。概率与分布列
分布列知识点总结
分布列知识点总结一、概念介绍1.1 分布列的定义分布列是离散随机变量的取值和相应概率的列。
对于离散型随机变量X,其所有可能取值x1,x2,……,xn及其上对应的概率P(X=x1),P(X=x2),……,P(X=xn)就构成了X的分布列。
1.2 分布列的性质(1)分布列的概率和为1对于任意一个随机变量X,其分布列中所有可能取值的概率之和为1,即∑P(X=xi)=1。
(2)随机变量的取值是有限个或可列无限个分布列中的随机变量的取值只能是有限个或可列无限个,不可能是连续的。
二、分布列的应用2.1 用分布列计算期望和方差分布列是计算离散随机变量的期望和方差的有力工具。
根据期望和方差的公式,可以直接利用分布列中的取值和概率来计算期望和方差。
2.2 利用分布列进行概率计算通过分布列,可以计算得到随机变量取某个值的概率,或者计算随机变量在某个范围内取值的概率等。
这对于一些概率问题的求解非常有用。
三、分布列的例子3.1 二项分布二项分布是一种常见的离散型概率分布,用于描述在n次独立重复的伯努利试验中成功的次数。
设X为二项分布随机变量,其分布列为:X 0 1 2 …… nP C(n,0) * p^0 * (1-p)^n C(n,1) * p^1 * (1-p)^(n-1) C(n,2) * p^2 * (1-p)^(n-2) …… C(n,n) * p^n * (1-p)^0其中,p为成功的概率,n为试验的次数。
3.2 泊松分布泊松分布描述了单位时间内随机事件发生的次数。
设X为泊松分布随机变量,其分布列为:X 0 1 2 3 4 ……P e^(-λ) * λ^0 / 0! e^(-λ) * λ^1 / 1! e^(-λ) * λ^2 / 2! e^(-λ) * λ^3 / 3! e^(-λ) * λ^4 / 4! ……其中,λ为单位时间内随机事件发生的平均次数。
四、分布列与其他概率分布的关系4.1 分布列与连续型概率分布分布列适用于离散型随机变量,而连续型随机变量则需要用概率密度函数进行描述。
概率、分布列、期望、方差、正态分布
概率、分布列、期望、正态分布1.带活动门的小盒子里有采自同一巢的20只工蜂和10只雄蜂,现随机地放出5只做实验,X表示放出的蜂中工蜂的只数,则X=2时的概率是(B)A.C120C410 C530B.C220C310 C530C.C320C210 C530D.C420C110 C530B[X服从超几何分布,P(X=2)=C220C310 C530.]2.(2014·福州模拟)一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,其分布列为P(X),则P(X=4)的值为(C)A.1 220B.27 55C.27 220D.21 25C[由题意取出的3个球必为2个旧球1个新球,故P(X=4)=C23C19C312=27220.]3.设某项试验的成功率为失败率的2倍,用随机变量X去描述1次试验的成功次数,则P(X=0)的值为(C)A.1B.1 2C.13D.15C [设X 的分布列为:即“X =0”表示试验失败,“X =1”表示试验成功,设失败的概率为p ,成功的概率为2p .由p +2p =1,则p =13.]4.离散型随机变量X 的概率分布规律为P (X =n )=an (n +1)(n =1,2,3,4),其中a是常数,则P ⎝ ⎛⎭⎪⎫12<X <52的值为( D ) A.23 B.34 C.45 D.56D [由⎝ ⎛⎭⎪⎫11×2+12×3+13×4+14×5×a =1, 知45a =1,解得a =54.故P ⎝ ⎛⎭⎪⎫12<X <52=P (1)+P (2)=12×54+16×54=56.]5.(2014·广州模拟)设随机变量X ~N (1,52),且P (X ≤0)=P (X ≥a -2),则实数a 的值为( A ) A .4B.6C.8D.10A[由正态分布的性质可知P(X≤0)=P(X≥2),所以a-2=2,故a=4.]6.(2014·湖州模拟)一套重要资料锁在一个保险柜中,现有n把钥匙依次分给n 名学生依次开柜,但其中只有一把真的可以打开柜门,平均来说打开柜门需要试开的次数为(C)A.1B.nC.n+1 2D.n-1 2C[解法一:(特殊值验证法)当n=2时,P(X=1)=P(X=2)=12,E(X)=32,即打开柜门需要的次数为32,只有C符合.解法二:已知每一位学生打开柜门的概率为1 n,所以打开柜门需要试开的次数的平均数(即数学期望)为1×1n+2×1n+…+n×1n=n+12.]7.(2014·上海虹口模拟)已知某一随机变量ξ的概率分布列如下,且E(ξ)=6.3,则a的值为(C)A.5 B .6 C .7 D .8C [由分布列性质知:0.5+0.1+b =1, 解得b =0.4.∴E (ξ)=4×0.5+a ×0.1+9×0.4=6.3. ∴a =7.]8.体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为p (p ≠0),发球次数为X ,若X 的数学期望E (X )>1.75,则p 的取值范围是( C ) A.⎝ ⎛⎭⎪⎫0,712 B.⎝ ⎛⎭⎪⎫712,1 C.⎝ ⎛⎭⎪⎫0,12 D.⎝ ⎛⎭⎪⎫12,1 C [发球次数X 的分布列如下表:所以期望E (X )=p +2(1-p )p +3(1-p )2>1.75, 解得p >52(舍去)或p <12, 又p >0,则0<p <12.]9.(2013·湖北高考)如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体.经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X,则X的均值E(X)=(B)A.126 125B.6 5C.168 125D.7 5B[P(X=0)=27125,P(X=1)=54125,P(X=2)=36125,P(X=3)=8125,E(X)=0×P(X=0)+1×P(X=1)+2×P(X=2)+3×P(X=3)=0×27 125+1×54125+2×36125+3×8125=150125=65,故选B.]10.从4名男生和2名女生中选3人参加演讲比赛,则所选3人中女生人数不超过1人的概率是________.解析设所选女生人数为X,则X服从超几何分布,其中N=6,M=2,n=3,则P(X≤1)=P(X=0)+P(X=1)=C02C34C36+C12C24C36=45.答案4 511.如图所示,A、B两点5条连线并联,它们在单位时间内能通过的最大信息量依次为2,3,4,3,2.现记从中任取三条线且在单位时间内都通过的最大信息总量为X,则P(X≥8)=________.解析由已知,X的取值为7,8,9,10,∵P(X=7)=C22C12C35=15,∴P(X≥8)=1-P(X=7)=4 5.答案4 512.(2014·山东济南)随机变量ξ服从正态分布N(40,σ2),若P(ξ<30)=0.2,则P(30<ξ<50)=________.解析根据正态分布曲线的对称性可得P(30<ξ<50)=1-2P(ξ<30)=0.6.答案0.613.(2014·锦州模拟)某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望E(ξ)=________.(结果用最简分数表示)解析ξ可取0,1,2,因此P(ξ=0)=C25C27=1021,P(ξ=1)=C15C12C27=1021,P(ξ=2)=C22C27=121,E(ξ)=0×1021+1×1021+2×121=47.答案4 714.(2014·福州模拟)某学院为了调查本校学生2011年9月“健康上网”(健康上网是指每天上网不超过两个小时)的天数情况,随机抽取了40名本校学生作为样本,统计他们在该月30天内健康上网的天数,并将所得的数据分成以下六组:[0,5],(5,10],(10,15],…,(25,30],由此画出样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求这40名学生中健康上网天数超过20天的人数; (2)现从这40名学生中任取2名,设Y 为取出的2名学生中健康上网天数超过20天的人数,求Y 的分布列.解析 (1)由图可知,健康上网天数未超过20天的频率为(0.01+0.02+0.03+0.09)×5=0.15×5=0.75,所以健康上网天数超过20天的学生人数是40×(1-0.75)=40×0.25=10. (2)随机变量Y 的所有可能取值为0,1,2.P (Y =0)=C 230C 240=2952;P (Y =1)=C 110C 130C 240=513;P (Y =2)=C 210C 240=352.所以Y 的分布列为:15.在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起,若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,…,6),求:(1)甲、乙两单位的演出序号至少有一个为奇数的概率; (2)甲、乙两单位之间的演出单位个数X 的分布列与期望E (X ).解析 (1)设A 表示“甲、乙的演出序号至少有一个为奇数”,则A 表示“甲、乙的演出序号均为偶数”,由等可能性事件的概率计算公式,得 P (A )=1-P (A )=1-C 23C 26=1-15=45.(2)X 的所有可能值为0,1,2,3,4,且P (X =0)=5C 26=13;P (X =1)=4C 26=415;P (X =2)=3C 26=15;P (X =3)=2C 26=215;P(X=4)=1C26=115.从而知X的分布列为:所以X的期望E(X)=0×13+1×415+2×15+3×215+4×115=43.16.(2013·天津高考)一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).(1)求取出的4张卡片中,含有编号为3的卡片的概率;(2)在取出的4张卡片中,红色卡片编号的最大值设为X,求随机变量X的分布列和数学期望.解析(1)设“取出的4张卡片中,含有编号为3的卡片”为事件A,则P(A)=C12C35+C22C25C47=67.所以,取出的4张卡片中,含有编号为3的卡片的概率为6 7.(2)随机变量X的所有可能取值为1,2,3,4.P(X=1)=C33C47=135,P(X=2)=C34C47=435,P(X=3)=C35C47=27,P(X=4)=C36C47=47.所以随机变量X的分布列是随机变量X的数学期望E(X)=1×135+2×435+3×27+4×47=175.17.(2014·湖北省七市联考)2013年2月20日,针对房价过高,国务院常务会议确定五条措施(简称“国五条”).为此,记者对某城市的工薪阶层关于“国五条”态度进行了调查,随机抽取了60人,作出了他们的月收入的频率分布直方图(如图),同时得到了他们的月收入情况与“国五条”赞成人数统计表(如下表):(1)(2)若从月收入(单位:百元)在[15,25),[25,35)的被调查者中各随机选取3人进行追踪调查,记选中的6人中不赞成“国五条”的人数为X,求随机变量X 的分布列及数学期望.解析(1)这60人的月平均收入为(20×0.015+30×0.015+40×0.025+50×0.02+60×0.015+70×0.01)×10=43.5(百元).(2)根据频率分布直方图可知[15,25)的人数为10×0.015×60=9,[25,35)的人数为10×0.015×60=9,X的所有取值可能为0,1,2,3,P(X=0)=C38C39·C37C39=518,P(X=1)=C28C39·C37C39+C38C39·C12C27C39=1736,P(X=2)=C28C39·C12C27C39+C38C39·C22C17C39=29,P(X=3)=C28C39·C17C22C39=136,∴X的分布列为∴EX=0×518+1×1736+2×29+3×136=1.。
