8. 回归分析与相关分析

合集下载

简要说明相关分析与回归分析的区别

简要说明相关分析与回归分析的区别

相关分析与回归分析的区别和联系
一、回归分析和相关分析主要区别是:
1、在回归分析中,y被称为因变量,处在被解释的特殊地位,而在相关分析中,x与y处于平等的地位,即研究x与y的密切程度和研究y与x的密切程度是一致的;
2、相关分析中,x与y都是随机变量,而在回归分析中,y是随机变量,x 可以是随机变量,也可以是非随机的,通常在回归模型中,总是假定x是非随机的;
3、相关分析的研究主要是两个变量之间的密切程度,而回归分析不仅可以揭示x对y的影响大小,还可以由回归方程进行数量上的预测和控制.
二、回归分析与相关分析的联系:
1、回归分析和相关分析都是研究变量间关系的统计学课题。

2、在专业上研究上:
有一定联系的两个变量之间是否存在直线关系以及如何求得直线回归方程等问题,需进行直线相关分析和回归分析。

3、从研究的目的来说:
若仅仅为了了解两变量之间呈直线关系的密切程度和方向,宜选用线性相关分析;若仅仅为了建立由自变量推算因变量的直线回归方程,宜选用直线回归分析.
三、扩展资料:
1、相关分析是研究两个或两个以上处于同等地位的随机变量间的相关关系的统计分析方法。

例如,人的身高和体重之间;空气中的相对湿度与降雨量之间的相关关系都是相关分析研究的问题。

2、回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。

运用十分广泛。

回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。

回归分析与相关分析

回归分析与相关分析

回归分析与相关分析回归分析是通过建立一个数学模型来研究自变量对因变量的影响程度。

回归分析的基本思想是假设自变量和因变量之间存在一种函数关系,通过拟合数据来确定函数的参数。

回归分析可以分为线性回归和非线性回归两种。

线性回归是指自变量和因变量之间存在线性关系,非线性回归是指自变量和因变量之间存在非线性关系。

回归分析可用于预测、解释和控制因变量。

回归分析的应用非常广泛。

例如,在经济学中,回归分析可以用于研究收入与消费之间的关系;在医学研究中,回归分析可以用于研究生活方式与健康之间的关系。

回归分析的步骤包括确定自变量和因变量、选择合适的回归模型、拟合数据、检验模型的显著性和解释模型。

相关分析是一种用来衡量变量之间相关性的方法。

相关分析通过计算相关系数来度量变量之间的关系的强度和方向。

常用的相关系数有Pearson相关系数、Spearman相关系数和判定系数。

Pearson相关系数适用于连续变量,Spearman相关系数适用于顺序变量,判定系数用于解释变量之间的关系。

相关分析通常用于确定两个变量之间是否相关,以及它们之间的相关性强度和方向。

相关分析的应用也非常广泛。

例如,在市场研究中,相关分析可以用于研究产品价格与销量之间的关系;在心理学研究中,相关分析可以用于研究学习成绩与学习时间之间的关系。

相关分析的步骤包括确定变量、计算相关系数、检验相关系数的显著性和解释相关系数。

回归分析与相关分析的主要区别在于它们研究的对象不同。

回归分析研究自变量与因变量之间的关系,关注的是因变量的预测和解释;相关分析研究变量之间的关系,关注的是变量之间的相关性。

此外,回归分析通常是为了解释因变量的变化,而相关分析通常是为了量化变量之间的相关性。

综上所述,回归分析和相关分析是统计学中常用的两种数据分析方法。

回归分析用于确定自变量与因变量之间的关系,相关分析用于测量变量之间的相关性。

回归分析和相关分析在实践中有广泛的应用,并且它们的步骤和原理较为相似。

相关分析和回归分析

相关分析和回归分析

即r (x x)( y y) 或r (x x)( y y)
n x y
(x x)2 ( y y)2
•协方差的意义
①显示x与y是正相关还是负相关 协方差为负,是负相关, 协方差为正,是正相关。 ②协方差显示x与y相关程度的大小 当相关点在四个象限呈散乱的分布,相关程度很低 当相关点分布在x与y的平均值线上时,表示不相关 当相关点靠近一直线,表示相关关系密切 当相关点全部落在一直线,表示完全相关
2、相关图被形象地称为相关散点图 3、因素标志分了组,结果标志表现为组平均数,
所绘制的相关图就是一条折线,这种折线又叫 相关曲线。
三、相关系数的计算:
1、符号系数:把两个同平均值的离差数列做对称 比较。
①如果一个数列的离差与另一个数列的离差有很 多同号,就可以认为这两标志之间存在正相关。
②如果大多数为异号,就可以认为他们之间存在 负相关。
.............b

xx x
y x

2
y


xy

1 n

x
y

x2

1 n

x2
当出现权数时:
方程为:a f b xf yf ................a xf b x2 f xyf
解得:a y bx
•相关系数的r的推导公式:
r
n xy x y
n x2 x2 n y2 y2
r
xy nxy
(
x2

