二分法和牛顿迭代法求解非线性方程的比较及应用

合集下载

非线性方程数值解法比较

非线性方程数值解法比较

非线性方程数值解法比较化学化工中的许多问题常常可以归结为求解函数方程f(x)=0。

如果f(x)是医院线性方程或一元二次方程,可以用代数方法求解。

但是如果是高次方程,求解析解变得非常困难甚至没有解析解,就只能用数值方法求近似解了。

解非线性方程的数值解法主要有:二分法,迭代法,牛顿法,割线法等。

下面将结合具体的例子来比较几种非线性方程的数值解法。

某多相催化反应通过实验测定的反应级数可以用方程x3-x-1=0来表达,用数值方法求解其反应级数。

1 二分法设方程f(x)=0已知有根区间为(x1,x2),取x1与x2的中点x0,即x0=0.5(x1+x2),检查f(x0)与f(x1)是否同号,如果不同号,则根x0就在(x1,x0)区间,如果同号则根在(x0,x2)区间。

这样就将根的区间缩小了一半,然后重复以上过程,直至解区间很小,得到数值解。

这种方法最大的缺点就是收敛速度慢。

其计算框图如图1.图1 二分法计算程序框图设定A=0,H=0.1,E=0.0001时,执行结果:No. X1 1.35002 1.32503 1.31254 1.31875 1.32186 1.32347 1.32428 1.32469 1.324810 1.324711 1.32472 迭代法迭代法是一种重要的逐次逼近方法,使用某个固定公式反复校正根的近似值,使之逐步精确,组后得到满足要求的结果。

将方程f(x)=0化为x=g(x),以x0为第一个近似根,则有x1=g(x0),再x1以为第二个近似根,则有x2=g(x1),依次类推x k+1=g(x k),如果x0,x1,…,x k,…这个数列有极限,这个极限就是方程的根。

这种方法最关键的问题在于要找出符合收敛条件的g(x)。

下面用迭代法解方程x3-x-1=0。

将原方程写为x=g(x)=(x+1)1/3其计算框图如图2.图2 迭代法计算程序框图设定X0=1.5,E=0.0001时,执行结果:No. X1 1.357212 1.330863 1.325884 1.324945 1.324766 1.324737 1.32472第六次迭代与第七次迭代结果之差已经小于0.00001,可见迭代法的收敛速度比二分法要快,但是依然有一些收敛速度较慢的迭代格式,这时候可以采用迭代-加速公式来加速收敛,在此不再详细介绍。

数值分析求解非线性方程根的二分法简单迭代法和牛顿迭代法

数值分析求解非线性方程根的二分法简单迭代法和牛顿迭代法

实验报告一:实验题目一、 实验目的掌握求解非线性方程根的二分法、简单迭代法和牛顿迭代法,并通过数值实验比较两种方法的收敛速度。

二、 实验内容1、编写二分法、并使用这两个程序计算02)(=-+=x e x x f 在[0, 1]区间的解,要求误差小于 410- ,比较两种方法收敛速度。

2、在利率问题中,若贷款额为20万元,月还款额为2160元,还期为10年,则年利率为多少?请使用牛顿迭代法求解。

3、由中子迁移理论,燃料棒的临界长度为下面方程的根,用牛顿迭代法求这个方程的最小正根。

4、用牛顿法求方程的根,精确至8位有效数字。

比较牛顿迭代法算单根和重根的收敛速度,并用改进的牛顿迭代法计算重根。

第1题:02)(=-+=x e x x f 区间[0,1] 函数画图可得函数零点约为0.5。

画图函数:function Test1()% f(x) 示意图, f(x) = x + exp(x) - 2; f(x) = 0r = 0:0.01:1;y = r + exp(r) - 2plot(r, y);grid on 二分法程序:计算调用函数:[c,num]=bisect(0,1,1e-4)function [c,num]=bisect(a,b,delta)%Input –a,b 是取值区间范围% -delta 是允许误差%Output -c 牛顿迭代法最后计算所得零点值% -num 是迭代次数ya = a + exp(a) - 2;yb = b + exp(b) - 2;if ya * yb>0return;endfor k=1:100c=(a+b)/2;yc= c + exp(c) - 2;if abs(yc)<=deltaa=c;b=c;elseif yb*yc>0b=c;yb=yc;elsea=c;ya=yc;endif abs(b-a)<deltanum=k; %num为迭代次数break;endendc=(a+b)/2;err=abs(b-a);yc = c + exp(c) - 2;牛顿迭代法程序:计算调用函数:[c,num]=newton(@func1,0.5,1e-4) 调用函数:function [y] = func1(x)y = x + exp(x) - 2;end迭代算法:function[c,num]=newton(func,p0,delta)%Input -func是运算公式% -p0是零点值% -delta是允许误差%Output -c牛顿迭代法最后计算所得零点值% -num是迭代次数num=-1;for k=1:1000y0=func(p0);dy0=diff(func([p0 p0+1e-8]))/1e-8;p1=p0-y0/dy0;err=abs(p1-p0);p0=p1;if(err<delta)num=k;%num为迭代次数break;endendc=p0;第2题:由题意得到算式:计算调用函数:[c,num]=newton(@func2,0.02,1e-8)程序:先用画图法估计出大概零点位置在0.02附近。

解非线性方程的牛顿迭代法及其应用

解非线性方程的牛顿迭代法及其应用

解非线性方程的牛顿迭代法及其应用一、本文概述非线性方程是数学领域中的一个重要研究对象,其在实际应用中广泛存在,如物理学、工程学、经济学等领域。

求解非线性方程是一个具有挑战性的问题,因为这类方程往往没有简单的解析解,需要通过数值方法进行求解。

牛顿迭代法作为一种古老而有效的数值求解方法,对于求解非线性方程具有重要的应用价值。

本文旨在介绍牛顿迭代法的基本原理、实现步骤以及在实际问题中的应用。

我们将详细阐述牛顿迭代法的基本思想,包括其历史背景、数学原理以及收敛性分析。

我们将通过具体实例,展示牛顿迭代法的计算步骤和实际操作过程,以便读者能够更好地理解和掌握该方法。

我们将探讨牛顿迭代法在各个领域中的实际应用,包括其在物理学、工程学、经济学等领域中的典型应用案例,以及在实际应用中可能遇到的问题和解决方法。

通过本文的介绍,读者可以深入了解牛顿迭代法的基本原理和应用技巧,掌握其在求解非线性方程中的实际应用方法,为进一步的研究和应用提供有力支持。

二、牛顿迭代法的基本原理牛顿迭代法,又称为牛顿-拉夫森方法,是一种在实数或复数域上近似求解方程的方法。

其基本原理是利用泰勒级数的前几项来寻找方程的根。

如果函数f(x)在x0点的导数f'(x0)不为零,那么函数f(x)在x0点附近可以用一阶泰勒级数来近似表示,即:这就是牛顿迭代法的基本迭代公式。

给定一个初始值x0,我们可以通过不断迭代这个公式来逼近f(x)的根。

每次迭代,我们都用当前的近似值x0来更新x0,即:这个过程一直持续到满足某个停止条件,例如迭代次数达到预设的上限,或者连续两次迭代的结果之间的差小于某个预设的阈值。