分布律和分布列
分布律和分布列分布律和分布列是概率论中非常重要的概念,它们被广泛应用于各个领域,包括统计学、工程学、金融学等。
本文将详细介绍分布律和分布列的概念、性质及其在实际应用中的意义。
一、分布律的定义与性质分布律又称分布函数,通常用F(x)来表示。
假设随机变量X的取值范围为实数轴上的所有实数,F(x)表示X小于等于x的概率,即:F(x) = P{X ≤ x}其中,P表示概率。
分布律具有以下性质:1. F(x)是一个非降函数,即F(x)在定义域内具有单调性。
2. F(x)的取值范围在[0,1]之间。
3. F(x)是一个右连续函数,即对于任意的x,F(x)在右侧连续。
4. F(x)在x处的导数等于X=x处的概率密度函数f(x),即F'(x) = f(x)。
二、分布列的定义与性质分布列是离散随机变量的分布函数,通常用p(x)来表示。
假设随机变量X的取值范围为{x1,x2,…,xn},则p(x)表示X等于x的概率,即:p(xi) = P{X=xi}分布列具有以下性质:1. 对于所有的i,有0 ≤ p(xi) ≤ 1。
2. ∑_i=1^n p(xi) = 1。
3. p(x)是一个非降函数。
三、分布律与分布列的区别分布律用来描述连续随机变量的概率分布,而分布列则用来描述离散随机变量的概率分布。
因为连续随机变量可以取无限多个值,所以概率密度函数f(x)是用来表示概率分布的。
分布律F(x)是f(x)的积分,表示随机变量小于等于某个值的概率。
而离散随机变量只能取有限个取值,所以概率可以用一个列表来表示。
分布列p(x)就是这个列表,它表示随机变量取某一特定值的概率。
四、分布律与分布列的应用分布律和分布列是概率论中非常重要的概念,它们被广泛应用于各个领域。
例如,在统计学中,分布律和分布列常常用来描述样本数据的概率分布,从而进行统计推断;在工程学中,分布律和分布列常常用来描述工程系统的性能分布,从而进行系统设计和优化;在金融学中,分布律和分布列常常用来描述金融资产的风险分布,从而进行投资决策和风险控制等。
高中理科数学各类型 概率统计、分布列解答题
高中理科数学概率统计、各类分布列解答题类型以随机事件概率为背景离散型随机变量的分布列、均值【背一背重点知识】1.随机变量所取的值分别对应的事件是两两互斥的,各事件概率之和为1.2.求随机事件概率为背景的离散型随机变量的均值与方差公式3.注意事件中所包含关键词,如至少,至多,恰好,都是,不都是,都不是等的含义.【讲一讲提高技能】1、必备技能:分类讨论要保证不重不漏,且相互互斥.灵活运用排列组合相应方法进行计数.等可能性是正确解题的关键,在计数及求概率过程中严格保证事件的等可能性.【练一练提升能力】1.某中学高一年级共8个班,现从高一年级选10名同学组成社区服务小组,其中高一(1)班选取3名同学,其它各班各选取1名同学.现从这10名同学中随机选取3名同学,到社区老年中心参加“尊老爱老”活动(每位同学被选到的可能性相同).(1)求选出的3名同学来自不同班级的概率;(2)设X为选出同学中高一(1)班同学的人数,求随机变量X的分布列和数学期望.2.一种抛硬币游戏的规则是:抛掷一枚硬币,每次正面向上得1分,反面向上得2分.(1)设抛掷5次的得分为,求的分布列和数学期望;(2)求恰好得到分的概率.3、某厂有台大型机器,在一个月中,一台机器至多出现次故障,且每台机器是否出现故障是相互独立的,出现故障时需名工人进行维修.每台机器出现故障需要维修的概率为.(1)问该厂至少有多少名工人才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不少于?(2)已知一名工人每月只有维修台机器的能力,每月需支付给每位工人万元的工资.每台机器不出现故障或出现故障能及时维修,就使该厂产生万元的利润,否则将不产生利润.若该厂现有名工人.求该厂每月获利的均值.以二项分布为背景离散型随机变量的分布列、均值【背一背重点知识】1.若随机变量服从二项分布,则对应的事件是两两独立重复的,概率为事件成功的概率.2.求二项分布为背景的离散型随机变量的均值与方差公式:若,则【讲一讲提高技能】1.必备技能:利用离散型随机变量的均值与方差的定义,也可求出二项分布为背景的离散型随机变量的均值与方差,但计算较繁.因此判断随机变量是否服从二项分布是解决问题的关键.判断方法有两个,一是从字面上理解是否符合独立重复条件,二是通过计算,归纳其概率规律是否满足二项分布.【练一练提升能力】1.为贯彻“激情工作,快乐生活”的理念,某单位在工作之余举行趣味知识有奖竞赛,比赛分初赛和决赛两部分,为了增加节目的趣味性,初赛采用选手选一题答一题的方式进行,每位选手最多有5次选答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题者直接进入决赛,答错3题者则被淘汰,已知选手甲答题的正确率为23 .(1)求选手甲答题次数不超过4次可进入决赛的概率;(2)设选手甲在初赛中答题的个数ξ,试写出ξ的分布列,并求ξ的数学期望.2.近年来,我国电子商务蓬勃发展.2016年“618”期间,某网购平台的销售业绩高达516亿元人民币,与此同时,相关管理部门推出了针对该网购平台的商品和服务的评价系统.从该评价系统中选出200次成功交易,并对其评价进行统计,网购者对商品的满意率为0.6,对服务的满意率为0.75,其中对商品和服务都满意的交易为80次. (Ⅰ) 根据已知条件完成下面的并回答能否有99%的把握认为“网购者对商品满意与对服务满意之间有关系”?(Ⅱ) 若将频率视为概率,某人在该网购平台上进行的3次购物中,设对商品和服务都满意的次数为随机变量 ,求 的分布列和数学期望 . 附:(其中为样本容量)3.(12分)某网站用“10分制”调查一社区人们的幸福度. 现从调查人群中随机抽取16名,以下茎叶图记录了他们的幸福度 分数(以小数点前的一位数字为茎,小数点后的一位数字为叶): (1)指出这组数据的众数和中位数;(2)若幸福度不低于9,则称该人的幸福度为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率;(3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示抽到“极幸福”的人数,求ξ的分布列及数学期望.以正态分布为背景离散型随机变量的分布列、均值1、正态分布概念:若连续型随机变量的概率密度函数为,其中为常数,且,则称服从正态分布,简记为~。
概率统计分布列知识点总结
概率统计分布列知识点总结一、离散分布对于离散型随机变量,它取值为有限个或者可数个。
在概率统计中,常见的离散分布包括:伯努利分布、二项分布、泊松分布等。
1. 伯努利分布伯努利分布是最简单的概率分布之一,它描述了只有两种可能结果的随机实验的分布。
例如,抛一次硬币的结果可以是正面或反面,这就是一个典型的伯努利分布。
伯努利分布的概率质量函数可以表示为:P(X=x) ={p, if x=11-p, if x=0}其中,p表示事件发生的概率,1-p表示事件不发生的概率。
伯努利分布的期望值为p,方差为p(1-p)。
2. 二项分布二项分布描述了一系列独立重复的伯努利试验的结果。
例如,抛n次硬币,其中正面的次数就是一个二项分布。
二项分布的概率质量函数可以表示为:P(X=k) = C(n,k) * p^k * (1-p)^(n-k)其中,n表示试验的次数,k表示事件发生的次数,p表示事件发生的概率,C(n,k)表示组合数。
二项分布的期望值为np,方差为np(1-p)。
3. 泊松分布泊松分布描述了单位时间内随机事件发生次数的分布。
例如,单位时间内接到的电话数、单位时间内发生事故的次数等都可以用泊松分布来描述。
泊松分布的概率质量函数可以表示为:P(X=k) = (λ^k * e^(-λ)) / k!其中,λ表示单位时间内事件发生的平均次数。
泊松分布的期望值和方差都等于λ。
二、连续分布对于连续型随机变量,它可以取任意的实数值。
在概率统计中,常见的连续分布包括:均匀分布、正态分布、指数分布等。
1. 均匀分布均匀分布描述了取值在一定范围内的随机变量的概率分布。
例如,在区间[a,b]内取值的随机变量就可以用均匀分布来描述。
均匀分布的概率密度函数可以表示为:f(x) ={1 / (b-a), if x∈[a,b]0, otherwise}均匀分布的期望值为(a+b)/2,方差为(b-a)^2 / 12。
2. 正态分布正态分布是最常见的连续分布之一,它具有许多重要的性质,例如中心极限定理。
分布列知识点与应用举例
分布列知识点与应用举例分布列是概率论与数理统计中的重要概念,它描述了一组可能值的出现概率。
在实际应用中,我们经常会遇到各种各样的概率分布,并使用它们来描述和解决各种问题。
下面是一些常见的概率分布及其应用的举例。
1.二项分布二项分布是最常见的概率分布之一,它描述了在一系列独立重复的伯努利试验中成功的次数。
在实际应用中,二项分布经常被用来描述二元事件的概率,比如投硬币、赌博、产品缺陷等。
举个例子,假设一个投硬币游戏中硬币正面的概率为0.5,现在进行了100次投掷,我们想知道正面出现60次的概率。
这个问题可以用二项分布来解决。
2.正态分布正态分布又称为高斯分布,它是概率论中最重要的概率分布之一,也是自然界和社会现象中许多变量的分布模型。
正态分布的概率密度函数呈钟形,对称地分布在平均值周围。
在实际应用中,正态分布经常被用来描述连续型变量的分布,如身高、体重、考试分数等。
举个例子,假设一些班级的考试分数服从正态分布,平均分数为80分,标准差为10分,我们想知道成绩在70分至90分之间的学生所占的比例。
这个问题可以用正态分布来解决。
3.泊松分布4.指数分布指数分布是一种连续型的概率分布,描述了独立均匀分布的随机变量第一次成功所需时间的概率分布。
指数分布的概率密度函数随着时间的增长而减小。
在实际应用中,指数分布经常被用来描述一些随机事件的持续时间,如等待时间、故障间隔时间等。
举个例子,假设一些网站的平均用户等待时间为5分钟,我们想知道一个用户等待时间小于10分钟的概率。
这个问题可以用指数分布来解决。
总之,概率分布在实际应用中有着广泛的应用。
通过了解和应用不同的概率分布,我们可以更好地理解和解决各种实际问题。
以上只是一些常见的概率分布及其应用的举例,实际应用中还有很多其他的概率分布,每个分布都有其自身的特点和适用领域。
高考数学复习:概率与分布列题型