2
nx )
y2

2
ny
r
xy x y

相关分析与回归分析的基本原理

相关分析与回归分析的基本原理

相关分析与回归分析的基本原理1. 引言相关分析与回归分析是统计学中常用的两种数据分析方法,它们可以帮助研究者理解变量之间的关系,并根据这些关系进行预测。

本文将介绍相关分析和回归分析的基本原理,包括其定义、应用场景以及计算方法。

2. 相关分析2.1 定义相关分析是一种用来研究两个或多个变量之间关系的统计方法。

它通过计算相关系数来衡量变量之间的相关性。

相关系数的取值范围为-1到1,其中-1表示完全的负相关,1表示完全的正相关,0表示无相关关系。

2.2 应用场景相关分析可应用于许多领域,如市场研究、医学研究、金融分析等。

例如,在市场研究中,我们可以使用相关分析来研究产品销量与广告投入之间的关系,了解其相关性,并根据相关性进行决策。

2.3 计算方法计算两个变量之间的相关系数可以使用皮尔逊相关系数或斯皮尔曼相关系数。

皮尔逊相关系数适用于连续变量,而斯皮尔曼相关系数适用于有序变量或非线性关系。

3. 回归分析3.1 定义回归分析是一种用来研究变量之间关系的统计方法,其基本思想是通过构建适当的数学模型来描述一个或多个自变量对因变量的影响。

回归分析可以帮助预测未来的观察值,并理解变量之间的因果关系。

3.2 应用场景回归分析可以应用于各种预测和建模的场景。

例如,在金融领域,回归分析可以用来预测股票价格的变动,了解影响股价的各种因素,并根据这些因素进行投资决策。

3.3 计算方法回归分析通常使用最小二乘法来拟合变量间的线性关系。

在回归分析中,自变量可以是单个变量或多个变量,而因变量是需要预测或解释的变量。

通过最小化残差平方和,可以得到最佳拟合的回归模型。

4. 相关分析与回归分析的联系与区别4.1 联系相关分析和回归分析都是用来研究变量之间关系的统计方法,它们都可以帮助研究者理解变量之间的相关性和影响程度。

4.2 区别相关分析主要关注变量之间的相关性,通过计算相关系数来衡量相关性的强度和方向;而回归分析则更加关注自变量对因变量的影响程度和预测能力,适用于建立因果关系和预测模型。

第8章 相关与回归分析

第8章 相关与回归分析

32
估计标准误差
估计标准误差(standard error of estimate)是 对各观测数据在回归直线周围分散程度的一个度 量值,它是对误差项ε的标准差σ的估计。 估计标准误差Sy可以看作是在排除了X对Y的线性 影响后,Y随机波动大小的一个估计量。
33
从估计标准误差的实际意义看,它反映了用估计 的回归方程预测因变量Y时预测误差的大小。若 各观测数据越靠近回归直线,Sy越小,回归直线 对各观测数据的代表性就越好,根据估计的回归 方程进行预测也就越准确。
当一个变量取一定数值时,另一个变量有确定值 与之相对应,这种关系称为确定性的函数关系。 当一个变量取一定数值时,与之相对应的另一变 量的数值虽然不确定,但它仍按某种规律在一定 的范围内变化,这种关系称为不确定性的相关关 系。
7
变量间的关系: 函数关系
y


ห้องสมุดไป่ตู้





x
是一一对应的确定关系 记为 y = f (x), x 称为自变 量,y 称为因变量 – 某种商品的销售额(y)与 销售量(x)之间的关系可 表示为 y = p x (p 为单 价) – 圆的面积(S)与半径之间 的关系: S = R2
19
复相关系数和偏相关系数
复相关系数反映一个变量Y与其他多个变量X1, X2,…Xk之间的线性相关程度 偏相关系数 反映在X2,…Xk不变的情况下,变量 Y与X1之间的线性相关程度
20
第三节 简单线性回归分析
回归分析的内容
回归分析的特点
相关分析与回归分析的区别与联系
21
相关分析研究变量之间相关的方向和相关的程度, 但是相关分析不能指出变量间相互关系的具体形 式,也无法从一个变量的变化来推测另一个变量 的变化情况。 回归分析则是研究变量之间相互关系的具体形式, 它对具有相关关系的变量之间的数量联系进行测 定,确定一个回归方程,根据这个回归方程可以 从已知量来推测未知量,从而为估算和预测提供 了一个重要的方法。

相关分析与回归分析

相关分析与回归分析
一强行介入法Enter一次性进入
这是一种不检验F和Tolerance,一次将全部自变量无条件地
纳入回归方程。
二强行剔除Remove一次性剔除
指定某些变量不能进入方程。这种方法通常同别的方法联合
使用,而不能首先或单独使用,因为第一次使用或单独使用
将意味着没有哪个变量进入方程。
三逐步进入Stepwise
▪ 回归分析是研究客观事物变量间的关系,它是建立在对客
观事物进行大量试验和观察的基础上,通过建立数模型寻
找不确定现象中所存在的统计规律的方法。回归分析所研
究的主要问题就是研究因变量y和自变量x之间数量变化规
律,如何利用变量X,Y的观察值样本,对回归函数进行
统计推断,包括对它进行估计及检验与它有关的假设等。