牛顿迭代法的收敛速度通常比线性搜索方法快,因为它利用了函数的导数信息。

然而,这种方法也有其局限性。

它要求函数在其迭代点处可导,且导数不为零。

牛顿迭代法可能不收敛,如果初始点选择不当,或者函数有多个根,或者根是重根。

因此,在使用牛顿迭代法时,需要谨慎选择初始点,并对迭代过程进行适当的监控和调整。

非线性方程求解方法的研究与比较分析

非线性方程求解方法的研究与比较分析

非线性方程求解方法的研究与比较分析非线性方程是数学中一类重要的方程,它们的求解对很多实际问题具有重要的意义。

然而,非线性方程由于其非线性特性,使得其求解更加困难和复杂。

本文旨在研究和比较非线性方程的求解方法,通过对不同求解方法的分析和比较,来评估它们的优缺点和适用范围。

首先,我们介绍一些常用的非线性方程求解方法。

目前常用的求解方法主要包括迭代法、牛顿法、二分法等。

迭代法是一种比较简单的求解非线性方程的方法。

其基本思想是通过不断迭代逼近方程的解。

具体的迭代公式可以选择不同的形式,如固定点迭代法、牛顿迭代法等。

迭代法的优点是简单易懂,但是其收敛速度较慢,而且在某些情况下可能无法收敛到解。

牛顿法是一种较为常用的非线性方程求解方法。

它利用函数的一阶导数和二阶导数信息,通过不断的迭代逼近方程的解。

牛顿法的优点是收敛速度快,但是在某些情况下可能会出现迭代发散的情况。

二分法是一种比较简单但是有效的非线性方程求解方法。

其基本思想是通过不断地缩小解的搜索范围,直到找到满足方程的解。

二分法的优点是简单易懂,而且收敛性和精度较好,但是其收敛速度相对较慢。

在对以上几种方法进行比较分析之前,我们需要明确一些评价指标。

首先是收敛性,即方法是否能够收敛到解。

其次是收敛速度,即方法迭代到解所需的时间。

还有精度,即方法得到的解与真实解之间的误差。

最后是稳定性,即方法对初始值的选择是否敏感。

通过对以上几种方法的比较分析,我们可以得出以下结论:首先,迭代法是一种简单但是不稳定的求解方法。

其收敛性和精度较差,而且对初始值的选择较为敏感。

因此,在实际应用中,迭代法通常只适用于简单的非线性方程求解。

其次,牛顿法是一种较为常用的求解方法。

它具有收敛速度快、精度高的优点,但是在某些情况下可能会出现迭代发散的情况。

此外,牛顿法对函数的一阶导数和二阶导数的计算要求较高,所以在某些情况下可能不适用。

最后,二分法是一种简单而有效的求解方法。

它具有收敛性好、精度高的优点,但是其收敛速度相对较慢。

MAAB计算方法迭代法牛顿法二分法实验报告

MAAB计算方法迭代法牛顿法二分法实验报告

MAAB计算方法迭代法牛顿法二分法实验报告实验目的:比较MAAB计算方法中迭代法、牛顿法和二分法的优缺点,探究它们在求解方程中的应用效果。

实验原理:1、迭代法:将方程转化为x=f(x)的形式,通过不断迭代逼近方程的根。

2、牛顿法:利用函数在特定点的切线逼近根的位置,通过不断迭代找到方程的根。

3、二分法:利用函数值在区间两端的异号性质,通过不断二分缩小区间,最终逼近方程的根。

实验步骤:1、选择一元方程进行求解,并根据方程选择不同的计算方法。

2、在迭代法中,根据给定的初始值和迭代公式,进行迭代计算,直到满足预设的迭代精度要求。

3、在牛顿法中,选择初始点,并根据切线方程进行迭代计算,直到满足预设的迭代精度要求。

4、在二分法中,选择区间,并根据函数值的异号性质进行二分,直到满足预设的迭代精度要求。

5、根据计算结果,比较三种方法的求解效果,包括迭代次数、计算时间、求解精度等指标。

实验结果与分析:通过对多个方程进行测试,得到了以下实验结果:1、迭代法的优点是简单易懂,适用范围广,但当迭代公式不收敛时会导致计算结果不准确。

2、牛顿法的优点是收敛速度较快,但需要计算函数的一阶导数和二阶导数,对于复杂函数较难求解。

3、二分法的优点是收敛性较好,不需要导数信息,但收敛速度较慢。

4、对于线性方程和非线性方程的求解,牛顿法和迭代法通常比二分法更快速收敛。

5、对于多重根的方程,二分法没有明显优势,而牛顿法和迭代法能更好地逼近根的位置。

6、在不同的方程和初值选择下,三种方法的迭代次数和求解精度略有差异。

7、在时间效率方面,二分法在收敛速度较慢的同时,迭代次数较少,牛顿法在收敛速度较快的同时,迭代次数较多,而迭代法对于不同方程有较好的平衡。

结论:1、对于不同类型的方程求解,可以根据具体情况选择合适的计算方法。

2、迭代法、牛顿法和二分法各有优缺点,没有绝对的最优方法,需要权衡各种因素选择最适合的方法。

3、在实际应用中,可以根据方程的特点和精度要求综合考虑不同方法的优劣势,以获得较好的求解效果。

求解非线性方程和方程组的一些新方法

求解非线性方程和方程组的一些新方法

求解非线性方程和方程组的一些新方法求解线性方程分为两种方法–二分法和迭代法常见的方法一共有5种二分法迭代法牛顿法割线法拟牛顿法Halley法使用条件二分法需要知道两个自变量,分别是一个根的两侧牛顿法迭代法是最常用的方法,收敛性信赖于初值,取不同的初值可以的方程不同的根,函数用的是一阶导数,输入的是一个猜想的可能的值割线法给定两个初值再带入计算,比如要在2附近求一个根,那就可以假设这个范围是(1.9,2)拟牛顿法这个比较方便,用时最好可以找到一个好的初始值Halley法需要知道函数值以及它的一阶求导、二阶求导这里我从计算代码的角度来解释一下,代码按以下顺序给出。

把方程组直接带入已知条件,就可以得到答案。

二分法基本函数是这样子的:y = dichotomy(fun,a,b,tol);二分法的算法要输入四个变量,fun,a,b,tol:函数,一个根的左右点,tol=1.0e-6function y =fun(x)y = x^3-5* x +4.272;上面这个就是定义的fun,每次的输入的方程不同,第一条不动,直接改第二行就可以的。