高考数学复习:概率与分布列题型1.已知随机变量且1211211P X P X P X μμμμ-<+-≥++≤<+=,则()A.1-B.0C.1D.22.已知随机变量ξ服从正态分布()2,N μσ,若函数()(2)f x P x x ξ=≤≤+是偶函数,则实数μ=()A.0B.12C.1D.23.随机变量ξ服从正态分布()3,4N ,且()()322P a P a ξξ-≥=≤,则=a ()A.12B.1C.43D.34.设X~N (1,σ2),其正态分布密度曲线如图所示,且P (X ≥3)=0.0228,那么向正方形OABC 中随机投掷20000个点,则落入阴影部分的点的个数的估计值为()[附:随机变量ξ服从正态分布N (1,σ2),则P (μ-σ<ξ<μ+σ)=0.6826,P (μ-2σ<ξ<μ+2σ)=0.9544]A.12076B.13174C.14056D.7539题型二:二项分布型求参二项分布:若在一次实验中事件发生的概率为p ()01p <<,则在n 次独立重复实验中恰好发生k 次概率()=p k ξ=()1n kk k n C p p --()0,1,2,,k n =⋯,称ξ服从参数为,n p 的二项分布,记作ξ~(),B n p ,E ξ=npi =D npq .1.在n 次独立重复试验(伯努利试验)中,若每次试验中事件A 发生的概率为p ,则事件A 发生的次数X 服从二项分布(),B n p ,事实上,在伯努利试验中,另一个随机变量的实际应用也很广泛,即事件A 首次发生时试验进行的次数Y ,显然1()(1)k P Y k p p -==-,1k =,2,3,…,我们称Y 服从“几何分布”,经计算得1EY p =.据此,若随机变量X 服从二项分布1,6B n ⎛⎫⎪⎝⎭时,且相应的“几何分布”的数学期望EY EX <,则n的最小值为()A.6B.18C.36D.372.已知随机变量X 服从二项分布(,)B n p ,且()9E X =,9()4D X =,则n =()A.3B.6C.9D.123.设随机变量ξ服从二项分布(),B n p ,若() 1.2E ξ=,()0.96D ξ=,则实数n 的值为__________.题型三:二项分布与正态分布综合离散型随机变量分布列、期望、方差及其性质(1)离散型随机变量ξ的分布列ξ1ξ2ξ3ξ…n ξP1p 2p 3p np ①()11,i p i n i N θ*≤≤≤≤∈;②121n p p p ++= .(2)E ξ表示ξ的期望:1122=+n n p p p E ξξξξ++…,反应随机变量的平均水平,若随机变量ξη,满足=a b ηξ+,则E aE b ηξ=+.(3)D ξ表示ξ的方差:()()()2221122=---n n E p E p E p D ξξξξξξξ+++ ,反映随机变量ξ取值的波动性。
概率与分布列
概率、随机变量与分布列1,学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)(Ⅰ)求在1次游戏中,(i)摸出3个白球的概率;(ii)获奖的概率;(Ⅱ)求在2次游戏中获奖次数X的分布列及数学期望()E X.2.某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为16.甲、乙、丙三位同学每人购买了一瓶该饮料。
(Ⅰ)求甲中奖且乙、丙都没有中奖的概率;(Ⅱ)求中奖人数ξ的分布列及数学期望Eξ.3.现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击. (Ⅰ)求该射手恰好命中一次得的概率;(Ⅱ)求该射手的总得分X的分布列及数学期望EX.4.甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(Ⅰ) 求甲获胜的概率;(Ⅱ) 求投篮结束时甲的投篮次数ξ的分布列与期望5.已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和.(Ⅰ)求X的分布列;(Ⅱ)求X的数学期望E(X).6.(2012年高考(广东理))某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:[)40,50、[)50,60、[)60,70、[)70,80、[)80,90、[]90,100.(Ⅰ)求图中x的值;(Ⅱ)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.7.(2010广东理数)某食品厂为了检查一条自动包装流水线的生产情况,随即抽取该流水线上40件产品作为样本算出他们的重量(单位:克)重量的分组区间为(490,]495,(495,]500,……(510,]515,由此得到样本的频率分布直方图,如图4所示.(1)根据频率分布直方图,求重量超过505克的产品数量.(2)在上述抽取的40件产品中任取2件,设Y 为重量超过505克的产品数量,求Y 的分布列.(3)从流水线上任取5件产品,求恰有2件产品合格的重量超过505克的概率.8.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立(I )求该地1位车主至少购买甲、乙两种保险中的l 种的概率;(Ⅱ)X 表示该地的l00位车主中,甲、乙两种保险都不购买的车主数。
常见离散型随机变量分布列示例
常见随机事件的概率与分布列示例1、耗用子弹数的分布列例 某射手有5发子弹,射击一次命中概率为0.9,如果命中就停止射击,否则一直到子弹用尽,求耗用子弹数ξ的分布列.分析:确定ξ取哪些值以及各值所代表的随机事件概率,分布列即获得.解:本题要求我们给出耗用子弹数ξ的概率分布列.我们知道只有5发子弹,所以ξ的取值只有1,2,3,4,5.当1=ξ时,即9.0)1(==ξP ;当2=ξ时,要求第一次没射中,第二次射中,故09.09.01.0)2(=⨯==ξP ;同理,3=ξ时,要求前两次没有射中,第三次射中,009.09.01.0)3(2=⨯==ξP ;类似地,0009.09.01.0)4(3=⨯==ξP ;第5次射击不同,只要前四次射不中,都要射第5发子弹,也不考虑是否射中,所以41.0)5(==ξP ,所以耗用子弹数ξ的分布列为:ξ0 1 2 3P 0.9 0.09 0.009 0.0001说明:搞清5=ξ的含义,防止这步出错.5=ξ时,可分两种情况:一是前4发都没射中,恰第5发射中,概率为0.14×0.9;二是这5发都没射中,概率为0.15,所以,541.09.01.0)5(+⨯==ξP .当然,5=ξ还有一种算法:即0001.0)0009.0009.009.09.0(1)5(=+++-==ξP .2、独立重复试验某事件发生偶数次的概率例 如果在一次试验中,某事件A 发生的概率为p ,那么在n 次独立重复试验中,这件事A 发生偶数次的概率为________.分析:发生事件A的次数()p n B ,~ξ,所以,),,2,1,0,1(,)(n k p q q p C k p kn k k n =-===-ξ其中的k 取偶数0,2,4,…时,为二项式n q p )(+ 展开式的奇数项的和,由此入手,可获结论.解:由题,因为()p n B ,~ξ且ξ取不同值时事件互斥,所以,[][]n n n n n n n n n p p q p q q p C q p C q p C P P P P )21(121)()(21)4()2()0(44422200-+=-++=+++=+=+=+==-- ξξξ.(因为1=+q p ,所以p p q 21-=-)说明:如何获得二项展开式中的偶数次的和?这需要抓住np q )(+与np q )(-展开式的特点:联系与区分,从而达到去除p 奇次,留下p 偶次的目的.3、根据分布列求随机变量组合的分布列例 已知随机变量ξ 的分布列为ξ-2 -1 0 1 2 3P121123 124 121 122 121 分别求出随机变量221,2ξ η ξ η ==的分布列. 解: 由于ξ η 211=对于不同的ξ 有不同的取值x y 21=,即2321,121,2121,021,2121,121665544332211========-==-==x y x y x y x y x y x y ,所以1η 的分布列为1η-121- 021 132 P121123 124 121 122 121 22ξ η =对于ξ 的不同取值-2,2及-1,1,2η分别取相同的值4与1,即2η 取4这个值的概率应是ξ 取-2与2值的概率121与122合并的结果,2η 取1这个值的概率就是ξ 取-1与1值的概率123与121合并的结果,故2η 的分布列为 2η0 1 4 9P124 124 123 121 说明:在得到的1η 或2η 的分布列中,1η 或2η 的取值行中无重复数,概率得中各项必须非负,且各项之和一定等于1.4、成功咨询人数的分布列例 某一中学生心理咨询中心服务电话接通率为43,某班3名同学商定明天分别就同一问题询问该服务中心.且每人只拨打一次,求他们中成功咨询的人数ξ的分布列.分析:3个人各做一次试验,看成三次独立重复试验,拨通这一电话的人数即为事件的发生次数ξ,故符合二项分布.解:由题:⎪⎭⎫ ⎝⎛43,3~B ξ,所以3,2,1,0,4143)(33=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==-k C k P kk k ξ,分布列为ξ 0 1 2 3P641 649 6427 6427说明:次独立重复实验中,以事件发生的次数ξ为随机变量.5、盒中球上标数于5关系的概率分布列例 盒中装有大小相等的球10个,编号分别为0,1,2,…,9,从中任取1个,观察号码是“小于5”“等于5”“大于5”三类情况之一.规定一个随机变量,并求其概率分布列.分析:要求其概率的分布列可以先求个小球所对应的概率.解:分别用321,,x x x 表示题设中的三类情况的结果:1x 表示“小于5”的情况,2x 表示“等于5”的情况,3x 表示“大于5”的情况.设随机变量为ξ ,它可能取的值为ξ ,,,321x x x 取每个值的概率为P x P ==)(1ξ (取出的球号码小于5)=105, P x P ==)(2ξ (取出的球号码等于5)=101, P x P ==)(3ξ (取出的球号码大于5)=104. 故ξ 的分布列为ξ1x 2x 3xP21101 52小结:分布列是我们进一步解决随机变量有关问题的基础,因此准确写出随机变量的分布列是很重要的,但是我们不能保证它的准确性,这时我们要注意运算的准确性外,还可以利用11=∑=ni ip进行检验.6、求随机变量的分布列例 一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3只,以ξ 表示取出的3只球中的最大号码,写出随机变量ξ 的分布列.分析:由于任取三个球,就不是任意排列,而要有固定的顺序,其中球上的最大号码只有可能是3,4,5,可以利用组合的方法计算其概率.解:随机变量ξ 的取值为3,4,5.当ξ =3时,即取出的三只球中最大号码为3,则其他二球的编号只能是1,2,故有;101C C )3(3523===ξ P当ξ =4时,即取出的三只球中最大号码为4,则其他二球只能在编号为1,2,3的3球中取2个,故有;103C C )4(3523===ξ P当ξ =5时,即取出的三只球中最大号码为5,则其他二球只能在编号为1,2,3,4的4球中取2个,故有.53106C C )5(3523====ξ P因此,ξ 的分布列为ξ3 4 5P101103 106 说明:对于随机变量ξ 取值较多或无穷多时,应由简单情况先导出一般的通式,从而简化过程.7、取得合格品以前已取出的不合格品数的分布列例 一批零件中有9个合格品与3个不合格品.安装机器时,从这批零件中任取一个.