▪ “Plots”
该对话框用于设置要绘制的图形的参数。
“X”和“Y”框用于选择X轴和Y轴相应的变量。
左上框中各项的意义分别为:
• “DEPENDNT”因变量。
• “ZPRED”标准化预测值。
• “ZRESID”标准化残差。
• “DRESID”删除残差。
• “ADJPRED”调节预测值。
• “SRESID”声氏化残差。
利用的是非参数检验的方法。
定序变量又称为有序ordinal变量顺序变
量,它取值的大小能够表示观测对象的某种顺
序关系等级方位或大小等,也是基于“质”因
素的变量。例如,“最高历”变量的取值是:
一—小及以下二—初中三—高中中专技校四—
大专科五—大本科六—研究声以上。由小到大
的取值能够代表历由低到高。
Spearman等级相关系数为
– 四. Multinomial Logistic 多元逻辑分析。

第八章 相关分析与回归分析习题答案

第八章 相关分析与回归分析习题答案

第八章 相关分析与回归分析习题参考答案一、名词解释函数关系:函数关系亦称确定性关系,是指变量(现象)之间存在的严格确定的依存关系。

在这种关系中,当一个或几个相互联系的变量取一定的数值时,必定有另一个且只有一个变量有确定的值与之对应。

相关关系:是指变量(现象)之间存在着非严格、不确定的依存关系。

在这种关系中,当一个或几个相互联系的变量取一定的数值时,可以有另一变量的若干数值与之相对应。

这种关系不能用完全确定的函数来表示。

相关分析:相关分析主要是研究两个或者两个以上随机变量之间相互依存关系的方向和密切程度的方法,直线相关用相关系数表示,曲线相关用相关指数表示,多元相关用复相关系数表示。

回归分析:回归分析是研究某一随机变量关于另一个(或多个)非随机变量之间数量关系变动趋势的方法。

其目的在于根据已知非随机变量来估计和预测随机变量的总体均值。

单相关:单相关是指仅涉及两个变量的相关关系。

复相关:复相关是指一个变量对两个或者两个以上其他变量的相关关系。

正相关:正相关是指两个变量的变化方向是一致的,当一个变量的值增加(或减少)时,另一变量的值也随之增加(或减少)。

负相关:负相关是指两个变量的变化方向相反,即当一个变量的值增加(或减少)时,另一个变量的值会随之减少(或增加)。

线性相关:如果相关的两个变量对应值在直角坐标系中的散点图近似呈一条直线,则称为线性相关。

非线性相关:如果相关的两个变量对应值在直角坐标系中的散点图近似呈现出某种曲线形式,则为非线性相关。

相关系数:相关系数是衡量变量之间线性相关密切程度及相关方向的统计分析指标。

取值在-1到1之间。

两个变量之间的简单样本相关系数的计算公式为:()()niix x y y r --∑二、单项选择1.B;2.D;3.D;4.C;5.A;6.D 。

三、判断题(正确的打“√”,错误的打“×”) 1.×; 2.×; 3.√; 4.×; 5.×; 6.×; 7.×; 8.√. 四、简答题1、什么是相关关系?相关关系与函数关系有什么区别?答:相关关系,是指变量(现象)之间存在着非严格、不确定的依存关系。

相关分析和回归分析的区别

相关分析和回归分析的区别

相关分析和回归分析的区别:1, 在相关分析中,解释变量X与被解释变量Y之间处于平等的位置。

而回归分析中,解释变量与被解释变量必须是严格确定的。

2 相关分析中,被解释变量Y与解释变量X全是随机变量。

而回归,被解释变量Y是随机的,解释变量X可能是随机的,可能是非随机的确定变量。

3 相关的研究主要主要是为刻画两变量间线性相关的密切程度。

而回归不仅可以揭示解释变量X和被解释变量Y的具体影响形式,而且还可以由回归方程进行预测和控制。

如果两变量间互为因果关系,解释变量与被解释变量互换位置,相关分析结果一样,回归分析结果不同。

样本回归函数与总体回归函数的区别: 1 总体是未知的,是客观唯一存在的。

样本是根据样本数据拟合的,每抽取一个样本,变可以拟合一条样本回归线。

2 总体中的β0和β1是未知参数,表现为常数。

而样本中的是随机变量,其具体数值随样本观测值的不同而变化。

3 随机误差ui是实际Yi值与总体函数均值E(Yi)的离差,即Yi与总体回归线的纵向距离,是不可直接观测的。

而样本的残差ei是yi与样本回归线的纵向距离,当拟合了样本回归后,可以计算出ei的具体数值。

一元的五个基本假定:1 随机扰动项ui的均值为零,即E(ui)=02 随机扰动项ui的方差为常数Var(ui)=E[ui-E(ui)]^2=E(ui^2)=σ^23 任意两个随机扰动项ui和uj互不(i不等于j)互不相关,其其协方差为0Cov(ui,uj)=04 随机扰动项ui与解释变量Xi线性无关Cov(ui,Xi)=05 随机扰动项服从正态分布,即ui~N(0,σ^2)样本分段比较法适用于检验样本容量较大的线性回归模型可能存在的递增或递减型的异方差性,思路是首先量样本按某个解释变量从大到小或小到大顺序排列,并将样本均匀分成两段,有时为增强显著性,可去掉中间占样本单位1/4或1/3的部分单位;然后就各段分别用普通最小二乘法拟合回归直线,并计算各自的残差平方和,大的用RSS1,小的用RSS2表示,如果数值之比明显大于1,则存在异方差异方差性的后果:1 参数估计值虽然是无偏的,但却不是有效的。

