第三章 几何光学习题
《光学教程答案》word版
第三章几何光学1.证明反射定律符合费马原理证明:设界面两边分布着两种均匀介质,折射率为山和勺(如图所示)。
光线通过笫一介质中指泄的A点后到达同一介质中指左的B点。
(1)反正法:如果反射点为位于处轴与A和3点所著称的平面之外,那么在ox轴线上找到它的垂足点C"点,.由于AC > AC ,BC >BC\故光线AC B所对应的光程总是大于光线AC B所对应的光程而非极小值,这就违背了费马原理。
故入射面和反射面在同一平面内。
(2)在图中建立坐xoy标系,则指定点A,B的坐标分别为(和yj和(w),反射点C的坐标为(圮0)所以AC3光线所对应的光程为:△=厲[JCv—xj' + y; + >](x-x2)2 + y;]根据费马原理,它应取极小值,所以有空=" 也-①利(sin_sinE = O心yjix-x^ + y- y](x-x2y+y;即:L = i22.根据费马原理可以导出在近轴光线条件下,从物点发出并会聚到像点的所有光线的光程都相等。
EF证:如图所示,有位于主光轴上的一个物点S 发出的光束经薄透镜折射后成一个 明亮的实象点S'。
设光线SC 为电光源S 发出的任意一条光线,其中球面AC 是由点光 源S 所发出光波的一个波面,而球面DB 是会聚于象点S'的球面波的一个波面,所以有关系式SC = SA, SD = SB •因为光程\CEFl)s =SC + CE + nEF + FD + DS △$ MS = SA + I1AB + BS根据费马原理,它们都应该取极值或恒定值,这些连续分布的实际光线,在近轴 条件下其光程都取极大值或极小值是不可能的,唯一的可能性是取恒定值,即它们的光程相等。
3. 睛E 和物体PQ 之间有一 块折射率为1.5的玻璃平板,平 板的厚度d 为30cmo 求物体PQ 的像P0与物体P0之间的距离妁为多少?解:根据例题3.1的结果 PP n1 PP = 30x(1 ———)=10cm1.5n =1.5题3图4.玻璃棱镜的折射棱角A为60。
第三章 几何光学
第三章、几何光学的基本原理一、选择题1.如图,直角三角形ABC 为一透明介质制成的三棱镜的截面,且30=∠A 0,在整个AC 面上有一束垂直于AC 的平行光线射入,已知这种介质的折射率n>2,则( ) A .可能有光线垂直AB 面射出B .一定有光线垂直BC 面射出C .一定有光线垂直AC 面射出D .从AB 面和BC 面出射的光线能会聚一点 B2.如图所示,AB 为一块透明的光学材料左侧的端面。
建立直角坐标系如图,设该光学材料的折射率沿y 轴正方向均匀减小。
现有一束单色光a 从原点O 以某一入射角θ由空气射入该材料内部,则该光线在该材料内部可能的光路是下图中的哪一个 ( )A. B. C. D.3.如图,横截面为等腰三角形的两个玻璃三棱镜,它们的顶角分别为α、β,且α < β。
a 、b 两细束单色光分别以垂直于三棱镜的一个腰的方向射入,从另一个腰射出,射出的光线与入射光线的偏折角均为θ。
则ab 两种单色光的频率υ1、υ2间的关系是( )A 、 υ1 = υ2B 、 υ1 > υ2C 、 υ1 < υ2D 、 无法确定 D 、4、发出白光的细线光源ab ,长度为L ,竖直放置,上端a 恰好在水面以下,如图所示,现考虑线光源ab 发出的靠近水面法线(图中虚线)的细光束经水面折射后所成的像,由于水对光有色散作用,若以1L 表示红光成的像长度,2L 表示蓝光成的像的长度,则( ) A 、L L L <<21B 、L L L >>21C 、L L L >>12D 、L L L <<125、如图所示,真空中有一个半径为R ,质量分布均匀的玻璃球,频率为0υ的细激光束在真空中沿直线BC 传播,并于玻璃球表面C 点经折射进入玻璃球,且在玻璃球表面D 点又经折射进入真空中,0120=∠COD ,已知玻璃对该激光的折射率为3,则下列说法中正确的是( )A 、 一个光子在穿过玻璃球的过程中能量逐渐变小B 、 此激光束在玻璃球中穿越的时间cRt 3=(c 为真空中光速)C 、 改变入射角α的大小,细激光可能在玻璃球的内表面发生全反射D 、 图中的激光束的入射角045=α6、如图所示,两束单色光A 、B 自空气射向玻璃,经折射形成复合光束C ,则下列说法中正确的是:( )A 、 A 光子的能量比B 光子的能量大 B 、 在空气中,A 光的波长比B 光的波长短C 、 在玻璃中,A 光的光速小于B 光的光速D 、 玻璃对A 光的临界角大于对B 光的临界角7、如图所示,激光液面控制仪的原理是:固定的一束光AO 以入射角i 照射到液面上,反射光OB 射到水平的光屏上,屏上用一定的装置将光信号转变为电信号,电信号输入控制系统用以控制液面高度,如果发现光点B 在屏上向右移动了Δs 的距离到B ˊ,则可知液面升降的情况是( )A 、 升高了2S ∆·tan i B .降低了2S ∆·tan i D 、 升高了2S ∆·cot i D 、 降低了2S∆·cot i8.人类对光的本性的认识经历了曲折的过程。
第三章-几何光学
第三章、几何光学的基本原理一、选择题1.如图,直角三角形ABC 为一透明介质制成的三棱镜的截面,且30=∠A 0,在整个AC 面上有一束垂直于AC 的平行光线射入,已知这种介质的折射率n>2,则( ) A .可能有光线垂直AB 面射出 B .一定有光线垂直BC 面射出 CC .一定有光线垂直AC 面射出D .从AB 面和BC 面出射的光线能会聚一点 A 300 B2.如图所示,AB 为一块透明的光学材料左侧的端面。
建立直角坐标系如图,设该光学材料的折射率沿y 轴正方向均匀减小。
现有一束单色光a 从原点O 以某一入射角θ由空气射入该材料内部,则该光线在该材料内部可能的光路是下图中的哪一个 ( )A. B. C. D.3.如图,横截面为等腰三角形的两个玻璃三棱镜,它们的顶角分别为α、β,且α < β。
a 、b 两细束单色光分别以垂直于三棱镜的一个腰的方向射入,从另一个腰射出,射出的光线与入射光线的偏折角均为θ。
则ab 两种单色光的频率υ1、υ2间的关系是( )A 、 υ1 = υ2B 、 υ1 > υ2C 、 υ1 < υ2D 、 无法确定 D 、4、发出白光的细线光源ab ,长度为L ,竖直放置,上端a 恰好在水面以下,如图所示,现考虑线光源ab 发出的靠近水面法线(图中虚线)的细光束经水面折射后所成的像,由于水对光有色散作用,若以1L 表示红光成的像长度,2L 表示蓝光成的像的长度,则( ) A 、L L L <<21B 、L L L >>21C 、L L L >>12D 、L L L <<125、如图所示,真空中有一个半径为R ,质量分布均匀的玻璃球,频率为0υ的细激光束在真空中沿直线BC 传播,并于玻璃球表面C 点经折射进入玻璃球,且在玻璃球表面D 点又经折射进入真空中,0120=∠COD ,已知玻璃对该激光的折射率为3,则下列说法中正确的是( )A 、 一个光子在穿过玻璃球的过程中能量逐渐变小B 、 此激光束在玻璃球中穿越的时间cRt 3=(c 为真空中光速) 水 a b O CDB α1200y a θ xo A ByxoyxoyxoyxoC 、 改变入射角α的大小,细激光可能在玻璃球的内表面发生全反射D 、 图中的激光束的入射角045=α6、如图所示,两束单色光A 、B 自空气射向玻璃,经折射形成复合光束C ,则下列说法中正确的是:( )A 、 A 光子的能量比B 光子的能量大 B 、 在空气中,A 光的波长比B 光的波长短C 、 在玻璃中,A 光的光速小于B 光的光速D 、 玻璃对A 光的临界角大于对B 光的临界角7、如图所示,激光液面控制仪的原理是:固定的一束光AO 以入射角i 照射到液面上,反射光OB 射到水平的光屏上,屏上用一定的装置将光信号转变为电信号,电信号输入控制系统用以控制液面高度,如果发现光点B 在屏上向右移动了Δs 的距离到B ˊ,则可知液面升降的情况是( )A 、 升高了2S ∆·tan i B .降低了2S ∆·tan i D 、 升高了2S ∆·cot i D 、 降低了2S∆·cot i8.人类对光的本性的认识经历了曲折的过程。
几何光学课后部分习题答案
部分作业答案 几何光学部分第一章 几何光学基本定律与成像16、一束平行细光束入射到半径为30r mm =、折射率为 1.5n =的玻璃球上,求其会聚点的位置。
如果在凸面镀上反射膜,其会聚点应在何处?如果凹面镀反射膜,则反射光束在玻璃中的会聚点在何处?反射光束经前表面折射后,会聚点又在何处?解:玻璃球可以看作两个折射球面组合在一起,设凸面为第一面,凹面为第二面 (1)首先考虑光束射入玻璃球第一面时的状态,使用单折射球面物像关系公式1111111n n n n l l r ''--=' 由11111.5;1;;30n n l r mm '==→-∞=,得190l mm '=。
对于第二面,由于两球面顶点距离260d r mm ==,所以222121.0; 1.5;30;30n n l l d mm r mm ''===-==-,由物像关系 2222222n n n n l l r ''--=' 得215l mm '=,即会聚点位于第二面顶点右侧15mm 处。
(2) 将第一面镀膜,形成反射镜,就相当于凸面镜,则11111;1;;30n n l r m m '==-→-∞=,得到115l mm '=,即会聚点位于第一面顶点右侧15mm 处。
