六年级下册数学同步复习与测试讲义-第3章 解决问题的策略 苏教版(含解析)

合集下载

3.解决问题的策略-苏教版六年级下册数学期末复习专题讲义(知识点归纳+典例讲解+同步测试)

3.解决问题的策略-苏教版六年级下册数学期末复习专题讲义(知识点归纳+典例讲解+同步测试)

苏教版六年级下册数学期末复习专题讲义-3.解决问题的策略【知识点归纳】学会用“转化”的策略寻求解决问题的思路,并能根据具体的问题确定合理的解题方法,从而有效的解决问题。

【典例讲解】例1元旦节,学校举行诗歌朗诵比赛.五(2)班学生排成一个方阵,最外层每边站7名学生,最外层一共有()名学生.A.28B.32C.24【分析】最外层人数=每边人数×4﹣4;代入数据即可解答.【解答】解:7×4﹣4=28﹣4=24(人)答:最外层一共有24名学生.故选:C.【点评】此题考查了方阵问题中:最外层点数=每边点数×4﹣4的灵活应用.例2.妈妈今年的年龄是小丽的3倍,妈妈比小丽大22岁,小丽今年11岁.【分析】根据题意,可知妈妈与小丽的年龄差是22岁,又知妈妈的年龄是小丽年龄的3倍,倍数差是3﹣1=2,再根据差倍公式差÷(倍数﹣1)=较小数进行解答即可.【解答】解:根据题意,小丽的年龄:22÷(3﹣1)=22÷2=11(岁)答:小丽今年11岁.故答案为:11.【点评】本题考查了年龄问题与差倍问题的综合应用,关键是找到数量差与它对应的倍数差,从而求出一倍的量.例3.今年小飞5岁,妈妈35岁,妈妈的年龄是小飞的7倍,明年妈妈的年龄小飞的6倍.√(判断对错)【分析】明年小飞(5+1)岁,妈妈(35+1)岁,求明年妈妈的年龄是小飞的几倍,根据求一个数是另一个数的几倍,用除法解答;然后再和6倍比较即可.【解答】解:(35+1)÷(5+1)=36÷6=6即今年妈妈的年龄是小飞的7倍,明年妈妈的年龄是小飞的6倍,所以原题说法正确.故答案为:√.【点评】此题应根据求一个数是另一数的几倍,用除法解答.解题规律:抓住年龄差是个不变的数(常数),而倍数却是每年都在变化的这个关键.例4.小区物业摆了一个正方形花坛(如图).最外一层摆的是兰花,里面摆的都是月季花,兰花和月季花各摆了多少盆?【分析】(1)最外一层摆的是兰花,每边有8盆,然后根据“最外层四周点数=每边点数×4﹣4”,代入数据解答即可;(2)里面摆的都是月季花,每边有6盆,然后根据“总点数=每边点数×每边点数”,代入数据解答即可.【解答】解:(1)8×4﹣4=32﹣4=28(盆)答:兰花摆了28盆.(2)6×6=36(盆)答:月季花各摆了36盆.【点评】此题考查了方阵问题中:总点数=每边点数×每边点数;最外层四周点数=每边点数×4﹣4的灵活应用.例5.同学们排成方阵参加体操表演,无论从前往后数、从后往前数,还是从左往右数或从右往左数,王华都是第5个,这个方阵共有多少人?【分析】此题可以把这个方形操队看做一个实心方阵问题来解决:中间是王华,根据题干可知:王华所在的行与列的人数都是5+5﹣1=9人;故这个实心方阵的最外层每一边的人数都是9人;利用方阵的总点数=每边点数×每边点数,即可求得这个方阵共有多少人.【解答】解:5+5﹣1=9(人)9×9=81(人)答:这个方阵一共有81人.【点评】此题是考查了实心方阵的总点数=每边点数×每边点数在实际问题中的灵活应用.【同步测试】一.选择题(共10小题)1.同学们在操场上排队,每行人数和行数恰好相等,最外一圈有100人,每行()人.A.10B.25C.262.女儿今年(1994年)12岁.妈妈对女儿说:“当你有我这么大岁数时,我已经60岁喽!”问:妈妈12岁时,是哪一年?()A.1969B.1970C.1972D.19743.成都高新区小学组田径队有若干人,经过统计已知田径队平均年龄为10.8岁,后来因为项目调整又增补了两名队员,这两名队员年龄刚好分别为10岁和11岁,那么这时田径队的平均年龄应该()10.8岁.A.小于B.大于C.等于D.以上三种都可能4.一个方阵每边站20人,(四个顶点都有人),那么这个方阵一共有()人.A.400B.76C.361D.805.四年级组成了一个正方形队列,准备参加学校课间操比赛,由于服装不够,只好减少33人,使横竖各减少一排,四年级原来准备()人参加比赛.A.1089B.1024C.289D.1966.刘强今年x岁,李红比刘强大5岁,再过三年刘强比李红小()岁.A.(x﹣3)岁B.5岁C.2岁D.(x+3)岁7.五年级同学体操表演,站成一个方阵,最外围每边站10人,最外围有()人.A.100B.81C.40D.368.观察下面3个图形的规律,按这样的规律排列,第8个图形有()个.A.24B.28C.329.在一个正方形花坛四周种树,每边种5棵(四个顶点也要种),一共要种()棵.A.20B.28C.16D.1510.点阵图中第n个点阵有()个点.A.n B.2n C.n×n二.