回归分析与相关分析联系区别

回归分析与相关分析联系区别

回归分析与相关分析联系、区别??简单线性回归分析是对两个具有线性关系的变量,研究其相关性,配合线性回归方程,并根据自变量的变动来推算和预测因变量平均发展趋势的方法。

回归分析(Regression analysis)通过一个变量或一些变量的变化解释另一变量的变化。

主要内容和步骤:首先依据经济学理论并且通过对问题的分析判断,将变量分为自变量和因变量,一般情况下,自变量表示原因,因变量表示结果;其次,设法找出合适的数学方程式(即回归模型)描述变量间的关系;接着要估计模型的参数,得出样本回归方程;由于涉及到的变量具有不确定性,接着还要对回归模型进行统计检验,计量经济学检验、预测检验;当所有检验通过后,就可以应用回归模型了。

回归的种类回归按照自变量的个数划分为一元回归和多元回归。

只有一个自变量的回归叫一元回归,有两个或两个以上自变量的回归叫多元回归。

按照回归曲线的形态划分,有线性(直线)回归和非线性(曲线)回归。

相关分析与回归分析的关系(一)相关分析与回归分析的联系相关分析是回归分析的基础和前提,回归分析则是相关分析的深入和继续。

相关分析需要依靠回归分析来表现变量之间数量相关的具体形式,而回归分析则需要依靠相关分析来表现变量之间数量变化的相关程度。

只有当变量之间存在高度相关时,进行回归分析寻求其相关的具体形式才有意义。

如果在没有对变量之间是否相关以及相关方向和程度做出正确判断之前,就进行回归分析,很容易造成“虚假回归”。

与此同时,相关分析只研究变量之间相关的方向和程度,不能推断变量之间相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况,因此,在具体应用过程中,只有把相关分析和回归分析结合起来,才能达到研究和分析的目的。

(二)相关分析与回归分析的区别1.相关分析中涉及的变量不存在自变量和因变量的划分问题,变量之间的关系是对等的;而在回归分析中,则必须根据研究对象的性质和研究分析的目的,对变量进行自变量和因变量的划分。

回归分析与相关分析联系区别

回归分析与相关分析联系区别

回归分析与相关分析联系区别
一、定义:
1.回归分析:回归分析是一种用于研究变量之间关系的统计方法,旨
在通过一个或多个自变量与一个因变量的关系来预测和解释因变量的变化。

2.相关分析:相关分析是一种用于度量两个变量之间线性关系的统计
方法,通过计算相关系数来判断变量之间的相互关联程度。

二、应用领域:
1.回归分析:回归分析广泛应用于社会科学、经济学、市场营销等领域,常用于预测、解释和因果推断等研究中,也可以用于探索性数据分析
和模型诊断。

2.相关分析:相关分析适用于自然科学、医学、环境科学等领域,可
用于分析变量之间的关联,评估变量之间的相关性以及预测未来的变化趋势。

三、应用步骤:
1.回归分析的应用步骤通常包括:确定研究问题、收集数据、选择适
当的回归模型、进行模型拟合和参数估计、模型诊断和解释回归结果等。

2.相关分析的应用步骤通常包括:明确研究目的、收集数据、计算相
关系数、进行假设显著性检验、解释相关结果和绘制相关图等。

四、结果解释:
1.回归分析的结果解释主要包括判断拟合度(如R-squared)、解释
变量的显著性和系数大小、诊断模型的合理性、进行预测和因果推断等。

2.相关分析的结果解释主要包括相关系数的显著性、方向(正相关或负相关)和强度(绝对值的大小),还可通过散点图等图形来展示变量之间的线性相关关系。

第8章 相关与回归分析

第8章 相关与回归分析

4、在相关关系中,变量之间是平等关系,不存在自变量和因变量。 、在相关关系中,变量之间是平等关系,不存在自变量和因变量。
而在回归分析中必须明确划分自变量和因变量。 而在回归分析中必须明确划分自变量和因变量。
8-9
统计学
STATISTICS
8.2 简单线性相关与回归分析
8 - 10
STATISTICS
8-5
统计学
STATISTICS
(三)从变量相关关系变化的方向看 从变量相关关系变化的方向看 变化的方向 正相关: A 正相关:变量同方向变化 , 即同增同减 (A) 同增同减 负相关:变量反方向变化, 负相关:变量反方向变化, 即一增一减 (B) B 一增一减 从变量相关的程度 相关的程度看 (四)从变量相关的程度看
完全相关 (B) 不完全相关 (A) 不相关 (C)
8-6
25 20 15 10 5 0 0 2 4 6 8 10 12
25 20 15 10 5 0 0 2 4 6 8 10 12
C
35 30 25 20 15 10 5 0 0 5 10 15
统计学
STATISTICS
三、回归分析
回归一词的由来: 回归一词的由来:
8 - 13
见第218页例题 页例题 见第 页例
统计学
STATISTICS
相关系数的特点: 相关系数的特点:
1、r 的取值范围是 − 1 ≤ r ≤ 1 。 、 2、r<0时,β<0 为负相关;r>0时, β>0 为正相关。 为负相关; 为正相关。 、 时 时 3、|r|=1,为完全相关。r =1,为完全正相关;r = -1, 、 ,为完全相关。 ,为完全正相关; , 为完全负正相关。 为完全负正相关。 4、r = 0,不存在线性相关。 、 线性相关。 ,不存在线性相关 5、|r|越趋于 表示两变量线性关系越密切;|r|越趋于 、 越趋于 表示两变量线性关系越密切; 越趋于 越趋于1表示两变量线性关系越密切 越趋于0 表示两变量线性关系越不密切。 表示两变量线性关系越不密切。 线性关系越不密切 6、r是一个随机变量。 、 是一个随机变量 是一个随机变量。