(3)光线经过第一面折射后第二面镀膜则22221.5; 1.5;30;30n n l mm r mm '==-==-,得到210l mm '=-,即反射光束在玻璃球内的会聚点位于第二面顶点左侧15mm 处。
(4)再经过第一面折射,将其记为第三面,则333231.5; 1.0;2106050;30n n l l r mm r mm ''===+=-+== 由物像关系3333333n n n n l l r ''--=' 得375l mm '=,即光束从玻璃球出来后的会聚点位于第一面顶点右侧75mm 处,也是第二面顶点右侧15mm 处。
(最新)第三章几何光学的基本原理2
29 一厚透镜的焦距为60mm ,其两焦点间的距离为125mm ,若(1)物点放在光轴上焦点左方20mm 处;(2)物点放在光轴上物方焦点右方20mm 处;(3)虚物落在光轴上象方主点右方20mm 处,问在这三种情况下象的位置各在何处?象的性质如何?并作光路图。
解:(1)将f =-60毫米,60='f 毫米,=1x -20毫米代入牛顿公式得: ),( 240180601802060)60(111实象毫米毫米P s x f f x '=+='=-⨯-='='其光路图如图所示。
(2)将f =-60毫米,60='f 毫米,=1x 20毫米代入牛顿公式得:),( 120601801802060)60(222虚象毫米毫米P s x f f x '-=+-='-=⨯-='='(3)将f=-60毫米,8520560,603=++=='x f 毫米毫米代入牛顿公式得: ),( 65.1735.426035.428560)60(333实象毫米毫米P s x f f x '=-='-=⨯-='='30 一个会聚透镜和一个发散透镜互相接触构成一复合光具组,,当物距为-80cm 时,实象距镜60cm ,若会聚透镜的焦距为10cm ,问发散透镜的焦距为多少?解:设会聚透镜的焦距1f ',发散透镜的焦距2f ',复合系统的焦距f ' 因复合光具组在物距为-80cm 时,实象距为60cm 由:ss f 111-'=',解出复合光具组的焦距:cm f 7/240=' 因两透镜互相接触,有:21111f f f '-'=',已知:cm f 101=' 解出发散透镜的焦距:cm f 1.142-='31 试述测定会聚透镜焦距的几种方法。
第三章__几何光学的基本原理
第三章 几何光学的基本原理3.眼睛E 和物体PQ 之间有一块折射率为1.5的玻璃平板(如图所示),平板的厚 度d 为30cm 。
求物体PQ 的像Q P ''与物体PQ 之间的距离2d 为多少? 已知:1=n ,51.='n ,cm d 30=求:?=2d 解:由图可知 12i QNQ Q d sin ='=,设x QN =,即光线横向的偏移,则 12i xd sin = (1)在入射点A 处,有 21i n i n sin sin '=在出射点B 处,有 12i n i n '='sin sin ,因此可得 11i i '= 即出射线与入射线平行,但横向偏移了x 。
由图中几何关系可得: ()()21221i i i di i AB x -=-=sin cos sin又因为 1i 和2i 很小,所以 12≈i cos , ()2121i i i i -≈-sin 而 21i n ni '= ,所以 1121i ni n ni '='=则 ()⎪⎭⎫ ⎝⎛'-=-=11211i n i d i i d x ,即 ⎪⎭⎫ ⎝⎛'-'=n n di x 11 (2) (2)式代入(1)式得 cm d d n n i i d d 1031511511112==⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛'-'≈.. 6.高5cm 的物体距凹面镜顶点12cm ,凹面镜的焦距是10cm ,求像的位置及高度,并作光路图。
已知:cm y 5=, cm s 12-=,cm f 10-=' 求:?='s ?='y 作光路图解:根据 f s s '='+111得601121101111-=+-=-'='s f s ,cm s 60-='∴又据 n ns s y y '⋅'=' ,而 n n -='所以得 cm y s s y 2551260-=⨯---='-=' 光路图(cm r cm rf 20102-=∴-==',)C为圆心。
第三章__几何光学的基本原理复习课程
第三章__几何光学的基本原理第三章几何光学的基本原理3.眼睛E和物体PQ之间有一块折射率为1.5的玻璃平板(如图所示),平板的厚度d为30cm。
求物体PQ的像QP''与物体PQ之间的距离2d为多少?已知:1=n,51.='n,cmd30=求:?=2d解:由图可知12iQNQQdsin='=,设xQN=,即光线横向的偏移,则12ixdsin=(1)在入射点A处,有21inin sinsin'=在出射点B处,有12inin'='sinsin,因此可得11ii'=即出射线与入射线平行,但横向偏移了x。
由图中几何关系可得:()()21221iiidiiABx-=-=sincossin收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除又因为 1i 和2i 很小,所以 12≈i cos , ()2121i i i i -≈-sin 而 21i n ni '= ,所以 1121i ni n ni '='=则 ()⎪⎭⎫ ⎝⎛'-=-=11211i n i d i i d x ,即 ⎪⎭⎫ ⎝⎛'-'=n n di x 11 (2) (2)式代入(1)式得 cm d d n n i i d d 1031511511112==⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛'-'≈.. 6.高5cm 的物体距凹面镜顶点12cm ,凹面镜的焦距是10cm ,求像的位置及高度,并作光路图。
已知:cm y 5=, cm s 12-=,cm f 10-=' 求:?='s ?='y 作光路图解:根据 f s s '='+111得601121101111-=+-=-'='s f s ,cm s 60-='∴又据 n ns s y y '⋅'=' ,而 n n -='所以得 cm y s s y 2551260-=⨯---='-=' 光路图(cm r cm rf 20102-=∴-==',Θ)C为圆心。
chap3习题答案.
f 60cm
(1)当x1 20mm时,有
x1= f f x1
60 (60) 180mm 20
s1 f x 60 180 240mm (p ,实像)
(2)当x2 20mm时,有
x2= f f x2
60 (60) -180mm 20
s2
2
r
r
r
r
s2
nr n
n
nD 2(n
n)
1.57 20 6.05 (cm) 2 (1.53 1)
15.有两块玻璃薄透镜的两表面均各为凸球面及凹球面,其曲率半径为10cm. 一物点在主轴上距离20cm处,若物和镜均浸在水中,分别用作图法和计算法 求像点的位置.设玻璃的折射率为1.5,水的折射率为1.33.
1
f f1 f f 1
1
1
sf12sf sf1sf 1 1
1 s
s11s1s
1 f1
1 f
120120
3913.911.2120.00.0224444
s凸 s凸s1 s1404.902.92cmcm
解: n' n n' n s' s r
(1)s r s1' r
n n n n n s1 r r r
n n n n s s r
即s1 r
(2) s1
s2'
r
2
r
仍在原处(球心),物像重合
/2
n n n n 2n n n n n
n n n n
s3
r1
习题 第3章
1
3-3 眼睛E和物体PQ之间有一块折射率为1.5的玻璃平板,平板 的厚度 d 为30 cm。求物体 PQ的像 P’Q’与物体 PQ之间的距离 d2为多少?(P159)
2
3-6 高5 cm的物体距凹面镜顶点 12 cm,凹面镜的焦距是10 cm, 求像的位置及高度,并作光路图。
12
3-26 图中MM’是一厚透镜的主轴,H、H’是透镜的主平面,S1 是点光源,S1’是点光源的像。试用作图法求出任一物点S2的像 S2’的位置。
13
3-27 双凸薄透镜的折射率为1.5, |r1|=10 cm,|r2|=15 cm,r2的一 面镀银,物点 P在透镜前主轴上 20 cm处,求最后像的位置并作 出光路图。
相除
8
3-18 会聚透镜和发散透镜的焦距都是10 cm, 求: (1)与主轴成 30o 的一束平行光入射到每个透镜上,像点在何处?(2)在每 个透镜左方的焦平面上离主轴 1 cm处各置一发光点,成像在何 处?作出光路图。
9
3-19 如图所示的MM’分别为一薄透镜的主光轴,S为光源,S’ 为像。用作图法求透镜中心和透镜焦点的位置。
14
3
3-7 一个5 cm高的物体放在球面镜前10 cm处成1 cm高的虚像。 求:(1)此镜的曲率半径;(2)此镜是凸面镜还是凹面镜?
4
3-10 欲使由无穷远发出的近轴光线通过透明球体并成像在右半 球面的顶点处,问这透明球体的折射率应为多少?