比如这里我们要计算的方程y = x^3 - 5 * x + 4.272;我们是可以通过简单计算得到一个根的两侧分别是1和1.3那在窗口指令指令中输入x=dichotomy(’fun‘,1,1.3,1.0e-6)就可以得到结果function y =dichotomy(fun,a,b,tol)if nargin <4tol =1.0e-5;endn =1;iffeval(fun,a)*feval(fun,b)<0c =(a+b)/2;while(abs(b-c)>tol)&&(abs(feval(fun,c))>tol)if(feval(fun,c)*feval( fun,a)>0)a = c;c=(a+b)/2;elseif(feval(fun,c)*feval(fun,a)<0)b = c;c =(a+b)/2;elsey = c;tol =100;endn = n +1;endy = c;elseif feval(fun,a)==0y = a;elseif feval(fun,b)==0y = b;elsedisp('there may not be a root in the interval');endnfunction y =fun(x)y = x^3-5* x +4.272;牛顿法还是用刚才那道题,y = x^3 - 5 * x + 4.272,一阶导是y = 3 * x^2 - 5;function y =dfun(x)y =3* x^2-5;下面的是具体的算法,根据x = newton(x0,tol),我们只需要输入一个我们猜想的值就可以。

非线性方程求解算法比较

非线性方程求解算法比较

非线性方程求解算法比较在数学和计算机科学领域中,非线性方程是一种无法简单地通过代数方法求解的方程。

因此,研究和开发高效的非线性方程求解算法是至关重要的。

本文将比较几种常见的非线性方程求解算法,包括牛顿迭代法、割线法和二分法。

通过对比它们的优缺点和适用范围,可以帮助人们选择最适合的算法来解决特定的非线性方程问题。

一、牛顿迭代法牛顿迭代法是一种常用的非线性方程求解算法。

它基于泰勒级数展开,使用函数的导数信息来逼近方程的根。

具体步骤如下:1. 选择初始近似值$x_0$。

2. 计算函数$f(x_0)$和导数$f'(x_0)$。

3. 根据牛顿迭代公式$x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$,计算下一个近似解$x_{n+1}$。

4. 重复步骤2和步骤3,直到达到预设的收敛条件。

牛顿迭代法的收敛速度很快,通常二次收敛。

然而,它对于初始值的选择非常敏感,可能会陷入局部极值点,导致找到错误的根。

因此,在使用牛顿迭代法时,需要根据具体问题选择合适的初始近似值。

二、割线法割线法是另一种常见的非线性方程求解算法。

它是对牛顿迭代法的改进,使用两个近似解来逼近方程的根。

具体步骤如下:1. 选择初始近似值$x_0$和$x_1$。

2. 计算函数$f(x_0)$和$f(x_1)$。

3. 根据割线公式$x_{n+1}=x_n-\frac{f(x_n)(x_n-x_{n-1})}{f(x_n)-f(x_{n-1})}$,计算下一个近似解$x_{n+1}$。

4. 重复步骤2和步骤3,直到达到预设的收敛条件。

与牛顿迭代法相比,割线法不需要计算导数,因此更加灵活。

然而,割线法的收敛速度比牛顿迭代法慢,通常是超线性收敛。

与牛顿迭代法一样,割线法也对初始近似值的选择敏感。

三、二分法二分法是一种简单直观的非线性方程求解算法。

它利用函数在根附近的特性,通过不断缩小区间范围来逼近方程的根。

具体步骤如下:1. 选择初始区间$[a,b]$,其中$f(a)$和$f(b)$异号。

二分法和牛顿迭代法求解方程的比较

二分法和牛顿迭代法求解方程的比较

二分法和牛顿迭代法求解方程的比较200822401018 徐小良一、问题叙述求解1232cos 0x x -+=的解;通过编写matlab 程序分别用分析二分法和牛顿迭代法求解方程,通过两种方法的比较,分析二者求解方程的快慢程度。

二、问题分析由matlab 画图命令,容易得到此方程解的范围为(2,4);两种迭代方法,在使用相同的误差(0.00001)的情况下,得出matlab 迭代次数,通过次数的比较得出二者求解速度快慢比较。

三、实验程序及注释(1)、二分法程序:clear; %清除所有内存数据; f=inline('12-3*x+2*cos(x)');format long %数据显示格式设为长型; a=2;b=4; %求解区间; er=b-a;ya=f(a);k=0;er0=0.00001; %误差分析; while er>er0 x0=.5*(a+b); y0=f(x0); if ya*y0<0b=x0; %二分法求解程序; elsea=x0; ya=y0; enddisp([a,b]);er=b-a;k=k+1 %显示各个区间值和求解次数; enddisp([a,b]); %显示最后一个区间值; (2)、牛顿迭代法程序:clear; %清除所有内存数据; f=inline('12-3*x+2*cos(x)');format long %数据显示格式设为长型; b=3;a=4;k=0; %求解区间; y0=f(b);y=f(a);while abs(b-a)>0.00001 t=a-y*(a-b)/(y-y0);b=a;y0=y; %牛顿迭代法求解程序; a=t;y=f(a); k=k+1;disp([b,a]);k %显示各个区间值和求解次数; enddisp([b,a]); %显示最后一个区间值;四、实验数据结果及分析表2:牛顿迭代法程序结果五、实验结论通过表1可知,在二分法下,程序迭代了17次后和第18次的结果一致,即程序迭代了17次达到要求的试验误差;通过表2可知,在牛顿迭代法下,程序迭代了4次后和第5次的结果一致,即程序迭代了4次达到要求的试验误差;二者比较明显可以看出牛顿迭代法的求解效率要远远优于二分法。

非线性方程的求解方法

非线性方程的求解方法

非线性方程的求解方法一、引言在数学领域中,非线性方程是指未知量与其对自身的各次幂、指数以及任意函数相乘或相加得到的方程。

求解非线性方程是数学中一个重要而又具有挑战性的问题。

本文将介绍几种常见的非线性方程求解方法。

二、牛顿迭代法牛顿迭代法是一种经典的非线性方程求解方法,它利用方程的切线逼近根的位置。

设f(x)为非线性方程,在初始点x0附近取切线方程y=f'(x0)(x-x0)+f(x0),令切线方程的值为0,则可得到切线方程的解为x1=x0-f(x0)/f'(x0)。