相关分析和回归分析

相关分析和回归分析

回归分析和相关分析的联系和区别回归分析(Regression):Dependant variable is defined and can be forecasted by independent variable.相关分析(Correlation):The relationship btw two variables. --- A dose not define or determine B.回归更有用自变量解释因变量的意思,有一点点因果关系在里面,并且可以是线性或者非线形关系;相关更倾向于解释两两之间的关系,但是一般都是指线形关系,特别是相关指数,有时候图像显示特别强二次方图像,但是相关指数仍然会很低,而这仅仅是因为两者间不是线形关系,并不意味着两者之间没有关系,因此在做相关指数的时候要特别注意怎么解释数值,特别建议做出图像观察先。

不过,无论回归还是相关,在做因果关系的时候都应该特别注意,并不是每一个显著的回归因子或者较高的相关指数都意味着因果关系,有可能这些因素都是受第三,第四因素制约,都是另外因素的因或果。

对于此二者的区别,我想通过下面这个比方很容易理解:对于两个人关系,相关关系只能知道他们是恋人关系,至于他们谁是主导者,谁说话算数,谁是跟随者,一个打个喷嚏,另一个会有什么反应,相关就不能胜任,而回归分析则能很好的解决这个问题回歸未必有因果關係。

回歸的主要有二:一是解釋,一是預測。

在於利用已知的自變項預測未知的依變數。

相關係數,主要在了解兩個變數的共變情形。

如果有因果關係,通常會進行路徑分析(path analysis)或是線性結構關係模式。

我觉得应该这样看,我们做回归分析是在一定的理论和直觉下,通过自变量和因变量的数量关系探索是否有因果关系。

楼上这位仁兄说“回归未必有因果关系……如果有因果关系,通常进行路径分析或线性结构关系模式”有点值得商榷吧,事实上,回归分析可以看成是线性结构关系模式的一个特例啊。

相关 分析与回归分析

相关 分析与回归分析
下一页 返回
第二节 相关关系的判断
2.相关表 相关表就是把被研究现象的观察值对应排列所形成的统计表
格。如某地区工业劳动者人数和增加值的历史资料对应排列 如表8-1所示。 相关表中的两行数据叫相关数列,它有别于变量数列。相关 表中的数值是变量的观测值,是实际资料,是样本数据,它 是判别相关关系的基础。在相关表中,如果观测值的分布呈 现一定的规律性,则表明现象间存在相关关系。如随着一个 变量数值的增加或减少,另一个变量的值也大致以某一固定 的速率和数量增加或减少,这就可以初步判别现象间存在相 关关系。如果两个变量的观测值不表现出任何规律性,则可 以判定现象间不存在相关关系。
上一页 下一页 返回
第一节 相关分析的一般问题
2.判定相关关系的表现形态和密切程度 相关关系是一种数量上不严格的相互依存关系。只有当变量间
确实存在高度密切的相关关系时,才可能进行相关分析,对社 会经济现象进行预测、推算和决策。因此,判定现象间存在相 关关系后,需要进一步确定相关关系的表现形态和密切程度。 统计上,一般是通过编制相关表、绘制相关图和计算相关系数 来做出判断的。根据相关图表可对相关关系的表现形态和密切 程度做出一般性的判断,依据相关系数则能做出数量上的具体 分析。在我们判断中学生的学习成绩和身高之间有无相关性时, 如果我们发现有部分相关联的点,我们还要进行相关程度的判 断,看两种现象之间的相关程度的高低,以此来判定其是否具 有研究相关性的必要。
除上例外,在其他方面也都可以编制类似的双变量分组相关 表。如工业企业按产量和成本水平同时分组;对同行业的商 业企业,按企业规模和流通费水平同时分组等。这种双变量 分组相关表,可作为探寻最佳方案、提高经济效益的一种工 具。但是,根据双变量分组表的资料来计算相关分析指标比 较复杂,所以,在相关分析中较少使用。

统计学原理第8章相关与回归分析[精]

统计学原理第8章相关与回归分析[精]

估计标准误差就是因变量的估计值yc与实际值y之间差异 公 的平均程度。记为Syx,它的基本公式为:


