高中数学常用的数学思想
高中数学常见思想方法总结
高中常见数学思想方法我们通常认为数学思想就是人对数学知识的本质认识,是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观点,它在认识活动中被反复运用,带有普遍的指导意义,是建立数学和用数学解决问题的指导思想.而且数学思想方法是数学学科的精髓,是数学素养的重要内容之一,学生只有领会了数学思想方法,才能有效地应用知识,形成能力,在我们解决问题、进行数学思维时,也总是自觉或不自觉地运用数学思想方法.所以我们总结了以下几种常见的数学方法并附带例题加以说明,让学生对数学思想方法有更深刻的认识.方法一函数与方程的思想方法函数是中学数学的一个重要概念,它渗透在数学的各部分内容中,一直是高考的热点、重点内容.函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数特征,重在对问题的变量的动态研究,从变量的运动变化、联系和发展角度拓宽解题思路.方程的思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解.函数与方程的思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的.高考数学命题近年来经历了以“知识立意”到以“问题立意”再发展为以“能力立意”的过程,试图体现突出能力与学习潜能的考查,使知识考查服务于能力考查;试图突出数学的思想方法的层次,即数学思想方法、逻辑学中的方法和具体的数学方法.函数与方程的思想方法作为基本的数学思想方法之一,在知识的互相联系、互相沟通中起到了纽带作用.因此,函数与方程的思想方法一直为近几年的高考重点,大小试题中均有体现.用函数与方程的思想方法解题时,要领悟其实质,充分考虑其可行性,不可生搬硬套.【例1】 设等差数列{}n a 的前n 项的和为n S ,已知3121312,0,0a S S =><.(1)求公差d 的取值范围;(2)指出1S 、2S 、…、12S 中哪一个值最大,并说明理由.【分析】 (1)利用公式n a 与n S 建立不等式,容易求解d 的范围;(2)利用n S 是n 的二次函数,将n S 中哪一个值最大,变成求二次函数中n 为何值时n S 取最大值的函数最值问题.【解】(1) 由3a =12a d +=12,得到1a =12-2d ,所以12S =121a +66d =12(12-2d )+66d =144+42d >0,13S =131a +78d =13(12-2d )+78d =156+52d <0.解得:2437d -<<-. (2)解法一:(函数的思想)n S =21115(1)(12)222na n n d dn d n ++=+- =22124124552222d d n d d ⎡⎤⎡⎤⎛⎫⎛⎫---- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦ 因为0d <,故212452n d ⎡⎤⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦最小时,n S 最大. 由2437d -<<-得12465 6.52n d ⎛⎫<--< ⎪⎝⎭,故正整数n =6时212452n d ⎡⎤⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦最小,所以6S 最大.解法二:(方程的思想)由0d <可知12313a a a a >>>> .因此,若在112n ≤≤中存在自然数n ,使得0n a >,10n a +<,则n S 就是1S ,2S , ,n S 中的最大值. 121300S S >⎧⎨<⎩⇒1150260d a d a d ⎧+>->⎪⎨⎪+<⎩⇒6700a a >⎧⎨<⎩,故在1S 、2S 、…、12S 中6S 的值最大.【点评】 数列的通项公式及前n 项和公式实质上是定义在自然数集上的函数,因此可利用函数思想来分析,即用函数方法来解决数列问题;也可以利用方程的思想,利用不等式关系,将问题进行算式化,从而简洁明快.由此可见,利用函数与方程的思想来解决问题,要求灵活地运用、巧妙的结合,发展了学生思维品质的深刻性、独创性.【例1】 在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x 的左右顶点为A,B ,右顶点为F ,设过点T (m t ,)的直线TA,TB 与椭圆分别交于点M ),(11y x ,),(22y x N ,其中m>0,0,021<>y y(1)设动点P 满足422=-PB PF ,求点P 的轨迹;(2)设31,221==x x ,求点T 的坐标; (3)设9=t ,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关).【解】 (1)由题意知)0,2(F ,)0,3(A ,设),(y x P ,则4)3()2(2222=---+-y x y x化简整理得29=x . (2)把21=x ,312=x 代人椭圆方程分别求出)35,2(M ,)920,31(N 直线)3(31:+=x y AM ① 直线)3(65:--=x y BN ② ①、②联立得107,3T ⎛⎫ ⎪⎝⎭. (3)),9(m T , 直线)3(12:+=x m y TA ,与椭圆联立得)8040,80)80(3(222++--m m m M 直线)3(6:-=x m y TB ,与椭圆联立得)2020,20)20(3(222+-+-m m m N A BO F直线2222222224020203(20)8020:3(80)3(20)20208020m m m MN y x m m m m m m +⎛⎫-+++=- ⎪--++⎝⎭--++, 化简得222220103(20)204020m y x m m m ⎛⎫-+=-- ⎪+-+⎝⎭令0y =,解得1x =,即直线MN 过x 轴上定点(1,0).【点评】 本题主要考查求简单曲线的方程,考查直线与椭圆的方程等基础知识,考查运算求解能力和探究问题的能力.而且,本题在解决问题时,无论求点的坐标,还是求点P 的轨迹方程,都灵活运用了方程的思想,特别是在证明过程中更是很好地利用方程的有关知识,使问题画繁为简,华难为易.方法二 数形结合的思想方法数形结合,是中学数学最重要的思想方法之一.著名数学家华罗庚先生说:“数与形,本是相倚依,焉能分作两边飞;数无形时少直觉,形少数时难入微;数形结合百般好,隔离分家万事休;切莫忘,几何代数流一体,永远联系切莫分离.”这精辟地阐述了数形结合的重要性,它不仅是一个重要的数学思想,而且是一种重要的解题方法,因而数形结合的能力必然是历年高考的一个重点.所谓数形结合的思想方法,就是由数学问题所呈现的条件和结论,通过研究数式问题的几何意义,或者研究几何问题的代数意义,设法沟通数学问题在数量关系和空间形式的内在联系,使隐含条件明朗化,复杂问题简单化,抽像问题具体化,开拓题的新思路,以便最终找到解决问题的带有数形信息转换特征的数学方法.正确利用数形结合,应注意三个原则:(1)等价性原则数形信息的转换应该是等价的、充要的.要注意由于图形的直观性,往往可以成为严格推证的启导,但有时不能完整表现数的一般性,考虑问题可能不完备.(2)双向性原则数形结合的含意是双向的,即考虑问题既注意代数问题几何化,也注意几何问题代数化,而不仅仅指前者.(3)简单性原则有了解题思路,思考用几何方法,还是代数方法,还是两者兼而用之,要取决于解题的简单性原则,而不能形而上学地让几何问题代数化,代数问题几何化成为一种机械模式.运用数形结合的思想方法解题的途径主要有三条:第一,以形助数:把一些数式的几何意义明朗化,构造出解题的几何模型,突显问题的直观性,使解题思路变得形像而通畅;第二,以数助形:利用几何图形或图像图表中隐含的数式特征,构造出解题的代数模型(必要时建立坐标系),突显问题的本质,另辟解题的捷径;第三,数形互助:根据问题的需要,将以形助数和以数助形二方面结合运用.数形结合的应用是广泛的,数与形的结合点主要集中在以下几个方面:1.研究函数的性质(单调性、奇偶性、周期性、对称性、值域与最值等),可从函数图像的直观性得到鲜明的启示.2.利用数轴与坐标系(包括直角坐标系、极坐标系),使数与点对应,使函数与图像、方程与曲线结合,使代数与几何联结.这样,可利用坐标或向量的运算,探索几何图形的相关性质;利用函数图像与方程曲线的直观性,探索函数或方程的性质.3.从统计图表、图像中,收集分析出“数”的信息,由破译的数量关系建立代数模型,探索相关的结论.这类数形信息的转换能力是近年高考的新亮点.4.三角函数与单位圆、三角函数曲线的联系.5.复平面与复数、向量的沟通.6.利用类比法、换元法(如三角换元)、构造法、坐标法等构造代数问题的几何模型、几何问题的代数模型,开辟解题的新思路.