5
3-11 有一折射率为1.5 、半径为4 cm的玻璃球,物体在距球表面 6 cm处,求:(1)物所成的像到球心之间的距离;(2)像的 横向放大率。
10
3-24 显微镜由焦距为1 cm的物镜和焦距为3 cm的目镜组成,物 镜与目镜之间的距离为20 cm,问物体放在何处时才能使最后的 像成在距离眼睛25 cm处?作出光路图。
几何光学——光的干涉
第三章光的干涉问答题1、试举一种看起来有明暗相间条纹但又不是干涉的自然现象;再举一个看起来没有明暗相间条纹的自然界中的干涉现象。
解:人眼透过两层叠在一起的窗纱去看明亮的背景,由于窗纱经纬丝纹的不规则性,将看到形状不规则的明暗相间条纹,它决不是干涉的结果。
照相物镜表面看起来是一片监色,并无明暗条纹,但它却是一种干涉现象。
2、如图3-1所示的双孔杨氏干涉装置,作如下单项变化,则屏幕上干涉条纹的情况有何改变?1)将双孔间距d变小。
2)将屏幕远离双孔屏。
3)将钠光灯改力氦氖激光。
4)将单孔S沿轴向向双孔屏靠近。
5)将整个装置浸入水中。
6)将单孔S沿横向向上作小位移。
7)将双孔屏沿横向向上作小位移。
8)将单孔变大。
9)将双孔中的一个孔的直径增大到原来的两倍。
图3-1解:1)条纹间距变宽,零级位置不变,可见度因干涉孔径角φ变小而变大了。
2)条纹变宽,零级位置不变,光强弱了。
3)条纹变宽,零级位置不变,黄条纹变成红条纹。
4)条纹间距不变,光照变强,但可见度因干涉孔径角φ变大而变小。
5)条纹间距降为原有的3/4,可见度因波长变短而变小。
6)整个条纹区向下移,干涉条纹间距和可见度均不变。
7)干涉条纹向上移,间距和可见度不变。
8)光强变大,可见度变小,零级位置不变,干涉条纹间距不变。
9)孔2S 的面积是孔1S 的4倍,表明孔2S 在屏上形成振幅为4A 的光波,孔1S 则在屏上形成振幅为A 的光波。
屏上同位相位置处的最大光强()22254A A A I =+=大,是未加大孔2S 时的(25/4)倍;屏上反位相位置处的最小光强()2294A A A I =-=小,也不是原有的零。
可见度由原有的1下降为()()47.0925925=+-,干涉条纹间距和位置都不变。
3、用细铁丝围成一圆框,在肥皂水中蘸一下,然后使圆框平面处于竖直位置,在室内从反射的方向观察皂膜。
开始时看到一片均匀亮度,然后上部开始出现彩色横带,继而彩色横带逐渐向下延伸,遍布整个膜面,且上部下部彩色不同;然后看到彩带越来越宽,整个膜面呈现灰暗色,最后就破裂了、试解释之。
第三章几何光学的基本原理3
P
.
.
O
C
F
+
. .
F1 ’ F’
.
P’
40
轴上物点成像
• • • 轴上物点成像 (1)沿主轴的入射光线,折射后,方向不变。 (2)平行与某一副光轴的入射光线,折射后, 必过(或延长线必过)该副光轴上的像方副焦点。 • (3)过(或延长线过)物方某一副焦点的入射光 线,折射后,必平行于过该物方副焦点的副光 轴。
y y′ + =0 s s′
象方与物方焦点重合
r f = f′= 2
球面反射的高斯公式:
f′ f + =1 s′ s
27
二、单一球面界面反射的作图求象法
入射光线(物空间)与反射光线(像空间)位于球面同侧,物、 像方主焦 点F 、 F’重合于一点F。 A. 轴外物点成像 (1)过(或延长线过)曲率中心C的入射光线,反射后,沿原 方向返回。 (2)平行于主轴的入射光线,反射后,必过(或延长线必过) 主焦点F。 (3)过(或延长线过)主焦点F的入射光线,反射后,必平行 于主轴。 B.轴上物点成像 (1)沿主轴的入射光线,反射后,沿原方向返回。 (2)平行于某一副光轴的入射光线,反射后,必过(或沿长 线必过)该副光轴上的副焦点。 (3)过(或沿长线过)某一副焦点的入射光线,反射后,必平 行于过该副焦点的副光轴。
n − n1 n2 − n ( + ) r1 r2
n2
——薄透镜的高斯公式
10
薄透镜,两顶点可看作重合于一点O,若透镜 两边的折射率相同,则通过O点的光线都不改 变原来的方向——透镜的光心 • 透镜的会聚和发散性质,不能单看透镜 的形状,还与透镜两侧的介质有关 • 当透镜放在空气中时,薄凸透镜是会聚 的,薄凹透镜是发散的 高斯公式 1 1 1 − = s′ s f ′ 牛顿公式
南开考研光学专业习题与解答第三章
第三章 光的干涉例题3.1 菲涅耳双面镜干涉装置.双面镜M 1和M 2的夹角是20角分,准单色缝光源S 对M 1和M 2成两个虚的相干光源S 1和S 2, S 到双面镜交线的距离L 1=10厘米,接收屏幕与双面镜交线的距离L 2=100厘米,光源所发光的波长λ=600纳米.试问屏幕上干涉条纹间距是多少?解:由菲涅耳双面镜干涉装置条纹间距公式ϕλ1212)(L L L x +=∆,式中 弧度0058.01803,1000,10010,60021=⨯=====πϕλmm L mm cm L nm 代入上式,得 mm x 57.0=∆.3.2 将焦距为 50厘米的薄正透镜从正中切去宽度为a 的部分,再将剩下的两半粘接在一起, 形成一块比累对切透镜,如计算题 3.2图所示. 在透镜一侧的对称轴上放置一个波长为600纳米的单色点光源,另一侧远方的垂轴屏幕上出现干涉直条纹 ,测得条纹间距为5.0毫米,且沿轴向移动屏幕时条纹间距不变,求a .解:在比累对切装置中,若将屏幕前后移动干涉条纹间距不变,则干涉区是有一定夹角的两平行光波干涉场,干涉条纹间距公式)2/sin(2/θλ=∆x ,θ为两相干光束夹角. 点光源S位于比累对切透镜的焦平面上.比累对切透镜中心不是透镜的节点.对于下半透镜,节点在O1点,对于上半透镜,节点在O 2点(计算题3.2解图),O1O2的距离即为切去部分的长度a .由几何光学作图法,可以画出光束经比累透镜上下两部分折射后的平行光束.根据图中的几何关系有,sin f a '=θ).(6.05.010600500sin 6mm x f f a =⨯⨯=∆'='=-λθ计算题3.2图3.3 将杨氏双缝干涉装置照明光源波长为λ,S 2缝覆盖以厚度为h ,折射率为n 的透明介质薄膜(计算题3.3图),使零级干涉条纹移至原来的第K级明条纹处,试问介质薄膜的厚度h 是多少?解:如计算题 3.3图所示,S2缝盖以透明介质片,介质片产生附加光程差为h n )1(-=∆因为零级明条纹移至原来第K级明条纹处,在原K 级明条纹处,)1(21h n r r -=-λk r r =-12,因此有1--=n k h λ. 介质片厚度应为正值,因此K为负值,零级条纹应在屏幕的下方.3.4 如计算题3.4图所示的杨氏干涉装置.双孔屏S 1S 2右侧10厘米远处放置一枚焦距为10厘米的薄凸透镜L ,L 的光轴与干涉装置的对称轴重合.在L 的右侧10厘米远处又放置一垂轴屏幕.已知双孔间距d=0.02毫米,且用λ=500纳米的光照明.试计算题3.4图计算题3.3图解:杨氏双孔恰在透镜L的焦平面上,自双孔发出的相干光,经过透镜拐折后,变为夹角为α的两束平行光(计算题3.4解图a ).两束平行光的夹角为f d '=/α.今将两束平行光波场表示在计算题3.4图(b)中.两相干光波为平面波,K1、K2分别表示两波的传播方向,在干涉场中,两平面波波峰与波峰相重和波谷与波谷相重的点为相干加强的点.在三维空间中,这些点形成一组等间距、平行于两相干光束夹角平分面的平面.计算题3.4解图(b )中,屏幕上A和B点就是相干加强的点,是干涉明条纹的中心,显然,AB两倍于条纹间距.由图中的几何关系,得条纹间距)(5.210002.0105002/sin 26mm f d x =⨯⨯='=≈=∆-λαλαλ.3.5 在计算题3.4中,将透镜L 向左移近双孔2厘米,则屏幕上的条纹间距是多少?解法一:如计算题3.5解图(a )所示,若无透镜L,屏幕上P点光强由r 1和r 2的光程差来决定.加透镜后,r 1和r 2拐折了,不在P点会聚了.双孔屏和屏幕被透镜隔开在两个不同的光学空间.P点的光强由另外两光线R1和R 2的光程差决定.R1和R 2应分别发自S1和S2.怎样确定R1和R 2?R1和R 2会聚于P点,必来自P的共轭点P'.用薄透镜成象公式求出P'点的位置.这里物距12-=s 厘米,焦距10='f 厘米,代入成象公式计算题3.4解图(a )计算题3.4解图(b),1011211=--'s 解得60='s 厘米, 垂轴放大率1260-='=s s β.设P和P'点到光轴的距离分别为h 和h ',则,5h h h -=='β因此,P'在L左60厘米、光轴下-5h 处(计算题3.5解图a ).相干光束必从P'出发,分别过S1和S2,经L拐折后会聚到P点.双孔前面光程分别为[R'1]和[R'2],双孔后光程分别为[R1]和[R2].R1和R2是实际的光线,[R1]和[R2]称为实光程,[R'1]和[R'2]为虚光线的光程,称为虚光程.在近轴情况下,共轭点P、P'之间的光线等光程,因此有 ],[][][][2211R R R R +'=+'][][][][1212R R R R -='-'. 即双孔右实光线光程差正好等于左边虚光线的光程差的负值.我们可以把对实光程差的讨论,用对虚光程差的讨论来代替.或者说,我们把屏幕成象在双孔屏所在的光学空间,在屏幕的像面形成虚干涉.虚干涉条纹间距为3.12.0520105006=⨯⨯=''='∆-d L x λ(毫米).屏幕上实干涉与其像面上的虚干涉条纹共轭.因此,干涉条纹间距为26.053.15=='∆=∆x x (毫米).解法二将双孔变换到屏幕所在的光学空间,由透镜成象公式求出双孔屏的位置.,101811=--'s40-='s 厘米,计算题3.5解图a5840=--=β. 