式中,Syx表示估计标准误差;下标yx表示y依x的回归方程; y是因变量的实际值;yc是因变量的估计值。
例8.4以例8.1的资料计算估计标准误差。
步骤: 1.设计一张计算表,将已知x的值代入回归方程求出对应的yc的值 2.计算离差y-yc并加以平方求和 3.求出估计标准误差Syx。
数关系。
当r=0时,表示x与y完全没有线性相关。
当0<|r|<1时,表示x与y存在着一定的线性相关。一般分四个
等级,判断标准如下:
若0<|r|<0.3,则称x与y为微弱相关;
若0.3<|r|<0.5, 则称x与y为低度相关;
若0.5<|r|<0.8, 则称x与y为显著相关;
若0.8<|r|<1, 则称x与y为高度相关。
8.3.2简单直线回归方程
a, b是待定参数 利用最小二乘法 得到a,b求值,再反解得到方程式
建立回归直线的过程:列计算表,求出∑xy,∑x2,∑y2,x,y; 计算Lxy,Lxx和Lyy的值;求出b和a的值并写出方程
例 8.2某工厂某产品的产量与单位成本资料见表8.2,试 求单位成本依产量的回归直线方程。
★ 填空题 (1) 现象之间的相关关系,从相关因素的个数看,可分为()和();从相关的形式
的两个回归方程。() (9) 估计标准误差指的就是因变量的估计值yc与实际值y之间的平均误差程度。() (10) 在任何相关条件下,都可以用相关系数r说明变量之间相关的密切程度。() (11) 若变量x与y的相关系数r1=-0.8,变量p与q的相关系数r2=-0.92,由于r1>r2,

统计学原理第八章相关分析与回归分析

统计学原理第八章相关分析与回归分析

21
例1:P354页,第1题
企业 产量 X 单位成 XY
X2
Y2
序号 (4件) 本(元)Y
1
2
52
104
4
2704
2
3
54
162
9
2916
3
4
52
208
16
2704
4
4
48
192
16
2304
5
5
48
240
25
2304
6
6

24
46
276
36
2116
300
1182
106 15048
即:∑X=24,∑Y=300, ∑XY=1182,
• 2) X倚Y的直线方程的确定
• 根据最小平方法的原理:(x xc )2 最小值
• 将xc = c + dy代入上述公式中,分别对c和d 求一阶偏导数,并令偏导数等于0,就可以
得出两个正规方程:
x nc dy yx cy dy2
d
nyx y n y2 (
x
y )2
c x dy
举例:P355,第4题。
• 偏相关:在复相关中,当假定其他变量不 变时,其中两个变量间的相关关系称为偏 相关。例如,在假定人们收入水平不变的 条件下,某种商品的需求与其价格水平的 关系就是一种偏相关。
9
三、相关分析与回归分析
• (一)相关分析 • 是用一个指标(相关系数)来表明现象
之间相互依存的密切程度。 • (二)回归分析 • 是根据相关关系的具体形态,选择一个
• 曲线相关:如果现象之间的相关关系近似 地表现为某种曲线形式时,就称这种相关 关系为曲线相关。

回归分析与相关分析

回归分析与相关分析

回归分析与相关分析回归分析是一种通过建立数学模型来预测或解释因变量与自变量之间关系的方法。

它的核心思想是通过对已有数据建立一个函数,通过这个函数可以推断其他未知数据的值。

常见的回归模型包括线性回归、多项式回归、逻辑回归等。

线性回归是最为常见的回归模型之一,其基本原理是通过拟合一条直线来描述自变量与因变量之间的关系。

在线性回归中,常常使用最小二乘法来确定最佳拟合直线。

最小二乘法通过使得残差平方和最小来确定回归系数。

回归系数表示了自变量与因变量之间的关系强度和方向。

除了线性回归,还有多项式回归可以拟合非线性关系。

逻辑回归则适用于因变量为二元分类变量的情况。

相关分析是一种用来研究变量之间相关性的方法。

它可以帮助我们判断两个变量之间是否存在其中一种关系,并且能够量化这种关系的强度和方向。

常见的相关系数有皮尔逊相关系数和斯皮尔曼相关系数。

皮尔逊相关系数是一种用来测量两个连续变量之间线性相关程度的指标。

它的取值范围为-1到+1之间,-1表示完全负相关,0表示无相关,+1表示完全正相关。

斯皮尔曼相关系数则是一种非参数的相关系数,适用于两个变量之间的关系非线性的情况。

回归分析和相关分析可以相互配合使用,用来探索和解释变量之间的关系。

首先,通过相关分析,可以初步判断两个变量之间是否存在相关性。

然后,如果判断出存在相关性,可以使用回归分析来建立一个数学模型,以解释自变量对因变量的影响。

总之,回归分析和相关分析是统计学中常用的两种数据分析方法。

它们可以帮助我们研究和解释变量之间的关系,并用于预测和控制因变量的变化。

了解和掌握这两种方法,对于研究者和决策者来说都是非常重要的。

统计学原理第8章相关与回归分析

统计学原理第8章相关与回归分析
两个回归方程。() (9) 估计标准误差指的就是因变量的估计值yc与实际值y之间的平均误差程度。() (10) 在任何相关条件下,都可以用相关系数r说明变量之间相关的密切程度。() (11) 若变量x与y的相关系数r1=-0.8,变量p与q的相关系数r2=-0.92,由于r1>r2,因
此x与y间相关的程度比较高。()
27
同步练习
★ 判断题 (1) 根据结果标志对因素标志的不同反映,可以把现象间数量上的依存关系划分为
函数关系和相关关系。() (2) 正相关指的就是因素标志和结果标志的数量变动方向都是上升的。() (3) 相关系数是测定变量间相关密切程度的唯一方法。() (4) 只有当相关系数接近于1时,才能说明两变量之间存在高度相关系数。() (5) 若变量x的值减少,y的值也减少,说明变量x与y之间存在相关关系。() (6) 回归系数b和相关系数r都可以来判断现象之间相关的密切程度。() (7) 若回归直线方程为:yc=160-2.3x,则变量x与y之间存在负的相关关系。() (8) 回归分析中,对于没有明显因果关系的两个变量x与y,可以建立y依x和x依y的
D产量每增加1000件时,单位成本下降78元
E产品的产量随生产用固定资产价值的减少而减少
(4) 测定现象间有无相关关系的方法是()。
A编制相关表 B绘制相关图 C对客观现象作定性分析
D计算估计标准误系数时,()。
A相关的两个变量都是随机的
B相关的两个变量是对等的关系
C相关的两个变量一个是随机的,一个是可以控制的量
特点 在进行回归分析时,必须根据研究目的确定相关的变量中谁为自变 量,谁为因变量。 回归方程的作用在于由自变量的数值来估计因变量的值。一个回 归方程只能作一种推算或估计。 在回归分析中,因变量是随机的,自变量是可以控制的量。