【例1】 (12年上海模拟)若函数()()y f x x R =∈满足(2)()f x f x -=,且[1,1]x ∈-时,2()1f x x =-,函数lg(1),11(),00,01x x g x x xx ->⎧⎪⎪=-<⎨⎪≤≤⎪⎩,则函数()()()h x f x g x =-在区间[5,6]-内的零点个数为_________. 【答案】 9【解】 由题意,直接求解会很麻烦,且不易得到正确的答案,所以该题中求()()()h x f x g x =-的零点,可以转化为求()f x 与()g x 两函数图像的交点.则画出()f x 与()g x 的图像,由于()f x 在[1,1]x ∈-上为2()1f x x =-,且为周期函数,周期为2,而()g x 是分段函数,注意其图像共分为三部分,如图,可等共有9个交点,其中有一个易错点,即其中1个交点为(1,0)很容易被遗漏.【点评】 要求()()()h x f x h x =-在区间[5,6]-内的零点的个数,可转化为求()f x 与()h x 交点的个数,可以作出图形,观察图形易得交点的个数.本题体现了数形结合的思想,正是运用数形结合的思想方法解题的途径中的以形助数.【例2】 函数y =f (x )的图像为圆心在原点的两段圆弧,试解不等式f (x )>f (-x )十x .【解】 解法一:(以数助形) 由题意及图像,有⎪⎩⎪⎨⎧<≤---≤<-=011101)(22x x x x x f ,(1)当0<x ≤1时, f (x )>f (-x )+x 得21x ->-2)(1x --+x , 解得0<x <552; (2)当-1≤x <0时, 得-21x ->2)(1x --+x , 解得-1≤x <-552, ∴ 原不等式的解集为[-1, -552)∪(0, 552). 解法二:(数形互助) 由图象知f (x )为奇函数,∴ 原不等式为f (x )>2x ,而方程f (x )= 2x 的解为x =±552,据图像可知原不等式解集为[-1, -552)∪(0, 552). 【点评】 本题以形看数(解式,奇偶性),以数解形(曲线交点A 、B ),最后以形解数(不等式),这才是真正意义上的数形结合,扬长避短.方法三 分类讨论的思想方法分类讨论的思想方法是中学数学的基本思想方法,同时也是一种化整为零、各个击破、整合结论的解题策略.在分析和解决数学问题中,运用分类讨论思想可以将问题的条件与结论的因果关系、局部与整体的逻辑关系揭示得一清二楚、十分准确.在解决对像为可变的数量关系和空间图形形式的数学问题中有着广泛和重要的作用.有关分类讨论思想的数学问题贯穿于高中数学的各个部分,形式多样、综合性强,对于培养学生思维的缜密性、条理性、深刻性有着十分重要的作用.因此,分类讨论一直是高考命题的热点之一,也是每年必考的重要数学思想方法之一.1.通常引起分类讨论的原因,大致可归纳为如下几点:(1)涉及的数学概念是分类定义的;(2)涉及运算的数学定义、公式或运算性质、法则是分类给出的;(3)涉及题中所给的限制条件或研究对像的性质而引起的;(4)涉及数学问题中参变量的不同取值导致不同结果而引起的;(5)涉及的几何图形的形状、位置的变化而引起的;(6)一些较复杂或非常规的数学问题,需要采用分类讨论的解题策略解决的.2.分类讨论的步骤一般可分为以下几步:(1)确定讨论的对像及其范围;(2)确定分类讨论的标准,正确进行分类;(3)逐类讨论,分级进行;(4)归纳整合,作出结论.其中最重要的一条是“不漏不重”.学生必须对相关知识点或涉及的概念、定义、定理相当清楚,对于一些结论成立的条件掌握牢固,这样才能在解题时思路清晰,才能知道何时必须进行分类讨论,而何时无须讨论,从而可以知道怎样进行分类讨论.在分类过程中要注意按照一个统一的标准,这样才能做到不重复不遗漏,考虑问题要周到缜密,特别是对于一些特殊情况要考虑慎重,养成严谨的学习态度和思想作风.【例1】(12年上海二模)点),(y x Q 是函数122-=x y 图像上的任意一点,点(0,5)P ,则P 、Q 两点之间距离的最小值是______________.【答案】 11【解】 ①当2102x -<时,222221,(5)(6)92x y PQ x y y =-=+-=--. 63y -=±时,即y =9或y =3,PQ 取最小值0,但222x y =-都为负数,∴不成立; ②当2102x -≥时,212x y =-,2222(5)(4)11PQ x y y =+-=-+.当y =4时,PQ 取最小值为11.综上所述,P 、Q 两点之间距离的最小值为11.【点评】 由于题中给出的是绝对值函数,需要利用分类讨论的思想去掉绝对值,然后再求解.体现了数学概念是分类定义的而引起的分类讨论.【例2】设等比数列{}n a 的公比为q ,前n 项和0(1,2,3,)n S n >= ,求q 的取值范围.【分析】在应用等比数列前n 项和的公式时,由于公式的要求,分q =1和q ≠1两种情况.【解】 {}n a 是等比数列,且前n 项和0(1,2,3,)n S n >= ,110a S ∴=>,且0q ≠当1q =时,10n S na =>;当1q ≠时,1(1)01n n a q S q -=>-,即10(1,2,3,)1nq n q->=- . 上式等价于1010n q q ⎧->⎨->⎩ ①或1010n q q ⎧-<⎨-<⎩ ②,由①得1q >,由②得11q -<<,∴q 的取值范围为()()1,00,-+∞ .【点评】本题正是分类讨论中运算的数学定义、公式或运算性质、法则是分类给出的体现.【例3】 设集合A ={1,2,3,4,5,6},B ={4,5,6,7,8},则满足S A ⊆且S B ≠∅ 的集合S 的个数是 ( )A.57B.56C.49D.8【答案】 B【解】由题意得S 中必含有4,5,6中至少一个元素,而元素1,2,3可以任意含有,则可按S 中所含元素个数分类:(1) 当S 中只含有4,5,6中的一个元素时,有13C 种,而1,2,3可构成集合32个,故S 有13323824C ⋅=⨯=(个);(2) 当S 中只含有4,5,6中的两个元素时,有23C 种,而1,2,3可构成集合32个,故S 有23323824C ⋅=⨯=(个);(3) 当S 中只含有4,5,6中的三个元素时,有33C 种,而1,2,3可构成集合32个,故S 有33328C ⋅=(个). 故集合S 的可能个数为24+24+8=56.【点评】本题正是由于题中所给的限制条件或研究对像的性质而引起的分类讨论.【例4】已知实数0a ≠,函数()2,1,2, 1.x a x f x x a x +<⎧=⎨--≥⎩若()()11f a f a -=+,则a 的值为________.【答案】 34-【解】首先讨论1a -,1a +与1的关系.当0a >时,11a -<,11a +<,所以()()1121f a a a a -=---=--;()12(1)32f a a a a +=++=+.因为()()11f a f a -=+,所以132a a --=+,所以34a =-; 当0a <时,11a ->,11a +>,所以()()1212f a a a a -=-+=-;()1(1)231f a a a a +=-+-=--.因为()()11f a f a -=+,所以231a a -=--,所以32a =-(舍去). 综上,满足条件的34a =-. 【点评】本题的解题关键在于讨论1a -,1a +与1的关系,正是体现了数学问题中参变量的不同取值导致不同结果而引起的分类讨论.【例5】如图所示,在△AOB 中,点A (2,1),B (3,0),点E 在射线OB 上自O 开始移动.设OE x =,过E 作OB 的垂线l l ,记△AOB 在直线l 左边部分的面积为S ,则函数()S f x =的图象是 ( )【答案】 D【解】当02x <≤时, ()2111224f x x x x =⋅⋅=,是开口向上的抛物线,且()21f =; 当23x <≤时, ()()()21112123133222f x x x x x =⨯⨯+--+=-+-,是开口向下,以33,2⎛⎫ ⎪⎝⎭为顶点的抛物线; 当3x >,()f x 是确定的常数,图象为直线.【点评】本题正是图形运动造成,不同时段,面积有所不同,正是体现了几何图形的形状、位置的变化而引起的分类讨论问题.方法四 概括归纳的思想方法概括是在思维中将同一种类型的对像共同的本质属性集中起来,结合为一般类型的属性.归纳是一种逻辑型的思维形状,是从几个特殊情形做出一般结论的不完全的属性.一类是性质和法则的归纳,如数列的基本性质,对数运算的法则的归纳过程;另一类是解题方法的归纳,如向量在物理中的应用等;第三类是归纳猜想,如由表格所给数据归纳几个连续奇数的和等.在上海主要体现在“归纳——猜想——证明”中,是发现数学规律,并用数学归纳法证明的完整过程.在近几年的高考中,都有这种找规律的题,考生不易得分,需要考生加强这方面的训练.【例1】 (12年上海模拟)在证明恒等式2222*1123(1)(21)()6n n n n n N ++++=++∈ 时,可利用组合数表示2n ,即22112(*)n n n C C n N +=-∈推得.