重复这个过程直到满足精确度要求或迭代次数达到指定次数。

三、二分法二分法是一种简单而又直观的非线性方程求解方法。

它利用了连续函数的中间值定理,即若f(a)和f(b)异号,则方程f(x)=0在[a, b]之间必有根。

根据中值定理,我们可以取中点c=(a+b)/2,然后比较f(a)和f(c)的符号,若同号,则根必然在右半区间,否则在左半区间。

重复这个过程直到满足精确度要求或迭代次数达到指定次数。

四、割线法割线法是一种基于切线逼近的非线性方程求解方法,它与牛顿迭代法相似。

由于牛顿迭代法需要求解导数,而割线法不需要。

设f(x)为非线性方程,在两个初始点x0和x1附近取一条直线,该直线通过点(x0,f(x0))和(x1, f(x1)),它的方程为y=f(x0)+(f(x1)-f(x0))/(x1-x0)*(x-x0),令直线方程的值为0,则可得到直线方程的解为x2 = x1 - (f(x1)*(x1-x0))/(f(x1)-f(x0))重复这个过程直到满足精确度要求或迭代次数达到指定次数。

五、试位法试位法是一种迭代逼近的非线性方程求解方法。

它利用了函数值的变化率来逼近根的位置。

设f(x)为非线性方程,选取两个初始点x0和x1,然后计算f(x0)和f(x1)的乘积,如果结果为正,则根位于另一侧,否则根位于另一侧。

然后再选取一个新的点作为下一个迭代点,直到满足精确度要求或迭代次数达到指定次数。

非线性方程求解

非线性方程求解

非线性方程求解在数学中,非线性方程是一种函数关系,其表达式不能通过一次函数处理得到。

与线性方程不同,非线性方程的解决方案往往更具挑战性,因为它涉及到更复杂的计算过程。

尤其在实际应用中,非线性方程的求解是一个非常重要的问题。

本文将讨论几种常用的非线性方程求解方法。

二分法二分法,也称为折半法,是一种基本的求解非线性方程的方法之一。

它的核心思想是将区间一分为二并判断方程在哪一半具有根。

不断这样做直到最终解得精度足够高为止。

下面是利用二分法求解非线性方程的流程:1. 设定精度值和区间范围2. 取区间的中点并计算函数值3. 如果函数值为0或函数值在给定精度范围内,返回中点值作为精确解4. 如果函数值不为0,则判断函数值的正负性并缩小区间范围5. 重复步骤2-4直到满足给定精度为止当然,这种方法并不总是能够找到方程的解。

在方程存在多个解或者区间范围不合适的情况下,二分法可能会导致求解失败。

但它是一种很好的起点,同时也是更复杂的求解方法中的一个重要组成部分。

牛顿迭代法牛顿迭代法是一种更复杂的求解非线性方程的方法。

它利用泰勒级数和牛顿迭代公式,通过不断迭代来逼近根的位置。

下面是利用牛顿迭代法求解非线性方程的流程:1. 先取一个近似值并计算函数值2. 求出函数的导数3. 利用牛顿迭代公式,计算下一个近似根4. 检查下一个近似根的精度是否满足条件,如果满足,返回当前近似根5. 如果精度不满足,则将新的近似根带入公式,重复步骤2-5当然,牛顿迭代法的收敛性并不总是保证的。

如果迭代过程太过温和,它可能无法收敛到精确解。

如果迭代过程过于暴力,则会出现发散现象,使得求解变得不可能。

其他方法此外,还有一些其他的求解非线性方程的方法,例如黄金分割法、逆二次插值法、牛顿切线法等等。

其中每一种方法都有其优缺点,不同的情况下,不同的方法都可能比其他方法更加适合。

结论总体来说,求解非线性方程的方法非常复杂。

无论是哪种方法,都需要一定的数学基础和计算机知识。

基于不同方式技巧解决非线性问题的分析

基于不同方式技巧解决非线性问题的分析

基于不同方法解决非线性问题的分析摘要: 本文主要研究非线性方程的数值解法中的二分法,迭代法以及牛顿下山法对于解决非线性问题所体现出来的各自不同的特点 .通过实例来比较,分析在求解非线性方程时各自的优缺点。

借以研究这三种方法在求解非线性方程时各自的作用,方便学习及利用以上三种方法快速,准确地解决非线性问题.关键词: 二分法,迭代法,牛顿下山法,优缺点.1.引言: 代数方程求根问题是古老的数学问题,是在16世纪就找到了三次,四次方程的求根公式.但直到19世纪才证明n>=5次的一般代数方程式不能用代数公式求解.因此,需要研究用数值方法求得满足一定精度的代数方程式的近似解. 在工程和科学技术中许多问题常常归结为求解非线性方程式问题,例如在控制系统的设计领域,人口增长的研究等. 在科学研究和工程设计中, 经常会遇到的一大类问题是非线性方程f(x)=0 的求根问题,其中f(x)为非线性函数。

方程f(x)=0的根, 亦称为函数f(x)的零点 如果f(x)可以分解)()(*)(x g m x f x x -=,其中m 为正整数且0)(*≠x g .当m>1时称x *是f(x)的m 重零点,或称方程f(x)=0的m 重根;当m=1时称x*为单根.2.分析比较2.1二分法在非线性方程求解中的应用2.1.1问题的提出在无阻尼强迫震荡的研究中会碰到函数h(x)=xsin(x).寻找在区间[0,2]内的值x,满足h(x)=1(函数sin(x)用弧度计算)。

[1]2.1.2二分法的思路求方程根的一种最直观,最简单的数值方法是二分法(Dichotomy ).设函数f(x)在区间[a,b]上连续,且[a,b]为有根区间,不妨设f(a)<0,f(b)>0.首先将区间[a,b]二分,即取中点2/)(0b a x+=,若0)(0=x f ,则x x 0=就是方程式f(x)=0的根.否则,若0)(0<x f ,方程的有根区间变为[(a+b)/2,b];若0)(0>x f ,方程的有根区间变为[a,(a+b)/2],将新的有根区间记为[b a 11,],长度2/)(11a b a b -=-为[a,b]的一半.重复上述过程,即取a 2=(b a 11+)/2,将[b a 11,]再二分,又可得到新的有根区间],[22b a ,长度2/)(1122a b a b -=-为[b a 11,]的一半. 通过每次把f(x)的零点所在小区间收缩一半的方法,使区间的两个端点逐步迫近函数的零点,以求得零点的近似值,这种方法叫做二分法。

牛顿迭代法与二分法

牛顿迭代法与二分法

牛顿迭代法与二分法数学中,有用的方法和技术有很多,其中牛顿迭代法和二分法是两种经典的数值计算方法。

这两种方法都可以用于求解各种类型的方程和问题,在不同场合下往往有不同的适用范围和性质。

在本文中,我们将对这两种方法进行简单介绍和比较,以加深读者对它们的理解和应用。

一. 牛顿迭代法牛顿迭代法,又称牛顿-拉夫逊方法(Newton-Raphson method),是一种用于寻找函数零点的一种迭代算法。

它的基本思想是从一个初始近似值开始,使用函数的导数来逐步改进这个近似值,直到满足所需的精度要求为止。

具体步骤如下:1. 选定一个初始值 $x_0$ ,计算函数 $f(x)$ 在这个点的值和导数 $f'(x)$;2. 计算迭代公式 $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$,即用当前点的函数值和导数值确定一个切线,并将其与 $x$ 轴交点作为下一个近似值;3. 如果迭代满足要求,则停止,否则返回第二步。