第10章相关分析及回归分析

第10章相关分析及回归分析

第八章相关与回归分析一、本章重点1.相关系数的概念及相关系数的种类。

事物之间的依存关系,能够分为函数关系和相关关系。

相关关系又有单向因果关系和互为因果关系;单相关和复相关;线性相关和非线性相关;不相关、不完全相关和完全相关;正相关和负相关等类型。

2.相关分析,着重掌握如何画相关表、相关图,如何测定相关系数、测定系数和进行相关系数的推断。

相关表和相关图是变量间相关关系的生动表示,对于未分组资料和分组资料计算相关系数的方式是不同的,一元线性回归中相关系数和测定系数有着紧密的关系,取得样本相关系数后还要对整体相关系数进行科学推断。

3.回归分析,着重掌握一元回归的大体原理方式,一元回归是线性回归的基础,多元线性回归和非线性回归都是以此为基础的。

用最小平方式估量回归参数,回归参数的性质和显著性査验,随机项方差的估量,回归方程的显菁性査验, 利用回归方程进行预测是回归分析的主要内容。

4.应用相关与回归分析应注意的问题。

相关与回归分析都有它们的应用范围,必需明白在什么情形下能用,什么情形下不能用。

相关分析和回归分析必需以定性分析为前提,不然可能会闹岀笑话,在进行预测时选取的样本要尽可能分散,以减少预测误差,在进行预测时只有在现有条件不变的情形下才能进行,若是条件发生了转变,原来的方程也就失去了效用。

二、难点释疑本章难点在于计算公式多,不容易记忆,所以更要注重计算的练习。

为了辜握大体计算的内容,最少应认真理解书上的例题,做完本指导书上的全数计算题。

初学者可能会感到本章公式多且复杂,难于记忆,其实只要抓住Lxx、Lxy. Lyy 这三个记号,记住它们的展开式,几个主要的公式就不难记忆了。

若是能自己把这些公式推证一下,弄清其关系,那就更易记住了。

三、练习题(一)填空题1事物之间的依存关系,按照其彼此依存和制约的程度不同,能够分为()和()两种。

2.相关关系按相关关系的情形可分为()和();按自变量的多少分()和();按相关的表现形式分()和();按相关关系的紧密程度分()、()和();按相关关系的方向分()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
David G. Kleinbaum and Mitchel Klein, Springer, 2019
第6次 4. ABEL tutorial
Yurii Aulchenko, 2019
回归分析和相关分析
生物统计学研究所 张洪
1. 线性回归 1.1 回归直线 1.2 参数估计方法:最小二乘估计 1.3 参数推断:F-检验、t-检验、区间估计 1.4 回归模型的诊断:残差分析 1.5 多重线性回归 1.6 Box-Cox变换
1.2 参数估计方法:最小二乘估计 (Least Squares 估计)
观测值与预测值(黑线)的误差
两条回归直线
观测值与预测值(蓝线)的误差
总体上看,蓝线比黑线 拟合效果要好(从拟合误差看)
观测值: (xi , yi ),i 1,..., n.
残差:ei yi ( xi )
几个有用的函数: summary、names
变量过多:降低估计的效率,可能使得那些真正对因变量有贡献的
自变量的效应不显著,过度拟合也会降低预测的准确性(overfit).
变量选择:将真正有对因变量有贡献的自变 量选出来。
பைடு நூலகம்
理论上可以选出任意阶交互效应, 阶数小于等于自变量的个数。
准则
1) Akaike Information Criterion (AIC)准则; 2) Bayesian Information Criterion (BIC)准则; 筛选方法:逐步法
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.
自由度
平均平方
P-值
平方和
F
t 检验: 回归系数的显著性检验
零假设:回归系数等于0
T
ˆ se( ˆ )
零假设成立且误差独立同分布 且服从正态分布时,T 服从 自由度为n-2的t分布tn-2
dat = data.frame(y,x1,x2,x3,x4); fit = lm(y~.^4, data=dat); fit.aic = step (fit);
1.6 Box-Cox变换
通过残差诊断发现残差不太正态时,可以考虑进行Box-Cox变换 (power transformation),使得因变量变换后进行回归分析的 残差更正态,统计分析结果更可信。
SStot
SStot
> summary(fit)$r.squared [1] 0.693347
F检验 H0 : 0
F统计量
F SSreg /1 SSerr /(n 2)
如果误差独立同分布 服从正态分布,则 零假设成立时,F服从 自由度为1和n-2的F分布
适用条件:误差e1,…,en独立同分布,服从正态分布。
随机误差: 未被身高解释的部分: 饮食、种族、地域…
均值为0: E[Y | X x] x
1.1 回归直线
y x
量化X与Y的关系
对于新的个体,如果知道 与 ,可用X来预测Y。
问题: 如何估计参数? X能解释Y的比例是多少?
假设检验问题: 0?
线性模型是否适用? 如果模型不适用,如何修正?
# install.packages('TeachingDemos'); require(TeachingDemos); weight.bc = bct(dat$weight,lambda);
最大似然值对应的lambda 用变换后的因变量代替原有因变量