类似的,在推导恒等式23333*(1)123()2n n n n N +⎡⎤++++=∈⎢⎥⎣⎦时,也可以利用组合数表示3n 推得.则3n =____________.【答案】 6C 3n +1+C 1n【解】 由题意得:n 2=2C 2n +1-C 1n =n (n +1)-n =n 2+n -n ,则由类比推理可得,∴n3=n 3-n +n =n (n +1)(n -1)+n =6C 3n +1+C 1n .【点评】 此题利用了类比推理以及归纳、猜想思想,从已知条件中得到规律,用到问题中去,从而得到结论.【例2】在数列{n a }中,1a =13 ,且前n 项的算术平均数等于第n 项的2n -1倍(n ∈N*).(1)写出此数列的前5项;(2)归纳猜想{n a }的通项公式,并用数学归纳法证明.【分析】(1)利用数列{n a }前n 项的算术平均数等于第n 项的2n -1倍,推出关系式,通过n =2,3,4,5求出此数列的前5项;(2)通过(1)归纳出数列{n a }的通项公式,然后用数学归纳法证明.第一步验证n =1成立;第二步,假设n =k 猜想成立,然后证明n =1k +时猜想也成立.【解】 (1)由已知1a =13,123n a a a a n++++ =(2n -1)n a ,分别取n =2,3,4,5,得2111153515a a ===⨯,()312111145735a a a =+==⨯, ()4123111277963a a a a =++==⨯,()512341114491199a a a a a =+++==⨯, 所以数列的前5项是:113a =,2115a =,3135a =,4163a = ,5199a = . (2)由(1)中的分析可以猜想1(21)(21)n a n n =-+(n ∈N*).下面用数学归纳法证明:①当n =1时,猜想显然成立.②假设当n =k (k ≥1且k ∈N*)时猜想成立,即1(21)(21)k a k k =-+ . 那么由已知,得12311(21)1k k k a a a a a k a k +++++++=++ , 即21231(23)k k a a a a k k a +++++=+ .所以221(2)(23)k k k k a k k a +-=+, 即1(21)(23)k k k a k a +-=+,又由归纳假设,得11(21)(23)(21)(21)k k k a k k +-=+-+, 所以11(21)(23)k a k k +=++,即当1n k =+时,猜想也成立. 综上①和②知,对一切n ∈N*,都有1(21)(21)n a n n =-+成立. 【点评】 本题考查数列的项的求法,通项公式的猜想与数学归纳法证明方法的应用,注意证明中必须用上假设,考查计算能力,分析问题解决问题的能力.正是体现了概括归纳的思想方法.方法五 化归与等价变换的思想方法在解决数学问题时,常遇到一些问题直接求解较为困难,需将原问题转化成一个新问题(相对来说,对自己较熟悉的),通过对新问题的求解,达到解决原问题的目的.这一思想方法我们称之为“转换化归思想”.而转换化归思想的基本原则就是:化难为易,化生为熟,化繁为简,化未知为已知.1.利用转换化归思想解决数学问题时必须明确三个问题:(1)把什么东西进行转换化归,即化归对像;(2)化归转换到何处,即化归转换的目的;(3)如何进行转换化归,即转换化归的方法.2. 化归与转化常遵循以下几个原则.(1)目标简单化原则:将复杂的问题向简单的问题转化;(2)和谐统一性原则:即化归应朝着使待解决问题在表现形式上趋于和谐,在量、形关系上趋于统一的方向进行,使问题的条件和结论更均匀和恰当;(3)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和问题来解决;(4)直观化原则:将比较抽象的问题转化为比较直观的问题来解决;(5)正难则反原则:即当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解.3.转化与化归常用到的方法(1)直接转化法:把问题直接转化为基本定理、基本公式或基本图形问题.(2)换元法:运用“换元”把超越式转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题.(3)数形结合法:研究原问题中数量关系(解式)与空间形式(图形)关系,通过互相变换获得转化途径.(4)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题.(5)坐标法:以坐标系为工具,用计算方法解决几何问题,是转化方法的一个重要途径.(6)类比法:运用类比推理,猜测问题的结论,易于确定转化途径.(7)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的结论适合原问题.(8)等价问题法:把原问题转化为一个易于解决的等价命题,达到转化目的.(9)加强命题法:在证明不等式时,原命题难以得证,往往把命题的结论加强,即命题的结论加强为原命题的充分条件,反而能将原命题转化为一个较易证明的命题,比如在证明不等式时:原命题往往难以得证,这时常把结论加强,使之成为原命题的充分条件,从而易证.(10)补集法:如果下面解决原问题有困难,可把原问题结果看作集合A ,而包含该问题的整体问题的结果类比为全集U ,通过解决全集U 及补集使原问题得以解决.化归与等价变换的思想方法所涉及到的具体问题很多很多,如果不断努力地用这种方法去解决一些数学问题或数学范畴以外的问题时,往往会出现事半功倍的奇特效果.【例1】 设x 、y ∈R 且22326x y x +=,求22x y +的范围.【解】 方法一:等价转化法(转化为函数问题)由22623x y x -=≥0得0≤x ≤2.设22k x y =+,则22y k x =-,代入已知等式得:2620x x k -+=, 即2132k x x =-+,其对称轴为x =3. 由0≤x ≤2得k ∈[0,4].所以22x y +的范围是:0≤22x y +≤4.方法二:数形结合法(转化为解几何问题):由22326x y x +=得()221132y x -+=,即表示如图所示椭圆,其一个顶点在坐标原点.22x y +的范围就是椭圆上的点到坐标原点的距离的平方.由图可知最小值是0,距离最大的点是以原点为圆心的圆与椭圆相切的切点.设圆方程为22x y k +=,代入椭圆中消y 得2620x x k -+=.由判别式3680k ∆=-=得4k =,所以22x y +的范围是:2204x y ≤+≤.方法三: 三角换元法,对已知式和待求式都可以进行三角换元(转化为三角问题):由22326x y x +=得()221132y x -+=,设1cos 6sin 2x y αα-=⎧⎪⎨=⎪⎩,则 2222233112cos cos sin 12cos cos 222x y ααααα+=+++=++- []215cos 2cos 0,422αα=-++∈ 所以22x y +的范围是:2204x y ≤+≤.【点评】本题运用多种方法进行解答,实现了多种角度的转化,联系了多个知识点,有助于提高发散思维能力.而且各种方法的运用,分别将代数问题转化为了其它问题,属于问题转换题型,正是体现了熟悉化原则,将不熟悉的知识转化为自己熟悉的知识.【例2】设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1、S n 、S n +2成等差数列,则q =___________.【答案】-2【解】q a a S 112+=,11S a =,23111S a a q a q =++∵1322S S S =+ ∴12111222a q a q a a =++(a 1≠0)∴2q =-或0q =(舍去).【点评】 由于该题为填空题,我们不防用特殊情况来求q 的值.如:213,,S S S 成等差,求q 的值.这样就避免了一般性的复杂运算.既体现简单化原则,也是特殊化方法的使用,正是转化与化归的思想方法的典型体现。
“心有灵犀一点通”———浅析高中数学解题中常用的四大数学思想
