相似三角形经典的题目型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注:
射影定理:在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,
则AD2=BD·DC,AB2=BD·BC ,AC2=CD·BC 。
知识点8 相似三角形常见的图形
1、下面我们来看一看相似三角形的几种基本图形:
(1)如图:称为“平行线型”的相似三角形(有“A型”与“X型”图)
D
B C
A
(1)
E
A
B
C
D
(3)
D
B C
A
E
(2)
C
D E
A
B
③),(,'''
'''n
m n m n n m m n m d c n m b a =====或 (4) 添加辅助线:若上述方法还不能奏效的话,可以考虑添加辅助线(通常是添加平行线)构成 比例.以上步骤可以不断的重复使用,直到被证结论证出为止.
注:添加辅助平行线是获得成比例线段和相似三角形的重要途径。平面直角坐标系常是作垂线(即得平行线)构造相似三角形或比例线段。
(5)比例问题:常用处理方法是将“一份”看着k;对于等比问题,常用处理办法是设“公比”为k 。 (6).对于复杂的几何图形,通常采用将部分需要的图形(或基本图形)“分离”出来的办法处理。 知识点12 相似多边形的性质
(1)相似多边形周长比,对应对角线的比都等于相似比.
(2)相似多边形中对应三角形相似,相似比等于相似多边形的相似比. (3)相似多边形面积比等于相似比的平方.
注意:相似多边形问题往往要转化成相似三角形问题去解决,因此,熟练掌握相似三角形知识是基础和关键.
知识点13 位似图形有关的概念与性质及作法
定义:如果两个图形不仅是相似图形,而且每组对应顶点的连线都交于一点,那么这样的两个图形叫
做位似图形. 这个点叫做位似中心,这时的相似比又称为位似比.
注:
(1) 位似图形是相似图形的特例,位似图形不仅相似,而且对应顶点的连线相交于一点. (2) 位似图形一定是相似图形,但相似图形不一定是位似图形. (3) 位似图形的对应边互相平行或共线.
位似图形的性质: 位似图形上任意一对对应点到位似中心的距离之比等于相似比. 注:位似图形具有相似图形的所有性质.
画位似图形的一般步骤:
(1) 确定位似中心(位似中心可以是平面中任意一点)
(2) 分别连接原图形中的关键点和位似中心,并延长(或截取). (3) 根据已知的位似比,确定所画位似图形中关键点的位置.
(4) 顺次连结上述得到的关键点,即可得到一个放大或缩小的图形. ①②③④⑤ 注:①位似中心可以是平面任意一点,该点可在图形,或在图形外, 或在图形上(图形边上或顶点上)。
②外位似:位似中心在连接两个对应点的线段之外,称为“外位似”(即同向位似图形) ③位似:位似中心在连接两个对应点的线段上,称为“位似”(即反向位似图形)
(5) 在平面直角坐标系中,如果位似变换是以原点O 为位似中心,相似比为k (k>0),原图形上点的坐标为(x,y ),那么同向位似图形对应点的坐标为(kx,ky), 反向位似图形对应点的坐标为(-kx,-ky),
经典例题透析
类型一、相似三角形的概念
1.判断对错:
(1)两个直角三角形一定相似吗?为什么?
(2)两个等腰三角形一定相似吗?为什么?
(3)两个等腰直角三角形一定相似吗?为什么?
(4)两个等边三角形一定相似吗?为什么?
(5)两个全等三角形一定相似吗?为什么?
思路点拨:要说明两个三角形相似,要同时满足对应角相等,对应边成比例.要说明不相似,则只要否定其中的一个条件.
解:(1)不一定相似.反例
直角三角形只确定一个直角,其他的两对角可能相等,也可能不相等.所以直角三角形不一定相似.
(2)不一定相似.反例
等腰三角形中只有两边相等,而底边不固定.因此两个等腰三角形中有两边对应成比例,两底边的比不一定等于对应腰的比,所以等腰三角形不一定相似.
(3)一定相似.
在直角三角形ABC与直角三角形A′B′C′中
设AB=a,A′B′=b,则BC=a,B′C′=b,AC=a,A′C′= b
∴
∴ABC∽A′B′C′
(4)一定相似.
因为等边三角形各边都相等,各角都等于60度,所以两个等边三角形对应角相等,对应边成比例,因此两个等边三角形一定相似.
(5)一定相似.
全等三角形对应角相等,对应边相等,所以对应边比为1,所以全等三角形一定相似,且相似比为1.
举一反三
【变式1】两个相似比为1的相似三角形全等吗?
解析:全等.因为这两个三角形相似,所以对应角相等.又相似比为1,所以对应边相等.
因此这两个三角形全等.
总结升华:由上可知,在特殊的三角形中,有的相似,有的不一定相似.
(1)两个直角三角形,两个等腰三角形不一定相似.
(2)两个等腰直角三角形,两个等边三角形一定相似.
(3)两个全等三角形一定相似,且相似比为1;相似比为1的两个相似三角形全等.
【变式2】下列能够相似的一组三角形为( )
A.所有的直角三角形
B.所有的等腰三角形
C.所有的等腰直角三角形
D.所有的一边和这边上的高相等的三角形
解析:根据相似三角形的概念,判定三角形是否相似,一定要满足三个角对应相等,三条对应边的比相等.而A中只有一组直角相等,其他的角是否对应相等不可知;B中什么条件都不满足;D中只有一条对应边的比相等;C中所有三角形都是由90°、45°、45°角组成的三角形,且对应边的比也相等.答案选C.
类型二、相似三角形的判定
2.如图所示,已知中,E为AB延长线上的一点,AB=3BE,DE与BC相交于F,请找