双孔的像S'1和S'2(计算题 3.5解图b )间距为12.055=⨯=='d d 毫米,524012=+='L 厘米,虚光源在屏幕上产生实干涉.屏幕上条纹间距为26.01520105006=⨯⨯=''=∆-d L x λ(毫米).3.6 菲涅耳双面镜的夹角为20角分,缝光源离双面镜交线10厘米,接收屏幕与光源的双像连线平行,屏幕距离双镜交线210厘米,光波波长600纳米,试求 (1) 屏幕上干涉条纹的间距;(2) 屏幕上可以看到几个干涉条纹?(3) 如果光源到两镜交线的距离增大一倍,干涉条纹有什么变化? (4) 如果光源与两镜交线距离不变,只是在横向有一小的位移δx ,干涉条纹有什么变化?(5) 如果使屏幕上干涉条纹可见度不为零,缝光源的最大宽度为多少?※※※解:(1)双面镜夹角20=α角分18031π⨯=弧度,1001=L 毫米,21002=L 毫米,屏幕上条纹间距为100)1803/(2)2100100(106002)(6121⨯⨯⨯+⨯⨯=+=∆-παλL L L x 13.1≈(毫米)(2)屏幕上干涉区宽度为222L L l αθ=≈∆,屏幕上的干涉条纹条数为22≈∆∆≈∆xlN 条. (3)由于21L L <<,当1L 增加一倍时,条纹间距计算题3.5解图L'=52cm12122)(L L L x ⋅+=∆αλ,分子中21212L L L L +≈+,条纹间距将减少为原来的一半,干涉区干涉条纹数 增加一倍.44≈∆N 条.(4)如计算题3.6图所示,当光源S移动δs 时,双像也作相应地移动,双像S 1、S 2连线的垂直平分线与屏幕交点O (原点,零级干涉条纹处)在屏幕上移动δx .由几何关系,21L xL sδδ=,由于光源的移动是横向的,移动时L 1、L 2和α都不变,因此条纹间距不变,屏幕上干涉图样只作平移,移动的距离为12L L sx δδ=. (5)设光源宽度为b ,边缘光源点在屏幕上的干涉图样彼此错开δx ,当δx 与干涉条纹的宽度∆x 一样大时,干涉条纹会因非相干叠加而消失,干涉也就消失.就是说,当x x ∆=δ时,干涉消失.此时有112122)(L L L b L L αλ+=,αλαλ22)(221≈⋅+=L L L b .S d 计算题3.6解图αλ2=b 是光源的极限宽度,αλ2<b 干涉可见度不为零. 3.7 透镜表面通常覆盖一层氟化镁(MgF 2)(n=1.38)透明薄膜,为的是利用干涉来降低玻璃表面的反射.为使波长为632.8纳米的激光毫不反射地透过,这覆盖层至少有多厚?解 从实际出发,可以认为光垂直入射于透镜表面.当某种波长的光在氟化镁薄 膜上下表面的反射相干相消时,我们认为该波长的光毫不反射地透过.薄膜干 涉光程差公式2/cos 222λ±=∆i d n ,相干相消满足λλ)2/1(2/cos 222+=±k i d n ,式中02=i ,1cos 2=i ,由于氟化镁膜上表面是折射率为1.0的空气,下表面是玻璃,玻璃折射率大于氟化镁的折射率,所以光程差公式中无2/λ±一项,上式可简化为λ)2/1(22+=k d n ,计算膜最小厚度,取k=0,得膜最小厚度46210146.138.14108.6324--⨯=⨯⨯==n d λ(毫米).3.8 焦距为30厘米的薄透镜沿一条直径切成L 1和L 2两半,将这两半彼此移开8.0厘米的距离(如计算题3.7图).位于光轴上的光源S 波长为500纳米,到L 1的距离是 60厘米,S '1和S '2 为光源形成的两个像. (1) 在图上标出相干光束的交叠区,(2) 在干涉区垂轴放置一屏幕,屏幕上干涉条纹的形状怎样? (3) 在两像连线中点垂轴放置屏幕,屏幕上条纹间距为多少?解 (1) 题中的干涉装置称为梅斯林干涉装置.光源点S经梅斯林透镜形成两个实象点S'1和S '2.干涉区如计算题3.8解图(a )所示,是像空间成像光束的交计算题3.8图n =计算题3.7解图叠区.(2) 将干涉区放大,如计算题3.8解图(b )建立坐标系.光源S 的像S'1(0,0,-a)和S '2(0,0,a)相距2a ,屏幕垂轴放置,P为干涉场中屏幕上任意一点,它是光线1'和2'的交点.以S '2为圆心,以2a 为半径作圆弧,交光线1'于S'1,交光线2'于Q,可认为光源S到S'1和Q点等光程,因此,1'和2'两光线到达P点,在P点的光程差为 ][2211S P S Q P S QP P S '-'-'=-'=∆2/12222/1222])[(2])[(y x z a a y x z a ++-+-+++=不同的P点将有不同的光程差,光程差为常数的点的轨迹方程为2/12222/1222])[(])[(y x z a y x z a ++++++-=+∆=a 2常数.这是一个以S'1和S '2为焦点的椭球方程,因此等光程差的轨迹是以S'1和S '2为焦点的旋转椭球面族.以垂直于光轴放置的屏幕截这些椭球面族,则得到以光轴为圆心、半圆形的、不定域的干涉条纹.(x,y )计算题3.8解图c计算题3.8解图b(3)以焦距30厘米,物距分别为60-厘米和)860(+-厘米,代入薄透镜成像公式,计算出两像距分别为60厘米和53.68厘米.两像点相距2a=1.68厘米,故干涉区在光轴的下方.若屏幕在两像点连线中垂面上,如计算题3.8解图c 所示,P 为屏幕上任意一点,相干光1' 和2' 在P 点的光程差为a r r a r QP P S 22)2(1211-=--=-'=∆, 因2/1222/12221)1()(ay x a a y x r ++=++=,在透镜孔径1s D '<<,222y x a +>>时,ay x a a y x a r 2)211(222221++≈+++= ,故1'和2'在P 点的相位差为]2)2(2[2222a ay x a -++=∆=λπλπδay x 222+=λπ.当λk ay x =+22时( ,2,1=k ),πδk 2=,该点是相干加强的点,为明条纹的中心.因此明条纹满足λka y x =+22,( ,2,1=k )令λρka =2,则222ρ=+y x .上式为标准的圆方程,k ∝ρ.由中心向外,条纹的半径分别为λρa =1,λρa 22=,……条纹间距为λρρρa k k k k ⋅-+=-=∆+)1(1.3.9 用钠光灯做杨氏干涉实验,光源宽度被限制为2毫米,双缝屏到光源的距离D=2.5米.为了使屏幕上获得可见度较好的干涉条纹,双缝间距选多少合适? 解 取钠光波长3.589=λ纳米.已知光源的宽度b =2毫米,相干孔径角被λθ≤b 式限制.即bλθ≤.由计算题3.9解图所示,要想得到可见度不为零的干涉条纹,双孔间距必需在上式孔径角所限制的范围内,即bD d λ<, 因此,双缝间距为736.02105.2103.58936=⨯⨯=<-b D d λ(毫米). 若想得到可见度较好的干涉条纹,光源上边缘光源点在屏幕上的光程差的差要小于或等于四分之一光源波长.即4λθ≤b ,或184.04=⋅≤bDd λ(毫米). 此种情况下,屏幕上干涉条纹可见度可达0.9以上.3.10 观察肥皂水薄膜(n=1.33)的反射光呈绿色(λ=500纳米),且这时法线和视线间角度为0145=i ,问膜最薄的厚度是多少?若垂直注视,将呈现何色? 解 入射到肥皂水薄膜表面光线的入射角为450,可求出光在膜内的折射角2i .由折射定律,20sin 33.145sin 0.1i ⨯=⨯,解出0212.32=i ,8470.0cos 2=i . 由于光在空气中的肥皂水膜上表面反射时有π的相位变化,在其下表面反射时无π的相位变化,因此光程差中要计入半波突变.对于相干加强的500纳米的绿光,应满足λλk i d n =-2/cos 222.题意求最薄厚度,应取0=k ,以各值代入上式,得8470.033.121210500cos 212622⨯⨯⋅⨯=⋅=-i n d λ41011.1-⨯=(毫米).同一厚度的肥皂水膜,若眼改微微垂直注视,则1cos 2=i ,此时看到的相干加计算题3.9解图强的波长λ'应满足λλ''='-k d n 2/22,将 2,1,0='k 代入上式发现,仅当0='k 时λ'才落在可见光范围内,以0='k 代入,求得3.590='λ纳米,为深黄色的光.可见,从不同方向观看,可以呈现不同颜色,这一现象也表现在一些鸟的羽毛薄膜上.有时从不同方向观看羽毛,颜色不同,这是一种薄膜干涉现象.3.11 如计算题3.11图所示,两平板玻璃在一边相连接,在与此边距离20厘米处夹一直径为0.05毫米的细丝,以构成空气楔.若用波长为589纳米的钠黄光垂直照射,相邻暗条纹间隔为多宽?这一实验有何意义?解 两玻璃板之间形成一尖劈空气隙,劈角4105.220005.0-⨯=÷=α弧度.经空气隙上下表面反射的光形成等厚干涉,由条纹间距公式18.1105.2210589246=⨯⨯⨯==∆--αλx (毫米).从上式可以看出,劈角愈小,条纹间距越大,越容易数出干涉条纹的条数.因为每相临两个等厚干涉条纹对应的厚度差等于半个波长,数出条纹数可以计算出细丝的直径.干涉条纹数越少,丝越细.因此,此实验可以做精密测量用.3.12 在牛顿环实验中,平凸透镜的凸面曲率半径为5米,透镜直径为20毫米,在钠光的垂直照射下(λ=589纳米),能产生多少个干涉条纹?要是把整个装置浸入n=1.33的水中,又会看见多少条纹?解 牛顿环实验装置产生等厚圆条纹.条纹半径公式为λkR r k =.式中k 是干涉圆条纹的序数.透镜的直径为20毫米,对应的干涉条纹序数为3410589105106322≈⨯⨯⨯==-λR r k k 条. 