㊀㊀解题技巧与方法㊀㊀132数学学习与研究㊀2021 29心有灵犀一点通心有灵犀一点通 ㊀㊀㊀ 浅析高中数学解题中常用的四大数学思想Һ于㊀祥㊀(扬州大学附属中学,江苏㊀扬州㊀225000)㊀㊀ʌ摘要ɔ随着新课改的不断推进,在高中数学教学中渗透数学思想方法已经成为高中数学教师培养学生数学核心素养的根本方式.高中数学解题中需要借助科学的数学思想和方法才能达到最好的教学效果.其中,四大数学思想(函数与方程思想㊁分类讨论思想㊁数形结合思想㊁化归与转化思想)是最常用的数学思想,四者都有其特有的应用特点和范围,在问题的分析方法(思维逻辑分析)上也有自己的特点.据此,本文分析了在高中数学教学中应用四大数学思想的策略,以期能为高中数学教师提供教学帮助.ʌ关键词ɔ高中数学解题;四大数学思想;教学策略ʌ基金项目ɔ本文是江苏省教育科学 十三五 规划课题2016年度重点自筹课题 基于深度学习理念下的数学活动设计研究 阶段研究成果(课题编号:B-b/2016/02/41)笔者认为,高中数学中很多解题思想和方法只要稍稍变形,就能和常用的四大数学思想产生密切联系.在实际教学过程中,数学教师需要结合四大数学思想的定义㊁特点和作用,把数学解题思想和方法变形成为符合数学思想的相关内容,从而优化教学内容,降低教学难度.下面,笔者将以分类讨论㊁数形结合㊁函数与方程以及化归与转化数学思想方法为例进行分析,文中涉及的教学实例请参照人教版高中数学教材.一㊁四大数学思想对高中数学解题教学的作用(一)降低学生的解题难度对于高中生来说,有一些数学习题并不是自己努力想㊁努力做就能够做出来的,只有依靠数学思想才能解决,所以四大数学思想的应用实则是大幅度降低了学生的解题难度,使之在解题过程中能保证大致的思路是正确的,不会出现一些根本性的错误.(二)提高学生的解题能力高中数学练习题不同于初中,难度非常大,而且有特定的解题思路和方法,四大数学思想是基于高中数学题目所总结出来的解题利器,如果学生能充分理解并应用好这些数学思想,在解题时就能得心应手,久而久之就能大幅度提升自己的解题能力.二㊁高中数学解题教学中四大数学思想的应用基础(一)转变教学要求新课改要求学生要实现逻辑思维㊁逻辑分析能力上的有效突破,故现代高中数学教育除了要让学生学习硬知识外,还需要学习探究数学问题㊁总结数学规律的方法,而后者将比前者更加重要.所谓 一通百通 ,解题方法和规律总结能力的提升将使学生从容面对不同类型的问题,继而有效提高学习成绩和应试水平.因此,为实现高中数学教育 要成绩 要能力 的双重目标,教师在应用四大数学思想之前必须要主动转变教学要求,将数学思想的学习摆在首位,不要只注重学生的解题结果,而是注重其解题思路和方法.(二)把 要我学 转变为 我要学所谓 要我学 其实是一种 被动学 ,学生只能根据教师设定的教学计划去理解㊁分析㊁探究知识,知其然而不知其所以然,虽然能在短时间内积累大量知识,但其思维能力却没有任何长进和突破.反观 我要学 则完全不同,它是一种 主动学 ,学生根据教师设定的学习目标自主选择学习内容,根据自身的学习水平把握学习进度,同时还能够和他人交流以获得新知识和经验,虽然在短时间内无法积累大量知识,但却容易形成良好的学习思维和习惯,学习心态也会发生积极转变.三㊁高中数学解题教学中四大数学思想的实践应用(一)分类讨论思想1.何为分类讨论思想分类讨论思想简而言之就是先分类再讨论,这种方式可帮助学生理清思路,降低分析难度.以集合为例,按照集体元素的个数可分为有限集㊁无限集㊁空集三种,而按照集合之间的关系可分为子集㊁交并集㊁补集.利用分类讨论思想,学生就能更加全面地认识集合的特性.2.分类讨论的一般步骤研究对象指的是问题的核心,需要讨论研究的主体是什么,可不可以细分,每一部分有何特点等等.先将研究主体进行分类,然后集中讨论每一类中的问题.在实际教学中,教师可以引导学生按照先分类再讨论的方式进行分析,从易到难逐层深入,就能让学生掌握分类讨论的核心.3.分类讨论的实际案例在教学 随机事件的概率 时,有这样一道题: 一个袋子中有标号为1,2,3的三个大小相同的球,随机抽取三次,按抽取顺序组成123的概率是多少? 在计算概率的过程中,教师引导学生先分类后讨论.根据题目要求,实则是求1,2,3三个数组合成不同数的个数,其中三个数的组合就是整体研究对象,那么就可以分为个位㊁十位㊁百位三个研究部分.分类进行讨论就是对每一个研究部分进行分析,比如百位数是1,那么十位数和个位数就不能是1,而2,3两个数谁占十位㊁谁占个位则需要继续细分讨论.归纳整体结果就是在分类讨论的基础上把结果汇总出来,得出正确的答案.(二)数形结合思想1.何为数形结合思想数形结合 作为新时代数学教学的创新方式,分为 数 和 形 两部分,通过数形结合分析问题,可以将一些抽象性的㊁枯燥的数学文字转化为生动㊁直观的图形,最大限度地降低了学生学习数学的难度,也极大地提高了学生对数学的理解能力.数形结合思想的核心是 以形化数,以数代形 ,数学中 数 和 形 本就是密不可分的关系,数学中的图表㊁图形等都可以看成 形 ,而公式㊁定理等都可以看成 数 ,以计算空间几何体的表面积和体积为例,空间几. All Rights Reserved.㊀㊀㊀解题技巧与方法133㊀数学学习与研究㊀2021 29何体就是 形 ,而空间几何体的表面积和体积则为数,数形结合,能让学生更加直观地想象空间几何体的长㊁宽㊁高等属性,也能通过公式更容易解得空间几何体的表面积和体积.2.数形结合的两种方式以数助形 即以数代形,比如计算正方形的面积,我们用眼是看不出面积的,必须要借助公式进行计算. 以形助数 即以形代数,就是以图形直观展示抽象的数学逻辑关系.在高中阶段,最典型的就是用数轴㊁平面直角坐标系表示某个函数方程.3.数形结合的实际案例在学习 一元二次不等式(组) 时,教师为学生设置以下问题: 一元二次不等式(x-3)(x+1)<0是否有解?如果有,这个不等式有多少个正整数解? 从题目难度上分析,题目相对较简单,但是这里主要考查学生对 不等式解集的数轴表示 的理解,经过计算得到结果为-1<x<3,学生对于答案的范围没有直观的感受,这时教师可以让学生根据所学将答案在数轴上表示,学生在数轴上寻找到 -1 3 所表示的点,然后两者中间的部分即为不等式解的取值范围.(三)函数与方程思想1.何为函数与方程思想函数与方程思想作为四大数学思想中最重要也是最普遍的一类教学思想,几乎在每堂课中都能够用到.函数与方程思想是简化数学算法㊁反映数理逻辑的最好方式,因为在高中数学解题教学中的应用最为广泛,所以几乎能和所有的高中数学知识相结合.数学题目中有着非常多的未知数求解题,结果即为未知数x,通过未知数x构造合乎逻辑的数学方程,进而通过数学运算推导,这就是函数与方程思想的内核,所以以函数与方程思想求解未知数是数学教师常用的方法.2.函数与方程思想的应用范围函数与方程思想主要是让学生形成以 未知推导已知,已知求解未知 的数学解题思维,所以凡是涉及数理计算㊁函数求解等题型时都可以用到函数与方程思想.纵观高中数学知识,函数与方程思想最常用在三角函数㊁二次函数㊁幂函数的求解中,教师引导学生根据题目设未知数x,y,z,然后根据已知条件将未知数代入,以形成完整的求解方程.例如在解答三角形题目时,要计算出某个三角形的三边关系,则要设三边为x,y,z,将之带入sin,cos和tan三类三角函数中,就能通过已知条件(例如三角函数值和三角形的一条边)推导求得x,y,z,进而计算三边关系.3.函数与方程思想的实际案例在解答函数应用题时,题干如下: 某种名牌钢笔,每支进价为50元,当销售价格为每支x元,且50ɤxɤ80时,每天售出支数P=104(x-40)2,若想当天售出的钢笔获利最大,售价应定为每支多少元?最大利润是多少?解答过程就需要运用函数与方程思想,以已知和未知条件建立函数方程,针对此应用题,设售价定为每支x元,则每支利润为(x-50)元.设当天总利润为y元.则y=(x-50)㊃104(x-40)2,xɪ[50,80].变形得yx2-(80y+104)x+1600y+50ˑ104=0.因为关于x的一元二次方程有实数解,所以yʂ0,Δȡ0,{所以Δ=(80y+104)2-4y(1600y+50ˑ104)ȡ0,解得yɤ1034=250.当y=250时,x=60.所以每支定价为60元时,当天获利最大,最大利润为250元.(四)化归与转化思想 化繁为简,化难为易1.何为化归与转化思想化归与转化思想直白地说就是在解决数学问题时,如果很难直接求解的话,就需要把这个问题转化成已知问题进行求解.化归与转化思想说明了数学知识万变不离其宗,透过现象看本质,就能将未知问题转化成已知问题进行求解.因此在数学教学中,化归与转化思想常被用来分析和简化复杂的问题.例如学完了一元一次方程㊁因式分解等知识后,在学习一元二次方程的时候我们其实就是通过因式分解等方法,将它化归为一元一次方程来解的.再到高中特殊的一元高次方程求解时,又是将其化归为一元一次和一元二次方程来求解,更加直白地说,就是由1+1=2,我们可以推出1+2=3,通过化归与转化思想可将其转化为1+1+1=3这种最直接㊁最简单㊁最好理解的方式.2.化归与转化思想的实际案例在解答复杂的函数问题时,我们可以通过化归与转化思想由已知函数推导出新的函数方程,之后对新的函数方程进行分析解答,就能快速地得出答案.比如在解答题目: f(x)=ax2+ax+a-1,当f(x)<0的解集为R时,求a的取值范围. 这个题目的解答过程需要用到化归与转化思想,然后基于函数图像的基本性质确定a的取值范围.具体解答过程如下:解:当a=0时,函数f(x)=-1<0,此时符合题意,即对x属于R恒成立,故此时f(x)<0的解集为R.而当aʂ0时,由f(x)<0的解集为R恒成立,可推导a<0且Δ<0,即a<0且a2-4a(a-1)<0,即a<0且-3a2+4a<0,即a<0且3a2-4a>0,解得a<0.综上,知a的范围是aɤ0.在这个题目中,我们将复杂的函数问题转化成简单的 a<0且Δ<0 问题,直接列出不等式进行求解,这样就通过消元方式排除了 x 的干扰,以此求解a的取值范围就变得非常容易.