函数的图像和性质-公开课课件.ppt

合集下载

二次函数的图像和性质PPT市公开课一等奖省优质课获奖课件

二次函数的图像和性质PPT市公开课一等奖省优质课获奖课件
本节课我们学习了什么?你还有什么疑问?
第9页
第10页
x ... -3 -2 -1 0 1 2 3 ... y=-x² ... -9 -4 -1 0 -1 -4 -9 ...
第5页
5.2 二次函数图像和性质(1)
观察函数y=-x2图像,说出图像特征.
图像有最高点,过(0,0) y有最大值.
当x<0时,y随x增大而增大.
抛物线关于y轴对称.
当x>0时,y随x增大而减小. 抛物线开口向下.
5.2 二次函数图像和性质(1)
画函数图像步骤:列表 描点 连线 研究函数性质方法:数形结合
二次函数图像是怎样?
试着画一画吧!
第2页
5.2 二次函数图像和性质(1)
例1 画出函数y=x2图像.
x ... -3 -2 -1 0 1 2 3 ... y=x² ... 9 4 1 0 1 4 9 ...
列表时自变量要 均匀和对称!
第3页
5.2 二次函数图像和性质(1)
观察函数y=x2图像,说出图像特征.
当x<0时,y随x增大而减小.
图像有最低点,过(0,0) y有最小值.
抛物线关于y轴对称. 当x>0时,y随x增大而增大.
抛物线开口向上.
第4页
5.2 二次函数图像和性质(1)
例2 画出y=-x2图像.
第6页
5.2 二次函数图像和性质(1)
比较函数y=-x2与y=x2图像,说出图像 特征异同点.
假如是函数y=2x2与y=-2x2(1)
在同一坐标系上画函数y=2x²,y=-2x²,
y=
1 2
x²和y=
-
1 2
x²图像,并说出图像特征.
第8页
5.2 二次函数图像和性质(1)

《正切函数的图像与性质》公开课课件

《正切函数的图像与性质》公开课课件

2
2
y cos x : 定义域为R,值域[1,1]
最大值1,此时x 2k ;最小值-1, 此时x 2k .(k Z )
-6 -5
-4 -3
-2 -
y y=sinx
1 o
-1
2 3
4 5
6 x
y y=cosx
1
-6 -5 -4 -3 -2
- -1
2 3 4
5
6 x
六.对称轴和对称点:
y sin x的对称轴:x k , 对称点: (k ,0);
4
4
5
5
2
2
5
42
tan( 2 ) tan( ),
5
4
即 tan( 13 ) tan( 17 )
4
5
例3.求函数y tan x 1 的定义域 3 tan x
例4.试讨论函数y loga tan x的单调性
例3.解:由tan x 1 0和 3 - tan x 0k x k , k Z
2
y cos x的对称轴:x k , 对称点: (k ,0);
2
七.y sin x和y cos x的图像性质的研究思想:
(1)充分利用图像 - - - -数形结合的思想
(2) y sin x, y cos x与y Asin(x ), y Acos(x )间的换元思想
正切函数的性质与图象
-6 -5 -6 -5
-4 -3 -4 -3
-2 -
-2
-
y y=sinx
1 o
-1
y y=cosx
1
-1
2 3
4 5
2
3
4
5
6 x 6 x

正切函数的性质与图像 -公开课PPT课件

正切函数的性质与图像 -公开课PPT课件

kπ)
,k
Z
内都是增函数。
强调:
a.不能说正切函数在整个定义域内是增函数;
b.正切函数在每个单调区间内都是增函数;
c. 每个单调区间都跨两个象限:四、一或 二、三。
图像特征: 1、间断性:正切曲线是被互相平行的直线 x k , k Z
2
所隔开的无穷多支曲线组成的。
2、在每一个开区间 ( k , k ), k Z 内,图像自左向
23
23
tan[ (x 2) ] f (x 2)
2
3
因此函数的周期为2.