如果每次取出的不合格品不再放回去,求在取得合格品以前已取出的不合格品数的分布列.分析:取出不合格品数的可能值是0,1,2,3,从而确定确定随机变量的可能值.解:以ξ 表示在取得合格品以前取出的不合格品数,则ξ 是一个随机变量,由题设ξ 可能取的数值是0,1,2,3.当ξ =0时,即第一次就取到合格品,其概率为;750.0123)0(===ξ P 当ξ =1时,即第一次取得不合格品,不放回,而第二次就取得合格品,其概率为;204.0119123)1(≈⋅==ξ P 当ξ =2时,即第一、二次取得不合格品,不放回,第三次取得合格品,其概率为;041.0119112123)2(≈⋅⋅==ξ P 当ξ =3时,即第一、二、三次均取得不合格品,而第四次取得合格品,其概率为.005.099101112123)3(≈⋅⋅⋅==ξ P 所以ξ 的分布列为ξ0 1 2 3 P0.7500.2040.0410.005说明:一般分布列的求法分三步:(1)首先确定随机变量ξ的取值哟哪些;(2)求出每种取值下的随机事件的概率;(3)列表对应,即为分布列.8、关于取球的随机变量的值和概率例 袋中有1个红球,2个白球,3个黑球,现从中任取一球观察其颜色.确定这个随机试验中的随机变量,并指出在这个随机试验中随机变量可能取的值及取每个值的概率.分析:随机变量变量是表示随机试验结果的变量,随机变量的可能取值是随机试验的所有可能的结果组成.解: 设集合},,{321x x x M =,其中1x 为“取到的球为红色的球”,2x 为“取到的球为白色的球”,3x 为“取到的球为黑色的球”. 我们规定:)3,2,1()(===i i x i ξ ξ ,即当i x x =时,i x =)(ξ,这样,我们确定)(x ξ 就是一个随机变量,它的自变是量x 取值不是一个实数,而是集合M 中的一个元素,即M x ∈,而随机变量ξ 本身的取值则为1,2,3三个实数,并且我们很容易求得ξ 分别取1,2,3三个值的概率,即.2163)3(,3162)2(,61)1(========ξ ξ ξ P P P说明:确定随机变量的取值是根据随机试验的所有可能的结果.。
概率论,方差,分布列知识总结
分布列、期望、方差知识总结一、知识结构二、知识点1.随机试验的特点:①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.2.分类随机变量(如果随机试验可能出现的结果可以用一个变量X来表示,并且X是随着试验的结果的不同而变化,那么这样的变量叫做随机变量.随机变量常用大写字母X、Y等或希腊字母ξ、η等表示。
)离散型随机变量在上面的射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.连续型随机变量对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量.连续型随机变量的结果不可以一一列出.3.离散型随机变量的分布列一般的,设离散型随机变量X可能取的值为x1,x2, ,x i , ,x nX取每一个值xi(i=1,2,)的概率P(ξ=x i)=P i,则称表为离散型随机变量X 的概率分布,简称分布列性质:①pi≥0, i =1,2,…;②p1 + p2 +…+p n= 1.③一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和。
4.求离散型随机变量分布列的解题步骤例题:篮球运动员在比赛中每次罚球命中得1分,不中得0分,已知某运动员罚球命中的概率为0.7,求他罚球一次的得分的分布列.解:用随机变量X表示“每次罚球得的分值”,依题可知,X可能的取值为:1,0且P(X=1)=0.7,P(X=0)=0.3因此所求分布列为:引出二点分布如果随机变量X的分布列为:其中0<p<1,q=1-p,则称离散型随机变量X服从参数p的二点分布二点分布的应用:如抽取彩票是否中奖问题、新生婴儿的性别问题等.超几何分布一般地, 设总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n(n ≤N)件,这n 件中所含这类物品件数X 是一个离散型随机变量,则它取值为k 时的概率为()(0,1,2,,)k n k M N MnNC C P X k k m C --===,其中{}min,m M n =,且*,,,,n N M N n M N N ∈≤≤ 则称随机变量X 的分布列为超几何分布列,且称随机变量X 服从参数N 、M 、n 的超几何分布注意:(1)超几何分布的模型是不放回抽样;(2)超几何分布中的参数是N 、M 、n ,其意义分别是总体中的个体总数、N 中一类的总数、样本容量解题步骤:例题、在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有10个红球和20个白球,这些球除颜色外完全相同.游戏者一次从中摸出5个球.至少摸到3个红球就中奖,求中奖的概率解:设摸出红球的个数为X,则X 服从超几何分布,其中30,10,5N M n === X 可能的取值为0,1,2,3,4, 5. 由题目可知,至少摸到3个红球的概率为(3)(3)(4)(5)P X P X P X P X ==+=+=≥324150102010201020555303030C C C C C C C C C =++ ≈0.191答:中奖概率为0.191.nNn MN MCC C -0nNn MN MCC C 11--nNm n MN m MCC C --条件概率1.定义:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫做条件概率P(B|A),读作A 发生的条件下B 的概率2.事件的交(积):由事件A 和事件B 同时发生所构成的事件D ,称为事件A 与事件B 的交(或积作D=A ∩B 或D=AB3.条件概率计算公式:P(B|A)相当于把A 看作新的基本事件空间,求A∩B发生的概率:解题步骤:例题、10个产品中有7个正品、3个次品,从中不放回地抽取两个,已知第一个取到次品,求第二取到次品的概率.解:设 A = {第一个取到次品}, B = {第二个取到次品},所以,P(B|A) = P(AB) / P(A)= 2/9 答:第二个又取到次品的概率为2/9..0)(,)()()|(>=A P A P AB P A B P .1)|(0)()|()(0)A (P ≤≤⋅=>A B P A P A B P AB P (乘法公式);,则若.151)(21023==⇒C C AB P .103)(=A P相互独立事件2.相互独立事件同时发生的概率公式两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。
207高考复习---概率、随机变量分布列、期望方差
2017高考复习---概率、随机变量分布列、期望方差1.某高校进行自主招生面试时的程序如下:共设3道题,每道题答对给10分、答错倒扣5分(每道题都必须回答,但相互不影响).设某学生对每道题答对的概率都为,则该学生在面试时得分的期望值为分.2.随机变量ξ服从二项分布ξ~B(n,p),且Eξ=300,Dξ=200,则P等于.3.设随机变量X~B(6,),则P(X=3)=.4.口袋中装有大小质地都相同、编号为1,2,3,4,5,6的球各一只.现从中一次性随机地取出两个球,设取出的两球中较小的编号为X,则随机变量X的数学期望是.其中a,b,c成等差数列,若.则Dξ的值是.6.已知某随机变量ξ的概率分布列如表,其中x>0,y>0,随机变量ξ的方差Dξ=,则4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量ξ,则P(ξ≤7)=.8.一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个球,则其中含红球个数的数学期望是.9.甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球、2个白球,乙袋装有1个红球、5个白球.现分别从甲、乙两袋中各随机抽取1个球,记抽取到红球的个数为ξ,则随机变量ξ的数学期望Eξ=.10.有一种游戏规则如下:口袋里有5个红球和5个黄球,一次摸出5个,若颜色相同则得100分,若4个球颜色相同,另一个不同,则得50分,其他情况不得分.小张摸一次得分的期望是分.11.为参加2012年伦敦奥运会,某旅游公司为三个旅游团提供了a,b,c,d四条旅游线路,每个旅游团可任选其中一条线路,则选择a线路旅游团数ξ的数学期望Eξ=.12.随机变量X的分布列如下:若,则DX的值是.每个盒子放一个小球,球的编号与盒子的编号相同时叫做放对了,否则叫做放错了.设放对的个数记为ξ,则ξ的期望Eξ=.15.从三男三女6名学生中任选2名(每名同学被选中的概率均相等),则2名都是女同学的概率等于.16.盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意抽取两个,则这两个球的编号之积为偶数的概率是(结果用最简分数表示)17.口袋中有形状和大小完全相同的四个球,球的编号分别为1,2,3,4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于5的概率为.18.盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是.19.从长度分别为2,3,4,5的四条线段中任意取出三条,以这三条线段为边可以构成三角形的概率是.20.从分别写有0,1,2,3,4五张卡片中取出一张卡片,记下数字后放回,再从中取出一张卡片.两次取出的卡片上的数字之和恰好等于4的概率是.21.甲乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,且a,b∈{1,2,3,4},若|a﹣b|≤1,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为.22.将一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为m,第二次出现的点数为n,向量=(m,n),=(3,6),则向量与共线的概率为.23.某学校有两个食堂,甲、乙两名学生各自随机选择其中的一个食堂用餐,则他们在同一个食堂用餐的概率为.24.在一次招聘口试中,每位考生都要在5道备选试题中随机抽出3道题回答,答对其中2道题即为及格,若一位考生只会答5道题中的3道题,则这位考生能够及格的概率为.2017年03月25日茅盾中学09的高中数学组卷参考答案与试题解析一.填空题(共24小题)1.(2012•温州一模)某高校进行自主招生面试时的程序如下:共设3道题,每道题答对给10分、答错倒扣5分(每道题都必须回答,但相互不影响).设某学生对每道题答对的概率都为,则该学生在面试时得分的期望值为15分.【分析】设该生在面试时的得分为X,由题设条件知X的可能取值为﹣15,0,15,30,分别求出P(X=﹣15),P(X=0),P(X=15),P(X=30),由此能求出该学生在面试时得分的期望值.【解答】解:设该生在面试时的得分为X,由题设条件知X的可能取值为﹣15,0,15,30,P(X=﹣15)==,P(X=0)==,P(X=15)==,P(X=30)==,∴EX=﹣15×+0×+15×+30×=15.∴该学生在面试时得分的期望值为15分.