xe e e x e x e x e x ee x x x xx e x e x e x ex→→→→→+-+-++-++==--⋅-++-++===(2)1∞型极限的求解,先化简为型极限,再利用洛必达法则求解222221221arctan ln arctan lim lim121ln arctan 12limarctan 12lim (arctan )lim x x x xx x x xx xx x x x x x x eeeeeππππππ→+∞→+∞→+∞⋅+⋅⋅-⋅→+∞→+∞-⋅-+⋅=====(3)0∞型极限的求解,先化简为型极限,再利用洛必达法则求解00csc cot cot lim 1ln cot 1lim 1sin ln ln 0lim(cot )lim x x x x x x xxxxxx x x e ee e +→+→++---→→====(4)1∞型极限的求解,先化简为型极限,再利用洛必达法则求解 1111111110ln(ln ln ln )1111limln ln ln 1lim()lim ()x x x x x x x x x x a b c a b ca ab bc c x x x a b c a b cxxab cx x a a b b c ca b c a b ca b cab c ee a b cea b c +++++++++→+++++++++++⋅++++→→++++++++==++==(5)型极限的求解,直接利用洛必达法则求解 ln 2ln ln 111121[(ln 1)](ln 1)1limlim limlim211ln 1ln 11x x xx xx xx x x x e x x x e x ex x x x x x x x →→→→++--+-====---+-+- (6)1∞型极限的求解,先化简为型极限,再利用洛必达法则求解 1111111122222121111221112111ln ln ln ln 111lim1112lim ln lim lim x x x n n xxxn x x xn x x x a a a a a a n x x x a a a n n a a a nxx x x n nxnx x x a a a a a a eene→∞→∞⎛⎫---⎛⎫ ⎪⋅⋅+⋅⋅++⋅⋅⎛⎫⎪ ⎪⎪+++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+++ ⎪⎝⎭⎪⎪⎝⎭⎝⎭-→∞→∞⋅+⎡⎤+++⎢⎥==⎢⎥⎢⎥⎣⎦=L L L L 112ln ln 12x x n n a a a na a a ⎛⎫ ⎪⋅++⋅ ⎪⎝⎭=L L 2.评论函数1(1),0()0,0xx x f x e x ⎧⎡⎤+⎪⎢⎥>⎪⎢⎥=⎨⎢⎥⎣⎦⎪⎪≤⎩在点0x =处的连续性解析:考查函数的连续性,只需证明0(0)lim ()x f f x →=解:已知(0)0f =01ln(1)lim00(1)1lim ()lim 1x x xxx x x f x e e e+→+++→→+==⋅=则函数在点0x =处不连续性。
重庆大学2020年春季学期课程作业高等数学(II-1)
函数的间断点是()。
A、oB、oC、oD、无间断点•收藏该题2、若,则的取值范围是()。
oA、oB、oC、oD、•收藏该题3、设, 当从变到时,函数的增量为( ) 。
•oA、oB、oC、oD、•收藏该题4、( ) 。
•oA、oB、oC、oD、•收藏该题5、曲线所围平面图形的面积为( )。
•oA、oB、oC、oD、•收藏该题6、d( )=•oA、oB、oC、oD、•收藏该题7、函数,则()。
oA、oB、1oC、oD、不存在•收藏该题8、函数在处的导数等于( )。
•oA、1oB、2oC、3oD、4•收藏该题9、是()的一个原函数。
oA、oB、oC、oD、•收藏该题10、当时,下列函数是无穷小是( )。
•oA、oB、oC、oD、•收藏该题11、( )oA、oB、不存在oC、1oD、•收藏该题12、( )。
•oA、-1oB、1oC、oD、不存在•收藏该题13、三次曲线在处取极大值,点是拐点,则()。
oA、oB、oC、oD、全部都错•收藏该题14、若,则()。
•oA、1oB、-1oC、oD、•收藏该题15、若函数f(x)在点x o可导,下列说法错误的是( )。
oA、函数f(x)在点x o左导数存在oB、函数f(x)在点x o右导数存在oC、函数f(x)在点x o左右导数均存在oD、函数f(x)在点x o可导与左右导数是否存在无关•收藏该题16、下列式子中,正确的是()。
•oA、oB、oC、oD、•收藏该题17、无穷多个无穷小量之和,则( )。
•oA、必是无穷小量oB、必是无穷大量oC、必是有界量oD、是无穷小,或是无穷大,或有可能是有界量•收藏该题18、=( )。
•oA、1oB、4oC、2oD、不存在•收藏该题19、下列函数在区间上单调减少的是()。
•oA、oB、oC、oD、•收藏该题20、判断函数的极值点应该判断()。
•oA、一阶导数为0的点和一阶导数不存在的点oB、二阶导数为0的点和二阶导数不存在的点oC、只判断一阶导数为0的点oD、只判断二阶导数为0的点•收藏该题21、区间[0,+∞)表示不等式( )。
重庆大学高数(工学下)期末试题一(含答案)
重庆大学《高等数学(工学类)》课程试卷 第1页 共1页重庆大学《高等数学(工学类)》课程试卷20 — 20 学年 第 学期开课学院: 数统学院 课程号: 考试日期:考试方式:考试时间: 120 分一、选择题(每小题3分,共18分) 1. 向量a b ⨯与,a b 的位置关系是().(A) 共面 (B) 垂直 (C) 共线 (D) 斜交知识点:向量间的位置关系,难度等级:1. 答案:(B).分析:,a b 的向量积a b ⨯是一个向量,其方向垂直,a b 所确定的平面.2. 微分方程633xy dye e y x y dx=+- 的一个解为().(A)6y = (B)6y x =- (C)y x =- (D)y x =知识点:微分方程的解,难度等级:1. 答案: (D).分析:将(A),(B),(C),(D)所给函数代入所给方程,易知只有y x =满足方程,故应选(D).3. 累次积分⎰⎰=-2022x y dy e dx ().(A))1(212--e (B))1(314--e (C))1(214--e (D))1(312--e 知识点:二重积分交换次序并计算,难度等级:2. 答案:(C).分析: 直接无法计算,交换积分限,可计算得)1(214--e ,只能选(C). 4.设曲线积分⎰--L x ydy x f ydx e x f cos )(sin ])([与路径无关,其中)(x f 具有一阶连续偏导数,且(0)0,f =则=)(x f ().(A)2x x e e -- (B)2xx e e --(C) 12-+-x x e e (D)21xx e e +-- 知识点:积分与路径无关的条件,微分方程,求解,难度等级:3.答案:(B).分析: 由积分与路径无关条件,有[()]cos ()cos x f x e y f x y '-=-命题人:组题人:审题人:命题时间:教务处制学院 专业、班 年级 学号 姓名 考试教室公平竞争、诚实守信、严肃考纪、拒绝作弊封线密()().x f x f x e '⇒-=-由结构看,C,D 不满足方程,代入,B 满足,A 不满足,选B.5. 设直线方程为1111220,0A x B y C z D B y D +++=⎧⎨+=⎩且111122,,,,,0,A B C D B D ≠则直线().(A) 过原点 (B) 平行于z 轴 (C) 垂直于x 轴 (D) 垂直于y 轴 知识点:直线与坐标轴的位置关系,难度等级:1. 答案:(D).分析:方程2220,0B y D D +=≠表示垂直于y 轴且不过原点的平面,11112200A x B y C z D B y D +++=⎧⎨+=⎩表示的直线位于垂直于y 轴且不过原点的平面上,不平行于z 轴,不垂直于x 轴.6. 设∑为球面2224(0)x y z z ++=≥的外侧,则2yzdzdx dxdy∑+⎰⎰().=(A)354(B)354π (C)12 (D)12π知识点:对坐标的曲面积分,高斯公式,难度等级:2. 答案:(D).分析: 添有向平面221:0(4)z x y ∑=+≤取下侧,则124,yzdzdx dxdy zdV π∑+∑Ω+==⎰⎰⎰⎰⎰1228.Dyzdzdx dxdy dxdy π∑+=-=-⎰⎰⎰⎰故有结果为D.二、填空题(每小题3分,共18分)7.121lim(1)sin x y x y →→⎛⎫- ⎪⎝⎭__________.= 知识点:二重极限,难度等级:1. 答案:0. 证明:1(1)sin01x x y--≤- 0,ε∴∀>取,δε=只要0,δ<必有1(1)sin0.x yε--<121lim(1)sin 0.x y x y →→⎛⎫∴-= ⎪⎝⎭ 8. 已知lim6,n n a →∞=则11()n n n a a ∞+=-=∑__________. 知识点:级数和,定义,难度等级:1. 答案:1 6.a - 分析: 部分和数列12231111()()() 6.n n n n s a a a a a a a a a ++=-+-++-=-→-9.2221___________,ds x y z Γ=++⎰其中Γ为曲线cos ,sin ,tttx e t y e t z e ===上相应于t 从0变到2的这段弧.知识点:对弧长的曲线积分,难度等级:2. 答案21).e- 解:弧长的微分为tds dt ==,22222.tx y z e ++=于是2222011).ds x y z e Γ=-++⎰⎰10. 平面3x y z a ++=被球面2222x y z R ++=(0)R <所截得一个圆,则该圆的半径为__________.=知识点:平面,球面,半径,难度等级:1. 答案分析:该圆的中心在平面3x y z a ++=上,且三个坐标相等,中心坐标为(,,),a a a,11.设曲线积分 ,4 L 22⎰++-=yx xdyydx I 其中L 为椭圆,1422=+y x 并取正向,则__________.I =知识点:对坐标的曲线积分,难度等级:2. 答案:.π分析: 可取椭圆的参数方程计算.12. 设∑是球面222x y z R ++=在第一卦限部分,则2__________.x dS ∑=⎰⎰知识点:对面积的曲面积分,对称性,难度等级2. 答案:4.6R π分析:222x dS y dS z dS ∑∑∑==⎰⎰⎰⎰⎰⎰ ()22213x y z dS ∑=++⎰⎰ 224114.386R R R ππ=⋅⋅=三、计算题(每小题6分,共24分) 13. 求微分方程()0y xxe d y x xdy -=+的通解. 知识点:齐次微分方程,通解,难度等级1. 分析:齐次微分方程,作变量代换yu x=化为可分离变量的微分方程.解: 方程两端同除以,x 得()0.y xye dx dy x+-=令,y vx =则.dy vdx xdv =+ 代入上式,得0,ve dx xdv -= 即 0.vdx e dv x--= 积分之,得ln .v x e C -+=故原方程的通解为ln .y xx e C -+=14. 计算2(2)(3),y L x y dx x ye dy -++⎰其中L 由从)0,2(A 到)1,0(B 的直线段22=+y x 及从)1,0(B 到)0,1(-C 的圆弧21y x --=所构成.知识点:对坐标的曲线积分,格林公式,难度等级:2. 分析:补充线段构成闭曲线用格林公式.解 :如图,添加一段定向直线,CA 这样L 与CA 构成闭路.设所围的区域为,D 于是根据格林公式得:2211(2)(3)55(211)24y L CA Dx y dx x ye dy dxdy π+-++==⋅⋅+⋅⎰⎰⎰15(1).4π=+ 则L⎰=.L CACA→+-⎰⎰又2221(2)(3) 3.y CAx y dx x ye dy x dx --++==⎰⎰故25(2)(3)5(1)32.44y L x y dx x ye dy ππ-++=+-=+⎰ 15. 计算22(),x y dS ∑+⎰⎰其中∑为抛物面222z x y =--在xoy 面上方的部分.知识点:对面积的曲面积分,难度等级:2.分析:直接将曲面积分化为二重积分,用极坐标计算二重积分. 解:∑在xoy 的投影为22:2,xy D x y +≤且= 于是22()x y dS ∑+⎰⎰22(xyD x y =+⎰⎰20220112(14(14)84149.30d r r πθππ==⋅+-+=⎰ 16. 计算333,x dydz y dzdxz dxdy ∑++⎰⎰其中∑为球面2222x y z a ++=的外侧.知识点:对坐标的曲面积分,高斯公式,球面坐标,难度等级:2 分析:题设曲面为封闭曲面,高斯公式,再用球面坐标化为三次积分.解:333x dydz y dzdx z dxdy ∑++⎰⎰ 2223()x y z dxdydz Ω=++⎰⎰⎰222053sin 12.5ad d r r dra ππθϕϕπ=⋅=⎰⎰⎰四、解答题(每小题6分,共12分)17.设(,)z f x u =具有连续的二阶偏导数,而,u xy =求22.zx∂∂难度等级:1;知识点:复合函数的偏导数.分析: 按复合函数的偏导数的求法两次对x 求偏导数,即可求出22.z x∂∂ 解:x x u z f y f '''=+ 22.xx xx xu uu z f yf y f ''''''''⇒=++18.利用斯托克斯公式计算222222()()(),y z dx z x dy x y dz Γ-+-+-⎰其中Γ是用平面23=++z y x 截立方体[]⨯1,0[]⨯1,0[]1,0的表面所得的截痕,若从z 轴正向看去,Γ取逆时针方向.知识点:对坐标的曲线积分,斯托克斯公式,难度等级:3 分析: 通过斯托克斯公式将曲线积分转化为对面积的曲面积分,注意积分技巧:可将方程代入被积函数.解: 如图,我们将平面23=++z y x 的上侧被Γ所围的部分取为,∑于是∑的单位法向量.n e =由斯托克斯公式得:dS y x x z z y z y x I ⎰⎰∑---∂∂∂∂∂∂=222222cos coscos γβα ().x y z dS ∑=++ 观察上述积分,由于在∑上有3,2x y z ++=根据第二型曲面积分的计算公式,故396(6)().42xyxyD D I dS S ∑=-=-=-=-=-其中xy D 是∑在xOy 坐标平面的投影区域,而xyD S 为xy D 的面积.五、 证明题(每小题6分,共12分)19.试证:,)(0,0)(,)0, (,)(0,0)x y f x y x y ⎧≠⎪=⎨⎪=⎩在点(0,0)处偏导数存在,但是不可微.