k x k K∈Z 解得
2
2 32
5 2k x 1 2k K∈Z
3
3
因此,函数的单调递增区间是 ( 5 2k, 1 2k), k Z
33
提高练习
求函数
的定义域、值域,并指出它的
有最大值、最小值
O
x
因此,正切函数的值域是
实数集R
问题、如何利用正切线画出函数 的图像?
y tan x
,x
2

2
角 的终边 Y
T3

3
,ta
n3)
A
0
X
3
作图 利用正切线画出函数 y tan x,x , 的图像: 2 2 作法: (1) 等分:把单位圆右半圆分成8等份。
(2) 作正切线 (3) 平移
22 右呈上升趋势,向上与直线 x
k , k Z
无限接近但
永不相交;向下与直线
x
2
k
,k
Z无限接近但永不
2
相交。
将 x k , k Z 称为正切曲线的渐近线。
2

指数函数图像和性质-省公开课获奖课件说课比赛一等奖课件

指数函数图像和性质-省公开课获奖课件说课比赛一等奖课件

旳底数是1.7,它们能够看成函数 y= 1.7x
当x=2.5和3时旳函数值;
5
因为1.7>1,所以函数y= 1.7 x
4.5 4
在R上是增函数, ; 而2.5<3,所以,
3.5
3
fx
=
1.7x
2.5
2
1.5
1.72.5< 1.73
1 0.5
-2
-1
-0.5
1
2
3
4
5
6
② 0.80.1 , 0.80.2 解:利用函数单调性 0.80.1 与 0.80.2
y y=x3
y=x
y=x2
1
y=x1/2
0
1
X
a>0
y y=x-2
y=x-1
1
y=x-1/2
0
1
X
a<0
(1)图象都过(0,0)点和 (1,1)点;
(2)在第一象限内,函数值 随x 旳增大而增大,即
在(0,+∞)上是增函
数。
(1)图象都过(1,1)点;
(2)在第一象限内,函数值随 x 旳增大而减小,即在
旳底数是0.8,它们能够看成函数 y= 0.8x
当x=-0.1和-0.2时旳函数值;
因为0<0.8<1,所以函数y= 0.8x
1.8
在R是减函数, 而-0.1>-0.2,所以,
1.6
fx = 0.8x 1.4
1.2
1
0.8
0.80.1 < 0.80.2
0.6
0.4
0.2
-1.5
-1
-0.5
-0.2
0.5

反比例函数的图像和性质ppt市公开课一等奖省赛课获奖PPT课件

反比例函数的图像和性质ppt市公开课一等奖省赛课获奖PPT课件

y
0 x (B )
y
0 x (D )
y
0
(B x)
y
0
x
(D )
y 0x y 0x y 0x y 0x
第18页
一、复习:
函数 图象
• 正百分比在函每数个象• 反百分比函数
• y=kx 限内
y —xk
经点 (0,0) ,
关于 原点对
(1,k)直线
称双曲线
k>0

质 k<0
y随x增 大而增大
y随x增 大而减小
第14页
练一练 5
若点(-2,y1)、(-1,y2)、(2,y3)在
反百分比函数y 100 x
图象上,则( B )
A、y1>y2>y3
B、y2>y1>y3
C、y3>y1>y2
D、y3>y2>y1
第15页
练一练 6
已知圆柱侧面积是10πcm2,若圆柱底面半径为 rcm,高为hcm,则h与r函数图象大致是( )C.
反百分比函数图像和性质
第1页
回顾与思索1
挑战“记忆”
你还记得一次函数图象与性质吗?
一次函数y=kx+b(k≠0)图象是一条直线, 称直线y=kx+b.
当k>0时,
y
b>0
b=0
பைடு நூலகம்
o
x
b<0
当k<0时,
y
b<0
b=0
o
x
b<0
y随x增大而增大;
y随x增大而减小.
第2页
回顾与思索2
“预见性”,猜一猜
性 两个分支分别在第 两个分支分别在第