若装置放入水中,波长应为n /λλ=',看到的条纹数为452≈=''λR n r k k 条.计算题3.11图3.13 光学冷加工抛光过程中,经常用“看光圈”的办法检查工件的质量是否符合设计要求.如计算题3.13图所示,将标准件平凸透镜的球面放在工件平凹透镜的凹面之上,用来检验凹面的曲率.此时,凸面和凹面之间形成一空气层.在光线照射下,可以看到环状干涉条纹.试证明由中央外数第k 个明环的半径k r 和凸面半径R 1、凹面半径R 2以及波长λ之间的关系为12212)21(R R R R k r k --=λ.解 如计算题3.13解图所示,平凸透镜和平凹透镜之间形成空气隙,设A点处形成 k 级明条纹,明条纹半径为r k ,该处对应的空气膜厚度为d k .由图中几何关系得211221)(d R r R k -+=,将上式展开,并消去无穷小量21d ,得1212R r d k =, 同理可得2222R r d k =. K 级明条纹对应的膜厚为)11(221221R R r d d d k k -⋅=-=,k 级明条纹满足光程差公式λλk d k =+2/2.将k d 代入,整理得计算题3.13图 计算题3.13解图d12212)21(R R R R k r k --=λ.3.14 机加工中常常要用块规来校对长度.计算题3.14图中,块规G 1的长度是标准的,G 2是要校准的块规,两块块规的两个端面经过磨平抛光.G 1 和G 2的长度不等,在它们的上面盖以透明的平板玻璃G ,G 与G 1、 G 2之间形成空气隙,当用单色光照明G 的表面时,可产生干涉条纹.(1) 设所用光波波长为500纳米,图中,间距l =5厘米,观察到等间距的干涉条纹,条纹间距为0.5毫米.试求块规的高度差.怎样判断它们之中哪个长?(2) 如果G 和 G 1间干涉条纹间距是0.5毫米,G和G 2间干涉条纹间距是0.3毫米,则说明什么问题?解 (1)在玻璃平板G与块规之间形成尖劈形状的空气隙(计算题3.14解图a ),劈角α与产生的干涉条纹间距之间的关系为αλ2=∆x , 因此块规G 1、G 2之间的高度差为26105.25.021*******--⨯=⨯⨯⨯=∆==∆x l l h λα(毫米).轻轻压玻璃板G,G1和G2中短者与G 之间夹角变小,干涉条纹变疏;长者与G之间夹角变大,条纹变密(计算题3.14解图b).(2)在不加压力于G的情况下,若与G1、G2间干涉条纹间距不同,说明G1G2的上表面不严格平行,两表面空气劈角不等劈角差为2)11(1212λαααx x ∆-∆=-=∆计算题3.14图计算题3.14解图(a )(b )46103.3210500)5.013.01(--⨯=⨯⨯-=(弧度)3.15 若用钠光灯(λ1=589.0纳米,λ2=589.6纳米)照明迈克尔孙干涉仪,首先调整干涉仪,得最清晰的干涉条纹,然后移动M 1,干涉图样为什么逐渐变得模糊?问第一次干涉条纹消失时,M 1由原来位置移动了多少距离?解 迈可耳孙干涉仪双光束干涉,可以等效为空气中的空气膜的干涉.空气膜折射率为1.0.取视场中心,则0.10cos cos 2==i .今以λ1=589.0纳米和λ2=589.6纳米钠双线照明.设在空气膜厚度为d 1时,对λ1和λ2,干涉条纹中心都为明条纹,前者级次为1k ,后者级次为m k -1.视场中心同时满足 1112λk d =,(1)211)m k (d 2λ-=.(2)由于两谱线波长相差很小,所以它们干涉条纹宽度分布规律基本上一样.即在两者干涉图样中心都是亮条纹时,其他亮条纹也重合得很好.使得视场中干涉条纹看起来很清晰. 今逐渐移动M1,增加等效空气膜厚度d ,视场中心两种波长的干涉条纹各自以不同的速度外冒,由于两套干涉条纹非相干叠加的结果,使得视场中条纹可见度越来越坏,直至条纹完全消失.此时两套干涉图样恰好是一个的极大与另一个的极小相重合.因此有 1222λk d =,(3)222)21(2λ--=m k d .(4)代入已知量解上面四个方程,求得M 1移动的距离1447.012=-=∆d d d (毫米).3.16 用水银蓝光(λ =435.8纳米)扩展光源照明迈克耳孙干涉仪,在视场中获得整20个干涉圆条纹.现在使M1远离M'2,使d 逐渐加大,由视场中心冒出500个条 纹后,视场内等倾圆条纹变为40个.试求此干涉装置的视场角、开始时的间距d 1和最后的间距d 2.解 计算题3.16解图中,M1是圆形反射镜, M'2是圆形反射镜M2的像,二者等效为空气 膜面.它们对观察透镜中心的张角22i 是视场角.当M1和M'2的起始间距为d 1时,对于视场中心 和边缘,分别有λ中k d =12,1 '2计算题3.16解图λ)20(cos 221-=中k i d .间距由d 1增加到d 2的过程中,冒出500个条纹,则此时对中心和边缘有 λ)500(22+=中k d ,λ)40500(cos 222-+=中k i d .已知λ=435.8纳米,解上面四方程,可得0226.16=i ,500=中k , 109.01=d 毫米,218.02=d 毫米.3.17 用迈克耳孙干涉仪作精密测长,光源为632.8纳米的氦氖激光,其谱线宽度为10-4纳米,光电转换接收系统的灵敏度可达到1/10个条纹,求这台仪器的测长精度和测长量程.解 迈克耳孙干涉仪的测长精度由接收系统的灵敏度来决定.由于干涉条纹每变化一个,长度就变化半个波长.接收系统灵敏度可达到1/10个条纹,因此测长精度为64.312101=⋅=λδl (纳米). 一次测长量程m l 由相干长度0l 来决定.2212120≈∆⋅==λλl l m (米).3.18 我们大致知道某谱线的能量分布在600~600.018纳米范围内,并且其中包含很多细结构,最细结构的波长间隔为6×10-4纳米.试设计一标准具,用它可以研究这一谱线的全部结构.解 由于要分析的谱线能量在600~600.018纳米范围内,要求所设计的标准具(即d 固定的法布里-珀罗干涉仪)自由光谱范围应为018.022==∆dλλ自(纳米).由此计算出标准具反射面之间距离最大应为10018.02600222=⨯=≤自λλd (毫米). 所得最大的干涉级次为λdk m 2=.因最细结构的波长间隔为6×10-4纳米,此为要求的最小可分辨波长间隔.由此求出对标准具分辨本领的要求.即64101106600⨯=⨯=∆=-辨λλR .又因21r rk R m-=π,将k m 代入可求得反射面的振幅反射比为r ≥0.95.因此,要分析能量分布在600~600.018纳米范围内,最细结构的波长间隔为6×10-4纳米的谱线,标准具d 最大为10 毫米,反射面 r ≥0.95.3.19 设法-珀腔腔长5厘米,照明的扩展光源波长为600纳米,试求(1) 所得到的等倾干涉圆条纹中心的级次是多少?(2) 设光强反射率为0.98,在倾角10附近干涉环的半角宽度是多少? (3) 如果用这个法-珀腔分辨谱线,其色分辨本领有多高:(4) 如果用这个法-珀腔对白光进行选频,透射最强的谱线有几条?每条谱线的宽度为多少?(5) 由于热胀冷缩,引起腔长的改变量为510-(相对值),则谱线的漂移量为多少?解 (1)法布里-珀罗干涉仪透射光相干加强的件是 λk i nd =cos 2,对于干涉圆条纹中心,0.1cos =i ,上式为 λk nd =2,其中0.1=n ,5=d 厘米,600=λ纳米,代入上式,得干涉条纹中心级次56107.1106005022⨯≈⨯⨯==-λdk . (2)k 级亮环的半角宽度公式98.098.011sin 502106001sin 20622/0ππλ∆-⋅⨯⨯⨯=-⋅=-r r d i k I6102.2-⨯=(弧度)54.0''≈.可见亮环非常细锐. (3)分辨本领72106.21⨯=-=r rk R π,可分辨的最小波长间隔:57103.2106.2600-⨯=⨯==Rλδλ(纳米) (4)用白光做光源进行选频,相邻两极大的波长间隔32110025.32-=∆⨯==∆dk λλ(纳米)。
第三章几何光学薄透镜作图求像法
c
· s· · o· o
1
s
2
10 cm
10 cm
10 cm
解:
物点s经过透镜和凹面镜三次成像,第一次经透镜折 射成像,以 o1 为顶点,向右为正,物距 s 10 cm , ,焦距为 f 。根据薄透镜成像公式得方程: 像距s1
1 1 1 s1 10 f
(1)
第二次经凹透镜反射成像,以 o2为顶点,向右
薄透镜的作图求像法
⑶ 利用像方焦平面与副轴作图法(凹透镜) ①PA为从物点P发出的任一 光线,与透镜交于A点; ②过透镜中心O作平行于PA 的副轴OB’,与像方焦平面交 于B'点; ③连接A、B' 两点,线段AB’ 的延长线就是折射光线,它与 沿主轴的光线交于点 P',则P‘ 就是所求像点。 讨论: ⑴推广:轴外不远处——近轴 ⑵条件:近轴光线下,且透镜两边介质的折射率相同。 ⑶意义:同一物点的任意两条特殊光线通过透镜折射后的交点便是 对应的像点。
1 1 1 10 s2 s - f
(3)
由s -10 cm 联立方程(1)、(2)、 (3)得两解
f 20cm
o · · · o · c s
1 2
s
10 cm
10 cm
10 cm
利用物方焦平面
B P F
第一条 第二条 副轴: A P’ P P’ O
B
A
O
F
利用像方焦平面
A B P’ P O F’ P B A
P’
O F
(一)例子
在初中、高中同学们都能用作图法 求透镜成像,那么请同学们判断下面的 作图是否一定正确,或需要什么条件?