故答案为:15.【点评】本题考查离散型随机变量的数学期望的求法,解题时要认真审题,注意n次独立重复试验中事件恰好发生k次的概率计算公式的灵活运用.2.(2016春•松桃县校级期末)随机变量ξ服从二项分布ξ~B(n,p),且Eξ=300,Dξ=200,则P等于.【分析】根据随机变量符合二项分布,根据二项分布的期望和方差的公式和条件中所给的期望和方差的值,得到关于n和p的方程组,解方程组得到要求的未知量p.【解答】解:∵ξ服从二项分布B~(n,p)Eξ=300,Dξ=200∴Eξ=300=np,①;Dξ=200=np(1﹣p),②.可得1﹣p==,∴p=1﹣=.故答案为:.【点评】本题主要考查分布列和期望的简单应用,本题解题的关键是通过解方程组得到要求的变量,注意两个式子相除的做法,本题与求变量的期望是一个相反的过程,但是两者都要用到期望和方差的公式,本题是一个基础题.3.(2013春•渭滨区校级期末)设随机变量X~B(6,),则P(X=3)=.【分析】根据条件中所给的变量符合二项分布,写出变量取值不同时对应的概率公式,本题x=3,代入公式得到要求的概率.【解答】解:∵随机变量X服从二项分布B(6,),∴P(X=3)=C36()3×(1﹣)3=.故答案为:.【点评】本题考查二项分布的概率计算公式,是基础题.解题时要认真审题,仔细解答.4.(2015•中山二模)口袋中装有大小质地都相同、编号为1,2,3,4,5,6的球各一只.现从中一次性随机地取出两个球,设取出的两球中较小的编号为X,则随机变量X的数学期望是.【分析】确定X的可能取值为1,2,3,4,5,求出相应的概率,可求随机变量X的数学期望【解答】解:由题设知X的可能取值为1,2,3,4,5.随机地取出两个球,共有:=15种,∴P(X=1)=,P(X=2)=,P(X=3)=,P(X=4)=,P(X=5)=,故EX=1×+2×+3×+4×+5×=.故答案为:.【点评】本题考查离散型随机变量的数学期望的求法,确定X的可能取值,求出相应的概率是关键.其中a,b,c成等差数列,若.则Dξ的值是.【分析】要求这组数据的方差,需要先求出分布列中变量的概率,这里有三个条件,一个是三个数成等差数列,一个是概率之和是1,一个是这组数据的期望,联立方程解出结果.【解答】解:∵a,b,c成等差数列,∴2b=a+c,∵a+b+c=1,Eξ=﹣1×a+1×c=c﹣a=.联立三式得,∴.故答案为:【点评】这是一个综合题目,包括等差数列,离散型随机变量的期望和方差,主要考查分布列和期望的简单应用,通过解方程组得到要求的变量,这与求变量的期望是一个相反的过程,但是两者都要用到期望的公式.6.(2014•余杭区校级模拟)已知某随机变量ξ的概率分布列如表,其中x>0,y>0,随机变量ξ的方差Dξ=,则x+y=.【解答】解:由题意可得:2x+y=1,Eξ=x+2y+3x=4x+2y=4x+2(1﹣2x)=2.∴方差Dξ==(1﹣2)2x+(2﹣2)2(1﹣2x)+(3﹣2)2x.化为,解得,∴=.∴=.故答案为.【点评】熟练掌握离散型随机变量的期望与方差是解题的关键.7.(2015春•淮安校级期末)袋中有4只红球3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量ξ,则P(ξ≤7)=.【分析】取出的4只球中红球个数的可能为4,3,2,1个,黑球相应个数为0,1,2,3个,得分的随机变量ξ=4,6,8,10,由经能求出P(ξ≤7)的值.【解答】解:取出的4只球中红球个数的可能为4,3,2,1个,黑球相应个数为0,1,2,3个,∴得分的随机变量ξ=4,6,8,10,∴P(ξ≤7)=P(ξ=4)+P(ξ=6)==.故答案为:.【点评】本题考查概率的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.8.(2001•江西)一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个球,则其中含红球个数的数学期望是 1.2.【分析】由题意知ξ的可能取值是0、1、2,当ξ=0时,表示从中取出2个球,其中不含红球,当ξ=1时,表示从中取出2个球,其中1个红球,1个黄球,当ξ=2时,表示从中取出2个球,其中2个红球,这三种情况根据古典概型概率公式得到结果,求出期望.【解答】解:设含红球个数为ξ,ξ的可能取值是0、1、2,当ξ=0时,表示从中取出2个球,其中不含红球,当ξ=1时,表示从中取出2个球,其中1个红球,1个黄球,当ξ=2时,表示从中取出2个球,其中2个红球,∴P(ξ=0)==0.1,P(ξ=1)==0.6P(ξ=2)==0.3∴Eξ=0×0.1+1×0.6+2×0.3=1.2.故答案为:1.2.【点评】本题这种类型是近几年高考题中经常出现的,考查离散型随机变量的分布列和期望,大型考试中理科考试必出的一道问题.不过大多数题目是以解答题的形式出现的.9.(2012•浙江校级模拟)甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球、2个白球,乙袋装有1个红球、5个白球.现分别从甲、乙两袋中各随机抽取1个球,记抽取到红球的个数为ξ,则随机变量ξ的数学期望Eξ=.【分析】由题中ξ的取值可能是0,1,2,由等可能事件的概率计算出概率,得出分布列再有公式求出期望即可【解答】解:由题ξ的取值可能是0,1,2,从丙个袋中各一个球,总的取法有6×6=36 故P(ξ=0)=,P(ξ=1)=,P(ξ=2)=所以ξ的分布列为=故答案为【点评】本题考查离散型随机变量的期望与方差,解题的关键是根据相应的概率计算公式求出变量取每一个可能值的概率,列出分布列,求出期望.10.(2013•浙江模拟)有一种游戏规则如下:口袋里有5个红球和5个黄球,一次摸出5个,若颜色相同则得100分,若4个球颜色相同,另一个不同,则得50分,其他情况不得分.小张摸一次得分的期望是分.【分析】由题意知小张摸一次得分X的可能取值是0,,50,100,当得分为100时,表示从十个球中取五个球,取到的都是颜色相同的球,当得分50时,表示取到的球有四个颜色相同,结合变量对应的事件,做出分布列和期望.【解答】解:由题意知小张摸一次得分X的可能取值是0,,50,100,当得分为100时,表示从十个球中取五个球,取到的都是颜色相同的球,从10个球中取5个共有C105种结果,而球的颜色都相同包括两种情况,∴P(X=100)==,当得分50时,表示取到的球有四个颜色相同,P(X=50)==,P(X=0)=1﹣=,∴EX=100×==,故答案为:.【点评】本题考查离散型随机变量的分布列和期望,这种类型是近几年高考题中经常出现的,考查离散型随机变量的分布列和期望,大型考试中理科考试必出的一道问题.11.(2013•西湖区校级模拟)为参加2012年伦敦奥运会,某旅游公司为三个旅游团提供了a,b,c,d四条旅游线路,每个旅游团可任选其中一条线路,则选择a线路旅游团数ξ的数学期望Eξ=.【分析】确定ξ的可能取值,计算相应的概率,可得分布列,进而可求ξ的数学期望.【解答】解:由题意,ξ=0,1,2,3,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==ξ 0 1 2 3P∴期望Eξ=0×+1×+2×+3×=故答案为:【点评】本题考查离散型随机变量的分布列和期望,考查学生的计算能力,属于中档题.12.(2011•海珠区一模)随机变量X的分布列如下:若,则DX的值是.X ﹣1 0 1P a ca和c,再利用方差公式求方差即可.【解答】解:由题意:,解得:所以DX=故答案为:【点评】本题考查分布列的性质、期望和方差的计算,考查基础知识和基本运算.13.(2012•浙江模拟)已知随机变量ξ的分布列如下表所示,ξ的期望Eξ=1.5,则a的值等于0.5.ξ0 1 2 3P 0.1 a b 0.2分布列的性质建立方程求解即可.【解答】解:由题意可得:⇒.故答案为:0.5.【点评】此题属于基本题型,重点考查了随机变量的分布列的性质,期望定义及学生利用方程的思想求解问题.14.(2011•宁波模拟)一个人随机的将编号为1,2,3,4的四个小球放入编号为1,2,3,4的四个盒子,每个盒子放一个小球,球的编号与盒子的编号相同时叫做放对了,否则叫做放错了.设放对的个数记为ξ,则ξ的期望Eξ=1.【分析】由于ξ表示匹对的个数,由题意则ξ可能取:0,1,2,4,并利用古典概型随机事件的概率公式及排列数与组合数,求出其分布列,根据期望公式求出所求.【解答】解:由题意ξ可能取:0,1,2,4,则,,,Eξ==1.故答案为:1【点评】此题考查了离散型随机变量的定义及其分布列,并且利用分布列求出期望,还考查了考虑问题时的严谨的逻辑思维及计算能力.15.(2013•浙江)从三男三女6名学生中任选2名(每名同学被选中的概率均相等),则2名都是女同学的概率等于.【分析】由组合数可知:从6名学生中任选2名共有=15种情况,2名都是女同学的共有=3种情况,由古典概型的概率公式可得答案.【解答】解:从6名学生中任选2名共有=15种情况,满足2名都是女同学的共有=3种情况,故所求的概率为:=.故答案为:.【点评】本题考查古典概型及其概率公式,涉及组合数的应用,属基础题.16.(2013•上海)盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意抽取两个,则这两个球的编号之积为偶数的概率是(结果用最简分数表示)【分析】从7个球中任取2个球共有=21种,两球编号之积为偶数包括均为偶数、一奇一偶两种情况,有=15种取法,利用古典概型的概率计算公式即可求得答案.【解答】解:从7个球中任取2个球共有=21种,所取两球编号之积为偶数包括均为偶数、一奇一偶两种情况,共有=15种取法,所以两球编号之积为偶数的概率为:=.故答案为:.【点评】本题考查古典概型的概率计算公式,属基础题,其计算公式为:P(A)=,其中n(A)为事件A所包含的基本事件数,m为基本事件总数.17.(2015•江苏模拟)口袋中有形状和大小完全相同的四个球,球的编号分别为1,2,3,4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于5的概率为.【分析】由组合知识求出从4个球中随机抽取两个球的所有方法种数,由题意得到两球编号之和大于5的方法种数,然后直接利用古典概型概率计算公式求解.【解答】解:从5个球中随机抽取两个球,共有种抽法.满足两球编号之和大于5的情况有(2,4),(3,4)共2种取法.所以取出的两个球的编号之和大于5的概率为.故答案为.【点评】本题考查了古典概型及其概率计算公式,考查了组合及组合数公式,是基础题.18.(2010•江苏)盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是.【分析】算出基本事件的总个数n=C42=6,再算出事件A中包含的基本事件的个数m=C31=3,算出事件A的概率,即P(A)=即可.【解答】解:考查古典概型知识.∵总个数n=C42=6,∵事件A中包含的基本事件的个数m=C31=3∴故填:.【点评】本题考查古典概型及其概率计算公式,其算法是:(1)算出基本事件的总个数n;(2)算出事件A中包含的基本事件的个数m;(3)算出事件A的概率,即P(A)=.19.(2009•安徽)从长度分别为2,3,4,5的四条线段中任意取出三条,以这三条线段为边可以构成三角形的概率是.