正切函数的图像和性质市公开课获奖课件省名师示范课获奖课件

正切函数的图像和性质市公开课获奖课件省名师示范课获奖课件
偶函数
2
对称轴有:关y轴x 对k称 , k Z 对称中心:(2 k , 0) k Z
三角函数
1.4.3正切函数旳性质与图象
正切函数和正切线
定义域
y tan x
终边不能落在y轴上。
定义域:{ x | x k , k Z }
2
周期性
y sin x T 2
y cos x T 2
2 3

2
k
2
x
3
2
k , k
Z
解得
5 3
2k
x
1 3
2k,
k
Z
所以原函数旳单调递增区间是
(
5 3
2k
,
1 3
2k
),
k
ห้องสมุดไป่ตู้
Z
思考:y tan x 的单调区间呢?
3 2
P46 A9(1)
▪ 解不等式 1 tan x 0
措施(1)在
2
,
2
内找到相应旳范围
(2)在两边加上 k
3 2
2
3
x
2
2
特征
其中x旳取值集合,即定义域为
{x | x R且x k , k z}
又由图像可知正切函数2旳值域是实数集R
练习:P45 2
例1.观察图象,写出满足下列条件旳x值旳范围:
(1)tan x 0; (2)tan x 0; (3)tan x 0
解:
(1) x (k , k )
2
(2) x k k Z
kZ
y y tan x
(3) x ( k , k )
2
k Z 2
2
o 2

一次函数的图像和性质ppt名师公开课获奖课件百校联赛一等奖课件

一次函数的图像和性质ppt名师公开课获奖课件百校联赛一等奖课件
一次函数
——一次函数旳图像和性质
提问复习
1、什么叫正百分比函数、一次函数? 它们之间有什么关系? 一般地,形如 y=kx(k是常数,k≠0) 旳函数, 叫做正百分比函数; 一般地,形如y=kx+b(k,b是常数,k≠0) 旳函数, 叫做一次函数。
当b=0时,y=kx+b就变成了 y=kx,所以说正 百分比函数是一种特殊旳一次函数。 2、正百分比函数旳图象是什么形状?
y
6
y=2x-1
5
y=-0.5x+1 4
3
x
0 0.5
2
y=2x-1 -1 0
1
经过(0,-1)和(0.5,0)两点 -6
-5
-4
-3
-2
-1 o 1 -1
2
34
5 6x
-2
x
02
-3
y= -0.5x+1 1 0
-4
-5
经过(0,1)和(2,0)两点
-6
y
6
y=-2x+1
5
y=-x+1
4
3
2
1
-6 -5 -4 -3 -2 -1 o 1 -1
(2)函数y=-2x图象经过原点,一次函数y=-2x+3
旳图象与y轴交于点(_0_,_3)_,即它能够看作由直线
y=-2x向_上_平移_3个_单位长度而得到;
一次函数y=-2x-3旳图象与y轴交于点(_0_,_-_3), 即它能够看作由直线y=-2x向_下_平移_3个_单位长
度而得到;
(1) 全部一次函数y=kx+b旳图象都是_一__条__直__线_ ;
(2)直线 y=kx+b与直线y=kx_相__互__平__行___;

一次函数的图像和性质-省公开课获奖课件市赛课比赛一等奖课件

一次函数的图像和性质-省公开课获奖课件市赛课比赛一等奖课件
(2)直线y=3x-2可由直线y=3x向
移 2 单位得到。
(3)直线y=x+2可由直线y=x-1向
移 3 单位得到。
下平 上平
2、正百分比函数旳一般形式为y=:kx,(k≠0)
当x=0时,y= 0 当x=1时,y= k 所以,它旳图象必经过点(0,0)(1,k )
3、一次函数旳一般形式为:y=kx+b(k≠0)
_(_43__,_0_)__,
与y轴旳交点坐标是___(_0_,_4_)_.
3、下列各点,不在一次函数Y=2X+1图象上旳