例子1:光心、中心及透镜简化问题
高考物理光学知识点之几何光学技巧及练习题附答案(3)
高考物理光学知识点之几何光学技巧及练习题附答案(3)一、选择题1.有关光的应用,下列说法不正确的是( )A .拍摄玻璃橱窗内的物品时,往往在镜头前加一个偏振片以增加透射光的强度B .光学镜头上的增透膜是利用光的干涉现象C .用三棱镜观察白光看到的彩色图样是光的折射形成的色散现象D .在光导纤维束内传送图象是利用光的全反射原理2.光在真空中的传播速度为c ,在水中的传播速度为v 。
在平静的湖面上,距水面深h 处有一个点光源,在水面上某些区域内,光能从水面射出,这个区域的面积为( )A .2222πv c v h -B .222πc v hC .222πvc vh - D .2222)(πc v c h - 3.先后用两种不同的单色光,在相同的条件下用同双缝干涉装置做实验,在屏幕上相邻的两条亮纹间距不同,其中间距较大.....的那种单色光,比另一种单色光( ) A.在真空中的波长较短 B.在玻璃中传播的速度较大C.在玻璃中传播时,玻璃对其折射率较大D.其在空气中传播速度大4.甲、乙两单色光分别通过同一双缝干涉装置得到各自的干涉图样,相邻两个亮条纹的中心距离分别记为Δx 1和Δx 2,已知Δx 1>Δx 2。
另将两单色光在真空中的波长分别用λ1、λ2,在同种均匀介质中传播的速度分别用v 1、v 2,光子能量分别用E 1、E 2、在同种介质中的折射率分别用n 1、n 2表示。
则下列关系正确的是 A .λ1<λ2 B .v 1<v 2 C .E 1<E 2 D .n 1>n 25.公园里灯光喷泉的水池中有处于同一深度的若干彩灯,在晚上观察不同颜色彩灯的深度和水面上被照亮的面积,下列说法正确的是( ) A .红灯看起来较浅,红灯照亮的水面面积较小 B .红灯看起来较深,红灯照亮的水面面积较小 C .红灯看起来较浅,红灯照亮的水面面积较大 D .红灯看起来较深,红灯照亮的水面面积较大6.如图所示,O 1O 2是半圆柱形玻璃体的对称面和纸面的交线,A 、B 是关于O 1O 2轴等距且平行的两束不同单色细光束,从玻璃体右方射出后的光路如图所示,MN 是垂直于O 1O 2 放置的光屏,沿O 1O 2方向不断左右移动光屏,可在屏上得到一个光斑P ,根据该光路图,下列说法正确的是( )A.在该玻璃体中,A光比B光的运动时间长B.光电效应实验时,用A光比B光更容易发生C.A光的频率比B光的频率高D.用同一装置做双缝干涉实验时A光产生的条纹间距比B光的大7.如图所示,为观察门外情况,居家防盗门一般都会在门上开一小圆孔.假定门的厚度为a=8cm,孔的直径为d=6cm,孔内安装一块折射率n=1.44的玻璃,厚度可]的厚度相同,已知sin37°=0.6,cos37°=0.8.则A.如未装玻璃,室内的人通过小孔能看到外界的角度范围为106°B.装人玻璃后,室内的人通过玻璃能看到外界的角度范围约为106°C.装人玻璃的折射率越大,室内的人通过玻鵯能看到外界的角度范围就越小D.若要将视野扩大到180°,需嵌入折射率大于或等于53的玻璃8.下列说法中正确的是A.白光通过三棱镜后呈现彩色光带是光的全反射现象B.照相机镜头表面涂上增透膜,以增强透射光的强度,是利用了光的衍射现象C.门镜可以扩大视野是利用了光的干涉现象D.用标准平面检查光学平面的平整程度是利用了光的干涉9.如图所示为用a、b两种单色光分别通过同一双缝干涉装置获得的干涉图样.现让a、b 两种光组成的复色光穿过平行玻璃砖或三棱镜时,光的传播路径与方向可能正确的是()A.①③B.①④C.②④D.只有③10.ABCDE为单反照相机取景器中五棱镜的一个截面示意图,AB⊥BC,由a、b两种单色光组成的细光束从空气垂直于AB射入棱镜,经两次反射后光线垂直于BC射出,且在CD、AE边只有a光射出,光路图如图所示,则a、b两束光()A.在真空中,a光的传播速度比b光的大B.在棱镜内,a光的传播速度比b光的小C.以相同的入射角从空气斜射入水中,b光的折射角较小D.分别通过同一双缝干涉装置,a光的相邻亮条纹间距小11.下列说法正确的是()A.由红光和绿光组成的一细光束从水中射向空中,在不断增大入射角水面上首先消失的是绿光B.光的双缝干涉实验中,在光屏上的某一位置会时而出现亮条纹,时而出现暗条纹C.红光的光子能量比紫光光子能量大D.只有横波才能产生干涉现象12.在玻璃中有一个截面为三角形的柱状真空空腔,a, b两束单色光以同样的入射角θ由玻璃射入空腔,部分光路如图,下列说法正确的是()A.若增大b光在空腔内先消失B.若改变θ,a光通过空腔的时间一定比b光短C.在同一双缝干涉装置的干涉条纹a光较宽D.若将两个相同的小球分别涂上a、b两种颜色放在同样深度的水中,在水面上看涂a颜色的小球较浅13.如图所示,放在暗室中的口径较大不透明的薄壁圆柱形浅玻璃缸充满水,缸底中心有一红色发光小球(可看作点光源),从上往下看,则观察到()A.水面有一个亮点B.充满水面的圆形亮斑C.发光小球在水面上的像D.比小球浅的发光小球的像14.一束单色光由空气进入水中,则该光在空气和水中传播时A.速度相同,波长相同B.速度不同,波长相同C.速度相同,频率相同D.速度不同,频率相同15.如图所示是一透明玻璃球体,其半径为R,O为球心,AB为水平直径。
几何光学的习题
第二章 理想光学系统 1.某照相机可拍摄最近距离为1m,装上两个屈光度 (f‘=500mm)的近拍镜后,能拍摄的最近距离是多少? (假设近拍镜与照相镜头密接) 2.由已知f‘1=50mm,f’2= —150mm的两个薄透镜组 成的光学系统,对一实物成放大4倍的实像,并且第一透 镜的放大率β1=—2,试求:1.两透镜的距离2.物象之间 的距离3.保持物面位置不变,移动第一透镜至何处时, 仍能在原像面位置得到物体的清晰像?与此相应的垂轴 放大率为多大? 3.有一光学系统,已知f‘=—f=100mm,总厚度(第一 面到最后一面的距离)为15mm,lf’=96mm,lf=— 97mm。求此系统对实物成放大十倍的实像时物距(离 第一面)l1,像距(离最后一面)lk‘及物像共轭距L。 并画图表示
4.有一架开普勒望远镜,视放大率为6,物方视场 角2w=8度,出瞳直径D’=5mm,物镜和目镜之间 距离L=140mm假定孔径光阑与物镜框重合,系统 无渐晕,求: 1.物镜焦距和目镜焦距2.物镜口径和目镜口径3. 分划板直径4.出瞳距离5.画出光 路图 5.有一显微镜,物镜的放大率β=—40,目镜 的倍 率为Γ目=15(均为薄透镜),物镜的共轭距为 195mm,求物镜和目镜的焦距,物体的位置,光 学筒长,物镜和目镜的间距,系统的等效焦距和 总倍率。
几何光学习题
第一章 几何光学基本定律与成像概念
1.人眼垂直看水池1m深处的物体,水的折射率为 1.33,试问该物体的像到水面的距离是多少? 2.为了从坦克内部观察外边目标需要在坦克壁上开 一个孔。假定坦克壁厚200mm,孔宽为120mm, 在孔内安装一块折射率n=1.5163的玻璃,厚度与装 甲厚度相同,问在观察者眼睛允许左右移动的条件 下,能看到外界多大角度范围? 3.试用费马原理导出反射和折射定律
光学第三章习题 11级应用物理
11级应用物理 曹江勇学号:20114052004第三章 习题一、选择题:2004. 2n = 1 的空气对于1n = 1.5 的玻璃而言,其临界角c i 约为 ( B )(A )40° (B ) 42° (C )55° (D )56°2005.将折射率为 n 的薄透镜置于折射率为 n ′(>n )的介质中,则 ( B )(A )凸透镜会聚、凹透镜发散 (B )凸透镜发散、凹透镜会聚(C )凸透镜发散、凹透镜发散 (D )凸透镜会聚、凹透镜会聚2012.使一条不平行主轴的光线,无偏折(即传播方向不变)的通过厚透镜,满足的条件是入射光线必须通过( A )(A )光心。
(B )物方焦点。
(C )物方节点。
(D )象方焦点。
2016.由折射率为n=1.65 的玻璃制成的薄凸透镜,前后两球面的曲率半径均为40cm ,其焦距等于多少cm ?。