【分析】本题是一个古典概率试验发生包含的基本事件可以列举出共4种;而满足条件的事件是可以构成三角形的事件可以列举出共3种;根据古典概型概率公式得到结果.【解答】解:由题意知,本题是一个古典概率∵试验发生包含的基本事件为2,3,4;2,3,5;2,4,5;3,4,5共4种;而满足条件的事件是可以构成三角形的事件为2,3,4;2,4,5;3,4,5共3种;∴以这三条线段为边可以构成三角形的概率是.故答案为:【点评】本题考查古典概型,考查三角形成立的条件,是一个综合题,解题的关键是正确数出组成三角形的个数,要做到不重不漏,要遵循三角形三边之间的关系.20.(2011•鼓楼区校级模拟)从分别写有0,1,2,3,4五张卡片中取出一张卡片,记下数字后放回,再从中取出一张卡片.两次取出的卡片上的数字之和恰好等于4的概率是.【分析】由题意抽两次且属于有放回的抽样,利用计数原理及古典概型随机事件的概率公式即可求出.【解答】解:由题意属于有放回的抽样,因为从分别写有0,1,2,3,4五张卡片中取出一张卡片,记下数字后放回,再从中取出一张卡片,即抽两次,所以利用分步计数原理可得总数为:5×5=25,即:“取出的两张卡片的数字之和恰好的等于4为事件A”:事件A的个数为:(4,0),(0,4),(2,2),(1,3),(3,1)共5个,利用古典概型随机事件的概率公式及得:P(A)=.故答案为:【点评】此题考查了有放回的抽样,古典概型随机事件的概率公式及分步计数原理.21.(2011•江西校级模拟)甲乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,且a,b∈{1,2,3,4},若|a﹣b|≤1,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为.【分析】本题是一个古典概型,试验发生包含的事件是两个人分别从4个数字中各选一个数字,共有4×4种结果,满足条件的事件是|a﹣b|≤1,可以列举出所有的满足条件的事件,根据古典概型概率公式得到结果.【解答】解:由题意知本题是一个古典概型,试验发生包含的事件是两个人分别从4个数字中各选一个数字,共有4×4=16种结果,满足条件的事件是|a﹣b|≤1,可以列举出所有的满足条件的事件,当a=1时,b=1,2,当a=2时,b=1,2,3当a=3时,b=2,3,4当a=4时,b=3,4总上可知共有2+3+3+2=10种结果,∴他们“心有灵犀”的概率为=故答案为:【点评】本题考查古典概型及其概率公式.考查利用分类计数原理表示事件数,考查理解能力和运算能力,注意列举出的事件数做到不重不漏.22.(2012•东莞二模)将一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为m,第二次出现的点数为n,向量=(m,n),=(3,6),则向量与共线的概率为.【分析】本题是一个古典概型,试验发生包含的事件是一颗骰子掷两次,共有6×6种结果,满足条件事件是向量共线,根据向量共线的条件得到6m﹣3n=0即n=2m,列举出所有的结果数,得到概率.【解答】解:由题意知本题是一个古典概型,∵试验发生包含的事件是一颗骰子掷两次,共有6×6=36种结果,满足条件事件是向量=(m,n)与=(3,6)共线,即6m﹣3n=0,∴n=2m,满足这种条件的有(1,2)(2,4)(3,6),共有3种结果,∴向量与共线的概率P=,故答案为:【点评】本题考查古典概型及其概率公式,考查向量共线的充要条件,考查利用列举法得到所有的满足条件的事件数,本题是一个比较简单的综合题目.23.(2013•西湖区校级模拟)某学校有两个食堂,甲、乙两名学生各自随机选择其中的一个食堂用餐,则他们在同一个食堂用餐的概率为.【分析】先求出基本事件的总数,再找出所要求的事件包括的基本事件的个数,利用古典概型的概率计算公式即可得出.【解答】解:甲学生随机选择其中的一个食堂用餐可有两种选法,同理乙也有两种选法,根据乘法原理可知:共有22=4中选法;其中他们在同一个食堂用餐的方法只有两种:一种是都到第一个食堂,另一种是都到第二个食堂,因此他们在同一个食堂用餐的概率P=.故答案为.【点评】熟练掌握分步乘法原理和古典概型的概率计算公式是解题的关键.24.(2011•卢湾区一模)在一次招聘口试中,每位考生都要在5道备选试题中随机抽出3道题回答,答对其中2道题即为及格,若一位考生只会答5道题中的3道题,则这位考生能够及格的概率为.【分析】根据这位考生只会答5道题中的3道题,可先计算出所有的基本事件个数,及该考生不及格的事件个数,进行求出该生不能及格的概率,然后根据对立事件减法公式,得到答案.【解答】解:从5道备选试题中随机抽出3道题共有:C53==10种情况其中从该考生考试不及格,即正好抽中该生不会的两道题有:C31=3种情况即这位考生不及格的概率为故这位考生能够及格的概率P=1﹣=故答案为:【点评】本题考查的知识点是古典概型及其概率计算公式,其中根据正繁则反的原则,先求对立事件的概率,是解答本题的关键.。
概率与分布列
概率与分布列(深圳)17.(本小题满分13分)随机调查某社区80个人,以研究这个社区居民在00:2200:20-时间段的休闲方式与性别的关系,得到下面的数据表:(1)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这个时间段以看书为休闲方式的人数为随机变量X ,求X 的分布列和期望;(2)根据以上数据,能否有99%的把握认为“在00:2200:20-时间段的休闲方式与性别相关系”?参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:解:(1闲方式的概率为56p =. …………………………………………2分方法一:2161)61()0(303===C X P ,725)65()61()1(213===C X P ,7225)65)(61()2(223===C X P ,216125)65()3(333===C X P . ……………6分X ∴221637227212160=⨯+⨯+⨯+⨯=∴EX . ……………………………8分方法二:根据题意可得)65,3(~B X , ……………………………………4分k k k C k X P )65()61()(33-==∴,3,2,1,0=k . ……………………………………6分∴25653=⨯==np EX . …………………………………………8分(2) 提出假设0H :休闲方式与性别无关系.根据样本提供的22⨯列联表得22()80(10101050)808.889 6.635()()()()602020609n ad bc k a b c d a c b d -⨯⨯-⨯===≈>++++⨯⨯⨯.因为当0H 成立时,635.62≥K 的概率约为01.0,所以我们有99%的把握认为“在00:2200:20-时间段性别与休闲方式相关”. ………………………13分(广州)17.(本小题满分12分)如图4所示的茎叶图记录了甲、乙两个小组(每小组4人)在期末考试中的数学成绩.乙组记录中有一个数据模糊,无法确认,在图中以a 表示.已知甲、乙两个小组的数学成绩的平均分相同.(1)求a 的值; (2)求乙组四名同学数学成绩的方差;(3)分别从甲、乙两组同学中各随机选择一名同学,记这两名同学数学成绩之差的绝对值为X ,求随机变量X 的分布列和均值(数学期望). (温馨提示:答题前请仔细阅读卷首所给的计算公式及其说明.) (1)解:依题意,得11(87899696)(87909395)44a ⨯+++=⨯++++,……………………………1分 解得3a =.…………………………………………………………………………………………………2分(2)解:根据已知条件,能够求得两组同学数学成绩的平均分都为92x =.……………………………3分所以乙组四名同学数学成绩的方差为()()()()222221879293929392959294s ⎡⎤=-+-+-+-=⎣⎦. ……………………………5分(3)解:分别从甲、乙两组同学中各随机选择一名同学,共有4416⨯=种可能的结果.……………6分所以X 的所有可能取值为0,1,2,3,4,6,8,9.…………………………………………………8分 由表可得1(0)16P X ==,2(1)16P X ==,1(2)16P X ==,4(3)16P X ==, 图4 甲组 乙组 8 9 7 a 3 5 7 9 6 62(4)16P X ==,3(6)16P X ==,1(8)16P X ==,2(9)16P X ==. 所以随机变量随机变量X 的数学期望为121423012346161616161616EX =⨯+⨯+⨯+⨯+⨯+⨯12891616+⨯+⨯…………………………11分6817164==.…………………………………………………………………………………………12分(揭阳)17. (本小题满分12分)某产品按行业生产标准分成8个等级,等级系数ξ依次为1,2,,8…,其中5ξ≥为标准A ,3ξ≥为标准B ,产品的等级系数越大表明产品的质量越好,已知某厂执行标准B 生产该产品,且该厂的产品都符合相对应的执行标准.从该厂生产的产品中随机抽取30件,相对应的等级系数组成一个样本,数据如下: 3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 38 3 4 3 4 4 7 5 6 7该行业规定产品的等级系数7ξ≥的为一等品,等级系数57ξ≤<的为二等品,等级系数35ξ≤<的为三等品.(1)试分别估计该厂生产的产品的一等品率、二等品率和三等品率;(2)从样本的一等品中随机抽取2件,求所抽得2件产品等级系数都是8的概率. 17.解:(1)由样本数据知,30件产品中等级系数7ξ≥有6件,即一等品有6件,二等品有9件,三等品有15件-----------------------------------------------------------3分 ∴样本中一等品的频率为60.230=,故估计该厂生产的产品的一等品率为0.2;-------4分二等品的频率为90.330=,故估计该厂生产的产品的二等品率为0.3;---------------5分三等品的频率为150.530=,故估计该厂生产的产品的三等品的频率为0.5.-----------6分……………………10分(2)样本中一等品有6件,其中等级系数为7的有3件,等级系数为8的也有3件,--7分记等级系数为7的3件产品分别为1C 、2C 、3C ,等级系数为8的3件产品分别为1P 、2P 、3P .则从样本的一等品中随机抽取2件的所有可能为:121323(,),(,),(,),C C C C C C 12(,),P P 1323(,),(,)P P P P ,11121321(,),(,),(,),(,),C P C P C P C P 2223(,),(,)C P C P ,3132(,),(,),C P C P 33(,)C P .共15种,-------------------------------10分记从“一等品中随机抽取2件,2件等级系数都是8”为事件A ,则A 包含的基本事件有 12(,),P P 1323(,),(,)P P P P 共3种,-------------------------11分故所求的概率31()155P A ==.-------------------------------------------------12分(东莞)18.