结束语数学中的分类讨论思想㊁数形结合思想㊁函数与方程思想以及化归与转化思想都能让高中数学解题教学变得更有效率.只要教师能设计科学的应用策略和方法,把握好数学思想与数学知识的融合点,就能发挥其教学作用,成为提升课堂教学效率和教学质量的好帮手.综上,高中数学和初中㊁小学数学完全不同,高中数学讲究培养学生的数学思维,而非简单的理解公式㊁定理定义.故应用四大数学思想可在很大程度上优化学生的数学思维,在面对问题时懂得化繁为简㊁逐层深入,既能够面面俱到地解决问题,又能够节省时间和精力,应试教育背景下,高中生应当以提高学习成绩为重,数学思想可帮助学生快速掌握解题方法和技巧,也是一种非常重要的学习工具,值得推广学习.当然,上述分析只是笔者的浅见,不足之处还请各位读者朋友批评指正.ʌ参考文献ɔ[1]曹燕.浅析数形结合思想在高中数学解题中的应用[J].科学咨询(科技㊃管理),2016(8):82.[2]刘智娟.注重高中数学解题中的 四大法宝 [J].中学数学,2017(23):67-68.[3]黄多贵.浅谈分类讨论在高中数学中的教学[J].中国科教创新导刊,2018(9):168.[4]林海卫,王敏燕.浅谈数学思想在高中数学解题中的应用[J].数学教学通讯,2016(6):58-59.. All Rights Reserved.。
高中数学七大基本思想方法讲解
在二维空间,实数对与坐标平面上的点建立一一对应关系
数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化
第三:分类与整合思想
(1)分类是自然科学乃至社会科学研究中的基本逻辑方法
(2)从具体出发,选取适当的分类标准
(5) 高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向
第六:有限与无限的思想:
(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路
(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向
(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用
(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查
第七:或然与必然的思想:
(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性
(2)偶然中找必然,再用必然规律解决偶然
(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点
(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化
第五: 特殊与一般思想
(1)通过对个例认识与研究,形成对事物的认识
(2)由浅入深,由现象到本质、由局部到整体、由实践到理论
(3)由特殊到一般,再由一般到特殊的反复认识过程
(4) 构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程
(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法
高中数学常用思想方法举隅
高中数学常用思想方法举隅在传统教学过程中,大部分教师认为只要让学生们学会教材当中的基础知识,并且能够在考试当中正确解答问题,取得较为满意的成绩,就算是完成了教学目标和任務,然而,随着社会的发展,人们接触到了西方更多的教育方法和理念,在初、高中阶段利用一定的教学手段向学生们普及数学思想和方法越来越受到有关部门和广大教育工作者的关注。
标签:高中数学;分类讨论;函数与方程;数形结合一、高中数学教学过程中常用的思想方法(一)分类讨论的思想在解决一些数学问题时,根据题干当中的一些条件并不能得出确切的结果,还需要对“不确定量”可能存在的情况进行分类,将一个问题划分为两个甚至更多的小问题来解决,通过对它们进行逐个计算、讨论,然后再根据题目的具体问题整合出最终的正确答案,这就是分类讨论思想在数学当中的具体应用过程。
根据多年的数学教学经验,笔者发现并总结出分类讨论思想在实际应用时所遵循的一些规律,其主要体现在根据题干给定的已知条件确定具体的研究“对象”,也就是上文当中提到的需要进行讨论的不确定量。
例如,在教学过程中遇到的“分段函数”,刚开始由于思维定式的影响,总有一部分学生认为函数只能用一个等式表达,不能理解为什么要进行分段;还有很多学生不知道什么时候需要进行分段讨论,这就使得他们在解答相关题目时思路不清晰、明确,总是出现各种错误。
出现此种情况主要是因为学生没有建立分类讨论的思想,对它的应用情况并不熟悉,另外,学生对函数的概念理解得还不够充分。
因此,笔者专门抽出数学课堂的一部分时间针对“分段函数”的分类讨论情况给学生们进行了详细的讲解,笔者问:“你们仔细观察曾经遇到过的分段函数,我们都是根据什么进行分类讨论的呢?有什么共同的特点吗?”学生答:“都是用定义域来划分的。
”笔者再问:“通过观察函数的图像,能否得出y值和x值的唯一对应关系呢?如果我们只使用一个等式能表达出两者之间的变化关系吗?”学生进行了短暂思考,回答:“x和y都是一一对应的,只有按定义域分段,才能表示出各部分的变化规律。
学习数学有什么好的方法及常见的数学四大思想,高中数学解题基本方法
学习高中数学有什么好的方法1掌握好公式定理(如果这步不做,想学好数学就是在做白日梦,想一想没有武器的士兵如何去打战。
)不管学数学的目的是为考试,还是兴趣,都要掌握公式定理这个必备的武器,这样才能在题目的战场上施展拳脚。
学习数学时,对于公式定理一般要经历三个过程:○1认识;○2理解;○3应用○1认识:能认出,识别公式定理○2理解:能明白公式定理的内容及其推导方法,适用范围○3应用:懂得在题目中如何应用公式定理来解题,应用什么公式定理来解题所谓掌握是指是指达到应用水平,2按时完成作业(要按时认真完成学校定的配套,这是基本功,想一想没有训练的士兵如何上得了战场)适当的训练是培养考试能力必不可少的的途径(考试能力是指思维能力,做题技巧,得分技巧,做题速度,答题规范等)但切忌不要搞题海战术,因为这只对简单的题有效,稍微改变一下条件就可能蒙了。
(题海战术是指不停的做题,做大量的题,而不进行必要的总结思考,对错题只做修改而不查找原因)而且人的生命是有限的,没有无限的时间做题,只有总结规律才是王道(规律即答题的固定步骤,解题的方法等,这可避免想题时没有方向)3养成独立思考的习惯不懂时一定要先自己思考一下,实在不行时再问同学或老师,不能一遇到不懂的就立即问同学老师,这样会使大脑得不到锻炼,对他人产生依赖,成绩就会不升反降。
(不懂也不能放弃,如果不懂就放弃的话就永远学不好数学)4要总结自己的强项和弱项,及时查漏补缺(即知道考试时什么题目自己能做得又快又准,什么题目自己做的出来但较慢,什么题目自己做不出来,并进行有针对性的练习,这样考试才不会太紧张)中学数学的基本知识分三类:①是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、数列等;②是关于纯粹形的知识,如平面几何、立体几何等;③是关于数形结合的知识,主要体现是解析几何,函数等根据这三类来分类自己的强弱项。
形成一套属于自己的学习流程(学习流程即知道上课前,上课时,上课后该干什么,在学校,在家里该干什么)5合理安排考试时的时间考试时合理安排好答题时间,不要因一道小题而没做大题,也不要害怕答大题,往往大题的第一问都较容易,有时根据条件推出一些简单的结论也能得分(你可能不知道这些结论有什么用)掌握几个考试时放松的技巧,防止怯场平时可自己模拟考试场景练习一下6要肯脚踏实地的去努力不要因为一些同学学数学看起来很轻松就认为他们有秘籍或他们是天才,不用努力。
高中数学八大思想总结
高中数学八大思想总结高中数学八大思想是指数学学科中的八个重要理念和思维方式,包括逻辑思维、抽象思维、归纳思维、演绎思维、模型思维、实用思维、探究思维和创新思维。
这些思想在高中数学学习中具有重要的指导意义,有助于培养学生的数学素养和数学思维能力。
下面将对这八大思想进行总结。
逻辑思维是数学思维的基本内容,也是数学推理的基础。
逻辑思维要求学生运用正确的逻辑推理方法,从已知条件出发,通过合理的推理得出结论。
逻辑思维的重点是培养学生的推理和证明能力,提高他们解决问题的能力。
抽象思维是数学思维的重要组成部分,也是数学建模的关键能力。
抽象思维要求学生将具体问题抽象为一般性问题,将复杂问题简化为简单问题,从而更好地理解问题的本质和规律。
抽象思维不仅有利于学生理解数学概念和定理,还有助于他们掌握数学方法和技巧。
归纳思维是数学思维的重要形式之一,是从具体到一般的思维方式。
归纳思维要求学生通过观察具体例子和实验数据,总结出一般规律和定理。
归纳思维有助于学生培养发现问题规律和解决问题的能力,提高他们的问题分析和解决能力。