知识点:二元函数偏导数、可微,难度等级:1分析:先求出(0,0),(0,0)x y f f 然后说明(0,0)(0,0)x y z f x f y ∆-∆-∆不是比ρ更高阶的无穷小量就可以了.证明 : 0(,0)(0,0)lim 0(0,0);x x f x f f x∆→∆-==∆同理, (0,0)0.y f =则2200limlim.()()x x y y zx yx y ρρ→∆→∆→∆→∆→∆∆∆==∆+∆ 但是此极限不存在,故(,)f x y 在(0,0)处不可微.20. 证明:级数2(!)nn x y n ∞==∑满足方程0.xy y y '''+-= 知识点:幂级数,微分方程,难度等级:2. 分析:直接用幂数代入微分方程验证.证明: 因为20,(!)n n x y n ∞==∑所以122212(1),.(!)(!)n n n n nx n n x y y n n --∞∞==-'''==∑∑ 212222101122222111221(1)(!)(!)(!)(1)11(!)(!)(!)!(2)!!(1)!!!n n n n n n n nn n n n n nn n n n n x nx x xy y y x n n n n n x nx x n n n x x x n n n n n n --∞∞∞===--∞∞∞===--∞∞∞===''-'''+-=+--=++--=+---∑∑∑∑∑∑∑∑∑ 21111(1)!(1)!(1)!!(!)(1)(1)(1)!!0n n nn n n nn x x x n n n n n n n xn n ∞∞∞===∞==+-+-++-+=+=∑∑∑∑∴方程0xy y y '''+-=成立.六、应用题 (每小题8分,共16分)21. 设球在动点(),,P x y z 处的密度与该点到球心距离成正比,求质量为m 的非均匀球体2222x y z R ++≤对于其直径的转动惯量. 知识点:立体的转动惯量,难度等级:2. 分析:利用转动惯量公式,球坐标计算三重积分.解:设球体方程为2222:,x y z R Ω++≤密度函数ρ=则球体的质量为:234(,,)sin Rm x y z dxdydz k k d d r dr k R ππρθϕϕπΩΩ====⎰⎰⎰⎰⎰⎰所以,密度函数为ρ=计算该球体绕z 轴转动的转动惯量:22224235232240()(,,)(24sin sin 39Rm I x y x y z dxdydz xy R m d d r dr mR d mR R πππρπθϕϕϕϕπΩΩ=+=+===⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰22.将质量为m 的物体垂直上抛,假设初始速度为0,v 空气阻力与速度成正比(比例系数为k ),试求在物体上升过程中速度与时间的函数关系.知识点:微分方程的初值问题,难度等级:1 分析: 只需将二阶导数表示出来就可证之.解: 根据条件,空气阻力为.kv 于是物体上升过程中受力为()kv mg -+(其中负号表示力与运动方向相反),而运动加速度为.dva dt=因而得微分方程 .dv m kv mg dt=-- 又知初始速度为0v ,故得初值问题0,(0).dv kv g dt mv v ⎧+=-⎪⎨⎪=⎩ 因此000000(1.)()()ttkkkk k k dtdtt t t t tm m mm m mgm mg v egedt v ee v e v e k m k kg -----⎰⎰=-+=+-+=+⎰。
重庆大学高数(工学下)期末试题五(含答案)
重庆大学《高等数学(工学类)》课程试卷 第1页 共1页重庆大学《高等数学(工学类)》课程试卷20 — 20 学年 第 学期开课学院: 数统学院 课程号: 考试日期:考试方式:考试时间: 120 分一、选择题(每小题3分,共18分)1. 如果,a b 为共线的单位向量,则它们的数量积().a b ⋅=(A) 1 (B) 0 (C) 2- (D) cos(,)a b 知识点:向量的数量积,难度等级:1. 答案:D分析:||||a b a b ⋅=cos(,)a b =cos(,).a b 2. 微分方程21x y '=的通解是().(A) 1y C x =+ (B) 1y C x=+ (C)1Cy x =-+ (D) 1y xC =-+ 知识点:微分方程,难度等级:1.答案: D分析:将方程改写为21,dy dx x =并积分,得通解1,y C x=-+故应选(D).3. 设空间区域2222,x y z R Ω++≤:则().Ω=(A) 4R π (B) 443R π; (C) 4 32 R π (D) 42 R π知识点:三重积分计算,难度等级:2. 答案: A4.若L 是上半椭圆cos sin x a ty b t=⎧⎨=⎩取顺时针方向,则L ydx xdy -⎰的值为().(A) 0 (B)2ab π(C) ab π (D)ab π- 知识点:对坐标的曲线积分,难度等级:1.答案: C分析: 题中半椭圆面积为,2ab π要用格林公式,添有向线段1:0(:).L y x a a =-→ 112,0.DL L L dxdy ab π-+===⎰⎰⎰⎰故选C.5. 设函数(),0f x x >连续,并对0x >的任意闭曲线,L 有命题人:组题人:审题人:命题时间:教务处制学院 专业、班 年级 学号 姓名 考试教室公平竞争、诚实守信、严肃考纪、拒绝作弊封线密34()0,Lx ydx xf x dy +=⎰且(1)2,f =则()f x =().(A)242412423-+-x x x (B)324122424x x x -+- (C)31x + (D)xx 13+知识点:对坐标的曲线积分,积分与路径无关,微分方程.难度等级:3.答案:D分析:由条件知,积分与路径无关,有3(4)(()).x y xf x y x ∂∂=∂∂即34()().x f x xf x '=+A,B 选项显然不满足方程,而C 含常数,也不能满足方程,故选D.验证D 满足,或用一阶线性微分方程求出为D. 6. 曲面z =包含在柱面222x y x +=内部那部分面积().=(A) π(B)(C)(D) 知识点:曲面面积,难度等级:2. 答案:B分析: 在xOy 投影区域22:2,D x y x +≤化为二重积分为D=,选B.二、填空题(每小题3分,共18分)7. 级数12(2)!nn n n ∞=∑的和为__________.知识点:级数的和.难度等级:2. 答案:e分析: 11121.(2)!!(1)!n n n n n n e n n n ∞∞∞======-∑∑∑8. 222()__________,c x y z ds ++=⎰其中c 为螺线cos ,sin ,(02).x a t y a t t a bt π=⎧⎪=≤≤⎨⎪=⎩的一段.知识点:对弧长的曲线积分,难度等级:1. 答案:2222(343a b ππ+ 解:弧长的微分为,ds =于是222222222202()()(343cx y z ds a b t dt a b πππ++=+=+⎰9. 过已知点A )1,2,1(-和B )7,2,5(-作一平面,使该平面与x 轴平行,则该平面方程为__________.知识点:平面方程,难度等级:2. 答案:20.y -=分析:平面的法向量n AB ⊥,且n i ⊥,取606(0,6,0),100i j kn AB i =⨯=-=过点A (1,2,1),-平面方程为0(1)6(2)0(0)0,x y z ⋅-+⋅-+⋅-=即20.y -= 10. 函数zy u x =在点(1,2,1)-处沿(1,2,2)a =-方向的方向导数为______.知识点:函数的方向导数.难度等级:1答案:1.6解 : (1,2,2)a =-⇒122cos ,cos ,cos .333αβγ-===1(1,2,1)(1,2,1)1(1,2,1)(1,2,1)1;2ln 0;z zzy y z u y xx u x x zy y------∂=⋅=∂∂=⋅=∂(1,2,1)(1,2,1)ln ln 0.z y z ux x y y z --∂=⋅=∂111.236u a ∂⇒=⨯=∂ 11.设∑为平面326x y z ++=在第一卦限的部分的上侧,将⎰⎰∑++Qdzdx Pdydz Rdxdy 化为对面积的曲面积分的结果为__________.知识点:两种曲面积分之间的转换.难度等级:2. 答案:32().555P Q R dS ∑++⎰⎰ 分析:第二型曲面化为第一型曲面积分,只需求出有向曲面侧的单位法向量,与被积向量函数作内积即可,平面法向量为{3,2,,长度为5故得结果.12. 设∑是圆锥面z =被圆柱面ax y x 222=+所截的下部分,则()xy yz zx dS ∑++⎰⎰__________.=知识:对面积的曲面积分,对称性.难度等级:3.答案4. 分析: 曲面关于x 轴对称,xy yz +为关于y 的奇函数,故只需算zx 的积分值,2cos 3422cos .xya D zxdS d dr θππθθ-∑===⎰⎰⎰⎰⎰⎰三、计算题(每小题6分,共24分)13. 计算积分(2),c a y dx xdy -+⎰其中c 为摆线(sin ),(1cos )(02)x a t t y a t t π=-=-≤≤的一拱.知识点:对坐标的曲线积分,难度等级:2分析:已知了积分路径的参数方程,直接代入计算积分. 解: 由题设(1cos ),sin .dx a t dt dy a tdt =-=于是{}20(2)[(2(1cos )](1cos )(sin )sin ca y dx xdy a a t a t a t t a t dt π-+=---+-⎰⎰[]222202sin cos sin 2.at tdta t t t a πππ==--=-⎰14. 求32sin (2cos cos )0x d x x dx θθθθ+-+=的通解.知识点:微分方程,变量代换,一阶线性微分方程.难度等级:2 分析:sin cos d d θθθ=,若令cos z θ=,原方程可化为一阶线性方程.解: 将原方程改写为2sin cos 2cos .x d dx dx xdx xθθθθ+-+= 令cos ,y xθ=则2sin cos .x d dxdy xθθθ+=-于是方程化为 2.dyxy x dx+= 这是一阶线性非齐次方程.由通解公式2221().2x x x y e xe dx C Ce --=+=+⎰ 故21cos .2x x Cxe θ-=+15. 计算,2222⎰⎰∑+++z y x dxdy z xdydz 其中∑是由曲面222R y x =+及平面,(0)z R z R R ==->所围成立体表面外侧. 知识点:对坐标的曲面积分,高斯公式.难度等级:3 分析:利用高斯公式并注意对称性. 解:利用高斯公式,并注意对称性,知22222222222()0.()z dxdy z x y dV x y z x y z ∑Ω+==++++⎰⎰⎰⎰⎰ 又dydz z R y R dydz z R y R z y x xdydz⎰⎰⎰⎰⎰⎰∑∑∑+--++-=++212222222222222212yzD RR RdzR z --==+⎰⎰⎰⎰2212[arctan ]2.2R R z R R R R ππ-=⋅=22222.2xdydz z dxdy R x y z π∑+⇒=++⎰⎰ 16. 计算第二类曲线积分222,Ly dx z dy x dz ++⎰其中L 为球面2222R z y x =++与柱面对)0,0(22>≥=+R z Rx y x 的交线,其方向是面对着正x 轴看去是反时针的.知识点:对坐标的曲线积分,斯托克斯公式,对称性.难度等级:3分析: 利用斯托克斯公式,合一投影,并注意对称性的使用.解:222222Ldydz dzdx dxdyy dx z dy x dz x y z y z x ∑∂∂∂++=∂∂∂⎰⎰⎰dxdyy yx R xy x ydxdyxdzdx zdydz xyD ⎰⎰⎰⎰+--+-=++-=∑)(222222xyD xdxdy =-⎰⎰(∵xy D 关于x 轴对称,(,)f x y y 是关于y 的奇函数)⎰⎰--=22cos 02cos 2ππθθθR dr r d342034cos 3.4R d R πθθπ=-=-⎰四、解答题(每小题6分,共12分)17.判断级数111(1)nn e n∞=--∑的敛散性.知识点:级数敛散性的判断.难度等级:2 分析:取211n n ∞=∑用比较判别法的极限形式. 解: 1200211111limlim lim .122nx xn x x e e x e n x x n →∞→→-----===由于211n n ∞=∑收敛,故级数111(1)n n e n ∞=--∑收敛.18.求函数2232z x y x =+-在闭域22(,)|194x y D x y ⎧⎫=+≤⎨⎬⎩⎭上的最大值和最小值.知识点:二元函数在闭区域上的最值.难度等级:2分析:先求函数的驻点,得到在区域内部可能的最值点,然后求边界上可能的最值点.解:由22060x yz x z y =-=⎧⎨==⎩得D 内驻点(1,0),且(1,0) 1.z =-在边界22194x y +=上()21121233.3z x x x =--+-≤≤1220.3z x '=--<11(3)15(3) 3.z z -==比较后可知函数z 在点(1,0)取最小值(1,0)1z =-在点(3,0)-取最大值(3,0)15.z -=五、 证明题(每小题6分,共12分)19.设函数(,,)F x y z 具有一阶连续偏导数,且对任意实数t 有(,,)(,,)(k F tx ty tz t F x y z k =是自然数),试证曲面(,,)0F x y z =上任一点的切平面都通过一定点(设在任一点处,有2220.x y z F F F ++≠).知识点:齐次函数,切平面.难度等级:2 分析:曲面(,,)0F x y z =在一点000(,,)x y z 的切平面方程为000()()()0,x y z F x x F y y F z z ⋅-+⋅-+⋅-=求出此方程,可以发现坐标原点(0,0,0)满足方程.证明: 由已知条件可得.x y z xF yF zF kF ++=曲面上点000(,,)x y z 处的切平面方程为 000()()()0.x y z F x x F y yF z z ⋅-+⋅-+⋅-= 即000000(,,)0.x y z x y z xF yF zF x F y F z F kF x y z ++=++==易知0,0,0x y z ===满足上述平面方程,所以曲面的任意切平面都通过定点.20. 设0,n P >n P 单调增,且11n nP ∞=∑收敛.