牛顿迭代法的优点是迭代速度较快,可以高效地求解接近函数原始根的方程。

例如,如果要求 $\sqrt{a}$ 的值,可令 $f(x) = x^2 - a$,则零点为 $\sqrt{a}$。

经过一定次数的迭代,可以得到很高精度的近似值。

然而,牛顿迭代法也有一些局限性,如收敛性和迭代次数等问题,需要根据具体问题和条件进行评估和调整。

二. 二分法二分法(bisect method)是一种寻找函数零点的一种简单算法,其基本思想是不断缩小区间,直到找到目标区间的根。

具体步骤如下:1. 选定一个有根区间 $[a, b]$,并计算函数 $f(a)$ 和 $f(b)$ 在两个端点的值;2. 计算区间中点$c = \frac{a+b}{2}$,并计算函数$f(c)$ 的值;3. 判断函数值的符号,并用二分法将 $[a, b]$ 划分为两个子区间,其中一个包含了零点,另一个不包含,即更新区间 $[a, b]$ 为$[a, c]$ 或 $[c, b]$;4. 重复步骤 2-3 直到找到满足误差要求的近似根。

非线性方程的求解方法

非线性方程的求解方法

非线性方程的求解方法非线性方程是数学中的基本概念,对于许多科学领域而言,非线性方程的求解具有重要的意义。

然而,与线性方程相比,非线性方程的求解方法较为复杂,因此需要掌握一些有效的解法。

本文将介绍几种非线性方程的求解方法。

一、牛顿迭代法牛顿迭代法也叫牛顿-拉夫逊迭代法,是一种求解非线性方程的有效方法。

该方法的基本思路是,选择一个初始值,通过迭代计算不断逼近非线性方程的根。

牛顿迭代法的公式为:$$x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$$其中,$f(x)$表示非线性方程,$f'(x)$表示$ f(x) $的一阶导数。

牛顿迭代法的优点在于速度快,迭代次数少,但其局限性在于收敛性受初始点选取的影响较大。

二、割线法割线法(Secant method)也是一种求解非线性方程的有效方法。

与牛顿迭代法不同,割线法使用的是两个初始值,并根据两点间的连线与$ x $轴的交点来作为新的近似根。

割线法的公式为:$$x_{n+1}=x_n-\frac{f(x_n)(x_n-x_{n-1})}{f(x_n)-f(x_{n-1})}$$割线法的优势是不需要求解导数,但其缺点在于需要两次迭代才能得到下一个近似根,因此计算量较大。

三、二分法二分法(Bisection method)是求解非线性方程的另一种有效方法。

该方法的基本思路是找到非线性方程的一个区间,使函数值在该区间内的符号相反,然后通过逐步缩小区间,在区间内不断逼近非线性方程的根。

二分法的公式为:$$x_{n+1}=\frac{x_n+x_{n-1}}{2}$$其中,$x_n$和$x_{n-1}$是区间的端点。

二分法的优点在于收敛性稳定,但其缺点在于迭代次数较多,因此计算量也较大。

四、弦截法弦截法(Regula Falsi method)也是一种求解非线性方程的有效方法。

它和二分法类似,都是通过缩小根所在的区间来逼近根。

不同之处在于,弦截法不是以区间中点为迭代点,而是以区间两个端点之间的连线与$ x $轴的交点为迭代点。

二分法和牛顿迭代法求解非线性方程的比较及应用

二分法和牛顿迭代法求解非线性方程的比较及应用
' 2
求解方程的近似根 , 一般需要解决两个问题 : 1 . 根 的隔离 。即找 出有根 区域 , 使得在一些小 区间中 方程只有一根( 或一对共轭复根 ) 以便获取各根的较粗糙 的近似值 。
区间值 :x 0
0 . 0 0 O O 0 0 0 0 0 0 0 0 O 0 O . 0 O O 0 0 O 0 0 0 O 0 0 0 0
【 专题研讨 】
二分法和牛顿迭代法 求解非线性 方程 的比较及应用
张 晓勇 , 王 仲君
( 武汉 理工 大学 , 湖北 武汉 4 文基于计算机MA T L A B 和c 语 言编程去分析 两者的计算复杂性 , 并深入探讨 了两种方法的优缺点。 最后 , 通 过将 两种方法结合起来解决非线性方程 的求解问题 , 取得 了显著地效果 。同时, 这也再 次证明 了方法组合解决问题 的高