演绎思维是数学思维的另一种重要形式,是从一般到具体的思维方式。
演绎思维要求学生通过已知条件和逻辑推理得出新的结论,从而解决新的问题。
演绎思维有助于学生培养运用已有知识和方法解决新问题的能力,提高他们的综合运用能力。
模型思维是数学思维的重要组成部分,是数学建模和实际问题解决的核心思维方式。
模型思维要求学生将实际问题抽象为数学模型,通过建立和求解模型,得出问题的解答和结论。
模型思维有助于学生将数学知识应用于实际问题,提高他们的实际问题解决能力。
实用思维强调数学知识和方法的实用性,要求学生学会运用数学知识和方法解决实际问题。
实用思维关注数学与现实生活的联系和应用,注重培养学生的数学素养和实践能力,提高他们的数学能力和综合素质。
探究思维是数学思维的重要内容,要求学生通过实践和探究,主动发现问题和解决问题。
探究思维鼓励学生提出问题、假设和猜想,通过实验和推理验证和证明,培养他们的问题解决技巧和创新能力。
高中数学_必须掌握的六种常用的数学思想方法
高中数学_必须掌握的六种常用的数学思想方法数学思想方法与数学基础知识相比较,它有较高的地位和层次。
数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。
而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。
常用数学思想方法有:1、数形结合的思想方法2、分类讨论的思想方法3、函数与方程的思想方法4、转化(化归)的思想方法5、分类讨论的思想方法6、整体的思想方法。
更多数学思维方法,请参阅《高中数学_快速解题的六种数学思维方法》。
一、数形结合的数学思想方法数学中的知识,有的本身就可以看作是数形的结合。
如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。
1、导读:2、相关内容:3、再现性题组:1.如果θ是第二象限的角,且满足cos θ2-sinθ2=1-sinθ,那么θ2是_____。
A.第一象限角B.第三象限角C.可能第一象限角,也可能第三象限角D.第二象限角2.如果实数x、y满足等式(x-2)2+y2=3,那么yx的最大值是_____。
A. 12B.33C.32D. 34、巩固性题组:1.已知5x+12y=60,则x y22+的最小值是_____。
A. 6013 B. 135C. 1312D. 12.方程2x=x2+2x+1的实数解的个数是_____。
A. 1B. 2C. 3D.以上都不对3.方程x=10sinx的实根的个数是_______。
二、分类讨论的数学思想方法①问题所涉及到的数学概念是分类进行定义的。
如|a|的定义分a>0、a=0、a<0三种情况。
这种分类讨论题型可以称为概念型。
②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。
高中数学常用数学思想
高中数学常用的数学思想在解答数学问题时,有时会遇到含参量情况,需要对参数各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。
分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。
有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置,也是近几年来高考重点考查的热点问题之一。
本文拟就这类问题的解题思想方法――分类与讨论作一些探讨,不妥之处,敬请斧正。
解决这类问题,通常要用“分类讨论”的方法,即根据问题的条件和所涉及到的概念;运用的定理、公式、性质以及运算的需要,图形的位置等进行科学合理的分类,然后逐类分别加以讨论,探求出各自的结果,最后归纳出命题的结论,达到解决问题的目的。
它实际上是一种化难为易。
化繁为简的解题策略和方法。
一、科学合理的分类把一个集合a分成若干个非空真子集ai(i=1、2、3n)(n≥2,n∈n),使集合a中的每一个元素属于且仅属于某一个子集。
即①a1∪a2∪a3∪∪an=a②ai∩aj=φ(i,j∈n,且i≠j)。
则称对集a进行了一次科学的分类(或称一次逻辑划分)科学的分类满足两个条件:条件①保证分类不遗漏;条件②保证分类不重复。
在此基础上根据问题的条件和性质,应尽可能减少分类。
二、确定分类标准在确定讨论的对象后,最困难是确定分类的标准,一般来讲,分类标准的确定通常有三种:(一)根据数学概念来确定分类标准例如:绝对值的定义是:所以在解含有绝对值的不等式|log x|+|log(3-x)|≥1时,就必须根据确定log x ,log (3-x)正负的x值1和2将定义域(0,3)分成三个区间进行讨论,即02还是x≤2,所以以2为标准进行分类讨论可得轨迹方程为: y= y解(2)如图1,由于p,q的位置变化,q弦长|pq|的表达式不同,故必须分-1o 2 3x点p,q都在曲线y2=4(x+1)以及一点 p在曲线y2=4(x+1)上而另一点在曲线y2=-12(x-3)上可求得:从而知当或时,(二)根据数学中的定理,公式和性质确定分类标准。
高中数学函数四大思想总结
高中数学函数四大思想总结高中数学中的函数最核心的思想可以总结为四个方面,分别是函数的定义域与值域思想、单调性思想、奇偶性思想和周期性思想。
第一,函数的定义域与值域思想。
在高中数学中,函数的定义域与值域的确定是非常重要的。
定义域指的是函数能够取到的自变量的值的范围,值域则是函数能够取到的因变量的值的范围。
这个思想在解决函数的范围和取值问题时非常关键。
第二,单调性思想。
单调性指的是函数在定义域内的变化趋势。
由于学生在学习中常常会遇到函数的增减性和凹凸性等问题,使用单调性思想可以更好地解决这些问题。
单调函数的概念和性质是高中数学中非常重要的内容,它不仅体现了函数的变化趋势,同时也反映了函数的导数的意义。
第三,奇偶性思想。
奇偶性在函数的对称性与图像的性质方面起到了重要的作用。
奇函数是指满足$f(-x)=-f(x)$的函数,而偶函数是指满足$f(-x)=f(x)$的函数。
通过利用奇偶性的性质,可以更好地简化函数的计算和图像的观察,同时也可以推导出更多的函数性质和结论。
第四,周期性思想。
周期函数是指满足$f(x+T)=f(x)$的函数,其中T称为函数的周期。
周期性思想在高中数学的解题中扮演了非常重要的角色。
通过刻画函数图像的周期性,可以更好地理解和分析函数的特点,推导出函数的周期和对称轴等性质,进一步简化问题。
综上所述,高中数学中的函数主要体现了函数的定义域与值域思想、单调性思想、奇偶性思想和周期性思想。
这四个思想在理论学习和实际问题中的应用非常广泛,是高中数学中的核心内容。
通过深入理解和应用这些思想,可以更好地掌握函数的概念和性质,提高数学解题的能力。
高中数学常见解题思想方法——思想篇(高三适用)九、分类讨论思想 含解析
分类讨论思想是高中重要数学思想之一,是历年高考数学的重点与难点.突出考察思维的逻辑性、全面严谨性,比如在不等式、数列、导数应用相关的习题中,分类讨论思想很常见。
一、什么是分类讨论思想:每个数学结论都有其成立的条件,每一种数学方法的使用也往往有其适用范围,在我们所遇到的数学问题中,有些问题的结果不能唯一确定,有些问题的结论不能以统一的形式进行研究,还有些含参数的问题,参数的取值不同也会影响问题的结果,那么就要根据题目的要求,将题目分成若干类型,转化成若干个小问题来解决,这种按不同情况分类,然后再对分好的每类逐一研究、解决问题的数学思想,就是分类讨论思想。
二、分类讨论的一般步骤:第一,明确讨论对象,确定对象的取值范围;第二,确定分类标准,进行合理分类,不重不漏;第三,对分好的每类进行讨论,获得阶段性结果;第四,归纳总结,得出结论。
三、分类讨论的常见情形:1.由数学概念引起的分类:有的概念本身就是分类给出的,在不同条件下有不同结论,则必须进行分类讨论求解,如绝对值、指数与对数函数、直线和平面所成的角等。
2.由性质、定理、公式的限制引起的分类:有的数学定理、公式、性质是分类给出的,在不同条件下结论不一致,如二次函数y=ax2+bx+c(a≠0),由a的正负而导致开口方向不确定;等比数列前n项和公式因公比q是否为1而导致公式的表达式不确定等.3。
由某些数学运算要求引起的分类讨论:如解不等式ax2+bx+c >0,a=0,a<0,a>0解法是不同的;除法运算中除数不为零,偶次方根为非负,对数真数与底数的要求,指数中底数的要求,不等式两边同乘以一个正数、负数时不等号的方向,三角函数的定义域等.4。
由图形引的不确定性起的分类:有的图形的类型、位置需要分类,比如角的终边所在象限;立体几何中点、线、面的位置关系等。
5.由实际意义引起的分类:此类问题在实际应用题中常见.特别是在解决排列、组合中的计数问题时常用.6。
由参数变化引起的分类:如含参数的方程、不等式,由于参数的取值不同会导致所得结果不同,所以必须对参数的不同取值进行分类讨论;或对于不同的参数值运用不同的求解或证明方法.四、下面我们通过几种具体问题来看看常见的分类讨论情形:1。