证明:(1)12n nn u P P P =+++单调减.(2)21n n u ∞=∑收敛.知识点:级数敛散性的判断.难度等级:2 证:(1)1121121n n n nn nu u P P P P P P +++-=-++++++1212112121(1)()()()()n n n n n P P P n P P P P P P P P P ++++++-+++=++++++121121210()()n n n n P P P nP P P P P P P +++++-=<++++++ 12n nnu P P P ∴=+++单调减.(2)2122222,n n n n n n u P P P nP P =≤=+++而11n nP ∞=∑收敛,由比较判别法,21n n u ∞=∑收敛.六、 应用题 (每小题8分,共16分)21. 设在xoy 面上有一质量为M 的匀质半圆形薄片, 占有平面闭域222,,0{()|},D x y x y R y =+≤≥过圆心O 垂直于薄片的直线上有一质量为m 的质点,P .OP a =求半圆形薄片对质点P 的引力.知识点:平面薄片对质点的引力,难度等级:3分析: 由引力公式,建立二重积分计算解: 设P 点的坐标为(0,0,.)a 薄片的面密度为222.12M MRR μππ== ()000,,设所求引力为,,().x y z F F F F =由于薄片关于y 轴对称, 所以引力在x 轴上的分量0,x F = 而2223/2()y Dm yF G d x y a μσ=++⎰⎰2223/2sin ()Rm G d d a πρθμθρρ=+⎰⎰2223/22223/2sin ()2()RRm G d d a m G d a πρμθθρρρμρρ=+=+⎰⎰⎰24GmM R π= 2223/2()z Dm aF G d x y a μσ=-++⎰⎰2223/2()Rm Ga d d a πρμθρρ=-+⎰⎰2223/22()2(1Rm Ga d a GmM R ρπμρρ=-+=-⎰22.一质量为m 的船以速度0v 沿直线航行,在0t =时,推进器停止工作(动力关闭). 假设水的阻力正比于,n v 其中n 为一常数,v 为瞬时速度,求速度与滑行距离的函数关系.知识点:微分方程模型.难度等级:2 分析:据牛顿第二定律建立微分方程.解: 船所受的力=向前推力-水的阻力=0,n kv -加速度为.dvdtα=于是,由题设有 00,|.n t dvmkv v v dt==-= 设距离为()x x t =,则上述方程化为.n dv dv dx dvmm mv kv dt dx dt dx=⋅=⋅=- 故有1.n mv dv kdx -=-当2n ≠时,两边积分得,22.2nmv kx c n-=-+- 代入000|,|0,t t v v x ====得20.2n mv c n-=-故 220.(2)n n k n v x v m---=-+ 当2n =时,同理可解得 0.k x mv v e-=。
重庆大学出版社高等数学题库参考答案
第五章不定积分1(直接积分法、换元积分法)一、单选题1.设)(x f 是可导函数,则⎰'))((dx x f 为(A ).A.)(x fB.C x f +)(C.)(x f 'D.C x f +')(2.函数)(x f 的(B )原函数,称为)(x f 的不定积分.A.任意一个B.所有C.唯一D.某一个3.⎰=+=)(,2cos )(x f C x e dx x f x则(A ).A.)2sin 22(cos x x e x -B.C x x e x +-)2sin 22(cosC.x e x 2cosD.x e x2sin4.函数x e x f =)(的不定积分是(B ). A.x e B.c e x + C.x ln D.c x +ln5.函数x x f cos )(=的原函数是(A ). A.c x +sin B.x cos C.x sin - D.c x +-cos6.函数211)(x x f -=的原函数是(A ).A.c x x ++1 B.x x 1- C.32x D.c xx ++12 7.设x 2是)(x f 的一个原函数,则[]='⎰dx x f )((B )A.x 2B.2C.2x D.-28.若ce dx e xx +=⎰,则⎰xd e x22=(A )A.c ex+2 B.c e x + C.c e x +-2 D.c e x +-29.函数x x f sin )(=的原函数是(D ) A.c x +sin B.x cos C.x sin - D.c x +-cos10.若)()()()()(x G x F x f x G x F '-'的原函数,则均为、=(B )A.)(x fB.0C.)(x FD.)(x f ' 11.函数211)(xx f +=的原函数是(A ) A.c xx +-1B.x x 1-C.32xD.c x x ++1212.函数211)(x x f -=的原函数是(A ) A.c xx ++1 B.x x 1- C.32x D.c x x ++1213.若函数)(x f 、)(x g 在区间),(b a 内可导,且)()(x g x f '=',则(B ) A.)()(x g x f = B.C x g x f +=)()(C.)()(x g x f ≠D.不能确定)(x f 与)(x g 之间的关系 14.若)()(x f x F =',则下列等式成立的是(B ). A.C x f dx x F +='⎰)()( B.⎰+=C x F dx x f )()(C.⎰+=C x f dx x F )()(D.C x F dx x f +='⎰)()(15.经过点)1,0(-,且切线斜率为x 2的曲线方程是(D ). A.2x y = B.2x y -= C.12+=x y D.12-=x y 二.填空题 1.)25ln(2125x d x dx --=-.2.)1(212x d xdx --=.3.C aa dx a xx +=⎰ln .4.设)(x f 是连续函数,则dxx f dx x f d )()(=⎰.5.xx cos 2+的原函数是x x sin 2+.6.]4)3[(21)3(2---=-x d dx x .7.C x xdx +=⎰7sin 717cos .8.)1(ln 3133-=x x a d adx a .9.)3(cos 313sin x d xdx -=.10.C x dx x x +=⎰2ln 21ln .11.C x dx x +=⎰4341.12.)C 41(2222+-=--x x e ddx xe .13.C x xdx x +=⋅⎰2sin 21sin cos .14.C x dx x +=+⎰3arctan 319112. 15.C x x dx x +-=⎰)sin (212sin 2.16.⎰+='C x f dx x f )2(21)2(.17.设⎰+=.)()(C x F dx x f ,若积分曲线通过原点,则常数)0(F C -=.18.)3(arctan 31912x d x dx=+. 19.)(2122x x e d dx xe =.20.已知xx f C x dx x f 2sin )(,sin )(2=+=⎰则.21.设)()()(21x f x F x F 是、的两个不同的原函数,且=-≠)()(,0)(21x F x F x f 则有 C.22.C x x dx x x +-=+-⎰222111 23.Ce dx e xxx +-=⎰1121.24.)1ln(21122-=-x d dx x x .25.若x x f sin )(的导函数是,则)(x f 的原函数为Cx +-sin .26.设)(3x f x 为的一个原函数,则dxx x df 23)(=.27.)2cos 41(812sin x d xdx -=28.x x sin 2+的一个原函数是x x cos 313-.29.)3(cos 33sin x d dx x -=.30.Cx xdx +-=⎰cos ln tan .31.()C x dx x +--=-⎰)21sin(2121cos .32.Cx xdx +=⎰tan sec 2. 33.C x x dx +-=⎰3cot 313sin 2.34.设x 2是)(x f 的一个原函数,则⎰='])([dx x f 2.三.判断题 1.⎰+=cx xdx cos sin (×)2.x x e dx e =⎰(×)3.⎰-=.cos sin x xdx (×)4.⎰+-=cx xdx cos sin (√)5.)21sin()]21[sin(x dx x -=-⎰(×)6.⎰+-=c x xdx sin cos (×)四.计算题1.求不定积分dx x x ⎰+21.解:原式=C x x d x ++=++⎰23222)1(31)1(1212.求不定积分dx x ⎰-31.解:原式=C x +--3ln3.求不定积分⎰+dx e e xx 1.解:原式=C e e d e x x x ++=++⎰)1ln()1(11 4.求不定积分⎰+-dx x x x )3sin 21(.解:原式=C x x x +++ln 3cos 225.求不定积分⎰-dx xe x 2.解:原式=C e x +--221 6.求不定积分dx x x⎰+12.解:原式=C x ++)1ln(2127.求不定积分dx x x ⎰+2)72(.解:原式=C xx x ++⋅+7ln 24914ln 1422ln 24 8.求不定积分⎰+dx x 10)12(.解:原式=C x ++11)12(2219.求不定积分⎰+-dx xx x )1)(1(.解:原式=C x x x x x +-+-221522210.求不定积分⎰xdx 2sin .解:原式=C x x +-2sin 4121 11.求不定积分⎰dx xx 22cos sin1.解:原式=C x x +-cot tan 12.求不定积分dx x ⎰+321.解:原式=C x ++32ln 2113.求不定积分xdx x arctan 112⎰+.解:原式=C x +2)(arctan 21 14.求不定积分⎰-dx x x 4313.解:原式=C x +--41ln 43 15.求不定积分⎰+dx x 2411.解:原式=C x +2arctan 21 16.求不定积分⎰+dx x x)5(3.解:原式=C x x++5ln 5414 17.求不定积分⎰-dx e x5.解:原式=C e x +--551五.应用题1.设一质点作直线运动,已知其加速度为t t a sin 3122-=,如果0=t 时3,500-==s v , 求(1)t v 与的函数关系;(2)t s 与的函数关系.解:32sin 3)(2sin 3)2cos 34()(2cos 34)(cos 34)sin 312()(43,04335,032-++=−−−→−+++=++=++=−−→−++=-=-====⎰⎰t t t t s c t t t dt t t t s t t t v C t t dt t t t v s t v t2.求经过点(0,0),且切线斜率为x 2的曲线方程. 解:20,022x y C x xdx y y x =−−−→−+====⎰3.一物体由静止开始运动,t 秒末的速度是23t (米/秒),问(1)在3秒末物体与出发点之间的距离是多少?(2)物体走完360米需多长时间? 解:设运动方程为:30,032)(3)(t t S C t dt t t S S s t =−−→−+=====⎰(1)当3=t时,27)3(=S (米)(2)当.360360)(33秒=⇒==t t t S4.一曲线过原点且在曲线上每一点),(y x 处的切线斜率等于3x ,求这曲线的方程. 解:40,0434141x y C x dx x y y x =−−−→−+====⎰ 5.已知物体由静止开始作直线运动,经过t 秒时的速度为180360-t (米/秒),求3秒末物体离开出发点的距离. 解:t t t S C t tdt t S s t 180180)(180180180)-60t 3()(20,02-=−−→−+-====⎰.当3=t时,1080)3(=S (米).6.求经过点)1,(e ,且切线斜率为x 1的曲线方程.解:x y C x dx xy y e x ln ln 11,=−−→−+====⎰.7.求经过点(0,0),且切线斜率为211x+的曲线方程.解:x y C x dx x y y x arctan arctan 110,02=−−−→−+=+===⎰.第五章不定积分2一.单选题1.下列分部积分法中,dv u ,选择正确的是(A ).A.⎰==xdxdv x u xdx x 2sin 2sin ,, B.xdxdv u xdx ln ,1,ln ==⎰C.dxx dv e u dx e x x x22,,==--⎰D.xdx dv e u dx xe xx==⎰,,2.⎰⎰-=)(2arctan d 2arctan Axd x x x x .A.x arctan2B.x arctan4C.x arctan2-D.x arctan4-3.=⎰2-4d x x (A).A.C x +2arcsinB.C x +arcsinC.Cx +2arccos D.C x +arccos二.判断题1.分部积分法u v uv v u d d ⎰-=⎰的关键是恰当的选择u 和v d ,使u v d ⎰应比v u d ⎰容易积分.(√)2.若被积函数中含有22a x ±,则可利用三角函数代换法化原积分为三角函数的积分.(√)三.填空题 1.Cx dx x ++=+⎰1211.2.设)(x f 有一原函数⎰+-='Cx dx x f x x x cos )(,sin 则.3.C x x x xdx x +-=⎰2241ln 21ln .4.)3(arcsin 31912x d xdx =-.5.Cx x e dx e x x x ++-=⎰)22(22.6.⎰++-=C x x x xdx x 3sin 913cos 313sin .四.计算题1.求不定积分⎰-dx x x232.解:原式=Cx x d x +--=---⎰2223231)32(321612.求不定积分⎰dxx ex22.解:原式=C x x e x ++-)21(2122 3.求不定积分⎰++dxx x 11.解:C x x C t t dt t t t x +--+=+-=-=+⎰1)1(3232)22(132232原式4.求不定积分⎰+)1(x x dx.解:cx C t dt t t x +=+=+=⎰arctan 2arctan 21222原式5.求不定积分⎰xdxx 2sin .解:原式=C x x x ++-2sin 412cos 21 6.