( D )(A )20 (B )21 (C )25 (D )312017.一双凸透镜的折射率为1.5,其两面曲率半径均为10cm ,若其一面涂以银,使其成为凹面镜,在距透镜20cm 处置一点光源,光自左向右射入,右为涂银面,则其所成像在多少cm 处? ( A )(A )20 (B )4 (C )3.33 (D )2.862022.一消色差透镜由两个胶合的薄透镜构成的,他们的光焦度分别为10和-6屈光度,试问组合透镜的焦距为多少cm ?(A )0.25 (B )25 (C )2.5 (D )4002049,光学系统的实物定义是( C )(A )发散入射同心光束的顶点(B )会聚入射同心光束的顶点(C )发散出射同心光束的顶点(D )会聚出射同心光束的顶点2050,光学系统的虚物定义是( B )(A )发散入射同心光束的顶点(B )会聚入射同心光束的顶点(C )发散出射同心光束的顶点(D )会聚出射同心光束的顶点2051,光学系统的实像定义是( B )(A )发散入射同心光束的顶点(B )会聚入射同心光束的顶点(C )发散出射同心光束的顶点(D)会聚出射同心光束的顶点2052,光学系统的虚像定义是( C )(A)发散入射同心光束的顶点(B)会聚入射同心光束的顶点(C)发散出射同心光束的顶点(D)会聚出射同心光束的顶点2053,身高为1.8m的人经过平面镜反射能看到自己全身的像,平面镜的高度至少需要多少米( A )(A)0.9m (B)1.8m (C)2.7m (D)3.6m2054,平面镜成像的性质为( B )(A)实物成实像(B)实物成虚像(C)虚物成虚像(D)虚物不能成像2055,平面镜成像的横向放大率为( A )(A)+1 (B)-1 (C)0 (D)∞2056,唯一能完善成像光学系统的是( B )(A)平面折射系统(B)平面反射系统(C)球面折社系统(D)球面反射系统2058,人在岸上看到水中的鱼是( D )(A)原深度的鱼(B)变深了的鱼的实像(C)变浅了的鱼的实像(D)变浅了的鱼的虚像2059,透过一块厚玻璃板观察一个发光点,看到发光点的位置是( A )(A)移近了(B)移远了(C)不变(D)不能确定2060,某水箱里注水深8cm,箱底有一硬币,则硬币的视深为多少厘米( C )(A)2 (B)4 (C)6 (D)202061,在厚15cm,折射率为1.5的玻璃板下表面上有一小颗粒,如果垂直观察,小颗粒的像位于玻璃板上表面下放多少厘米( B )(A)5 (B)10 (C)15 (D)202062,棱镜的折射率为n,当顶角a很小时,最小偏向角为( C )(A)a (B)na (C)(n-1)a (D)(n+i)a2063,棱镜的顶角为60°,当入射角为45°时,偏向角最小,那么该棱镜的折射率为( A )(A(B(C(D)22066,凹球面镜对实物成像的性质之一是( A )(A)实像都是倒立的(B)实像都是正立的(C)实像都是放大的(D)实像都是缩小的2067,凹球面镜对实物成像的性质之一是( A )(A)虚像都是正立方大的(B)虚像都是倒立方大的(C)虚像都是正立缩小的(D)虚像都是倒立缩小的2068,凸球面镜对实物成像的性质是( B )(A)虚像都是实的(B)虚像都是虚的(C)虚像都是放大的(D)虚像都是倒立的2069,凸球面镜对实物成像的性质( D )(A)实像都是正立方大的(B)实像都是倒立方大的(C)实像都是倒立缩小的(D)不可能产生实像2070,凸球面镜对实物成像的性质( C )(A)实像都是倒立缩小的(B)实像都是正立方大的(C)虚象都是正立缩小的(D)虚象都是倒立方大的2071,平行光通过置于空气中的透明介质球聚焦于球面上,则透明体的折射率为( D )(A)2 (B)1 (C)2 (D)1.52072,凸透镜的成像性质之一是( A )(A)实物始终成倒立实像(B)实物始终成正立虚像(C)虚物始终成正立实像(D)虚物始终成正立虚像2073,凸透镜对实物成像的性质之一是( A )(A)实像都是倒立的(B)实像都是正立的(C)实像都是放大的(D)实像都是缩小的2074,凸透镜对实物的成像性质之一是( D )(A)实像都是正立方大的(B)实像都是倒立方大的(C)实像都是倒立缩小的(D)实像可以放大,也可以缩小2075,凹透镜对实物成像的性质( B )(A)像都是实的(B)像都是虚的(C)像都是放大的(D)像都是倒立的2076,凹透镜对实物成像的性质( D )(A)实像都是正立方大的(B)实像都是倒立方大的(C)实像都是倒立缩小的(D)不能成实像2077,凹透镜对实物成像的性质( C )(A)实像都是倒立缩小的(B)实像都是正立方大的(C)虚象都是正立缩小的(D)虚象都是倒立方大的2078,共轴球面系统主焦点的定义是( D )(A)主轴上横向放大率等于1的一对共轭点(B)主轴上角放大率为1的一对共轭点(C)主轴上纵向放大率为1的一对共轭点(D)主轴上无限远点的共轭点2079,共轴球面系统主点的定义是( A )(A)主轴上横向放大率等于1的一对共轭点(B)主轴上角放大率为1的一对共轭点(C)主轴上纵向放大率为1的一对共轭点(D)主轴上无限远点的共轭点2080,共轴球面系统节点的定义是( B )(A)主轴上横向放大率等于1的一对共轭点(B)主轴上角放大率为1的一对共轭点(C)主轴上纵向放大率为1的一对共轭点(D)主轴上无限远点的共轭点二、填空题:1012.费马原理是指_光沿光程最大值、最小值、或恒定值的路程传播______________。
几何光学习题及答案
几何光学习题及答案几何光学是研究光在不同介质中的传播规律和成像特性的学科。
以下是一些几何光学的习题及答案,供学习者参考。
# 习题1:光线的折射一束光线从空气斜射入水中,入射角为30°,求折射角。
答案:根据斯涅尔定律,\( n_1 \sin(\theta_1) = n_2 \sin(\theta_2) \),其中\( n_1 \)和\( n_2 \)分别是空气和水的折射率,\( \theta_1 \)和\( \theta_2 \)分别是入射角和折射角。
空气的折射率为1,水的折射率约为1.33。
将已知数值代入公式,得到:\[ 1 \times \sin(30°) = 1.33 \times \sin(\theta_2) \]\[ \sin(\theta_2) = \frac{1}{1.33} \times \sin(30°) \]\[ \theta_2 = \arcsin\left(\frac{1}{1.33} \times\frac{1}{2}\right) \]\[ \theta_2 \approx 22.09° \]# 习题2:凸透镜的焦距已知凸透镜的焦距为20cm,物体距离透镜30cm,求像的性质。
答案:根据透镜公式\( \frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i} \),其中\( f \)是焦距,\( d_o \)是物距,\( d_i \)是像距。
已知\( f = 20cm \) 和 \( d_o = 30cm \),代入公式得到:\[ \frac{1}{20} = \frac{1}{30} + \frac{1}{d_i} \]\[ \frac{1}{d_i} = \frac{1}{20} - \frac{1}{30} \]\[ d_i = \frac{30}{20 - 30} = -45cm \]由于像距是负值,表示像在透镜的同侧,且是实像。
第三章几何光学基本原理习题及答案
第三章 几何光学基本原理1.证明反射定律符合费马原理。
证明:费马原理是光沿着光程为最小值、最大值或恒定值的路径传播。
⎰=BAnds 或恒值max .min ,在介质n 与'n 的界面上,入射光A 遵守反射定律11i i '=,经O 点到达B 点,如果能证明从A 点到B 点的所有光程中AOB 是最小光程,则说明反射定律符合费马原理。
设C 点为介质分界面上除O 点以外的其他任意一点,连接ACB 并说明光程∆ ACB>光程∆AOB由于∆ACB 与∆AOB 在同一种介质里,所以比较两个光程的大小,实际上就是比较两个路程ACB 与AOB 的大小。
从B 点到分界面的垂线,垂足为o ',并延长O B '至 B ′,使B O B O '='',连接 B O ',根据几何关系知B O OB '=,再结合11i i '=,又可证明∠180='B AO °,说明B AO '三点在一直线上,B AO ' 与AC 和B C '组成ΔB AC ',其中B C AC B AO '+〈'。
又∵CB B C AOB OB AO B O AO B AO ='=+='+=',ACB CB AC AOB =+〈∴即符合反射定律的光程AOB 是从A 点到B 点的所有光程中的极小值,说明反射定律符合费马原理。