高中数学四大数学思想
高中数学四大数学思想数学作为一门学科,具有其独特的思维方式和方法论。
在高中阶段,学生接触到了更加深入和复杂的数学知识,需要掌握一些基本的数学思想。
本文将向你介绍高中数学的四大数学思想,它们分别是抽象思想、推理思想、循环思想和应用思想。
一、抽象思想抽象思想是数学思维中最基本的思想之一。
它通过将具体的事物抽象为符号或概念,以便进行更深入和广泛的研究。
高中数学中的代数就是一个典型的应用抽象思想的例子。
代数通过使用字母和符号来表示未知数和运算关系,使得数学问题在更广泛的背景下得到了解决。
通过抽象思想,我们可以在不受具体物体限制的情况下进行推理和运算,拓宽了数学的应用范围。
二、推理思想推理思想是高中数学中最为重要的思想之一。
它是通过逻辑推理和推导来得出新的结论或解决问题的思维方式。
在数学证明中,推理思想被广泛运用。
我们可以通过假设、应用公理和定理等方法,一步一步地推导出结论的正确性。
推理思想还可以帮助我们解决实际生活中的问题,例如用数学推理去解决日常生活中的谜题或者逻辑难题。
推理思想培养了我们的逻辑思维和分析能力,帮助我们解决问题时更加清晰和准确。
三、循环思想循环思想是高中数学中的重要思维方式之一。
它通过观察和总结事物的循环规律,揭示了事物发展的规律性和特点。
在数列、函数和几何等数学概念中,循环思想起到了关键的作用。
通过观察数列中数字的排列规律,我们可以归纳出通项公式;通过观察图形的对称性和重复性,我们可以发现其特殊性质。
循环思想培养了我们的观察力和归纳能力,帮助我们理解和解决更加复杂的数学问题。
四、应用思想应用思想是高中数学中最具实践性的思维方式之一。
它将数学中的知识和方法应用于实际问题的解决中。
高中数学的各个分支,如数列、函数、统计等,都与实际生活息息相关。
通过学习这些数学概念和方法,我们可以解决现实生活中的各种问题。
例如,我们可以使用函数来建立生活中的数学模型,预测未来某种现象的发展趋势;我们可以使用统计学方法来分析数据,了解社会经济的变化。
高中数学常用的数学思想PPT16页
1、最灵繁的人也看不见自己的背脊。——非洲 2、最困难的事情就是认识自己。——希腊 3、有勇气承担命运这才是英雄好汉。——黑塞 4、与肝胆人共事,无字句处读书。——周恩来 5、阅读使人充实,会谈使人敏捷,写作使人精确。——培根
高中数学常用的数学思想
•
6、黄金时代是在我们的前面,而不在 我们的 后面。
•
7、心急吃不了热汤圆。•源自8、你可以很有个性,但某些时候请收 敛。
•
9、只为成功找方法,不为失败找借口 (蹩脚 的工人 总是说 工具不 好)。
•
10、只要下定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 卡耐基 。
【高中数学】高中数列知识蕴含的主要数学思想
【高中数学】高中数列知识蕴含的主要数学思想1.函数思想因为数列的通项公式、前n项和公式都是关于n的函数,所以一些数列问题可从函数的角度出发,运用函数思想来解答.相关的问题有:数列的单调性问题、求基本量问题、最值问题等.上述问题可利用数列所对应函数的特征、数列所对应函数的性质来解答.2.方程思想等差、等比数列都有5个基本量,运用方程思想可做到“知三求二”.在已知某些量的情况下,通过列方程或方程组求解其它量.此外,本章经常使用的待定系数法其实就是方程思想的体现.3.转化与化归思想本章的转化思想的运用,主要体现在把非特殊数列问题转化成特殊数列问题来解答,如:求递推数列的通项公式可通过构造转化成特殊数列求通项公式,非特殊数列的求和问题可转化成特殊数列的求和问题等.化归思想指的是把问题转化到研究对象最基础知识点上去解决,如:用等差、等比数列及等差、等比中项的定义,证明一个数列是等差或等比数列等.4.分类讨论思想本章的分类讨论思想主要体现在解决一些含参数列问题上,尤其是等比数列求和或相关问题时,若含参数,一定不要忽略对q=1的讨论.5.数形结合思想借助数列所对应函数的图象解答某些问题,会十分的直观、快捷.如:解答等差数列前n项和的最值问题,我们可结合二次函数的图象.6.归纳思想归纳思想是指由个别事实概括出一般性结论的数学思想.在本章中,根据数列的前若干项归纳数列的通项公式,或根据若干图形中子图形的个数归纳第n个图形中子图形的个数(其实也是求通项公式)都是运用归纳思想的典型例子.7.类比思想类比思想是指由一类对象具有某些特征,推出与它相似的某一对象也具有这些特征的数学思想,它的推理方式是由特殊到特殊的推理.等差数列和等比数列作为两类特殊的数列,有很多相似之处,比如,在等差数列中,若,则;在等比数列中,若,则有.通过类比可推导出很多有用的结论,发现很多有趣的性质.8.整体思想在研究数列(是等差或等比数列的前k项的和)时,就利用了整体思想,即把看作数列中的一项,依此类推,即可得出此数列的特征.首页上一页12下一页末页共2页感谢您的阅读,祝您生活愉快。
高中数学基本数学思想
高中数学基本数学思想1.转化与化归思想:是把那些待解决或难解决的问题化归到已有知识范围内可解问题的一种重要的基本数学思想.这种化归应是等价转化,即要求转化过程中的前因后果应是充分必要的,这样才能保证转化后所得结果仍为原题的结果. 高中数学中新知识的学习过程,就是一个在已有知识和新概念的基础上进行化归的过程.因此,化归思想在数学中无处不在. 化归思想在解题教学中的的运用可概括为:化未知为已知,化难为易,化繁为简.从而达到知识迁移使问题获得解决.但若化归不当也可能使问题的解决陷入困境. 例证2.逻辑划分思想(即分类与整合思想):是当数学对象的本质属性在局部上有不同点而又不便化归为单一本质属性的问题解决时,而根据其不同点选择适当的划分标准分类求解,并综合得出答案的一种基本数学思想.但要注意按划分标准所分各类间应满足互相排斥,不重复,不遗漏,最简洁的要求. 在解题教学中常用的划分标准有:按定义划分;按公式或定理的适用范围划分;按运算法则的适用条件范围划分;按函数性质划分;按图形的位置和形状的变化划分;按结论可能出现的不同情况划分等.需说明的是: 有些问题既可用分类思想求解又可运用化归思想或数形结合思想等将其转化到一个新的知识环境中去考虑,而避免分类求解.运用分类思想的关键是寻找引起分类的原因和找准划分标准. 例证3. 函数与方程思想(即联系思想或运动变化的思想):就是用运动和变化的观点去分析研究具体问题中的数量关系,抽象其数量特征,建立函数关系式,利用函数或方程有关知识解决问题的一种重要的基本数学思想.4. 数形结合思想:将数学问题中抽象的数量关系表现为一定的几何图形的性质(或位置关系);或者把几何图形的性质(或位置关系)抽象为适当的数量关系,使抽象思维与形象思维结合起来,实现抽象的数量关系与直观的具体形象的联系和转化,从而使隐蔽的条件明朗化,是化难为易,探索解题思维途径的重要的基本数学思想.5. 整体思想:处理数学问题的着眼点或在整体或在局部.它是从整体角度出发,分析条件与目标之间的结构关系,对应关系,相互联系及变化规律,从而找出最优解题途径的重要的数学思想.它是控制论,信息论,系统论中“整体—部分—整体”原则在数学中的体现.在解题中,为了便于掌握和运用整体思想,可将这一思想概括为:记住已知(用过哪些条件?还有哪些条件未用上?如何创造机会把未用上的条件用上?),想着目标(向着目标步步推理,必要时可利用图形标示出已知和求证);看联系,抓变化,或化归;或数形转换,寻求解答.一般来说,整体范围看得越大,解法可能越好.在整体思想指导下,解题技巧只需记住已知,想着目标, 步步正确推理就够了.中学数学中还有一些数学思想,如:集合的思想;补集思想;归纳与递推思想;对称思想;逆反思想;类比思想;参变数思想有限与无限的思想;特殊与一般的思想。
高中数学常见的思想和方法
at (t 2 1) t 2 at a 2 于是,y=f(t) 2 2 2 1 1 2 1 2 (t a) a . 2 2 2 1 1 1 原问题化归为求二次函数 f (t ) (t a) 2 a 2 2 2 2
(3)直观化原则:将比较抽象的问题化为比较直
观的问题来解决.
(4)正难则反原则:当问题正面讨论遇到困难
时,可考虑问题的反面,设法从问题的反面去探
讨,使问题获解. 2.常见的转化与化归的方法 转化与化归思想方法用在研究、解决数学问题 时,思维受阻或寻求简单方法或从一种状况转化 到另一种情形,也就是转化到另一种情境使问题 得到解决,这种转化是解决问题的有效策略,同 时也是成功的思维方式.常见的转化方法有:
(1)直接转化法:把原问题直接转化为基本定理、
基本公式或基本图形问题. (2)换元法:运用“换元”把式子转化为有理式
或使整式降幂等,把较复杂的函数、方程、不等
式问题转化为易于解决的基本问题.
(3)数形结合法:研究原问题中数量关系(解析 式)与空间形式(图形)关系,通过互相变换获
得转化途径.
(4)等价转化法:把原问题转化为一个易于解决 的等价命题,达到化归的目的.
则f(t)是一次函数,当t∈[-2,2]时,f(t)>0恒
成立.