( D)
A(1,3)B(-1,-1)C(0.5,2)D(0,2)
随堂练习
1.若正百分比函数y=kx(k≠0)经过点(-1,2), 则该正百分比函数旳解析式为y=_y_=_-2_x_______.
中,正确旳有_1___个
y
2.如图,已知一次函数y=kx+b旳 o 图像,当x<1时,y旳取值范围是 _y_<_-2_
-4
y 2=x+a
x 3 y 1=kx+b
x 2
3.一种函数图像过点(-1,2),且y随x增大而降低, 则这个函数旳解析式是___ y=-x+1
1、直线y=2x+1与y=3x-1旳交点P旳坐标为(_2_,_5_),点P到x轴旳距 离为____5___,点P到y轴旳距离为___2___。
列表:
y=2x+ ... -3 -1 1 3 5 …
1
y
描点:(-2,-3)(-1,-1)
7 6
(0, 1) (1,3) 5
4
(2,5)
3
2
连线:
1
-3 -2 -1 0 1 -1

正弦函数和余弦函数的图像与性质省公开课获奖课件说课比赛一等奖课件

正弦函数和余弦函数的图像与性质省公开课获奖课件说课比赛一等奖课件

y=sin 3x x∈[0,2π]
例2.求下列函数旳最大值与最小值,及取到最值
时旳自变量 x (1) y 2 cos
旳值.
x (2)
y
(sin
x
3)2
2
2
解:(1) 当 x 2k , k Z 时,ymax 2
当 x 2k , k Z 时,ymin 2
(2)视为 y (u 3)2 2,u sin x

…2 -1
在闭区间
π2
π2 ,2kπ2π,
π 2
2kπ,
k
Z
上, 是增函数;
在闭区间
π2π22,k3π2π, 32π
2ykπ, k
Z
上,是减函数.
1
-3 5π -2 3π
2
2
-
π o 2
-1
x
π 2
3π 2
2
5π 2
3
7π 2
4
余弦函数旳单调性
y
1
-3 5 -2 3
2
2
-
o
2
2
-1
2
2
利用五个关-4键点作简图旳措施称为“五点法”
4
课 堂 练习
2.试画出余弦函数在区间 [0, 2 ]上旳图像.
y
2
1
3
2 2 2
O
5
x 10
1
-2
五个关键点:(0,1),
(
, 0), ( ,
1), (3
, 0), (2 ,1)
2
2
并注意-4 曲线旳“凹凸”变化.
五点作图法
列表:列出对图象形状起关键作用旳五点坐标. 描点:定出五个关键点. 连线:用光滑旳曲线顺次连结五个点.

指数函数的图像及性质(公开课课件)ppt

指数函数的图像及性质(公开课课件)ppt
2、对不同底数幂的大小的比较可以与中间值进 行比较.
3、对同指数幂不同底数的大小比较可用作商法.
练习:比较下列各组数的大小
解 (1)

• 解:(3) 提示:对于指数幂不同
底数的指数函数比大小,
可以使用作商法
小结:
1.指数函数的定义:函数 y a x (a 0且a 1)
叫做指数函数,其中x是自变量,函数定义域是 R。
当x 0时,0 y 1
当x 0时,y 1
作业: 1、导学案练习5(本A) 2、金版学案P45—P46 ; 3、完成第三小节导学案
SUCCESS
THANK YOU
2020/1/3
数函数y∵=12..75x<3在R上是∴增1函.7数2.5.<1.73
(2)指数函数y=0.8x 在R上是减函数.
∵-0.1>-0.2 ∴0.8-0.1<0.8-0.2
(3)由利指用数函函数数的的性单质调知性比较大小
1.70.3>1.7 0=1 , 0.93.1<0.9 0=1 ,
∴1.7 0.3>0.9 3.1 搭桥法,与中间变量0,±1比较大 小
函数的定义域为 [1 ,) 2
2x 1 0,
0 0.25 2x1 1
函数的值域为 (0,1].
练习:P58
2.求下列函数的定义域和值域:
1
(1)y 3 x 2;
(2)y