求不定积分⎰+dx e x x 5)2(.解:原式=C x e x ++)59(515 7.求不定积分dxxex⎰-4.解:原式C x e x ++-=-)16141(48.求不定积分⎰++dxx 111.解:原式[]C x x +++-+=)11ln(129.求不定积分⎰+-dxx 1211.解:原式[]C x x +-+++=112ln12-10.求不定积分dxex⎰+11.解:原式=C e e xx +++-+1111ln11.求不定积分⎰xdxxln 2.解:原式C x x +-=)31(ln 313 12.求不定积分dx x x ⎰-1.解:原式C x x +---=)1arctan 1(213.求不定积分⎰---dxx x 22112.解:原式C x x +-=)(arcsin 214.求不定积分⎰dx a x x 2)1,0(≠>a a .解:原式C aa x a x a x++-=)ln 2ln 2ln (32215.求不定积分dxx⎰-2941.解:原式C x +=23arcsin 31 16.求不定积分dxx ⎰sin .解:原式C x x x ++=sin 2cos -217.求不定积分⎰xdx x 3cos .解:原式C x x x ++=3cos 913sin 31 18.求不定积分dxx x ⎰+2.解:原式C x x ++-+=2123)2(4)2(32五.应用题(增加题)第六章定积分一.单选题 1.)(240Ddx x =-⎰A.⎰⎰-+-4220)2()2(dxx dx x B.⎰⎰-+-422)2()2(dxx dx x C.⎰⎰-+-422)2()2(dxx dx x D.⎰⎰-+-422)2()2(dxx dx x2.=⎰a adx x f )((C)A.大于0B.小于0C.等于0D.不能确定 3.⎰⎰--=+1111)()(dx x f dx x f (C)A.大于0B.小于0C.等于0D.不能确定 4.定积分⎰badxx f )(是(D )A.一个原函数B.()x f 的一个原函数C.一个函数族D.一个常数 5.定积分⎰badxx f )(的值的大小取决于(C)A.)(x fB.区间[]b a ,C.)(x f 和[]b a ,D.都不正确 6.定积分⎰badxx f )(的值的大小取决于(C)A.)(x fB.区间[]b a ,C.)(x f 和[]b a , D.无法确定 7.⎰⎰=-3234)()(dx x f dx x f (A)A.⎰42)(dxx f B.⎰24)(dxx f C.⎰43)(dxx f D.⎰32)(dxx f8.下列命题中正确的是(C )(其中)(),(x g x f 均为连续函数) A.在[]b a ,上若)()(x g x f ≠则dxx g dx x f ba ba⎰⎰≠)()( B.⎰⎰≠babadtt f dx x f )()(C.若)()(x g x f ≠,则⎰⎰≠dxx g dx x f )()( D.⎰=badxx f dx x f d )()(9.=⎰dx x f dxd ba )((B) A.)(x f B.0 C.)(x f ' D.)(x F 10.若1)(=x f ,则⎰=badx x f )((C)A.1B.b a -C.a b -D.0 11.定积分⎰badxx f )(是(B )A.任意的常数B.确定的常数C.)(x f 的一个原函数D.)(x f 的全体原函数 12.若⎰=+12)2(dx k x ,则=k (B)A.-1B.1C.1/2D.0 13.=-⎰dx x 5042(C)A.11B.12C.13D.14 二.判断题1.函数在某区间上连续是该函数在该区间上可定积分的必要条件.(×)2.a b dx ba -=⎰0.(×)3.⎰='badx x f 0))((.(×)4.x xdx dx d ba sin sin ⎰=.(×)三.填空题1.设)(x f '在[]b a ,上连续,则)()()(a f b f dx x f b a-='⎰.2.C dx xxx +=⋅⎰6ln 6321. 3.4111022π-=+⎰dx x x .4.ee dx x e x-=⎰2121.5.设⎰⎰==52515)(,3)(dx x f dx x f ,则2)(21-=⎰dx x f .6..0113=⎰-dx x .7.若)(x f 在[]b a ,上连续,且⎰=ba dx x f 0)(,则[]a b dx x f ba-=+⎰1)(.8.由曲线22+=x y ,直线3,1=-=x x 及x 轴围成曲边梯形的面积352)2(312=+=⎰-dx x A . 9..0sin 12=⎰dx x dx d .10.11ln4141=+-⎰-dx xx.11.1)1sin(212=⎰dx xx ππ. 12.32112=⎰-dx x .13.0cos 11⎰-=xdx x .14.利用定积分的几何意义填写定积分的值π41112=-⎰dx x . 15.22sin sin x dt t dx d x⎰=.16..0sin 222=⎰-xdx x .17..0113=⎰-dx x .18. 的值为积分.21ln 1⎰edx x x 19.2)253(22224⎰⎰=++-dx dx x x .20.11-=⎰e dx e x . 21.431=⎰-dx .22.⎰1212ln xdxx 的值的符号为负.四.计算题 1.求定积分.⎰+411xdx 解:原式)32ln 1(2+=2.求定积分⎰-124x dx.解:原式6arcsin 10π==x3.求定积分⎰-+-01)32)(1(dxx x .解:原式21-=4.求定积分dxx⎰--2121211解:原式3arcsin 2121π==-x5.求定积分⎰-+12511x dx 解:原式=2ln 54)511ln(5112=⎥⎦⎤⎢⎣⎡+-x6.求定积分dx x ⎰+9411解:原式[])2ln 1(2)1ln(232+-=-+-=t t7.求定积分dxex⎰-1.解:原式eex1101-=-=- 8.求定积分dxx ⎰212解:原式3712313==x 9.求定积分θθπd ⎰402tan 解:原式[]4104tan ππθθ-=-=10.求定积分.dx xx ⎰+402sin 12sin π解:原式232ln 04)sin 1ln(=+=πx 11.求定积分dxx x ⎰-ππ23sin .解:原式=012.求定积分()dxxx ⎰--2121221arcsin .解:原式=324)(arcsin 31321213π=-x 13.求定积分dxx x ⎰+911.解:原式2ln 213)1ln(2=+=x14.求定积分dxex x⎰12.解:原式201)22(2-=+-=e x x ex15.求定积分⎰+104)1(x dx 解:原式24701)1(31-3=+=-x 16.求定积分dxxe x ⎰2.解:原式102)1(2+=-=e x ex17.求定积分⎰-1dxxe x .解:原式e x ex2101)1(--=+=-18.求定积分dx x ⎰⎪⎭⎫⎝⎛+πππ33sin .解:原式0)3cos(3=+-=πππx19.已知⎩⎨⎧≤<-≤≤=31,210,)(2x x x x x f ,计算⎰20)(dx x f .解:原式⎰⎰-=-+=2110261)2(dx x dx x 20.求定积分()dx x x +⎰194.解:原式627149)2132(223=+=x x21.求定积分⎰1arctan xdxx .解:原式=214)arctan arctan (21102-=⎥⎦⎤⎢⎣⎡+-πx x x x22.求定积分⎰1arcsin xdx .解:原式1201)1arcsin (2-=-+=πx x x23.求定积分⎰262cos ππudu.解:原式836)2sin 21(2162-=+=πππu u 24.求定积分()dx x x x ⎰+2sin π.解:原式18sin cos 2122+=⎥⎦⎤⎢⎣⎡+-=ππx x x x25.求定积分dx x x ⎰-121221.解:原式[]41cot sin 24πππ-=--=t t t x26.求定积分dx x x 1sin 1212⎰ππ.解:原式11cos12==ππx27.求定积分dx x ⎰+11210.解:原式10ln 4950110ln 21012==+x 28.求定积分xdxx ⎰23cos sin π解:原式410cos 41-24==πx29.求定积分⎰124dx x x .解:原式10ln 710ln 810=⎥⎦⎤⎢⎣⎡=x 30.求定积分dx x x e⎰-1ln 1.解:原式21ln 21ln 12=⎥⎦⎤⎢⎣⎡-=ex x31.求定积分dxx x ⎰+31)1(1.解:原式[]6arctan 2312π==t t x32.求定积分xdxx cos sin 23⎰π.解:原式410sin 4124==πx33.求定积分⎰--1321dx x .解:原式[]5ln 2ln -13=-=-x34.求定积分dx x x x ⎰++21222)1(12解:原式4212arctan 1arctan 21π-+=⎥⎦⎤⎢⎣⎡-=x x 35.求定积分⎰+21ln 1e x x dx.解:原式[])13(2ln 1221-=+=e x36.求定积分dxe x x ⎰22.解:原式)1(21214202-=⎥⎦⎤⎢⎣⎡=e e x37.求定积分dxx ⎰20sin π.解:原式10cos 2=-=πx38.求定积分⎰++10)32)(1(dx x x .解:原式2112521032=⎥⎦⎤⎢⎣⎡++=x x x39.求定积分dttet ⎰-1022.解:原式212112---=⎥⎥⎦⎤⎢⎢⎣⎡-=e e t 40.求定积分dx x x ⎰+102212.解:原式[]22)arctan (210π-=-=x x41.求定积分⎰πsin xdxx .解:原式[]ππ=+-=0sin cos xx x42.求定积分dx x xe⎰12ln .解:原式311ln 313==e x43.求定积分⎰2cos sin 3πxdxx .解:原式230sin 2322==πx44.求定积分()⎰ωπωω20sin 为常数tdt t 解:原式2022sin 1cos 12ωπωωωωωω-=⎥⎦⎤⎢⎣⎡+-=t t t45.求定积分dxx ⎰230cos π.解:原式[][]3sin sin 23220=-=πππx x46.求定积分dxx ⎰--2221.解:原式43131231213113123=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=---x x x x x x47.求定积分⎰+331211dx x .解:原式[]6arctan 331π==x48.求定积分⎰+161 4x x dx .解:原式23ln 2)1ln(2142124+=⎥⎦⎤⎢⎣⎡++-=t t t t x五.应用题1.已知生产某产品x (百台)时,总收入R 的变化率x R -='8(万元/百台),求产量从从1(百台)增加到3(百台)时,总收入的增加量.解:由已知x R -='8得总收入的增加量为:12218)8(R3131312=⎥⎦⎤⎢⎣⎡-=-='=⎰⎰x x dx x dx R2.试描画出定积分⎰ππ2cos xdx所表示的图形面积,并计算其面积.解:[]1sin cos 22=-=-=⎰ππππx xdx S .(图形略)3.试描画出定积分⎰ππ2sin xdx 所表示的面积图形,并计算其面积.解:[]1cos sin 22=-==⎰ππππx xdx S .(图形略)4.计算曲线3x y =,直线3,2=-=x x 及x 轴所围成的曲边梯形面积.解:49741413402433023=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-=+-=--⎰⎰x x dx x dx x S.(图形略) 5.计算抛物线24x y -=与x 轴所围成的图形面积. 解:24x y -=与x 轴的交点为(-2,0),(2,0)6.已知生产某产品x (百台)时,总成本C 的变化率为x C +='2(万元/百台),求产量从1(百台)增加到3(百台)时总成本的增加量.解:.8212)2(31312=⎥⎦⎤⎢⎣⎡+=+=⎰x x dx x C7.计算函数x y sin 2=在⎥⎦⎤⎢⎣⎡2,0π上的平均值.解:[]πππππ4cos 222sin 22020=-==⎰x xdxy8.计算函数x y cos 2=在⎥⎦⎤⎢⎣⎡2,0π上的平均值.解:[]πππππ4sin 222cos 2202===⎰x xdxy第七章定积分的应用一.单选题1.变力使)(x f 物体由],[b a 内的任一闭区间]d ,[x x x +的左端点x 到右端点x x d +所做功的近似值为(C).A.)(x df -B.)(dx fC.dx x f )(D.dx x f )(- 2.一物体受连续的变力)(x F 作用,沿力的方向作直线运动,则物体从a x =运动到b x =,变力所做的功为(A).A.⎰b a x x F d )( B.⎰ab x x F d )( C.⎰-ab x x F d )( D.⎰-ba x x F d )(3.将曲线2x y =与x 轴和直线2=x 所围成的平面图形绕y 轴旋转所得的旋转体的体积可表示为=y V (C ).A.dxx ⎰24π B.⎰4ydyπ C.()dyy ⎰-44π D.()dyy ⎰+44π二.判断题 1.定积分⎰badxx f )(反映在几何意义上是一块[a,b]上的面积.(╳)2.已知边际利润求总利润函数可用定积分方法.(√) 三.填空题 1.计算曲线x y sin =与曲线2π=x 及0=y 所围成的平面图形的面积可用定积分表示为⎰=2sin πdxA .2.抛物线3x y =与x 轴和直线2=x 围成的图形面积为⎰23dxx .3.由曲线2x y =与直线1=x 及x 轴所围成的平面图形,绕x 轴旋转所的旋转体的体积可用定积分表示为⎰=14dxx V x π.四.计算题1.求抛物线3x y =与x 轴和直线3=x 围成的图形面积.2.把抛物线ax y 42=及直线)0(>=b b x 所围成的图形绕x 轴旋转,计算所得旋转体的体积.3.一边长为a m 的正方形薄板垂直放入水中,使该薄板的上边距水面1m ,试求该薄板的一侧所受的水的压力(水的密度为33kg/m 10,g 取2m/s 10).4.计算抛物线2x y =与直线轴和x x x 3,1=-=所围成的平面图形绕x 轴旋转所得到的旋转体体积.5.由22x y x y ==和所围成的图形绕x 轴旋转而成的旋转体体积.6.求由曲线x y 1=与直线x y =及2=x 所围成的图形的面积.7.用定积分求由0,1,0,12===+=x x y x y 所围平面图形绕x 轴旋转一周所得旋转体的体积.8.求曲线22)2(,-==x y x y 与x 轴围成的平面图形的面积.9.用定积分求底圆半径为r ,高为h 的圆锥体的体积.10.计算曲线3x y =和x y =所围成的图形面积.11.计算抛物线24x y -=与x 轴所围成的图形面积.12.求曲线2x y =与x y =所围成的图形的面积。