2 0
2 1
5 2 . 4 0 6 3 1 1 0 0 0 0 0 0 0
5 2 . 4 0 6 7 8 8 O O 0 0 O 0 0
5 2 . 4 0 7 2 6 5 O 0 0 O 0 0 0
效性 。
关键词 : 二分法; 牛顿迭代法 ; 非线性 方程 中图 分 类 号 : 02 4 2 文 献 标 志码 : B
文 章编 号 : 1 6 7 4 — 9 3 2 4 ( 2 0 1 3 ) 2 5 — 0 1 3 9 一 O 1
表1 二 分法 程序 结 果
迭 代 数
区 间值 :x 1
5 0 0 . O 0 O O 0 0 0 0 0 O 0 0 0 2 5 0. 0 0 0 0 0 0 O 0 0 0 0 0 0
2 . 近似根 的精确化 。即用求根的数值方法 , 使求得 的 近似根逐步精确化 , 直到获得一定精度的近似根。 二分法和牛顿迭代法的基本思想 1 . 二分法 。一般地 , 对于 函数f ( x ) , 如果存在实数C , 当 X = C 时, 若f ( c ) = 0 , 那么把x = c H q 做函数f ( x ) 的零点。解方程 即要求 x ) 的所有零点。假定f ( x ) 在 区间( x , y ) 上 连续 , 先 找到a 、 b 属于区间( x , Y ) , 使f ( a ) , f ( b ) 异号 , 说 明在 区间( a , b ) 内一定有零点 , 然后求[ f ( a + b ) / 2 1 , 现在假设f ( a ) < 0 , f ( b ) > 0 , a < b , ①如果[ f ( a + b ) / 2 ] = O , 该点就是零点。 如果[ f ( a + b ) / 2 ] < O , 则在 区间( ( a + b ) 1 2 , b ) 内有零点 , 注: ( a + b ) / 2 > = a , 从① 开始继续使用 中点函数值判断。如果 [ f ( a + b ) / 2 】 > 0 , 则在区 间( a , ( a + b ) 1 2 ) 内有零点 , 注: ( a + b ) / 2 < = b , 从①开始继续使 用 中点 函数值判断。 这样就可以不断接近零点。 通过每次 把f ( x ) 的零点所在小区间收缩一半 的方法 , 使 区间的两个 端点逐步迫近 函数的零点 , 以求得零点 的近似值 , 这种方 法叫做二分法 。 从以上可以看出 , 每次运算后 , 区间长度减 少一半 , 是线形收敛 。另外 , 二分法不能计算复根和重根 。 2 . 牛顿迭代法。设r 是 x ) = 0 的根 , 选取x 0 作为r 初始近 似值 , 过点 ( x O , f ( x O ) ) 做 曲线y = f ( x ) 的切线 L , L 的方程 为 y = f ( x O ) + f ( x O ) ( x — x 0 ) , 求 出L 与x 轴交点 的横坐标x l = x O — f ( x O ) / f ( x O ) , 称x 1 为r 的一次近似值。 过点( x l , f ( x 1 ) ) 作 曲线 y = f( x )的切线 ,并求该切线与x 轴交点 的横坐标x 2 = x l — f ( x 1 ) / r ( x 1 ) , 称x 2 为r 的二次近似值。重复 以上过程 , 得r 的 近似值序列 , 其 中x ( n + 1 ) = x ( n ) 一 f ( x ( n ) ) ( x ( n ) ) , 称为r 的 n + 1 次近似值 , 上式称为牛顿迭代公式 。 解非线性方程f ( x ) 0 的牛顿法是把非线性方程线性化的一种近似方法 。把f ( x ) 在x 0 点附近展开成泰勒级数f ( x ) = f ( x 0 ) + ( x — x O ) r ( x O ) + ( x — x O ) ' 2 * f ’ ( x O ) / 2 1+ …取其线性部分 , 作为非线性方程f ( x ) = 0 的近似方程 , 即泰勒展开的前两项 , 则有f ( x O ) + f ( x O ) ( x — x O ) = 0 设f ' ( x O ) ≠0 则其解为x l = x O — f ( x O ) X( x O ) 这样 , 得 到牛顿法 的一个迭代序列 : X( n + 1 ) = x( n ) 一 f( X( n ) ) / r ( x ( n ) ) , 记为: { x ( n ) l 。 此时 , 当n 趋于无穷大时 , x ( n ) 就会逐渐 逼近 x ) = 0 的根。 二、 例证分析 1 . 对此非线性方程x S - 5 0 x Z - 6 6 1 0 = O 在单 独用二分法 和 牛顿迭代法时的效果都不显著。 实验 的结果分析: 由此可见 , 牛顿迭代法是一种特殊 的迭代法 , 用于求

数值分析求解非线性方程根的二分法、简单迭代法和牛顿迭代法说课材料

数值分析求解非线性方程根的二分法、简单迭代法和牛顿迭代法说课材料

数值分析求解非线性方程根的二分法、简单迭代法和牛顿迭代法实验报告一:实验题目 一、 实验目的掌握求解非线性方程根的二分法、简单迭代法和牛顿迭代法,并通过数值实验比较两种方法的收敛速度。

二、 实验内容1、编写二分法、牛顿迭代法程序,并使用这两个程序计算02)(=-+=x e x x f 在[0, 1]区间的解,要求误差小于 410- ,比较两种方法收敛速度。

2、在利率问题中,若贷款额为20万元,月还款额为2160元,还期为10年,则年利率为多少?请使用牛顿迭代法求解。

3、由中子迁移理论,燃料棒的临界长度为下面方程的根,用牛顿迭代法求这个方程的最小正根。

4、用牛顿法求方程的根,精确至8位有效数字。

比较牛顿迭代法算单根和重根的收敛速度,并用改进的牛顿迭代法计算重根。

三、 实验程序第1题:02)(=-+=x e x x f 区间[0,1] 函数画图可得函数零点约为0.5。

画图函数:function Test1()% f(x) 示意图, f(x) = x + exp(x) - 2; f(x) = 0r = 0:0.01:1;y = r + exp(r) - 2plot(r, y);grid on 二分法程序:计算调用函数:[c,num]=bisect(0,1,1e-4)function [c,num]=bisect(a,b,delta)%Input –a,b 是取值区间范围% -delta 是允许误差%Output -c 牛顿迭代法最后计算所得零点值% -num 是迭代次数ya = a + exp(a) - 2;yb = b + exp(b) - 2;if ya * yb>0return;endfor k=1:100c=(a+b)/2;yc= c + exp(c) - 2;if abs(yc)<=deltaa=c;b=c;elseif yb*yc>0b=c;yb=yc;elsea=c;ya=yc;endif abs(b-a)<deltanum=k; %num为迭代次数break;endendc=(a+b)/2;err=abs(b-a);yc = c + exp(c) - 2;牛顿迭代法程序:计算调用函数:[c,num]=newton(@func1,0.5,1e-4) 调用函数:function [y] = func1(x)y = x + exp(x) - 2;end迭代算法:function[c,num]=newton(func,p0,delta)%Input -func是运算公式% -p0是零点值% -delta是允许误差%Output -c牛顿迭代法最后计算所得零点值num=-1;for k=1:1000y0=func(p0);dy0=diff(func([p0 p0+1e-8]))/1e-8;p1=p0-y0/dy0;err=abs(p1-p0);p0=p1;if(err<delta)num=k;%num为迭代次数break;endendc=p0;第2题:由题意得到算式:计算调用函数:[c,num]=newton(@func2,0.02,1e-8)程序:先用画图法估计出大概零点位置在0.02附近。