(log 2 x) 2 4 log 2 x 3 0 f ( 2) 0, 则由 , 即 , 2 (log 2 x) 1 0 f ( 2) 0
解得log2x<-1或log2x>3, 0 x 1 或x 8,
3 2
变式训练2 一个自动报警器由雷达和计算机两部 分组成,两部分有任何一个失灵,这个报警器就 失灵.若使用100小时后,雷达部分失灵的概率为 0.1,计算机失灵的概率为0.3,且两部分失灵与 否是独立的,求这个报警器使用100小时后失灵的 概率. 解 先考虑报警器不失灵的概率,即求雷达和计 算机均不失灵的概率.记“使用100小时后雷达失 灵”为A,记“使用100小时后计算机失灵”为B, 由于A与B相互独立,则报警器使用100小时后失灵 的概率为
高中数学19种答题方法及6种解题思想
高中数学19种答题方法及6种解题思想一.十九种数学解题方法1.函数函数题目,先直接思考后建立三者的联系。
首先考虑定义域,其次使用“三合一定理”。
2.方程或不等式如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3.初等函数面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
如所过的定点,二次函数的对称轴或是……;4.选择与填空中的不等式选择与填空中出现不等式的题目,优选特殊值法;5.参数的取值范围求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6.恒成立问题恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7.圆锥曲线问题圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8.曲线方程求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);9.离心率求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;10.三角函数三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;11.数列问题数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;12.立体几何问题立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;13.导数导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;14.概率概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;15.换元法遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;16.二项分布注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;17.绝对值问题绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;18.平移与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;19.中心对称关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
高中数学七大数学思想
高中数学七大数学思想先前的数学教育很多时候都侧重于机械性的运算和记忆,对于学生的思维能力和数学思想的培养相对较少。
然而,高中阶段数学的学习正是培养学生数学思想的关键时期。
在这篇文章中,我将介绍高中数学学习过程中涉及的七大数学思想,旨在帮助学生更好地理解数学思想的实质及其应用。
1. 抽象思维抽象思维是高中数学学习中最基本也是最关键的思维方式之一。
在数学中,我们常常通过抽象的方式将具体问题转化为抽象符号和表达式,以便更好地研究和解决问题。
抽象思维能够帮助我们摆脱具体情境的限制,将问题提升到更一般的层面上进行分析。
2. 推理思维推理思维是在已有的数学概念、定理和推理规则的基础上,通过逻辑推理和证明推导,从而得出新的结论的过程。
通过推理思维,我们可以在已知条件和已有命题之间建立逻辑关系,进一步推导出新的结论。
推理思维培养了我们的逻辑思维能力,促使我们学会从事物的本质中寻找规律。
3. 模型思维模型思维是将现实世界的问题抽象为数学模型后进行分析和解决问题的思维方式。
数学模型可以简化和概括现实问题,帮助我们更好地理解问题的本质和关键因素,并通过数学的方法进行分析和求解。
模型思维培养了我们抽象问题和解决问题的能力,是数学与实际应用结合的桥梁。
4. 归纳思维归纳思维是根据事实和实例的特征和规律,总结和抽象出一般规律和规则的思维方式。
通过归纳思维,我们可以从一定数量的具体问题中发现共性和固有规律,进而推广到更一般的情况。
归纳思维能够培养我们观察问题的敏感性和发现规律的能力。
5. 系统思维系统思维是将复杂问题和现象当作一个有机整体,通过分析事物各个组成部分之间的相互关系和相互作用,从而揭示事物的内在结构和运动规律的思维方式。
数学中的许多概念和理论都是基于系统思维的基础上建立起来的,它能够提高我们理解和分析复杂问题的能力。
6. 反证思维反证思维是通过假设所要证明的结论不成立,然后通过推理得出矛盾结论,从而证明所要证明的结论为真的思维方式。
高中数学6种数学思想
高中数学6种数学思想1.函数与方程思想函数与方程的思想是中学数学最基本的思想。
所谓函数的思想是指用运动变化的观点去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与性质去分析、解决相关的问题。
而所谓方程的思想是分析数学中的等量关系,去构建方程或方程组,通过求解或利用方程的性质去分析解决问题。
2.数形结合思想数与形在一定的条件下可以转化。
如某些代数问题、三角问题往往有几何背景,可以借助几何特征去解决相关的代数三角问题;而某些几何问题也往往可以通过数量的结构特征用代数的方法去解决。
因此数形结合的思想对问题的解决有举足轻重的作用。
解题类型:①“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。
②“由数化形” :就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,提示出数与式的本质特征。
③“数形转换” :就是根据“数”与“形”既对立,又统一的特征,观察图形的形状,分析数与式的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。
3.分类讨论思想分类讨论的思想之所以重要,原因一是因为它的逻辑性较强,原因二是因为它的知识点的涵盖比较广,原因三是因为它可培养学生的分析和解决问题的能力。
原因四是实际问题中常常需要分类讨论各种可能性。
解决分类讨论问题的关键是化整为零,在局部讨论降低难度。
常见的类型:类型1:由数学概念引起的的讨论,如实数、有理数、绝对值、点(直线、圆)与圆的位置关系等概念的分类讨论;类型2:由数学运算引起的讨论,如不等式两边同乘一个正数还是负数的问题;类型3 :由性质、定理、公式的限制条件引起的讨论,如一元二次方程求根公式的应用引起的讨论;类型4:由图形位置的不确定性引起的讨论,如直角、锐角、钝角三角形中的相关问题引起的讨论。
类型5:由某些字母系数对方程的影响造成的分类讨论,如二次函数中字母系数对图象的影响,二次项系数对图象开口方向的影响,一次项系数对顶点坐标的影响,常数项对截距的影响等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.增函数且最小值为-5
B.增函数且最大值为-5
C.减函数且最小值为-5
D.减函数且最大值为-5
9.设全集 I={(x,y)|x,y∈R},集合 M={(x,y)| y 3 =1},N={(x,y)|y≠x+1},那 x2
么 M∪N 等于_____。 (90 年全国)
A. φ
B. {(2,3)}
C. (2,3)
D. {(x,y)|y=x+1
10.
θ
θ
如果θ是第二象限的角,且满足 cos -sin =
1 sin θ ,那么 θ 是
2
2
2
_____。
A.第一象限角 B.第三象限角 C.可能第一象限角,也可能第三象限角 D.第
二象限角
11. 已知集合 E={θ|cosθ<sinθ,0≤θ≤2π},F={θ|tgθ<sinθ},那么 E∩F 的
π
7.如果|x|≤ ,那么函数 f(x)=cos 2 x+sinx 的最小值是_____。 (89 年全国文)
4
A. 2 1 2
B. - 2 1 2
C. -1
D. 1 2 2
8.如果奇函数 f(x)在区间[3,7]上是增函数且最小值是 5,那么 f(x)的[-7,-3]上是____。
(91 年全国)
10 小题:利用复平面上复数表示和两点之间的距离公式求解,答案- 3 + 3 i。 22
【注】 以上各题是历年的高考客观题,都可以借助几何直观性来处理与数有关的问题,
即借助数轴(①题)、图像(②、③、④、⑤题)、单位圆(⑥、⑦题)、复平面(⑧、⑩
题)、方程曲线(⑨题)。
Ⅱ、示范性题组:
例 1. 若方程 lg(-x 2 +3x-m)=lg(3-x)在 x∈(0,3)内 y
区间是_____。(93 年全国文理)
π
A. ( ,π)
2
π 3π
B. ( , )
3π
C. (π,
)
D.
3π
(
,
5π
)
44
2
44
12. 若复数 z 的辐角为 5π ,实部为-2 3 ,则 z=_____。 6
A. -2 3 -2i B. -2 3 +2i C. -2 3 +2 3 i D. -2 3 -2 3 i
Ⅰ、再现性题组:
5.设命题甲:0<x<5;命题乙:|x-2|<3,那么甲是乙的_____。 (90 年全国文)
A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既不充分也不必要条件
6.若 log 2<log 2<0,则_____。(92 年全国理)
a
ห้องสมุดไป่ตู้
b
A. 0<a<b<1 B. 0<b<a<1 C. a>b>1 D. b>a>1
13. 如果实数 x、y 满足等式(x-2) 2 +y 2 =3,那么 y 的最大值是_____。 (90 年全国 x
理)
1
A.
2
3
B.
3
3
C.
2
D. 3
14. 满足方程|z+3- 3 i|= 3 的辐角主值最小的复数 z 是_____。
【简解】1 小题:将不等式解集用数轴表示,可以看出,甲=>乙,选 A; 2 小题:由已知画出对数曲线,选 B; 3 小题:设 sinx=t 后借助二次函数的图像求 f(x)的最小值,选 D; 4 小题:由奇函数图像关于原点对称画出图像,选 B; 5 小题:将几个集合的几何意义用图形表示出来,选 B; 6 小题:利用单位圆确定符号及象限;选 B; 7 小题:利用单位圆,选 A; 8 小题:将复数表示在复平面上,选 B; 9 小题:转化为圆上动点与原点连线的斜率范围问题;选 D;
例 2. 设|z 1 |=5,|z 2 |=2, |z 1 - z2 |=
13 ,求 z1 z2
yA D
的值。
OB
x
【分析】 利用复数模、四则运算的几何意义,将复
数问题用几何图形帮助求解。
C
【解】 如图,设 z 1 = OA 、z 2 = OB 后,则 z1 = OC 、
有唯一解,求实数 m 的取值范围。
4
y=1-m
【分析】将对数方程进行等价变形,转化为一元二次方程 1
在某个范围内有实解的问题,再利用二次函数的图像进行解 O 2 3
x
决。
3 x 0 【解】 原方程变形为 x 2 3x m 3 x
3 x 0 即: (x 2)2 1 m
设曲线 y 1 =(x-2) 2 , x∈(0,3)和直线 y 2 =1-m,图像如图所示。由图可知: ① 当 1-m=0 时,有唯一解,m=1; ②当 1≤1-m<4 时,有唯一解,即-3<m≤0,
∴ m=1 或-3<m≤0
此题也可设曲线 y 1 =-(x-2) 2 +1 , x∈(0,3)和直线 y 2 =m 后画出图像求解。 【注】 一般地,方程的解、不等式的解集、函数的性质等进行讨论时,可以借助于函数 的图像直观解决,简单明了。此题也可用代数方法来讨论方程的解的情况,还可用分离参数 法来求(也注意结合图像分析只一个 x 值)。
高中数学常用的数学思想
一、数形结合思想方法 中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不 等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数 形结合的知识,主要体现是解析几何。 数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大 致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段, 数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范 严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐 明曲线的几何性质。 恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。”数形结合就是 根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数 量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找 解题思路,使问题化难为易、化繁为简,从而得到解决。“数”与“形”是一对矛盾,宇宙 间万物无不是“数”和“形”的矛盾的统一。华罗庚先生说过:数缺形时少直观,形少数时 难入微,数形结合百般好,隔裂分家万事休。 数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题 与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想 分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代