(本小题满分14分)甲,乙两人实行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛实行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为1()2p p >,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为59. (1)求p 的值;(2)设ξ表示比赛停止时比赛的局数,求随机变量ξ的分布列和数学期望E ξ. 解 (1)当甲连胜2局或乙连胜2局时,第二局比赛结束时比赛停止,故225(1)9p p +-=, 解得13p =或23p =. 又12p >,所以23p =.…………………6分 (2)依题意知ξ的所有可能取值为2,4,6.5(2)9P ξ==,5520(4)(1)9981P ξ==-⨯=, 52016(6)198181P ξ==--=,所以随机变量ξ的分布列为:所以ξ的数学期望2469818181E ξ=⨯+⨯+⨯=.………………12分(仲元)9.某市有A 、B 两所示范高中响应政府号召,对该市甲、乙两个教育落后地区展开支教活动.经上级研究决定:向甲地派出3名A 校教师和2名B 校教师,向乙地派出3名A 校教师和3名B 校教师.因为客观原因,需从拟派往甲、乙两地的教师中各自任选一名互换支教地区.(Ⅰ)求互换后两校派往两地区教师人数不变的概率;(Ⅱ)求互换后A 校教师派往甲地人数ξ的分布列和数学期望. 解:(Ⅰ)记“互换后派往两地区的两校的教师人数不变”为事件E ,有以下两种情况:①互换的是A 校的教师,记此事件为1E ,则1133111563()10C C P E C C =⋅=;②互换的是B 校的教师,记此事件为2E ,则1132211561()5C C P E C C =⋅=.则互换后派往两地区的两校的教师人数不变的概率为12311()()()1052P E P E P E =+=+=.(Ⅱ)ξ的可能取值为2,3,4.113311563(2)10C C P C C ξ==⋅=;11113332111156561(3)2C C C C P C C C C ξ==⋅+⋅=;113211561(4)5C C P C C ξ==⋅=.故ξ的分布列为:数学期望3234102510E ξ=⨯+⨯+⨯=.11. 深圳市某校中学生篮球队假期集训,集训前共有6个篮球,其中3个是新球(即没有用过的球), 3 个是旧球(即至少用过一次的球).每次训练,都从中任意取出2 个球,用完后放回.(Ⅰ)设第一次训练时取到的新球个数为,求的分布列和数学期望;(Ⅱ)求第二次训练时恰好取到一个新球的概率.(Ⅱ)设“从6个球中任意取出2个球,恰好取到一个新球”为事件B . 则“第二次训练时恰好取到一个新球”就是事件B A B A B A 210++.而事件B A 0、B A 1、B A 2互斥, 所以,)()()()(210210B A P B A P B A P B A B A B A P ++=++.由条件概率公式,得253535151|()()(261313000=⨯=⨯==C C C A B P A P B A P ),…9分 2581585353|()()(261412111=⨯=⨯==C C C A B P A P B A P ),……10分151315151|()()(261511222=⨯=⨯==C C C A B P A P B A P ).………11分所以,第二次训练时恰好取到一个新球的概率为7538151258253)(210=++=++B A B A B A P .…12分21.(06安徽卷)在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较。
概率统计与分布列计算
概率统计与分布列计算概率统计是数学统计的一个重要分支,用来研究随机现象发生的规律性。
在概率统计中,常用到的一个重要概念是概率分布。
概率分布是指随机变量取各个取值的概率,并且这些概率之和为1、概率分布可以分为离散分布和连续分布两种类型。
首先,我们来介绍离散概率分布。
离散概率分布指的是随机变量只能取到一些特定的值,而不能取到其它的值。
常见的离散概率分布有伯努利分布、二项分布和泊松分布等。
伯努利分布是最简单的离散分布,它只有两个取值,常用来描述只有成功和失败两种结果的随机试验。
记随机变量X取值为1表示成功,取值为0表示失败,成功的概率为p,失败的概率为1-p。
则伯努利分布的概率分布列为:P(X=x)=p^x(1-p)^(1-x),其中x=0或1二项分布是多次独立重复进行伯努利试验的概率分布。
记随机变量X为n次试验中成功的次数,则二项分布的概率分布列为:P(X=k)=C(n,k)*p^k*(1-p)^(n-k),其中C(n,k)表示从n次试验中取k次成功的组合数。
泊松分布是描述单位时间或单位空间中事件发生的次数的概率分布。
如果一个事件在单位时间内或单位空间中发生的次数近似服从泊松分布,那么该事件的平均发生率就是泊松分布的参数。
泊松分布的概率分布列为:P(X=k)=(e^(-λ)*λ^k)/k!,其中λ为平均发生率,k为随机变量X的取值。
除了离散概率分布外,还有连续概率分布。
连续概率分布指的是随机变量可以取任意的实数值。
常见的连续概率分布有均匀分布、正态分布和指数分布等。
均匀分布是最简单的连续分布,其概率密度函数为:f(x)=1/(b-a),其中a为随机变量X的最小取值,b为最大取值。
正态分布也称为高斯分布,是自然界中许多现象呈现的分布。
f(x)=(1/(σ√(2π)))·e^(-(x-μ)²/(2σ²)),其中μ为平均数,σ为标准差。
指数分布用于描述事件发生的时间间隔,其概率密度函数为:f(x)=λe^(-λx),其中λ为事件发生率。
概率与分布列
概率与分布列概率与分布列是统计学中非常重要的两个概念。
概率是指某个事件发生的可能性,而分布列则是表示事件发生的可能性分布情况。
在现实生活和科学研究中,我们经常会遇到需要计算概率和分布列的情况,因此掌握这两个概念是必不可少的。
一、概率概率是指某个事件发生的可能性大小,通常用一个介于0和1之间的数来表示。
其中,0表示该事件不可能发生,1表示该事件一定会发生,而0和1之间的数则表示该事件有一定概率发生。
我们可以通过概率的计算来预测事件的发生情况,从而更好的做出决策。
例如,我们可以通过掷骰子的概率来预测在6次掷骰子中,得到6点的次数有多少。
假设我们用P(x)表示得到x点的概率,那么掷一次骰子得到6点的概率是1/6,即P(6)=1/6。
在6次掷骰子中,得到6点的次数可以是0次、1次、2次、3次、4次、5次或6次,因此我们可以用如下公式计算得到6点的次数的概率分布情况:P(0)=(5/6)^6≈0.33P(1)=6×(1/6)×(5/6)^5≈0.41P(2)=15×(1/6)^2×(5/6)^4≈0.22P(3)=20×(1/6)^3×(5/6)^3≈0.07P(4)=15×(1/6)^4×(5/6)^2≈0.01P(5)=6×(1/6)^5×(5/6)≈0.001P(6)(得到6点6次)≈10^-6可以看出,得到6点的概率最大的情况是1次,其概率为0.41。
而得到6点的概率最小的情况则是6次,其概率非常小,只有10^-6。
二、分布列分布列是指将所有可能的事件及其概率列出来的表格。
在实际生活中,我们经常需要根据分布列来做出决策。
例如,我们可能需要根据某个产品的销售情况来预测未来的销售情况,并决定是否生产更多的产品来满足市场需求。
当我们需要绘制分布列时,通常需要知道每个事件发生的概率以及事件的数量。
例如,我们可以用下表表示掷骰子得到不同点数的概率分布情况:|点数|概率||---|---||1|1/6||2|1/6||3|1/6||4|1/6||5|1/6||6|1/6|在分布列中,我们可以看出掷骰子得到不同点数的概率分布情况,并且可以根据分布列来预测某个事件的发生情况。
概率分布列--归纳
概率分布列的性质
n
①0 Pi 1② Pi 1 i 1
概率分布列的种类
• 1、两点分布 • 2、超几何分布 • 3、二项分布 • 4、几何分布—试验n次,第k次才首次成功
的概率分布列 • 5、相互独立的两个事件发生次数X的分布
列
1、两点分布
• 一个盒子中大小相同的2白球,3个黑球, 从中任取一个小球记取到白球得1分,取到 黑球得0分,求随机变量得分X的分布列。
5、相互独立的两个事件发生次数的 分布列
甲、乙两袋中各装有大小相同的小球9 个,其中 甲袋中红色、黑色、白色小球的个数分别为 2、 3 、4 ,乙袋中红色、黑色、白色小球的个数均 为 3,某人用左右手分别从甲、乙两袋中取球. (I)若左右手各取一球,求两只手中所取的球 颜色不同的概率;
(II)若左右手依次各取两球,称同一手中两球 颜色相同的取法为成功取法,记两次取球的成功 取法次数为随机变量X ,求 X的分布列和数学期 望
本着健康、低碳的生活理念,租自行车骑游的人越来越多。 某自行车租车点的收费标准是每车租车时间不超过两小时免费, 超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算)。 有甲、乙两人相互独立来该租车点租车骑游(各租一车一次)。
设甲、乙不超过两小时还车的概率分别为 1 ,1 ; 42
两小时以上且不超过三小时还车的概率分别为 1 ,1 ; 24
2、超几何布
• 一个盒子中有大小相同的2个白球,3个黑 球,从中任取两个小球,求取到白球个数X 的分布列。
3、二项分布
• 一个盒子中大小相同的2白球,3个黑球, 有放回的从中任取一个小球,取3次。记取 到白球得1分,取到黑球得0分,求随机变 量得分X的分布列。
第1讲 概率、随机变量
第1讲 概率、随机变量及其分布列概率的研究对象是随机现象,为人们从不确定性的角度认识客观世界提供重要的思维模式和解决问题的方法,统计的研究对象是数据,核心是数据分析。
概率为统计的发展提供理论基础,高考中概率与统计考题常常具有鲜明的时代和文化背景,试题难度逐渐加大,重点提升数据分析、数学建模、逻辑推理和数学运算素养。
基础知识回顾1.古典概型概率公式: ()试验的样本点总数包含的样本点数事件A A P =。
2.条件概率公式:对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫作条件概率,用符号()A B P 来表示,其公式为()()()()()0>=A P A P AB P A B P 3.全概率公式:设n A A A ,...,21n A A A ,...,21是一组两两互斥的事件,Q A A A n = ...21,且()n i A P i ,...,2,1,0=>,则对任意的事件Q B ⊆,有()()()i ni i A B P A P B P ∑==1。
4.超几何分布:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则()m k C C C k X P n N k n M N k M ,...,2,1,0,===--,其中{}n M m ,m in =, 且()NM n X E N N M n N M N n •=∈≤≤*,,,,,。