牛顿,二分法,弦接法比较

牛顿,二分法,弦接法比较

牛顿,二分法,弦接法比较牛顿法、二分法和弦接法都是求解线性方程组的方法,但它们在求解过程中的表现和适用范围有所不同。

牛顿法是一种迭代法,它通过不断逼近方程组的解来求解。

在牛顿法中,我们首先将方程组转化为标准形式,然后找到一个未知数的近似值,使其与其他未知数的系数乘积等于常数项。

接着,我们更新未知数的近似值,使其更接近真实解。

这个过程重复进行,直到误差达到要求。

牛顿法的优点是能够快速求解非线性方程组,并且可以处理具有复杂特征的方程组。

但是,它的缺点是需要计算大量的矩阵操作,因此计算成本较高。

二分法是一种直接求解线性方程组的方法。

在二分法中,我们首先找到方程组中两个未知数之间的中点,然后计算这两个中点之间的距离。

我们将这个距离的二分之两倍作为未知数的值,并将其代入方程组中求解其他未知数的值。

二分法的优点是可以处理较大规模的问题,并且不需要计算大量的矩阵操作。

但是,它的缺点是需要较长的计算时间,并且对于复杂特征的方程组表现较差。

弦接法是一种近年来被广泛应用于求解线性方程组的方法。

在弦接法中,我们首先将方程组转化为标准形式,然后找到一组未知数的系数矩阵的行列式为零。

接着,我们将这个行列式为零的矩阵分解成两个矩阵的乘积,并分别求解这两个矩阵的逆矩阵。

最后,我们将这两个逆矩阵相乘,得到求解方程组的解。

弦接法的优点是可以处理大规模和复杂特征的方程组,并且具有较低的计算成本。

但是,它的缺点是需要较长的计算时间,并且需要对矩阵进行奇异值分解,因此可能不适合处理大规模问题。

牛顿法、二分法和弦接法都是求解线性方程组的方法,各有优缺点。

在实际应用中,需要根据具体情况选择最适合的方法。

非线性方程求根的常见方法及其应用

非线性方程求根的常见方法及其应用

非线性方程求根的常见方法及其应用对于一个非线性方程,其解不一定是唯一的,而且很多情况下解根难以直接求得。

因此,寻找一种可靠、有效的方法来求解非线性方程根是非常重要的。

本文将介绍几种常见的非线性方程求根方法,并且介绍它们的应用场景及求解精度。

一、二分法二分法是一种最基本且易于实现的方法,它能够求解任何单峰函数(函数图像中仅有一个极大值或极小值的函数)的根。

该方法的主要思想是不断缩小根的区间,直到找到根。

具体而言,对于一个单峰函数f(x),在区间[a,b]上寻找其根。

首先,取中点c=(a+b)/2,计算f(c)。

如果f(c)≈0,则找到了根;否则,根位于[a,c]或[c,b]中的一个区间上,重复上述步骤,直到找到根。

该方法的主要优点是简单易用,适用于大部分单峰函数,并且收敛速度相对较快。

但是,该方法需要区间起点和终点具有异号,否则无法找到根。

二、牛顿迭代法牛顿迭代法是一种高效的方法,可用于求解任何无奇点的连续可微函数的根。

该方法的主要思想是将一个复杂的函数不断逼近于一条直线,然后通过直线和x轴的交点来不断逼近函数的根。

具体而言,对于一个连续可微函数f(x),在初始点x0处进行求解。

首先,通过f(x)在x=x0处的导数f'(x0)来确定函数的切线。

然后,找到x轴上离该点最近的交点x1处,并将其作为新的起点,迭代上述过程,直到找到根。

该方法的主要优点在于速度快、精度高,并且可适用于大多数函数。

但是,该方法可能会出现迭代过程不稳定的问题,因此需要谨慎选择初值。

三、割线法割线法是一种类似于牛顿迭代法的方法,其主要思想是通过一条割线来逼近函数的根。

相比于牛顿迭代法,割线法更加适用于函数的导数难以求得的情况。

具体而言,对于一个函数f(x),在初始点x0和x1处进行求解。

首先,通过f(x)在x=x0处和x=x1处的取值来确定割线,找到x轴上与割线交点x2处,并将其作为新的起点,重复上述步骤,直到找到根。

该方法的主要优点在于速度快、精度高,并且可适用于大多数函数。

非线性方程求解的数值方法研究

非线性方程求解的数值方法研究

非线性方程求解的数值方法研究非线性方程求解是数学领域中的重要问题之一。

与线性方程不同,非线性方程存在更加复杂的形式和求解方法。

本文将针对非线性方程求解的数值方法进行研究,探讨其应用和效果。

一、引言非线性方程是指未满足线性关系的方程,形如f(x) = 0。

相比于线性方程,非线性方程更具挑战性和难度。

在实际问题中,非线性方程常常出现,如物理、经济、工程等领域。

因此,研究非线性方程的数值解法对解决实际问题具有重要意义。

二、牛顿迭代法牛顿迭代法是一种经典的非线性方程求解方法。

其基本思想是通过不断逼近方程的根来求解方程。

具体来说,牛顿迭代法通过将非线性方程化为一系列线性方程的解来逼近方程的根。

该方法的迭代过程如下:1. 选取初始近似解x_0;2. 对于第n+1次迭代,计算x_{n+1} = x_n - f(x_n)/f'(x_n);3. 若满足终止准则,如|f(x_{n+1})| < ε,则停止迭代,得到近似解x_{n+1}。

牛顿迭代法具有收敛速度快的优点,尤其对于初始值选择合适的情况下,其迭代过程可以较快地接近方程的根。

然而,该方法也有其局限性,如可能出现迭代发散或震荡等问题。

三、二分法二分法是一种较为简单但有效的非线性方程求解方法。

其思想是通过判断非线性方程在区间内的正负性来逼近方程的根。

该方法的基本过程如下:1. 选取区间[a, b],满足f(a) * f(b) < 0;2. 对区间[a, b]进行二分,计算c = (a + b) / 2;3. 判断f(c)和f(a) * f(c)的正负关系,更新区间[a, b];4. 若满足终止准则,如|f(c)| < ε,则停止迭代,得到近似解c。

二分法的优点在于其简单性和稳定性,适用于一些函数有明显单调性的情况。

然而,该方法的收敛速度较慢,尤其对于复杂的非线性方程,可能需要较多的迭代次数才能得到较精确的解。

四、弦截法弦截法是一种综合了牛顿迭代法和二分法思想的非线性方程求解方法。

二分法、牛顿法、割线法、Steffencen法求非线性方程MATLAB实现

二分法、牛顿法、割线法、Steffencen法求非线性方程MATLAB实现
x0=a; else
x0=b; end m=min(abs(df(a)),abs(df(b))); k=0; while abs(f(x0))>m*dlt
k=k+1; x1=x0-f(x0)/df(x0); x0=x1; fprintf('k=%d x=%.5f\n',k,x0); end
三、实验结果
%加速公式 gen=x1-(y-x1)^2/(z-2*y+x1); wucha=abs(gen-x1); time=time+1; %迭代加一次的记录 end end; %计算结果
四、结果分析
由实验结果分析可知,Steffensen 迭代算法的收敛速度在一定条件下可以 达到二次收敛,相对割线法和二分法收敛速度较快,且其在一定程度上避免了两 个值很近时造成的误差,也对牛顿法要求函数导数值这一缺点进行了克服,整体 上比较来说是一个计算量较小且有较高精度的迭代算法。
二、算法描述
MATLAB 程序代码如下: function [gen,time]=Steff(fun,x0,tol) %如果缺省误差参数,默认为 10 的-5 次方 if(nargin==2) tol=1.0e-5; end %设置误差初值 time=0; %记迭代次数 wucha=0.1; %设置前后两次迭代的误差 gen=x0; while(wucha>tol) x1=gen; y=subs(fun,x1)+x1; z=subs(fun,y)+y;
(b1

a1 )
;对[a2 ,b2 ] 重复上述做法得:
1
[a1, b1] ⊃ [a2 , b2 ] ⊃ ...... ⊃ [an , bn ] ⊃ ...... 且 bn − an