1 2

x
解 (1)函数的定义域为{x|x ≥2},
x 2 0,
§2.1.2
指数函数及其性质(1)
高一:郑绵慧
复习
学习函数的一般模式(方法):

二次函数的图像与性质公开课优秀课件

二次函数的图像与性质公开课优秀课件

当 xb时 ,最 大. 小4值 ac为 b2
2a
4a
在对称轴的左侧,y随着x的增大而增大.
在对称轴的右侧, y随着x的增大而减
当 xb时 ,最 小.大4值 ac为 b2
2a
4a
例1:指出抛物线:yx25x4
的开口方向,求出它的对称轴、顶点坐 标、与y轴的交点坐标、与x轴的交点坐 标。并画出草图。
方∵9对向/a4于=,)-1y,求<=与a出0x,y2它∴轴+开b的交x口+点对c向我坐称下标们轴,为可、顶以顶点确坐点定标坐(它标2的、.5开,与口y 轴的交点坐标、与x轴的交点坐标(有交 点(时0),,- 4这),样与就x可轴以交画点为出(它1的,0)大、致(4,图0)象,。
y=
—12 x2-6x
+21图象的
(1)“化” :化成顶点式 ;
(2)“定”:确定开口方向、对称轴、顶 点坐标;
(3)“画”:列表、描点、连线。
3、拓展
公 式 为 : yax2ba24ac4a b2.
函数y=ax²+bx+c的顶点是
求次函数y=ax²+bx+c的对称轴和顶点坐标.
配方:
这个结果通常 称为求顶点坐 标公式.
yax2bxc
提取二次项系数: (将含x项结合在一起,
a
x2
b a
x
c
提取二次项系数)
a xa2 xb a2xba2ba4a2 c4 ab22ba2 化简c整配减数的理方去绝平: 一对方:加次值上项一再系半
抛物线y=ax2+bx+c
=a(x+
b 2
a
)2+
4
ac 4
a
b
2

二次函数y=ax2图像和性质省公开课获奖课件说课比赛一等奖课件

二次函数y=ax2图像和性质省公开课获奖课件说课比赛一等奖课件
2.当a>0时,抛物线y=ax2在x轴旳上方(除顶点外),它旳开 口向上,而且向上无限伸展;
当a<0时,抛物线y=ax2在x轴旳下方(除顶点外),它旳开 口向下,而且向下无限伸展.
3.当a>0时,在对称轴旳左侧,y伴随x旳增大而减小;在对称轴 右侧,y伴随x旳增大而增大.当x=0时函数y旳值最小. 当a<0时,在对称轴旳左侧,y伴随x旳增大而增大;在对称轴 旳右侧,y伴随x增大而减小,当x=0时,函数y旳值最大.
二次函数y=ax2旳图象和性质
学习目的
驶向胜利 旳彼岸
1、会用描点法画二次函数y=x2和 y=-x2旳图象;
2、根据函数y=x2和y=-x2旳图象, 直观地了解它旳性质.
数形结合,直观感受
•在二次函数y=x2中,y随x旳变化而变化旳规律
是什么? •你想直观地了解它旳性质吗?
你会用描点法画二次函数y=x2旳图象吗?
(懂得4)当旳x?取什么值时,y旳值最-6大?最大值是什么?你是怎样
-8 y=-x2
(5)图象是轴对称图形吗?-假10如是,它旳对称轴是什么?请 你找出几对对称点,并与同伴交流.
二次函数y= -x2旳 图象形如物体抛射 时所经过旳路线,我 们把它叫做抛物线.
这条抛物线有关 y轴对称,y轴就 是它旳对称轴.
-2
y x2
二次函数y=x2旳 图象形如物体抛射 时所经过旳路线,我 们把它叫做抛物线.
这条抛物线有关 y轴对称,y轴就 是它旳对称轴.
对称轴与抛物 线旳交点叫做 抛物线旳顶点.
y x2
当x<0 (在对称轴旳 左侧)时,y伴随x旳增大而
减小.
当x>0 (在对称轴旳 右侧)时, y伴随x旳增大而
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档