2、根据费马原理可以导出在近轴光线条件下,从物点发出并会聚到像点的所有光线的光程都相等.由此导出薄透镜的物象公式。
证明:由QB A ~FBA 得:OF\AQ=BO\BQ=f\s同理,得OA\BA=f '\s ',BO\BA=f\s由费马定理:NQA+NQ A '=NQ Q '结合以上各式得:(OA+OB)\BA=1得证 3.眼睛E 和物体PQ 之间有一块折射率为1.5的玻璃平板(见题3.3图),平板的厚度d 为30cm.求物PQ 的像 与物体PQ 之间的距离 为多少?解:.由题意知光线经两次折射后发生的轴向位移为:cmn d p p 10)321(30)11(=-=-=',即像与物的距离为cm 10题3.3图4.玻璃棱镜的折射棱角A 为60度,对某一波长的光其折射率为1.6.计算(1)最小偏向角;(2)此时的入射角;(3)能使光线从A 角两侧透过棱镜的最小入射角.解:由最小偏向角定义得 n=sin2A0+θ/sin 2A,得θ0=46゜16′由几何关系知,此时的入射角为:i=2A0+θ=53゜8′当在C 处正好发生全反射时:i 2’= sin-16.11 =38゜41′,i 2=A- i 2’=21゜19′∴i 1= sin -1(1.6sin 21゜19′)= 35゜34′ ∴imin =35゜34′5.图示一种恒偏向棱角镜,它相当于一个30度-60-90度棱镜与一个45度-45度度棱镜按图示方式组合在一起.白光沿i 方向入射,我们旋转这个棱镜来改变1θ,从而使任意一种波长的光可以依次循着图示的路径传播,出射光线为r.求证:如果2sin 1n=θ则12θθ=,且光束i 与 r 垂直(这就是恒偏向棱镜名字的由来). 解: i nsin sin 11=θ若θ1sin = 2n , 则 sini 1 = 21, i 1=30。
第三章__几何光学的基本原理
由图可知 d ? QQ QN sin i i 设QN x ,即光线横向的偏移,则d ? sin i i (1) 在出射点B 处,有 n sini ? nsin^ ,因此可得 i 1 i 1 第三章几何光学的基本原理 3.眼睛E 和物体PQ 之间有一块折射率为1.5的玻璃平板(如图所示),平板的厚 度d 为30cm 求物体PQ 的像PQ 与物体PQ 之间的距离d ?为多少? 已知:n 1, n 1.5, d 30cm在入射点 A 处,有 nsinh n sin i ?即出射线与入射线平行,但横向偏移了x由图中几何关系可得:dx AB sin i1 i? sin i t i ?cosi?而 ni i n i ?, 则 x d i 1 i 2 n . 所以i 2 iln d i i i i,即n (2)式代入(1)式得 d 26.高5cm 的物体距凹面镜顶点 并作光路图1 i i n d . n 1 i 1 i 1 n 1.5 1d Id 10cm 1.5 3 12cm ,凹面镜的焦距是10cm,求像的位置及高度, 求:s ?y ? 作光路图 1 1 1解:根据— f s s 11 1 1 1 1 刁曰 —得s f s10 12 60 s60cmy s n又据— — —,而 n ny s n所以得ys y 60 5 25cm s 12 光路图(r f 2 10cm, r 20cm7. 一个5cm 高的物体放在球面镜前10cm 处,成1cm 高的虚像。
求:(1)此镜的 曲率半径;(2)此镜是凸面镜还是凹面镜?已知: y 5cm , y 1cm , s 10cm已知:y 10cm根据反射镜_y_解: y得: s 上s 1 - 10y51 1 2又由s s r刁曰r,得r ss2cm5cm >0 ,所以此镜是凸面镜。
求:r ?此镜是凸面镜还是凹面镜?8. 某观察者通过一块薄玻璃去看在凸面镜中他自己的像。
几何光学练习题
A,一个倒立的实象;B,一个放大的实象;C,成象于无穷远处;D,一个缩小的实象
三、作图题
1.已知系统的基点H、 ,F、 ,作出物AB的象。
B
A F H
2.用作图法求出物点S的象点。
·
S F H
3.作出伽利略望远镜用作激光扩束器的光路图。
(F2)O1O2
L1L2
4.已知系统的基点H, ,F, ,作出物点P的象点。
5.在焦距为f的透镜光轴上,物点从3f移到2f处,在移动的过程中,物象点之间的距离
A,先减小后增大;B,先增大后减小;C,由小到大;D,由大到小
6.棱镜的顶角为A,折射率为n,当A很小时的最小偏向角为
A,A;B,nA;C,(n-1)A;D,(n+1)A
7.在空气中,垂直通过折射率为n,厚度为d的平板玻璃观察物体,看到的象移近了
21.两个主焦点重合的光学系统是
A,玻璃球B,双凸透镜C,双凹透镜D,球面镜
22.折射球面的物方、象方折射率分别为n和 ,若物、象距分别为S和 ,系统的角放大率为
A, /S;B,S/ ;C,- /S;D,-S/
23.当光线从折射率为n1的光密媒质射向折射率为n2的光疏媒质时,发生全反射的临界角为
A, ;B, ;C, ;D,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 几何光学习题
1、一个5cm 高的物体放在球面镜前10cm 处成1cm 高的虚像,则此镜是凸面镜还是凹面镜,
曲率半径为多少? ( )
(A) 凹面镜、5cm (B) 凸面镜、5cm
(C) 凹面镜、—5cm (D) 凸面镜、—5cm
2、 将折射率为n 1=1.50的有机玻璃浸没在油中,而油的折射率为n 2=1.10。
试问临界角为多
少? ( )
(A )arcsin(1.10/1.50) (B )1.10/1.50 (C )1.50/1.10 (D )arccos(1.10/1.50)
(E )arctan(1.50/1.10)
3、 一物体置于焦距为8cm 的薄凸透镜前12cm 处,现将另一焦距为6cm 的薄凸透镜放在
第一透镜右侧30cm 处,则最后成像的性质为 ( )
(A )一个倒立的实像 (B )一个放大的虚像 (C )一个放大的实像
(D )一个缩小的实像 (E )成像于无穷远处
4、说出产生光谱的两种光学元件( )、( )。
5、白光通过棱镜折射后,波长越长的光偏向角( )。
6、凹厚透镜的折射率为1.5,前后表面的曲率半径分别为20mm 和25mm ,中心厚度为20mm ,
后表面镀铝反射膜,在前表面左方40mm 处放置高度为5mm 的小物体。
求在傍轴条件下最后
成像的位置和高度,以及像的倒正、放缩和虚实情况?
7、将焦距为5cm 的薄凸透镜L 沿直径方向剖开,分成上、下两部分B A L L 、,
并将它们沿垂直于对称轴各平移0.01cm 。
其间空隙用厚度为0.02cm 的黑纸镶嵌。
这一装置
称为比累对切透镜。
若将波长为632.8nm 的点光源置于透镜左侧对称轴上10cm 处。
(1) 试分析P 点发出的光束经透镜后的成像情况。
若成像不止一个,计算像点间的距离。
(2) 若在透镜右侧cm a 110 处置一光屏DD ,试分析光屏DD 上能否观察到干涉花样。
若能观察到,试问相邻两条亮条纹的间距是多少?
8、如图所示,折射率为1.5的厚透镜上下表面的曲率半径均为3cm ,中心厚度为2cm 将其置于水面上,水的折射率为1.33,高度为2mm 的小物置于厚透镜下方水中的光轴上,小物与厚透镜下表面中心点的距离为4cm ,求最后成像的位置和高度,以及像的倒正、虚实和放缩情况?
9、如图所示,杨氏装置中的点光源S 发出波长为nm 600=λ的单色光波,间距为mm d 4.0=的双缝S 1和S 2对称分布于光轴两侧,衍射屏和观察屏的距离为cm 100r 0=,凸透镜L 的前后曲率半径相等,焦距为cm f 10=',置于衍射屏和观察屏之间,薄透镜与衍射屏的距离为cm A 10=,在薄透镜和观察屏之间充满折射率为1.33的水。
在傍轴条件下求观察屏DD 上干涉条纹的形状和间距?
10、光线经等腰棱镜折射后,偏向角δ与入射角i 的关系如图1,球棱镜顶角α和折射率。
图1
45° 30δi
11、对以下三种系统,入射光和出射光如图,试判断物、像的虚实。
(A)(B)(C)
解:(A)虚物,实像
(B)实物,虚像
(C)实物,虚像
12、如图所示,一块平凹薄透镜,凹面曲率半径为0.5m,玻璃折射率n=1.5,且在平面上涂一反射层。
在此系统左侧的主轴上放一物P,P距系统1.5m,试问最后成像在何处?大小有何?。