非线性方程求解算法的性能比较研究

非线性方程求解算法的性能比较研究

非线性方程求解算法的性能比较研究随着科技的不断发展,非线性方程在数学、物理、工程等领域中得到广泛应用。

然而,求解非线性方程是一个复杂而耗时的过程。

为了提高求解的效率和准确性,研究者们不断探索和开发各种非线性方程求解算法。

本文将对其中几种常用的算法进行性能比较研究,以帮助读者更好地选择和应用非线性方程求解算法。

一、牛顿法 (Newton's Method)牛顿法是一种基于切线的迭代算法,通过不断逼近零点来求解非线性方程。

其基本思想是利用切线的斜率逼近曲线的斜率,从而找到曲线与 x 轴交点的近似解。

牛顿法的迭代公式如下:```x_(n+1) = x_n - f(x_n) / f'(x_n)```牛顿法具有较快的收敛速度和较高的精度,在实际应用中得到广泛使用。

然而,牛顿法也存在一些问题,例如对于某些特殊函数,可能会出现收敛速度慢或者迭代发散的情况。

二、割线法 (Secant Method)割线法是一种基于割线的迭代算法,类似于牛顿法,但割线法不需要计算函数的导数。

其基本思想是通过连接两个点的割线与 x 轴的交点来逼近方程的根。

割线法的迭代公式如下:```x_(n+1) = x_n - f(x_n) * (x_n - x_(n-1)) / (f(x_n) - f(x_(n-1)))```相比于牛顿法,割线法的计算复杂度较低,但在某些情况下可能会出现割线过程与根无交点的问题。

三、二分法 (Bisection Method)二分法是一种简单而直观的求解非线性方程的方法。

它利用中值定理将函数值异号的两个点之间的中点作为下一次迭代的起点,通过逐步缩小区间来求解方程的根。

二分法迭代的公式如下:```x_(n+1) = (x_a + x_b) / 2```二分法的优点是收敛稳定,不易发散,但收敛速度相对较慢。

四、迭代法 (Iterative Method)迭代法是一种常用于非线性方程求解的数值方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二分法和牛顿迭代法求解非线性方程的比较及应用
摘要:本文基于计算机matlab和c语言编程去分析两者的计算复杂性,并深入探讨了两种方法的优缺点。

最后,通过将两种方法结合起来解决非线性方程的求解问题,取得了显著地效果。

同时,这也再次证明了方法组合解决问题的高效性。

关键词:二分法;牛顿迭代法;非线性方程
中图分类号:o242 文献标志码:b 文章编号:1674-9324(2013)25-0139-01
求解方程的近似根,一般需要解决两个问题:
1.根的隔离。

即找出有根区域,使得在一些小区间中方程只有一根(或一对共轭复根)以便获取各根的较粗糙的近似值。

2.近似根的精确化。

即用求根的数值方法,使求得的近似根逐步精确化,直到获得一定精度的近似根。

一、二分法和牛顿迭代法的基本思想
1.二分法。

一般地,对于函数f(x),如果存在实数c,当x=c 时,若f(c)=0,那么把x=c叫做函数f(x)的零点。

解方程即要求f(x)的所有零点。

假定f(x)在区间(x,y)上连续,先找到a、b属于区间(x,y),使f(a),f(b)异号,说明在区间(a,b)内一定有零点,然后求[f(a+b)/2],现在假设f(a)0,a=a,从①开始继续使用中点函数值判断。

如果[f(a+b)/2]>0,则在区间(a,(a+b)/2)内有零点,注:(a+b)/2<=b,从①开始继续使用中点函数值判断。

这样就可以不断接近零点。

通过每次把
f(x)的零点所在小区间收缩一半的方法,使区间的两个端点逐步迫近函数的零点,以求得零点的近似值,这种方法叫做二分法。

从以上可以看出,每次运算后,区间长度减少一半,是线形收敛。

另外,二分法不能计算复根和重根。

2.牛顿迭代法。

设r是f(x)=0的根,选取x0作为r初始近似值,过点(x0,f(x0))做曲线y=f(x)的切线l,l的方程为y=f (x0)+f’(x0)(x-x0),求出l与x轴交点的横坐标x1=x0-f(x0)/f’(x0),称x1为r的一次近似值。

过点(x1,f(x1))作曲线y=f(x)的切线,并求该切线与x轴交点的横坐标x2=x1-f(x1)/f’(x1),称x2为r的二次近似值。

重复以上过程,得r的近似值序列,其中x(n+1)=x(n)-f(x(n))/f’(x(n)),称为r 的n+1次近似值,上式称为牛顿迭代公式。

解非线性方程f(x)=0的牛顿法是把非线性方程线性化的一种近似方法。

把f(x)在x0点附近展开成泰勒级数f(x)=f(x0)+(x-x0)f’(x0)+(x-x0) *f’’(x0)/2!+…取其线性部分,作为非线性方程f(x)=0
的近似方程,即泰勒展开的前两项,则有f(x0)+f’(x0)(x-x0)=0设f’(x0)≠0则其解为x1=x0-f(x0)/f’(x0)这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f’(x (n)),记为:{x(n)}。

此时,当n趋于无穷大时,x(n)就会逐渐逼近f(x)=0的根。

二、例证分析
1.对此非线性方程x3-50x2-6610=0在单独用二分法和牛顿迭代
法时的效果都不显著。

实验的结果分析:
由此可见,牛顿迭代法是一种特殊的迭代法,用于求非线性方程单根时具有二阶收敛速度。

但是,牛顿法也有自己的缺点。

如对初值要求苛刻,而且还要求函数的导数。

综上所述,显然,通过将两种方法结合起来解决非线性方程的求解问题,取得了显著地效果。

迭代次数大大减少,极大降低了计算的复杂性,收到了很好的效果。

如何针对不同的方程构造不同的迭代公式,如何降低对初值的依赖性和提高收敛的速度,都是非线性方程求根问题中经常考虑的问题。

本文通过对比两种算法的优劣,得出了牛顿迭代法和二分法各自的特点,并把两种方法结合起来,先通过二分法找到合适的初始值,然后再用牛顿法进行迭代运算,大大节约了时间,降低了计算复杂性。

这也证实了把各种方法的长处结合起来,来解决问题往往收到不错的结果。

作者简介:张晓勇(1987-),男,河南民权人,在读研究生,研究方向:计算数学中的系统建模与仿真。

相关文档
最新文档