重庆大学画法几何习题集及题解完整版
(b) 。
k′ b′b′ a′ k′
a′ X
xk a
k
b
a (a)
k′ b′
k′
a′
c′
a′
OX
cc ′
ox
a
c
k
b
a (b)
b′
b′
b
a′ c′
OX
k′ c′
a′ O k
c c′
c
aox
ck
b
a
(c)
k
15页
2005习题集第15页—平面2
4-5 △ABC属于平面P,试求作其H面投影。
b′
b′
4-6 取一点K属于 距H面15mm
N,n′
(1)
b
k′
a
X
m′
n O
b
k
a
B0
M,m
10页
3–6 已知线段AB的投影,试取属于AB的一点K,使 AK=25,求
作K点的投影k、k′,并求出直线的迹点。
N,n′
n〞
(2)
b′
b〞
k′
a′ m′
n b
k
a
M,m
a〞
m〞
10页
3–6 已知线段AB的投影,试取属于AB的一点K,使 AK=25,求
作K点的投影k、k′,并求出直线的迹点。 N,n′
(2)
a′ k′
b′
m′ n a
b
M,m
10页
2005习题集第11页—直线3
3–7 下列各图中,表示点M属于直线AB的是(a b ) 。
m′ b′ a′
a
m′
b
a
m′
b
【精品】重庆理工大学高数C2习题册答案
习题一 定积分的概念与性质,微积分的基本公式一、单项选择题1、D2、B3、C4、C*5、D二、填空题1. 0 22x e dx -<<. 0 4.1x - 6.()()f b f a -7. 4π8.>三、求解题1.求下列函数的导数(1)解:()2x x ϕ'=(2)解:2324262()cos 2cos 3x x x e x x e x x ϕ'=⋅-⋅2.求下列极限:*(1)3x 0x x dt t 22⎰→arcsin lim*(2))2(1lim22n n n nn +++∞→解:230arcsin limx x x→+⎰解:221lim)n n n →∞+202arcsin 2lim3x x x x →+=1lim )n nn n→∞=+02arcsin 24lim 33x x x →+==11lim nn in →∞== 230arcsinlimx x x →-⎰0=⎰20arcsin 22lim 3x x x x →-⋅=23= 02arcsin 24lim33x x x →--==-故极限不存在。
3.证明:)(x φ=dt t f t x xa2)()(⎰-=22(2)()xax xt t f t dt -+⎰=22()2()()x x xaaax f t dt x tf t dt t f t dt -+⎰⎰⎰222()2()()2()2()()xxaax x f t dt x f x tf t dt x f x x f x ϕ'=+--+⎰⎰=2⎰-xadt t f t x )()(4.解:(1)x y e x '=-,令0y '=,得1x =,当1x <时,0y '<;当1x >时,0y '>,所以,函数y 在(,1)-∞内单调递减,在(1,)+∞单调递增,在1x =点处取得极小值1(1)(1)t y e t dt =-⎰=2e -.习题二 定积分的换元积分法,分部积分法一、计算题1.计算下列定积分(1)⎰--323)1(dx x (2)⎰-1212dt tet解:原式=332(1)(1)x d x ---⎰解:原式=2112201()2t ed t ---⎰=4321(1)4x --=654-2112t e -=-121e -=-(3)⎰-π3)sin 1(dx x (4)41⎰解:原式30sin dx xdx ππ=-⎰⎰解:原式41=⎰20(1cos )cos x d x ππ=+-⎰412=⎰301(cos cos )3x x ππ=+-411)= 43π=-32ln 2= (5)⎰+312211dx xx(6)⎰20xdx 2x πsin解:令tan x t =解:原式201cos 22xd x π=-⎰原式234ππ=⎰2201(cos 2cos 2)2x x xdx ππ=--⎰ 324sec tan t dt t ππ=⎰324cos sin t dt tππ=⎰2011(sin 2)222x ππ=---3241sin sin d t tππ=⎰341sin t ππ=-4π==(7)⎰230arccos xdx (8)⎰exdx 1ln sin解:原式0arccos x =-解:原式111sin ln cosln e ex x x x dx x =-⋅⎰0162π=-111sin1cosln sin ln e ee x x x x dx x=--⋅⎰12=-⋅1sin1cos11sin ln ee e xdx =-+-⎰1122=+故11sin ln (1sin1cos1)2e xdx e e =+-⎰2.解:令1x t -=,则⎰-2)1(dx x f 11()f t dt -=⎰01101111t dt dt e t -=+++⎰⎰ 令t e u =,则1011111(1)t e dt du e u u --=++⎰⎰1111()1e du u u -=-+⎰11ln 1e u u-=+ln 2ln(1)e =-++11001ln(1)ln 21dt t t=+=+⎰ ⎰-2)1(dx x f ln(1)e =+二、证明题1.证明:令1x t =-,则()111(1)nm m n x x dx t t dt -=--⎰⎰1(1)m n t t dt =-⎰1(1)m n x x dx =-⎰2.证明:令x t =-,则()()bbbbf x dx f t dt --=--⎰⎰()bbf x dx-=-⎰3.证明:令1x t=,则111222111()11x x dx dt x t t -=-++⎰⎰12111x dt t =+⎰12111xdx x =+⎰ 4.证明:0()()xx f t dt ϕ--=⎰,令t u =-,则0()()()xx x f t dt f u du ϕ--==--⎰⎰又()f u 是奇函数()xf u du =⎰)x ϕ=(即⎰=xdt t f x 0)()(ϕ是偶函数.习题三 广义积分,定积分的几何应用一、选择题1.B2.C3.D 二、填空题1.1≤, >1,11α-;1≥, <1 ,11α-6,(1)r -. 三、计算题1.判断下列反常积分是否收敛,若收敛计算其值(1)dx x x 1e2⎰+∞ln (2)()dx x 1x 11002⎰∞++ 解:原式21ln ln ed x x +∞=⎰解:原式()21001(1)2(1)11x x dx x +∞+-++=+⎰ 11ln ex+∞=-=()()()98991001121()(1)111d x x x x +∞=-+++++⎰97111()29798994-=-+⨯ (3)⎰-111dx x(4)⎰1ln xdx解:原式1(1)x =--⎰解:原式10(ln 1)x x =-11202(1)x =--2=1=-2.解:⎰∞+2)(ln 1dx x x k 21ln (ln )k d x x +∞=⎰212ln ln 11(ln ) 11k x k x k k+∞-+∞⎧=⎪=⎨≠⎪-⎩ 11ln 211k k k k -≤⎧⎪=⎨>⎪-⎩发散 令1(ln 2)()1x f x x -=-,则112(ln 2)ln ln 2(1)(ln 2)()(1)x xx f x x ---⋅--'=- 11ln ln 2x =-为驻点,且111ln ln 2x <<-时,()0f x '<;11ln ln 2x >-时,()0f x '>, 所以11ln ln 2k =-时,⎰∞+2)(ln 1dx x x k 1(ln 2)1k k -=-取得最小值。
高等数学1-2答题上传(作业) 重庆大学练习库及答案
1、函数,若在处连续,则=______
正确答案是:0
2、设曲线过,且其上任意点的切线斜率为,则该曲线的方程是__________ 正确答案是:
3、设则 __________。
正确答案是:36
4、设,则______
正确答案是:
5、已知在区间上单调递减,则的单调递减区间是______ 。
正确答案是:
6、=______
正确答案是:1
四、计算题(共 2 题、0 / 16 分 )
1、利用基本积分公式及性质求积分。
正确答案是:原式=
2、求。
正确答案是:=ln 1-ln 2=-ln 2.
牛顿-莱布尼兹公式
1、验证拉格朗日定理对函数在区间[0,1]上的正确性.
正确答案是:
因为在[0,1]上连续,在(0,1)内可导,满足拉格朗日定理的条件. 由得
解得,即存在使得拉格朗日定理的结论成立.
六、证明题(共 1 题、0 / 20 分 )
1、利用极限存在准则证明:。
正确答案是:∵
且,,由夹逼定理知
用夹逼准则。
20春重庆大学高等数学(II-2)形成性考核真题试题参考答案资料
1、级数为( )•A、发散•B、条件收敛但不绝对收敛•C、绝对收敛但不条件收敛•2、曲线在t=2处的切向量是()。
•A、(2,1, 4)•B、(4,3, 4)•C、0•3、在)处均存在是在处连续的()条件。
•A、充分•B、必要•C、充分必要•4、设a为常数,则级数( )•A、绝对收敛•B、条件收敛•C、发散•5、二元函数的定义域是()。
•A、•B、•C、•D、6、方程表示的曲面是()。
•A、圆•B、椭球•C、抛物面•D、球面7、有且仅有一个间断点的函数是()。
•A、•B、•C、•D、8、下列级数中,收敛级数是()•A、•B、•C、•D、9、按牛顿冷却定律:物体在空气中冷却的速度与物体的温度和空气的温度之差成正比。
已知空气温度为300C,而物体在15分钟内从1000C冷却到700C,求物体冷却到400C所需的时间为()分钟。
•A、50•B、51•C、52••A、平行于z轴•B、垂直于x轴•C、平行于y轴•11、若满足,则交错级数。
•A、一定发散•B、一定收敛•C、可收敛也可发散•12、下列无穷级数中发散的是()。
•A、•B、•C、•D、13、下列说法正确的是()。
•A、两直线之间的夹角范围在•B、两平面之间的夹角范围在•C、两向量之间的夹角范围在•D、直线和平面之间的夹角范围在14、级数收敛,则参数a满足条件()•A、 a>e•B、a<e•C、 a=e•15、下列方程中( )是表示母线平行于y轴的双曲柱面。
•A、•B、•C、•D、16、求点(1,2,3)到平面的距离是()。
•A、0•B、1•C、•17、以下各方程以为解的是()。
•A、•B、•C、•D、18、,且收敛,则( )。
•A、绝对收敛•B、条件收敛•C、收敛•20、设,u=cos x, v=sin x,则=()。
•A、0•B、 -1•C、1•19、当k =()时,平面与互相垂直。
•A、0•B、1•C、-1•D、321、二元函数的定义域是( )。
(完整版)数学选修2-2练习题及答案
目录:数学选修2-2第一章 导数及其应用 [基础训练A 组] 第一章 导数及其应用 [综合训练B 组] 第一章 导数及其应用 [提高训练C 组] 第二章 推理与证明 [基础训练A 组] 第二章 推理与证明 [综合训练B 组]第二章 推理与证明 [提高训练C 组] 第三章 复数 [基础训练A 组] 第三章 复数 [综合训练B 组]第三章 复数 [提高训练C 组](数学选修2-2)第一章 导数及其应用[基础训练A 组]一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x - D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3.函数3yx x 的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________;2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin xy x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________; 5.函数5523--+=x x x y 的单调递增区间是___________________________。
重庆大学高数工学下资料期末试题十二含答案资料全
