人教版数学必修2直线与方程知识点专题讲义
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修二直线与方程专题讲义
1、直线的倾斜角与斜率 (1)直线的倾斜角
① 关于倾斜角的概念要抓住三点:
ⅰ.与x 轴相交; ⅱ.x轴正向; ⅲ.直线向上方向. ② 直线与x 轴平行或重合时,规定它的倾斜角为0
0. ③ 倾斜角α的范围00
0180α≤<.
④ 090,tan 0k αα︒≤<︒=≥; 90180,tan 0k αα︒<<︒=< (2)直线的斜率
①直线的斜率就是直线倾斜角的正切值,而倾斜角为090的直线斜率不存在. ②经过两点),(),,(222111y x P y x P 的直线的斜率公式是21
1221
()y y k x x x x -=≠-.
③每条直线都有倾斜角,但并不是每条直线都有斜率. 2、直线方程的几种形式
注:过两点),(),,(222111y x P y x P 的直线是否一定可用两点式方程表示?(不一定) (1)若2121y y x x ≠=且,直线垂直于x 轴,方程为1x x =; (2)若2121y y x x =≠且,直线垂直于y轴,方程为1y y =; (3)若2121y y x x ≠≠且,直线方程可用两点式表示) 3、两条直线平行与垂直的判定 (1) 两条直线平行
斜截式:对于两条不重合的直线111222:,:l y k x b l y k x b =+=+,则有
121212//,l l k k b b ⇔=≠
注:当直线12,l l 的斜率都不存在时,12l l 与的关系为平行.
一般式:已知 1111:0l A x B y C ++=, 2222:0l A x B y C ++=,则
1212211221//,l l A B A B AC A C ⇔=≠
注:1212211221=,l l A B A B AC A C ⇔=与重合
1l 与2l 相交01221≠-⇔B A B A
(2)两条直线垂直
斜截式:如果两条直线12,l l 斜率存在,设为12,k k ,则12121l l k k ⊥⇔=-
注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1.如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直.
一般式:已知 1111:0l A x B y C ++=, 2222:0l A x B y C ++=,则
0212121=+⇔⊥B B A A l l
4、线段的中点坐标公式
若两点),(),,(2
22111y x P y x P ,且线段21,P P 的中点M 的坐标为),(y x ,则⎪⎪⎩
⎪⎪⎨⎧+=+=222121y y y x x x
5、 直线系方程 (1)过定点的直线系
①斜率为k 且过定点),(00y x 的直线系方程为)(00x x k y y -=-
②过两条直线0:1111=++C y B x A l , 0:2222=++C y B x A l 的交点的直线系方程为
0)(222111=+++++C y B x A C y B x A λ(λ为参数),其中直线l 2不在直线系中
(2)平行垂直直线系
①平行于已知直线0Ax By C ++=的直线系10Ax By C ++= ②垂直于已知直线0Ax By C ++=的直线系10Bx Ay C -+= 6、两条直线的交点
设两条直线的方程是0:1111=++C y B x A l , 0:2222=++C y B x A l 两条直线的交点坐标就是方程组⎩⎨
⎧=++=++0
222111C y B x A C y B x A 的解,
若方程组有唯一解,则这两条直线相交,此解就是交点的坐标; 若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立. 7、几种距离 (1)两点间的距离
平面上的两点),(),,(222111y x P y x P 间的距离公式2
122
1221)()(y y x x P P -+-= 特别地,原点)0,0(O 与任一点),(y x P 的距离22y x OP +=
(2)点到直线的距离
点),(00y x P 到直线0:=++C By Ax l 的距离2
2
00B
A C By Ax d +++=
(3)两条平行线间的距离
两条平行线0:11=++C By Ax l , 0:22=++C By Ax l 间的距离2
2
12B
A C C d +-=
注:①求点到直线的距离时,直线方程要化为一般式;
②求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能
套用公式计算.
8、有关对称问题 (1)中心对称
①若点),(11y x M 及),(22y x N 关于),(b a P 对称,则由中点坐标公式得⎩⎨
⎧-=-=1
1
22y b y x a x
②直线关于点的对称,其主要方法是:在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程,或者求出一个对称点,再利用
21//l l ,由点斜式得到所求直线方程.
(2)轴对称 ①点关于直线的对称
若两点),(111y x P 与),(222y x P 关于直线0:=++C By Ax l 对称,则线段21P P 的中点在对称轴l 上,而且连接21P P 的直线垂直于对称轴l 上,由方程组
⎪⎪⎩⎪
⎪⎨⎧-=-•--=++++1
)(0)2()2(1
212212
1B A x x y y C y y B x x A ⎩⎨⎧==⇒22y x ? 可得到点1P 关于l 对称的点2P 的坐标),(22y x (其中21,0x x A ≠≠) ②直线关于直线的对称
此类问题一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.
注:①曲线、直线关于一直线b x y +±=对称的解法:y 换x ,x 换y . 例:曲线