5.二项分布 :一般地,在n 重伯努利试验中,设每次试验中事件A 发生的概率为p (0<p<1),用X 表示事件A 发生的次数,则X 的分布列为()()()()()p np X D np X E nk p p C k X P k n k k n -===-==-1,,...,2,1,0,1 6.正态分布: 如果对于任何实数a ,b(a<b),随机变量X 满足()()dx x b X a P b au σϕ,⎰=≤<(即x=a ,x=b ,正态曲线及x轴围成的曲边梯形的面积),那么称随机变量X 服从正态分布记作()2,~σu N X 。
分布列概念
1. 分布列定义:设离散型随机变量 所有可能取得的值为x i ,X 2,…,x …n ,若 取每一个值x i (i=1,2,;…n)的概率为P( X i ) P i ,则称表为随机变量的概率分布,简称的分布列.离散型随机变量的分布列都具有下面两个性质:(1 ) P i > 0,i=1,2 …,n ; (2) P l +P 2+・・・+P n = 1 要点四、两类特殊的分布列 1. 两点分布随机变量X 的分布列是.要点诠释:(1) 若随机变量X 的分布列为两点分布,则称X 服从两点分布,而称P(X=1)为成功率. (2) 两点分布又称为0-1分布或伯努利分布(3)两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是否为正品;新生 婴儿的性别;投篮是否命中等等;都可以用两点分布列来研究• 2. 超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则则事件{X=k }n N,M N,n ,M,N N称分布列为超几何分布列.如果随机变量X 的分布列为超几何分布列,则称随机变量从超几何分布要点一、条件概率的概念 1.定义设A 、B 为两个事件,且P(A) 0,在已知事件A 发生的条件下,事件B 发生的概率叫 做条件概率。
用符号P(B|A)表示。
发生的概率为P(Xk) k n kC M C N M kC N0,1,2,L ,m,其中 m min{ M , n},且P(B|A)读作:A发生的条件下B发生的概率要点诠释在条件概率的定义中,事件A在事件B已发生”这个附加条件下的概率与没有这个附加条件的概率是不同的,应该说,每一个随机试验都是在一定条件下进行的•而这里所说的条件概率,则是当试验结果的一部分信息已知,求另一事件在此条件下发生的概率.2. P (A | B)、P (AB)、P (B)的区别P (A | B)是在事件B发生的条件下,事件A发生的概率。
P (AB)是事件A与事件B同时发生的概率,无附加条件。
分布列公式
分布列公式
分布列公式是EX=np,分布列表示概率在所有的可能发生的情况中的分布。
A、B、C、D分别表示四个不同的事件,P为对应的概率,(0≤p≤1)对于任意一个分布列,所有概率之和为1,也写作100%。
概率亦称“或然率”,它是反映随机事件出现的可能性大小。
随机事件是指在相同条件下,可能出现也可能不出现的事件。
例如,从一批有正品和次品的商品中,随意抽取一件,“抽得的是正品”就是一个随机事件。
设对某一随机现象进行了n次试验与观察,其中A事件出现了m次,即其出现的频率为m/n。
经过大量反复试验,常有m/n越来越接近于某个确定的常数(此论断证明详见伯努利大数定律)。
该常数即为事件A出现的概率,常用P(A)表示。
(完整版)分布列概念
1. 分布列定义:设离散型随机变量所有可能取得的值为x 1,x 2,…,x 3,…x n ,若取每一个值x i (i=1,2,…,n)的概率为,则称表为随机变量的概率分布,简称的分布列. 离散型随机变量的分布列都具有下面两个性质:(1)P i ≥0,i=1,2,…,n ;(2)P 1+P 2+…+P n =1 要点四、两类特殊的分布列 1. 两点分布像上面这样的分布列称为两点分布列. 要点诠释:(1)若随机变量X 的分布列为两点分布, 则称X 服从两点分布,而称P(X=1)为成功率. (2)两点分布又称为0-1分布或伯努利分布(3)两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是否为正品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列来研究. 2. 超几何分布一般地,在含有件次品的件产品中,任取件,其中恰有件次品,则则事件 {X=k }发生的概率为, 其中,且.称分布列为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量 X 服从超几何分布ξξi i P x P ==)(ξξξM N n X (),0,1,2,,k n kM N MnNC C P X k k m C --===L min{,}m M n =,,,,n N M N n M N N *≤≤∈要点一、条件概率的概念 1.定义设、为两个事件,且,在已知事件发生的条件下,事件B 发生的概率叫做条件概率。
用符号表示。
读作:发生的条件下B 发生的概率。
要点诠释在条件概率的定义中,事件A 在“事件B 已发生”这个附加条件下的概率与没有这个附加条件的概率是不同的,应该说,每一个随机试验都是在一定条件下进行的.而这里所说的条件概率,则是当试验结果的一部分信息已知,求另一事件在此条件下发生的概率.2.P (A |B )、P (AB )、P (B )的区别P (A |B )是在事件B 发生的条件下,事件A 发生的概率。
概率与概率分布
故乘客候车小于5min的概率为
1 P(0 5) dx 0.5 0 10
5
2、正态分布 一、 概念和公式的引出 正态分布 如果随机变量 的密度函数为
1 f ( x) e 2
( x )2 2 2
( x (,))
其中 , ( 0) 为参数,则称随机变量 服从参数为
如果随机变量 取值为0,1,2,…,n,其概率 分布为
k P( k ) Cn p k (1 p) nk (k 1,2,, n)
则称 服从参数为n,p的二项分布,记作
~B(n, p)
三、进一步练习 练习[摸球]
练习 [使用寿命] 按规定,某种型号电子元件的使用 寿命超过1500小时的为一级品.已知某大批产品的一 级品率为0.2,现从中随机地抽查10只,设10只元件 中一级品的只数为 ,求 的概率分布.
“出现正面”这一随机事件.
3.2.1 离散型随机变量及其分布
一、案例 二、概念和公式的引出
三、进一步的练习
案例 [取球]
上面我们已经知道随机变量可以表示随机试验的
结果,有些随机试验的结果可用随机变量的取值按 一定顺序列出.如掷一枚骰子,可用 取值1,2,…,6来表示所有结果.
二、 概念和公式的引出 离散型随机变量
k 10 k
的概率分布为
10 k
P( k ) C (0.2) (0.8)
(k 1,2, ...)
3.泊松分布 二、 概念和公式的引出 泊松分布 如果随机变量 的概率分布为
P( k )
k
k!
e
( 0, k 0,1,2,, n)
则称 服从参数为 的泊松分布,记作
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习: 1. 甲、乙两选手进行象棋比赛,假设每局比赛甲胜的概率为 (1) 若采取 3 局 2 胜制,求选手甲获胜的概率;
2 ,乙胜的概率为 1 .
3
3
(2 )若采取 5 局 3 胜制,求选手甲获胜的概率;
(3) 若采取 5 局 3 胜制,且已知甲已输掉第一局的情况下,甲最终获胜的概率
.
2.加工某种零件经过三道工序,设第一、二、三道工序的合格率分别为
合格就去参加,但乙、丙同学约定:两人成绩都合格才一同参加
, 否则都不参加.设每人成绩合格的概率都
是 2 ,求: 3
( 1)三人中至少有 1 人成绩合格的概率;
( 2)去参加竞赛的人数 的分布列和数学期望.
练习: 1. 甲投篮的命中率为 0.8 , 乙投篮的命中率为 0.7 , 每人各投篮 3 次,每人恰好都投中 2 次的概率是多少?
(Ⅰ)补全频率分布直方图并求 n 、 a 、 p 的值; (Ⅱ)从 [40,50) 岁年龄段的“低碳族”中采用分层抽样法抽取
18 人参加户外低碳体验活动,其中选取
3 人作为
第2页 共2页
(四)综合运用 例 4.(2010 ·湖南理, 17)下图是某城市通过抽样得到的居民某年的月均用水量
(单位:吨 )的频率分布直方图.
(1)求直方图中 x 的值; (2)若将频率视为概率,从这个城市随机抽取 数 X 的分布列和数学期望 (均值 ).
3 位居民 (看作有放回的抽样 ),求月均用水量在 3 至 4 吨的居民
定一个预防方案,使得此突发事件不发生的概率最大
.
120 万元的前提下,请确
练习:(本小题满分 12 分)某班同学利用寒假进行社会实践,对 [25,55] 岁的人群随机抽取 n 人进行了一次生活
习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族” 计表和各年龄段人数频率分布直方图:
,否则称为“非低碳族” ,得到如下统
9 、 8 、 7 ,且各道工序互不影响, 10 9 8
(1)求该种零件的合格率;
(2)从该种零件中任取 3 件,求恰好取到 1 件合格品的概率和至少取到一件合格品的概率;
2.9 粒种子分种在甲、乙、丙 3 个坑内,每坑 3 粒,每粒种子发芽的概率为 0.5,若一个坑内至少有 芽,则这个坑不需要补种;若一个坑内的种子都没有发芽,则这个坑需要补种, ( 1)求甲坑不需要补种的概率;
(五)实际运用 例 5.为防止某突发事件发生,有甲、乙、丙、丁四种相互独立的预防措施可供采用,单独采用甲、乙、丙、丁预
防措施后此突发事件不发生的概率(记为 P)和所需费用如下表:
预防措施
甲
乙
丙
丁
P
0.9
0.8
0.7
0.6
费用(万元)
90
60
30
Байду номын сангаас
10
预防方案可单独采用一种预防措施或联合采用几种预防措施,在总费用不超过
3 11 质量为 A、B、 C三级的频率依次为 , , .
4 88
(1) 在该市的教室中任取一间,估计该间教室空气质量合格的
概率;
(2) 如果对该市某中学的 4 间教室进行检测,记在上午检测空气质量为
A 级的教室间数为 X,并以空气质量为 A
级的频率作为空气质量为 A级的概率,求 X的分布列及期望值.
1 粒种子发
( 2) 用 表示需要补种的坑数 , 求 的分布列
第1页 共2页
(三)超几何分布 例 3.从 4 名男生和 2 名女生中,任选 3 人参加演讲比赛,设随机变量
表示所选 3 人中女生的人数;
(1)求 的数学期望; ( 2)求所选 3 人中女生人数
1 的概率;
领队,记选取的 3 名领队中年龄在 [40,45) 岁的人数为 X ,求 X 的分布列和期望 EX .
(二)二项分布问题
例 2.检测部门决定对某市学校教室的空气质量进行检测,空气质量分为
A、 B、 C三级.每间教室的检测方式如
下:分别在同一天的上、下午各进行一次检测,若两次检测中有
C级或两次都是 B 级,则该教室的空气质量不合
格.设各教室的空气质量相互独立,且每次检测的结果也相互独立.根据多次抽检结果,一间教室一次检测空气
一、知识要点:
课题 概率与分布列
1.古典概型,几何概型,以排列、组合为基础的概率问题, 2.互斥事件、相互独立事件, n 次独立重复事件,统计知识求概率及分布列 3.超几何分布,二项分布问题,与统计相结合的分布问题,与独立事件相关的分布问题
二、典型例题
(一)相互独立事件的概率问题
例 1. 某班甲、乙、丙三名同学参加省数学竞赛选拔考试,成绩合格可获得参加竞赛的资格.其中甲同学表示成绩