重庆大学《高等数学(工学类)》课程试卷20 —20 学年第学期答案:C.题号-一一二——三三四五六七八九十总分得分考试时间: ___ 120 分开课学院:数统学院课程号: 考试日期: ___________弊作绝拒、纪考肃严、信守实诚、争竞平公室教试考名姓号学级年班、业专院学考试提示1. 严禁随身携带通讯工具等电子设备参加考试;2. 考试作弊,留校察看,毕业当年不授学位;请人代考、替他人考试、两次及以上作弊等,属严重作弊,开除学籍.2.曲线x sect, y csct,z sectcsct在对应于t —点处的切线方程4是()•(A)拧¥ 22 z 2(B)x、+晋(C):22Z2 (D)x22育晋难度等级:1;知识点:多元微分学的几何应用答案:B.分析:t —时切点为G 2 '-2 2),切向量a (、-2、• 2,0).所以切线4方程为x二1 2三二.与(A)、(B)、(C)、(D)比较后知,应选(B).1 0、选择题(每小题3分,共18分)1.设Z x y x, 则-( ).xx(A)y x x y 1 (B) y x In xln y 丄xx(C) y x x y In x In 1 y _x(D) x 1x y iy x In x — x难度等级:2;知识点:偏导数t2t3、3.物质沿曲线:x t, y —,z — (0 t 1)分布,线密度为 2 3它的质量为().1 1A 0 t1 t2 t4dt (B) 0 -1 t2 t4dt(C) :t、1 t2 t4dt (D) :t2.1 t2 t4dt难度等级:2 ;知识点:第一类曲线积分的应用答案:C.组题人.审题人.命题时间教务处制则分析:化为疋积分,被积函数为只有C 符合. 4.设rm 2, n 1r m与 n 的r , r r r r J r r r—,a = 4m 2 n, b m 2n, c2m 3n ,则r 2 ar r 3(a b) 2(b c :)1 ( ). (A) 126(B) 102 (C) 103(D)104难度等级:1 ;知识点:二重积分 答案:(A)分析:四个选项都是先 y 后x 的积分顺序,曲线求交点得为(1,1),(2,4),积分区域为1 x 2,x 2 y x 2,显然(D)不符合,(C)下限小于上限不符合,(B)积分限不对,只有(A)符合. 6.设积分曲面为球面X 2 y 2 z 2 R 2的外侧,贝y难度等级:2 ;知识点:向量代数 答案:(D) 分析:「2 a(4rn n )2儲28mn n n 216 22 0 165r r , r r 、, r r 、 r 2 r r 小r 2朋a b (4 mn) (m2n) 4m7m n 2n 4 20 214r b c (mn2n)(2rm 3n) 2rri 2 2mn n 6n 2 2r 2 _r r r ra 3(a b) 2(b c)1 65 3 142 2 1 104x 2和y( 5.设积分区域D 由y 2 x 2(A) 1dx x 2f(x, y)dy1 x 2(C) 2dx 2f(x,y)dyx 2 围成,则 f (x, y)dD2 2(B) 1dx 0 f(x, y)dy 1 x 2(D) 0dx 2f (x,y)dy).O(X 2 z 2)3(xdydz ydzdx zdxdy)).(A) 0 (B)4 (C) 4 R 2(D) £ R 3难度等级:2;知识点:对坐标曲面积分的计算,高斯公式答案:(B).分析:先将 的方程代入被积函数,然后使用高斯公式,故选 B.二、填空题(每小题3分,共18分)7.极限难度等级:2;知识点:多元函数极限答案4分析:可通过分母有理化和等价无穷小的代换约去分母上的无穷小量,使分母的极限不为零.解:讪―y sin2x_ 1计网"2«6 1 4.xy 0J xy 1X0 xy8. 函数z 2x3 4xy y2 2x的驻点为_______________ . 答案:!,,1,2.3 3难度等级:1;知识点:多元函数极值分析:驻点处函数的偏导数等于0.2解:由Z x 6x 4y 20解得驻点:丄,2 , 1, 2 . z y 4x 2y 0 3 3 9. 设空间区域:x2 y2 z2 R2,则T x2~y2~ dV,难度等级:2;知识点:三重积分答案:R4.难度等级:1;知识点:旋度答案:一一x y2z 3y 3x z11. 设f(x) x4e x2,则f(69) (0)难度等级:2;知识点:函数展开成幕级数答案:0.n 2n分析:f (x) x4e x x4------- x f(69) (0) 0.因为 f (x) X4e X 幕n 0 n!级数的x69的系数为0.12. 设%(x),y2(x),y3(x)是线性微分方程y P(x)y Q(x)y f (x)的三个线性无关的解,则微分方程的通解是_________ .难度等级:1;知识点:二阶非齐次线性微分方程的通解答案:G(%(x) y3(x)) C2(y2(x) y3(x)) y3(x).类似的也可.分析:由二阶线性微分方程通解的结构定理,y.(x) V3(x)与分析::0 2 ,0,0r R,2 2-x y z2dv 二dR2d r r sin drR4.10.设向量场v A (2zv3y)iv3x z j y 2x k,则旋度rotA Y2(x) y3(x)是齐次微分方程y P(x)y Q(x)y 0的解,因此原方程的通解为G(%(x) y3(x)) C2(y2(x) y3(x)) y3(x).三、计算题(每小题6分,共24分)y 2x=2V4V 6,113.判断级数r(a 0)的敛散性.n 1 1 a难度等级:2;知识点:敛散性的判别分析:对参数进行讨论.M (x o, y°,Z o)处相切•难度等级:2 ;知识点:曲面的切平面•分析F(x,y,z) 0在点(x o,y o,z o)处的切平面的法向量为n (F x,F y,F z),两曲面在M(X o,y°,Z o)相切,说明法向量平行,且14.求微分方程xy y y2满足初始条件y— 1的解•难度等级:2;知识点:一阶线性微分方程.分析:方程为n 2的贝努利方程的初值问题•这是n 2的贝努利方程,在原式两边同除以xy2得丄dy丄y dx xydz 1zdx x 时针方向•解:(1) 0 a 1,lim 乙n1 a 1^ 1J n im T J7 I故级数发散M(X o,y o,z。
重庆理工大学高数理工类习题册答案第二册
V17 31 3二. A D 三.xoy 面 (-2,3,0)-2 a a四.cos 1 ——,cos 2——,cos 2五.(1) (-1,3, 3)二. C 三. 1. (-4, 2, —4) 2. 3. 4.四.S 15 五.去(5,V 93 2) 二. CDDCC 三. 1. 2 2. x 2四.1 .由 xoz 面上的曲线 2•由 xoy 面上的曲线 x 2二. BD 三. 1.点43’ 过点习题习题—10, 22 J3 yoz 坐标面COS5.习题二3. y 2 z 25x22x 绕z 轴旋转得到的 2—1绕x 轴旋转得到的4习题四2. x 2y 2 (0,0,3),2os 32©4. 3-,17,0 )平行于z 轴的直线332953y (x 1)2z 2x 1 四.y 3 —=cos 3 -7= cos 迈3sin 五.在xoy 平面的投影曲线 x 2 y 2x y 1 z 0在yoz 平面的投影曲线 x 2(1 y z)2z x 0在xoz 平面的投影曲线 (1 x z)2 z 0习题五.DCC 二. 1. 3x 7y 5z 14 2. (1,— 1,3) 3. 103 4. — 4,3三.x 7y 8z 12四. 9x y 3z 16 五.面方程: y 3x 3y 0习题六一. DBA 二. 1. L 0 x 12.C y 2 1y 1 1z 30 z 11,参数方程: x 1 2t,y 1 t,z 1 3t3三.直线方程:四.x 5y z 13、2X lim 20 ,x 01 X 24五、由于第八章 复习题三.1. 0 2. (X 3)2 (y 1) 4. 2 5. X 2 2 4z y ,z 6.X 2 y 3 z 1 12 20 23 四. ( 1,6,3)arcsin ——二. BBB 5 五. X 2'2(z 1)2 213.(X y)2 (z 1)23/2 六. 1、 2、3、 四、 1、 2、 35 (2,9,6) (X 1)2(yf(x,y) xy {(X, y)13 2)2 (Z 1)249sin(x 2 y 2) 0}.7665 arcsin ---133习题七lim(X, y) (0,0) y X1、2、四、1、2、4、五、1、2、2、2lim 4X y2 lim (x’y) (0,0) x4y2x 0 x4 y x '所以极限不存在2,x3 cotFy y2x1、du15x2 v n(2(x342 x z :zy x lny;22xln(xdzdtyzx yz4x4x3x2习题八4 cotyx3 y2).y2).5yjl n3(x3 7)2y2zy)y22yl nx 尹(1xln2y2lnx 7」 --- x z2x3x y12t232z 2xy2 2x y (x y)习题九6tJ1 (3t2 4t32)21dx zx yz ln xdy yx yz ln xdz2z 2y 2e 2xy 2习题1.X2. D B C y e u3、dz 3x 2 2e 2xdx 1 (x 3 e 2x )2四、1、z f(x x, y y) f(x, y)5 42dz 0.1252、z 1上 y 2f 2;z x—f1 2 f 1 2xyf 2x yyyz2z 2 --- 6xy f32xf yg;gxx y4、令u 2x y, v 3x 2y 则zz u zv2vu v13uv ・In uxu x v xyg2(3x 2y)(2x\3x 2y 1y) 2四、 1. 6x 2ycosy 3£3y 4xa)Z yxz b )2x yexy Z ye z 4xye 2X22x ye z3(2x y)3x 2y ln(2x y)五、 证明:x[y F(u) xy xF (u) z -F (u)] x yF (u) y[x F(u)]xy yF (u) xy1.2品2. e五、x 6, y 6,z 3习题习题四、1.1.3.A/5502. (3, 12. 6)2. (6e4. 01)习题3.1—(1,2,3)182. x 6y 10z 17 01. x3y 4z 1 _ 11x 4y 12z —2 4 12 22. x21 y 1z 2d1运x y 42x 1y 1 z 3. 12x 1 8y z 30 0 一J2y 3z 14 01.2四、1. 362. 182品2. e五、x 6, y 6,z 3复习题四、1. (1,3)为极大值点,极大值为103. 极大值6,极大小值X2 3 332sin(X 2 y 2) 1 03. (x,y)16且x 2 四、 1.2xy 3zf 1 yf 2 2xf 3 2. 3. 1.1. dz3x z 24y[(2x 2xz 3)d z (4yz 2 3y 2)d y72(5e2. 361. 1.1.1.16)习题十四四、R 32. 03.100习题十五2340 2.163.243 204. 8(1 cos1)dy (1 14a 4(1 cos1)f(x,y)d习题2. -R 3(3 (b1. 2 a22. 0四、 1.2.1. 641、 、1、 习题RdXdyX 2y 2f(X, y,z)d z1dX 1[(I n2 2 原式= 2、原式= 三、原式= dyX 22y 2f(X, y,z)d z8)3d 四、1、原式= 2、原式= 14 45si n2d dzcosd dzdrdr 3sin d d dz drdsin ) dz jd~22cos2、2dar 3sin dr2dz16 "93dz16 32acossi ndr(1cosr 3sin dr 10dxdy-12ddz28 3习题十九J 1 X 2dXdyD123 11620 032M x ydxdy 2 xydxdy D D 1 2D 1 3cos sin d d23d2cos 3cos sin d三、将扇形顶点放在坐标原点, y 轴为中心轴, 则质心为 (0,y)1 A D1 2ydxdy, A -a 2 2a 2 四、 ydxdy2asin五、I y x 2D (2) X 2 sin d d dxdy o,y d dza2・ Si nd 旦 sin3 质心为(0,2asin3cos2Rcos 03cos 5 R 4 4(x 2D y 2)dxdyadx a/ 2a (xy 2)dy8a 40,z zdv x 2 dx aa dy 。
重庆大学出版社高等数学题库参考答案(供参考)
第五章 不定积分1(直接积分法、换元积分法)一、单选题1.设)(x f 是可导函数,则⎰'))((dx x f 为( A ).A.)(x fB.C x f +)(C.)(x f 'D.C x f +')(2.函数)(x f 的( B )原函数,称为)(x f 的不定积分.A.任意一个B.所有C.唯一D.某一个 3.⎰=+=)(,2cos )(x f C x e dx x f x则( A ).A.)2sin 22(cos x x e x -B.C x x e x +-)2sin 22(cosC.x e x 2cosD. x e x2sin4.函数x e x f =)(的不定积分是( B ).A.x eB.c e x +C.x lnD.c x +ln 5.函数x x f cos )(=的原函数是 ( A ).A.c x +sinB.x cosC.x sin -D.c x +-cos 6.函数211)(xx f -=的原函数是( A ).A.c x x ++1 B.x x 1- C.32xD.c x x ++12 7.设x 2是)(x f 的一个原函数,则[]='⎰dx x f )(( B )A. x 2B.2C.2x D.-2 8.若c e dx e x x +=⎰, 则⎰xd e x22=( A )A.c ex+2 B.c e x + C.c e x +-2 D.c e x +-29.函数x x f sin )(=的原函数是( D )A.c x +sinB.x cosC.x sin -D.c x +-cos 10.若)()()()()(x G x F x f x G x F '-'的原函数,则均为、=( B )A.)(x fB.0C.)(x FD.)(x f ' 11.函数211)(xx f +=的原函数是( A ) A.c xx +-1B.x x 1-C.32xD.c x x ++1212. 函数211)(xx f -=的原函数是( A ) A.c xx ++1B.x x 1-C.32xD.c x x ++1213.若函数)(x f 、)(x g 在区间),(b a 内可导,且)()(x g x f '=',则( B ) A.)()(x g x f = B.C x g x f +=)()(C.)()(x g x f ≠D. 不能确定)(x f 与)(x g 之间的关系 14.若)()(x f x F =',则下列等式成立的是( B ). A.C x f dx x F +='⎰)()( B.⎰+=C x F dx x f )()( C.⎰+=C x f dx x F )()( D.C x F dx x f +='⎰)()( 15.经过点)1,0(-,且切线斜率为x 2的曲线方程是( D ).A.2x y =B. 2x y -=C. 12+=x yD. 12-=x y 二.填空题1.)25ln(2125x d x dx --=-.2.)1(212x d xdx --=.3.C aa dx a xx+=⎰ln .4.设)(x f 是连续函数,则dx x f dx x f d )()(=⎰.5.xx cos 2+的原函数是x x sin 2+.6.]4)3[(21)3(2---=-x d dx x .7.C x xdx +=⎰7sin 717cos .8.)1(ln 3133-=x x a d adx a .9.)3(cos 313sin x d xdx -=.10.C x dx x x +=⎰2ln 21ln .11.C x dx x +=⎰4341.12.)C 41(2222+-=--x x e ddx xe .13.C x xdx x +=⋅⎰2sin 21sin cos . 14.C x dx x +=+⎰3arctan 319112.15.C x x dx x +-=⎰)sin (212sin 2. 16.⎰+='C x f dx x f )2(21)2(.17.设⎰+=.)()(C x F dx x f ,若积分曲线通过原点,则常数)0(F C -=.18.)3(arctan 31912x d x dx=+. 19.)(2122x x e d dx xe =.20.已知xx f C x dx x f 2sin )(,sin )(2=+=⎰则.21.