2. 相关分析
2.1 Pearson相关系数 2.2 相关系数的统计推断 2.3 偏相关系数 2.4 秩相关、多重相关
课程安排
1. 回归模型与相关分析 2. 方差分析 3. 属性数据分析 4. 生存数据分析 5. 实验设计 6. 全基因组关联分析
参考书
第1,2,3,5次 1. Experimental Design and Data Analysis for Biologists
Gerry P. Quinn and Michael J. Keough Cambridge University Press, Cambridge, 2019.
Coefficients: (Intercept) height
-88.6774 0.8902
R代码 输出的结果
> print(fit$coef);
Coefficients:
(Intercept)
x
-88.6774 0.8902
方差分解
1.3 参数推断
预测值:
yˆi ˆ ˆxi
yi y ( yi yˆi ) ( yˆi y)
强影响点:对回归方程有较大影响的点
如位于散点图的两端且 对于斜率的影响大,则应被剔出; 位于中上、中下的点对截距影响大, 但对斜率影响小,关系不大。
有强影响点 后的回归直线
没有强影响点 的回归直线
1. 残差散点图 2. 残差Q-Q图 3. 位置(拟合值)
-尺度图 4. Cook距离与
杠杆图
Cook距离>1 或
Box-Cox变换
z
(x)
x 1
,
0
log(x), 0
给出不同 lambda值 对应的似然值
require(MASS); bc = boxcox(weight~., data=dat, lambda=seq(-1,2,0.1));
lambda = bc$x[which.max(bc$y)];
第16个观测值杠杆很大
稳健回归法:最小一乘估计 (最小绝对偏差,LAD)
> require(quantreg); > d = rq(weight~height,data=dat1); 警告信息: In rq.fit.br(x, y, tau = tau, ...) : Solution may be nonunique > lines(dat1$height, d$coef[1]+ d$coef[2]*dat1$height,
杠杆(leverage),由“帽 子矩阵”计算得到,其 值越大对回归方程的影 响力越大。
height weight 1 180 68 2 160 51 11 165 57 12 185 76 14 164 58 16 190 200
lev 0.1084227 0.2496730 0.1358880 0.2038975 0.1544598 0.3516872
leverage>2p/n 为强影响点
发现并剔除残差大的强影响点
1) 有些强影响点残差不大,不应被提出 2) 有些残差大的点不是强影响点,剔除与否关系不大
> dat1 = rbind(dat,c(180,200)); > fit1 = lm(weight~height,data=dat1); > fit1.hat = lm.influence(fit1)$hat; > influence1 = cbind(dat1,lev=fit1.hat); > print(influence1[fit1.hat>2/n,]);
估计方法 R中线性模型拟合
(1) 最小二乘估计
e n 2
i1 i
min!
(ˆ, ˆ)
(2) 最小一乘估计
n|
i 1
ei
|
min!
(ˆ, ˆ)
dat 是一个data frame,有两个变量:height 和 weight
> fit = lm(weight~height, data=dat); > print(fit); Call: lm(formula = weight ~ height, data = dat)
2. 相关分析 2.1 Pearson相关系数 2.2 相关系数的统计推断:z-检验、区间估计 2.3 偏相关系数 2.4 秩相关与多重相关
3 实例分析
总的趋势: 随着身高增加, 体重也跟着增加
与函数关系的区别: 同一身高可以体重不同, 体重随身高增加的关系 不是严格成立, 只是有这种趋势
为什么? 因为身高只能解释 体重的一部分原因, 还有其他未被考虑 的因素, 如饮食、地域、人种等
> summary(fit)$coef
适用条件: 误差 e 独立同分布服从正态分布
样本量不太小时,误差分布偏离正态分布 不是很大时仍适用,即对正态性假设不是很 敏感
当样本量大时总是适用的,因为此时 T 依 分布收敛于标准正态分布与tn-2接近(不管正 态假设成立与否)。
Estimate Std. Error t value
没有一个方法可以完全打败其他的方法, 需要在实践中根据具体情况选择最合适的方法
1.5 多重线性回归
多个自变量 X1,…,Xp
Y 1X1 p X p e
... Y 1X1 p X p 12 X1X 2 13 X1X 3 X X p1, p p1 p e
自变量越多,拟合的残差越小
2. Biostatistical Design and Analysis Using R: A Practical Guide Murray Logan Wiley-Blackwell, Chichester, West Sussex, 2019.
第4次 3. Survival Analysis: A Self-Learning Text, 2nd edition
Pearson相关系数与回归系数的关系
Pr(>|t|)
(Intercept) -88.6774259 28.3051787 -3.132905 0.0079283231
x
0.8901553 0.1641884 5.421548 0.0001167570
相关文档
最新文档