设)()()(21x f x F x F 是、的两个不同的原函数,且=-≠)()(,0)(21x F x F x f 则有 C .22.C x x dx x x +-=+-⎰222111 23.Ce dx e xxx +-=⎰1121.24.)1ln(21122-=-x d dx x x .25.若x x f sin )(的导函数是,则)(x f 的原函数为Cx +-sin .26.设)(3x f x 为的一个原函数,则dxx x df 23)(=.27.)2cos 41(812sin x d xdx -=28.x x sin 2+的一个原函数是x x cos 313-.29.)3(cos 33sin x d dx x -=.30.Cx xdx +-=⎰cos ln tan .31.()C x dx x +--=-⎰)21sin(2121cos .32.Cx xdx +=⎰tan sec 2. 33.C x x dx +-=⎰3cot 313sin 2.34.设x 2是)(x f 的一个原函数,则⎰='])([dx x f 2 . 三.判断题 1.⎰+=cx xdx cos sin ( × ) 2.xx edx e =⎰( × )3.⎰-=.cos sin x xdx ( × ) 4.⎰+-=cx xdx cos sin ( √ ) 5.)21sin()]21[sin(x dx x -=-⎰( × ) 6.⎰+-=cx xdx sin cos ( × )四.计算题1.求不定积分dx x x ⎰+21. 解:原式=C x x d x ++=++⎰23222)1(31)1(1212.求不定积分dx x ⎰-31. 解: 原式=C x +--3ln3.求不定积分⎰+dx e e x x 1. 解:原式=C e e d exx x++=++⎰)1ln()1(11 4.求不定积分⎰+-dx xx x)3sin 21(. 解: 原式=C x x x +++ln 3cos 22 5.求不定积分⎰-dx xe x 2. 解: 原式=C e x +--2216.求不定积分dx x x⎰+12. 解: 原式=C x ++)1ln(2127.求不定积分dx x x ⎰+2)72(. 解: 原式=C x x x ++⋅+7ln 24914ln 1422ln 24 8.求不定积分⎰+dx x 10)12(. 解: 原式=C x ++11)12(2219.求不定积分⎰+-dx xx x )1)(1(. 解: 原式=C x x x x x +-+-221522210.求不定积分⎰xdx 2sin . 解: 原式=C x x +-2sin 4121 11.求不定积分⎰dx xx 22cos sin1. 解: 原式=C x x +-cot tan 12.求不定积分dx x ⎰+321. 解: 原式=C x ++32ln2113.求不定积分xdx xarctan 112⎰+. 解: 原式=C x +2)(arctan 21 14.求不定积分⎰-dx x x 4313. 解: 原式=C x +--41ln 43 15.求不定积分⎰+dx x 2411. 解: 原式=C x +2arctan 21 16.求不定积分⎰+dx x x)5(3. 解: 原式=C x x++5ln 5414 17.求不定积分⎰-dx e x 5. 解: 原式=C e x+--551五.应用题1.设一质点作直线运动,已知其加速度为t t a sin 3122-=,如果0=t 时3,500-==s v , 求(1)t v 与的函数关系; (2)t s 与的函数关系. 解:32sin 3)(2sin 3)2cos 34()(2cos 34)(cos 34)sin 312()(43,04335,032-++=−−−→−+++=++=++=−−→−++=-=-====⎰⎰t t t t s c t t t dt t t t s t t t v C t t dt t t t v s t v t2.求经过点(0,0),且切线斜率为x 2的曲线方程.解:20,022x y C x xdx y y x =−−−→−+====⎰3.一物体由静止开始运动,t 秒末的速度是23t (米/秒),问(1)在3秒末物体与出发点之间的距离是多少? (2)物体走完360米需多长时间?解:设运动方程为:30,032)(3)(t t S C t dt t t S S s t =−−→−+=====⎰(1)当3=t 时,27)3(=S (米)(2)当.360360)(33秒=⇒==t t t S4.一曲线过原点且在曲线上每一点),(y x 处的切线斜率等于3x ,求这曲线的方程. 解:40,0434141x y C x dx x y y x =−−−→−+====⎰ 5.已知物体由静止开始作直线运动,经过t 秒时的速度为180360-t (米/秒),求3秒末物体离开出发点的距离.解: t t t S C t t dt t S s t 180180)(180180180)-60t 3()(20,02-=−−→−+-====⎰.当3=t 时,1080)3(=S (米).6.求经过点)1,(e ,且切线斜率为x 1的曲线方程.解:x y C x dx xy y e x ln ln 11,=−−→−+====⎰. 7.求经过点(0,0),且切线斜率为211x+的曲线方程.解:x y C x dx x y y x arctan arctan 110,02=−−−→−+=+===⎰. 第五章 不定积分2一.单选题1.下列分部积分法中, dv u ,选择正确的是( A ). A.⎰==xdxdv x u xdx x 2sin 2sin ,, B.xdxdv u xdx ln ,1,ln ==⎰C.dxx dv e u dx e x x x22,,==--⎰D.xdxdv e u dx xe xx==⎰,,2.⎰⎰-=)(2arctan d 2arctan Axd x x x x .A.x arctan2B.x arctan4C.x arctan2-D.x arctan4- 3.=⎰2-4d xx ( A ).A.C x +2arcsinB.C x +arcsinC.Cx +2arccos D.C x +arccos二.判断题1.分部积分法u v uv v u d d ⎰-=⎰的关键是恰当的选择u 和v d ,使u v d ⎰应比v u d ⎰容易积分.( √ )2.若被积函数中含有22a x ±,则可利用三角函数代换法化原积分为三角函数的积分.( √ ) 三.填空题1.Cx dx x ++=+⎰1211.2.设)(x f 有一原函数⎰+-='Cx dx x f x xx cos )(,sin 则.3.C x x x xdx x +-=⎰2241ln 21ln .4.)3(arcsin 31912x d xdx =-.5.Cx x e dx e x x x ++-=⎰)22(22.6.⎰++-=C x x x xdx x 3sin 913cos 313sin .四.计算题1.求不定积分⎰-dx x x232. 解:原式=Cx x d x +--=---⎰2223231)32(321612.求不定积分⎰dxx e x 22. 解:原式=C x x e x ++-)21(2122 3.求不定积分⎰++dxx x 11. 解:C x x C t t dtt t t x +--+=+-=-=+⎰1)1(3232)22(132232原式4.求不定积分⎰+)1(x x dx. 解:cx C t dt t t x +=+=+=⎰arctan 2arctan 21222原式5.求不定积分⎰xdxx 2sin . 解:原式=C x x x ++-2sin 412cos 21 6.求不定积分⎰+dx e x x 5)2(. 解:原式=C x e x ++)59(515 7.求不定积分dxxex⎰-4. 解:原式C x ex++-=-)16141(4 8. 求不定积分⎰++dxx 111. 解:原式[]C x x +++-+=)11ln(129.求不定积分⎰+-dxx 1211. 解:原式[]C x x +-+++=112ln12- 10.求不定积分dxex⎰+11. 解:原式=C e e xx +++-+1111ln11.求不定积分⎰xdxxln 2. 解:原式C x x +-=)31(ln 313 12.求不定积分dx x x ⎰-1. 解:原式C x x +---=)1arctan 1(213.求不定积分⎰---dxx x 22112. 解:原式C x x +-=)(arcsin 214.求不定积分⎰dx a x x 2 )1,0(≠>a a . 解:原式C aa x a x a x++-=)ln 2ln 2ln (32215.求不定积分dxx⎰-2941. 解:原式C x +=23arcsin 31 16.求不定积分dxx ⎰sin . 解:原式C x x x ++=sin 2cos -217.求不定积分⎰xdx x 3cos . 解:原式C x x x ++=3cos 913sin 31 18.求不定积分dxx x ⎰+2. 解:原式C x x ++-+=2123)2(4)2(32五.应用题 (增加题)第六章 定积分一.单选题 1.)(240Ddx x =-⎰A.⎰⎰-+-4220)2()2(dxx dx x B.⎰⎰-+-422)2()2(dxx dx x C.⎰⎰-+-422)2()2(dxx dx x D.⎰⎰-+-422)2()2(dxx dx x2.=⎰a adx x f )(( C ) A.大于0 B.小于0 C.等于0 D.不能确定 3.⎰⎰--=+1111)()(dx x f dx x f ( C )A.大于0B.小于0C.等于0D.不能确定 4.定积分⎰badxx f )(是( D )A.一个原函数B.()x f 的一个原函数C.一个函数族D.一个常数 5.定积分⎰badxx f )(的值的大小取决于( C )A.)(x fB.区间 []b a ,C.)(x f 和[]b a ,D.都不正确 6.定积分⎰badxx f )(的值的大小取决于( C )A.)(x fB.区间 []b a ,C.)(x f 和[]b a , D.无法确定 7.⎰⎰=-3234)()(dx x f dx x f ( A )A.⎰42)(dxx f B.⎰24)(dxx f C.⎰43)(dxx f D.⎰32)(dxx f8.下列命题中正确的是( C )(其中)(),(x g x f 均为连续函数) A.在[]b a ,上若)()(x g x f ≠则dxx g dx x f ba ba⎰⎰≠)()( B.⎰⎰≠babadtt f dx x f )()( C.若)()(x g x f ≠,则⎰⎰≠dxx g dx x f )()( D.⎰=badxx f dx x f d )()(9.=⎰dx x f dx d ba)(( B ) A.)(x f B.0 C.)(x f ' D.)(x F 10. 若1)(=x f ,则⎰=ba dx x f )(( C )A.1B.b a -C. a b -D.0 11.定积分⎰badxx f )(是( B )A.任意的常数B.确定的常数C.)(x f 的一个原函数D.)(x f 的全体原函数 12.若⎰=+12)2(dx k x ,则=k ( B )A.-1B.1C.1/2D.0 13.=-⎰dx x 5042( C )A.11B.12C.13D.14 二.判断题1.函数在某区间上连续是该函数在该区间上可定积分的必要条件. ( × )2.a b dx ba -=⎰0 . ( × )3.⎰='badx x f 0))(( . ( × )4.x xdx dx d ba sin sin ⎰=. ( × )三.填空题1.设)(x f '在[]b a ,上连续,则)()()(a f b f dx x f b a-='⎰.2.C dx xxx +=⋅⎰6ln 6321. 3.4111022π-=+⎰dx x x .4.ee dx x e x-=⎰2121.5.设⎰⎰==52515)(,3)(dx x f dx x f ,则2)(21-=⎰dx x f .6..0113=⎰-dx x .7.若)(x f 在[]b a ,上连续,且⎰=ba dx x f 0)(,则[]ab dx x f ba-=+⎰1)(.8.由曲线22+=x y ,直线3,1=-=x x 及x 轴围成曲边梯形的面积352)2(312=+=⎰-dx x A .9..0sin 12=⎰dx xdx d .10.11ln4141=+-⎰-dx xx.11.1)1sin(212=⎰dx xx ππ. 12.32112=⎰-dx x .13.0cos 11⎰-=xdx x .14.利用定积分的几何意义填写定积分的值π41112=-⎰dx x .15.22sin sin x dt t dx d x⎰=.16..0sin 222=⎰-xdx x .17..0113=⎰-dx x .18. 的值为积分.21ln 1⎰edx x x 19.2)253(22224⎰⎰=++-dx dx x x .20.11-=⎰e dx e x . 21.431=⎰-dx .22.⎰1212ln xdxx 的值的符号为 负 .四.计算题 1.求定积分.⎰+411xdx 解:原式)32ln 1(2+=2.求定积分⎰-124x dx. 解:原式6arcsin 10π==x3.求定积分⎰-+-01)32)(1(dxx x . 解:原式21-= 4.求定积分dxx⎰--2121211 解:原式3arcsin 2121π==-x5.求定积分⎰-+12511x dx 解:原式=2ln 54)511ln(5112=⎥⎦⎤⎢⎣⎡+-x6.求定积分dx x ⎰+9411解:原式[])2ln 1(2)1ln(232+-=-+-=t t7.求定积分dxe x⎰-1. 解:原式eex1101-=-=- 8.求定积分dxx ⎰212 解:原式3712313==x9.求定积分θθπd ⎰402tan 解:原式[]4104tan ππθθ-=-=10.求定积分.dx xx ⎰+402sin 12sin π解:原式232ln 04)sin 1ln(=+=πx 11.求定积分dxx x ⎰-ππ23sin . 解:原式=012.求定积分()dxxx ⎰--2121221arcsin . 解:原式=324)(arcsin 31321213π=-x 13.求定积分dxx x ⎰+911. 解:原式2ln 213)1ln(2=+=x14.求定积分dxex x⎰12. 解:原式201)22(2-=+-=e x x e x15.求定积分⎰+104)1(x dx 解:原式24701)1(31-3=+=-x 16.求定积分dxxe x ⎰2. 解:原式102)1(2+=-=e x e x 17.求定积分⎰-1dxxe x . 解:原式ex e x2101)1(--=+=- 18.求定积分dx x ⎰⎪⎭⎫ ⎝⎛+πππ33sin . 解:原式0)3cos(3=+-=πππx19.已知⎩⎨⎧≤<-≤≤=31,210,)(2x x x x x f ,计算⎰20)(dx x f . 解:原式⎰⎰-=-+=2110261)2(dx x dx x 20.求定积分()d x x x +⎰194. 解:原式627149)2132(223=+=x x21.求定积分⎰1arctan xdxx . 解:原式=214)arctan arctan (21102-=⎥⎦⎤⎢⎣⎡+-πx x x x22.求定积分⎰10arcsin xdx . 解:原式1201)1arcsin (2-=-+=πx x x23.求定积分⎰262cos ππudu . 解: 原式836)2sin 21(2162-=+=πππu u24.求定积分()dx x x x ⎰+2sin π. 解: 原式18sin cos 21202+=⎥⎦⎤⎢⎣⎡+-=ππxx x x 25.求定积分dx x x ⎰-121221. 解: 原式[]41cot sin 24πππ-=--=t t t x26.求定积分dx x x1sin 1212⎰ππ. 解: 原式11cos12==ππx27.求定积分dxx ⎰+101210. 解: 原式10ln 4950110ln 21012==+x 28.求定积分xdxx ⎰23cos sin π解: 原式410cos 41-24==πx29.求定积分⎰1024dx xx . 解: 原式10ln 710ln 81=⎥⎦⎤⎢⎣⎡=x 30.求定积分dx x x e⎰-1ln 1. 解: 原式21ln 21ln 12=⎥⎦⎤⎢⎣⎡-=ex x31.求定积分dxx x ⎰+31)1(1. 解: 原式[]6arctan 2312π==t t x32.求定积分xdxx cos sin 23⎰π. 解: 原式410sin 4124==πx33.求定积分⎰--1321dx x . 解: 原式[]5ln 2ln -13=-=-x34.求定积分dx x x x ⎰++21222)1(12 解: 原式4212arctan 1arctan 21π-+=⎥⎦⎤⎢⎣⎡-=x x 35.求定积分⎰+21ln 1e x x dx. 解: 原式[])13(2ln 1221-=+=e x36.求定积分dxe x x ⎰22. 解: 原式)1(21214202-=⎥⎦⎤⎢⎣⎡=e e x37.求定积分dxx ⎰20sin π. 解: 原式10cos 2=-=πx38.求定积分⎰++10)32)(1(dx x x . 解: 原式211252132=⎥⎦⎤⎢⎣⎡++=x x x39.求定积分dttet ⎰-1022. 解: 原式212112---=⎥⎥⎦⎤⎢⎢⎣⎡-=e e t 40.求定积分dx x x ⎰+102212. 解: 原式[]22)arctan (210π-=-=x x41.求定积分⎰πsin xdxx . 解: 原式[]ππ=+-=0sin cos x x x42.求定积分dx x xe⎰12ln . 解: 原式311ln 313==e x43.求定积分⎰2cos sin 3πxdxx . 解: 原式230sin 2322==πx44.求定积分()⎰ωπωω20sin 为常数tdt t 解: 原式2022sin 1cos 12ωπωωωωωω-=⎥⎦⎤⎢⎣⎡+-=t t t45.求定积分dxx ⎰230cos π. 解: 原式[][]3sin sin 2322=-=πππx x 46.求定积分dxx ⎰--2221. 解:原式43131231213113123=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=---x x x x x x47.求定积分⎰+331211dx x. 解:原式[]6arctan 331π==x48.求定积分⎰+161 4x x dx . 解:原式23ln 2)1ln(2142124+=⎥⎦⎤⎢⎣⎡++-=t t t t x 五.应用题1.已知生产某产品x (百台)时,总收入R 的变化率x R -='8 (万元/百台),求产量从从1(百台)增加到3(百台)时,总收入的增加量. 解:由已知x R -='8得总收入的增加量为:12218)8(R 3131312=⎥⎦⎤⎢⎣⎡-=-='=⎰⎰x x dx x dx R2.试描画出定积分⎰ππ2cos xdx所表示的图形面积,并计算其面积.解:[]1sin cos 22=-=-=⎰ππππx xdx S . (图形略)3.试描画出定积分⎰ππ2sin xdx 所表示的面积图形,并计算其面积.解:[]1cos sin 22=-==⎰ππππx xdx S . (图形略)4.计算曲线3x y =,直线3,2=-=x x 及x 轴所围成的曲边梯形面积.解:49741413402433023=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-=+-=--⎰⎰x x dx x dx x S .(图形略) 5.计算抛物线24x y -=与x 轴所围成的图形面积. 解: 24x y -=与x 轴的交点为(-2,0),(2,0)6.已知生产某产品x (百台)时,总成本C 的变化率为x C +='2(万元/百台),求产量从1(百台)增加到3(百台)时总成本的增加量.解:.8212)2(31312=⎥⎦⎤⎢⎣⎡+=+=⎰x x dx x C7.计算函数x y sin 2=在⎥⎦⎤⎢⎣⎡2,0π上的平均值.解:[]πππππ4cos 222sin 22020=-==⎰x xdxy8.计算函数x y cos 2=在⎥⎦⎤⎢⎣⎡2,0π上的平均值.解:[]πππππ4sin 222cos 2202===⎰x xdxy第七章 定积分的应用一.单选题1.变力使)(x f 物体由],[b a 内的任一闭区间]d ,[x x x +的左端点x 到右端点x x d +所做功的近似值为( C ).A.)(x df -B.)(dx fC.dx x f )(D.dx x f )(-2.一物体受连续的变力)(x F 作用, 沿力的方向作直线运动,则物体从a x =运动到b x =, 变力所做的功为( A ). A.⎰b a x x F d )( B.⎰a b x x F d )( C.⎰-ab x x F d )( D.⎰-ba x x F d )(3.将曲线2x y =与x 轴和直线2=x 所围成的平面图形绕y 轴旋转所得的旋转体的体积可表示为=y V ( C ).A.dx x ⎰204π B.⎰4ydyπ C.()dyy ⎰-44π D.()dyy ⎰+44π二.判断题 1.定积分⎰b adxx f )(反映在几何意义上是一块[a,b]上的面积. ( ╳ )2.已知边际利润求总利润函数可用定积分方法. ( √ ) 三.填空题1.计算曲线x y sin =与曲线2π=x 及0=y 所围成的平面图形的面积可用定积分表示为⎰=20sin πdxA .2.抛物线3x y =与x 轴和直线2=x 围成的图形面积为⎰23dxx .3.由曲线2x y =与直线1=x 及x 轴所围成的平面图形,绕x 轴旋转所的旋转体的体积可用定积分表示为⎰=14dxx V x π.四.计算题1.求抛物线3x y =与x 轴和直线3=x 围成的图形面积.2.把抛物线ax y 42=及直线)0(>=b b x 所围成的图形绕x 轴旋转,计算所得旋转体的体积. 3.一边长为a m 的正方形薄板垂直放入水中,使该薄板的上边距水面1m ,试求该薄板的一侧所受的水的压力(水的密度为33kg/m 10, g 取2m/s 10).4.计算抛物线2x y =与直线轴和x x x 3,1=-=所围成的平面图形绕x 轴旋转所得到的旋转体体积.5.由22x y x y ==和所围成的图形绕x 轴旋转而成的旋转体体积.6.求由曲线x y 1=与直线x y =及2=x 所围成的图形的面积.7.用定积分求由0,1,0,12===+=x x y x y 所围平面图形绕x 轴旋转一周所得旋转体的体积.8.求曲线22)2(,-==x y x y 与x 轴围成的平面图形的面积.9.用定积分求底圆半径为r ,高为h 的圆锥体的体积.10.计算曲线3x y =和x y =所围成的图形面积.11.计算抛物线24x y -=与x 轴所围成的图形面积.12.求曲线2x y =与x y =所围成的图形的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:
则
则
2.设 为可导函数,求下列函数对于 的导数
(1) (2) (3)
(4) (5) (6)
解析:考查复合函数的导数,本题没有告诉 的表达式,所以只需按照复合函数求导法则依次求解即可
解:(1)
(2)
(3)
解:设圆的方程为 ,即其圆心为 ,半径为
已知圆心经过直线 在 处的法线和点 , 的垂直平分线
点 , 的垂直平分线经过点 ,其斜率 满足 ,则
垂直平分线方程为
直线 的斜率为 ,则其在点 处的法线斜率
则法线方程为
根据方程 ,解得 ,即圆心为
则半径
圆的方程为
10.求曲线 在点 处的法线方程
解析:考查参数方程导数的应用,首先可以根据参数方程的导数求出切线的斜率,然后求解法线的斜率,最后根据点斜式求出发现方程
(2)方程两边同时对 求导,得
,解得
(3)方程两边同时对 求导,得
,解得
(4)方程两边同时对 求导,得
解得
10.求由下列参数方程所确定的函数的导数 :
(1) (2)
(3) 在 处;(4)
解析:考查参数方程导数的求解,可以利用参数方程求导法则 来求解
解:(1)
(2)
(3)
则
(4)
B组
1.已知 ,求 与
(4)
(5)
(6) ,则
3.求下列函数的导数:
(1) (2)
(3) (4)
(5) (6)
(7) (8)
(9) (10)
解析:考查函数的导数,本题综合考查了导数的四则运算法则和复合函数求导法则,对于即有四则运算,也有复合函数的,应该先进行四则运算,然后求复合函数
解:(1)
(2)
(3)
(4)对等式两边同时取对数,得 ,再两边同时求导,得
注:当熟悉的这个替换过程后,就不需要写出替换的过程了
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
9.求下列隐函数的导数 :
(1) (2)
(3) (4)
解析:考查隐函数的求导,对隐函数求导,只需将方程中的 看作是 的函数,然后方程两边同时对 求导
解:(1)方程两边同时对 求导,得
,解得
解:当 时, ,
,则
则
则切线的直角坐标方程为
6.设函数 由方程 确定,求曲线 在 处的切线方程
解析:考查导数的应用,本题涉及隐函数的求导,只需求出曲线在点 处的导数值和函数,然后利用点斜式求方程
解:对方程 两边同时对 求导,得
则
当 时, ,
则曲线 在 处的切线方程为
7.设 是由方程 所确定的隐函数,求曲线 在点 处的切线方程
解:已知 ,
则曲线在点 上的斜率为
则切线方程为 ,即
设法线方程的斜率为 ,则 ,得
则法线方程为 ,即
4.求曲线 上对应于点 处的法线方程
解析:考查参数方程导数的求解,可以利用复合函数的求导法则来求解,即将 看作为 的函数,将 看作为 的函数,则 ,由此求导
解: ,则又涉及复合函数的求导,若熟悉的话可以直接求导,若不熟悉的话,可以先做变量代换,令 , ,从而求解,这里就直接求解
解:
而当 , 时,即 ,解得
则切线的斜率为 ,由此可得法线的斜率为
则曲线 在点 处的法线方程为
A组
1.利用导数的四则运算法则求下列函数的导数:
(1) (2)
(3) (4)
(5) (6)
解析:考查导数的求解,四则法则就是导数的四种运算法则,包括加减乘除,同时要对初等函数的导数公式非常了解,详细见
解:(1)
(2)
(3)
(4)化简 ,就将一个乘积式转化为除式,然后求导
已知 ,则
(5)
(6)
2.求下列函数的导数:
当 时, ,
切线斜率为 ,则法线方程斜率为
法线方程为 ,即
5.已知曲线 通过点 ,且在横坐标 的点处具有水平切线,求 , 及曲线的方程
解析:考查导数的应用,因为横坐标 的点处具有水平切线,则 ,同时曲线经点 ,即 ,根据这两个条件可以列出两个方程,从而求解 ,
解:
根据已知条件可得
则曲线的方程为
6.设曲线 上点 处的切线倾角为 ,求 ,
解析:考查导数的应用,和上题的解题思路一样,先通过导数求斜率,然后,得
则 ,
则曲线 在点 处的切线方程为
8.试证:抛物线 上任一点的切线所截两坐标轴截距之和等于
解析:考查导数的应用,由题意分析,首先要求出切线方程,然后求出两坐标轴截距之和,这里没有告诉是那一点的切线,因此可以设切点为 ,满足
证明:对方程 两边同时对 求导,得
则 ,
则抛物线 上任一点的切线方程为
当 时, ;当 时,
该切线与 轴的截距为 ,与 轴的截距为
则两坐标轴截距之和为 即证结论
9.求经过点 且与直线 相切于点 的圆的方程
解析:考查圆的方程的求解,圆的方程有两种,一般式和标准式,这里可以设为标准式,即求出圆的圆心和半径,再根据标准式 求出圆的方程
解析:同样考查导数的应用,和上题类似,由已知可得切线斜率为 ,即 ,又知 ,则可求解出 , 的值
解:
7.设函数 在点 处可导,求 ,
解析:考查可导性和连续性的应用,已知可导可以推出连续,即可以得出 ,同时函数点 处可导可以得出 存在,即 ,根据这两个结论可以求解出 ,
解:已知 ,且 ,则
当 时, ;当 时,
(5)
(6)对等式两边同时取对数,得 ,再两边同时求导,得
(7)
(8)
(9)
(10)
(注:(4)(6)采用的对数法,课本上有详细的介绍)
4.设曲线 在点 处的切线与直线 垂直,求
解析:考查导数的应用
解:设曲线在点 处的切线为 ,根据题意 ,得
则 ,因此
5.求对数螺线 在点 处的切线的直角坐标方程
解析:考查直角坐标与极坐标的关系,以及导数的应用,已知 ,则将点的坐标换成直角坐标,然后求出切线的斜率就可以求出方程的表达式
(1) ,求 , ;
(2) ,求 ,
解析:考查函数导数的求解,上面两题都是由基本初等函数构成的,直接利用导数四则法则求解
解:(1)
则 ,
(2)
则 ,
3.求曲线 在横坐标为1的点处的切线方程和法线方程
解析:考查导数的应用,从上节可知,曲线在某点的切线斜率等于该点上导数的值,由此可以利用点斜式求切线方程,法线与切线垂直,则其斜率相乘为1
则 ,
, ,则
8.求下列函数的导数:
(1) (2)
(3) (4) ( , , 是常数)
(5) (6)
(7) (8)
(9) (10)
(11) (12)
解析:考查导数的求解,本题总要考查的是复合函数的求导,利用复合函数的求导法则 求解,中间变量的个数根据具体题目来判断
解:(1)令 ,则
(2)令 ,
则
(3)