填空题(共8小题)11.三年级学生组成一个正方形方队表演团体操,共8行,每行8人,后来由于服装不够,只好去掉一行一列,共去掉了个学生.12.五年级同学排成方阵做操,最外层每边站了20人,最外层一共有名同学,整个方阵一共有名学生.13.在一个正方形花坛的每条边上摆5盆鲜花,四条边上最多能摆盆,最少能摆盆.14.五年级同学排成方阵做操,最外层每边站了10人,最外层一共有名同学,整个方阵一共有名学生.15.小小今年15岁,小小的妈妈今年43岁,年前小小妈妈的年龄是小小的5倍.16.有28盆花,平均放在会议室前、后、左、右四周,要求四个角都要放一盆,每边放的花的盆数相同,每边各有盆花.17.同学们在操场上围成一个正方形玩游戏,每边28个同学,一共有个同学在玩游戏.18.如图中第5个正方形有个点.如果某个正方形每边上的点子数用a表示,则这个正方形的点子总数可表示为.三.判断题(共5小题)19.甲比乙大3岁,乙就一定比甲小3岁..(判断对错)20.围棋盘的最外层每边能放19个棋子.最外层一共可以摆放76个棋子..(判断对错)21.28名同学围成一个正方形做游戏,每边人数相等,四个顶点都有人,每边各有7名同学..(判断对错)22.小明今年a岁,哥哥比他大b岁,c年后,哥哥比他大b岁..(判断对错)23.三年(1)班有学生39人,减少4人就可以排成方队..(判断对错)四.应用题(共8小题)24.四个小朋友的年龄是四个连续的自然数,他们年龄的最小公倍数是60,他们中年龄最大的是多少?25.小红用1元的硬币摆了一个正方形方阵,最外层每边都有6枚硬币.最外层一共有多少枚硬币?26.张亮的爸爸比妈妈大6岁,张亮爸爸、妈妈今年的岁数和是72.张亮的爸爸、妈妈今年各几岁?27.三年级同学组成一个方阵参加学校的广播操会操活动,无论是从前往后数还是从后往前数小明都第8个,无论是从左往右数还是从右往左数小明都是第12个.三年级一共有多少名同学参加会操活动?28.四年级同学参加学校运动会开幕式表演,共排成4个方队,每个方队排成6行,每行6人.最外圈的同学举彩旗,其余同学举花束.举彩旗的同学一共有多少人?举花束的呢?29.请你帮忙算一算,小明和爸爸今年各多少岁?30.同学们排成第一层每边13人、第二层每边11人、第三层每边9人的中空方阵,求有多少名同学?31.9月30日,学校进行“迎国庆”汇操展演,四年级体操队站成了一个正方形方阵,最外层一共有24人,四年级体操队一共有多少人?参考答案与试题解析一.选择题(共10小题)1.【分析】每行人数和行数恰好相等,即排成的是一个正方形实心方阵,已知最外一圈有100人,根据“每边的人数=四周的人数÷4+1”解答即可.【解答】解:100÷4+1=25+1=26(人)答:每行26人.故选:C.【点评】此题考查了正方形实心方阵中“每边的人数=四周的人数÷4+1”的运用.2.【分析】根据题意设x年后妈妈60岁,那妈妈现在的年龄是60﹣x岁,则根据妈妈说的话,列方程解答即可.【解答】解:设x年后妈妈60岁,12+x=60﹣x,2x=48,x=24,1994﹣24=1970(年);答:妈妈12岁时是1970年,故选:B.【点评】解答年龄问题的关键是年龄差是不变的.3.【分析】先求得增补的两名队员的平均年龄是多少,再与10.8比较得解.【解答】解:(10+11)÷2=21÷2=10.5(岁)10.5<10.8答:这时田径队的平均年龄应该小于10.8岁.故选:A.【点评】此题考查了求平均数的方法在年龄问题中的运用.4.【分析】一个方阵每边站20人,那么每行,每列都是20人,可以看成每行有20人,一共是20行,求方阵一共有多少人数,就用每行的人数乘上行数即可.【解答】解:20×20=400(人)答:这个方阵一共有400人.故选:A.【点评】本题考查了方阵的总人数的求法:总人数=每行的人数×行数.5.【分析】根据题干,一共去掉了33人,那么原来的方阵的每边人数是(33+1)÷2=17人,据此利用每边人数×每边人数即可求出总人数.【解答】解:原来的方阵的每边人数是(33+1)÷2=17(人),17×17=289(人)答:四年级原来准备289人参加表演.故选:C.【点评】方阵问题相关的知识点是:四周的人数=(每边的人数﹣1)×4,每边的人数=四周的人数÷4+1,中实方阵的总人数=每边的人数×每边的人数,空心方阵的总人数=(最外层每边的人数﹣空心方阵的层数)×空心方阵的层数×4,外层边长数2﹣中空边长数2=实面积数.6.【分析】李红比刘强大5岁,即刘强比李红小5岁,由于年龄差不随时间的变化而改变,所以再过3年,他们相差的岁数不变,由此求解.【解答】解:李红比刘强大5岁,即刘强比李红小5岁,再过三年刘强还是比李红小5岁.故选:B.【点评】理解年龄差不随时间的变化而改变是解答此题的关键.7.【分析】方阵每边人数与四周人数的关系:四周人数=(每边人数﹣1)×4;据此解答即可.【解答】解:(10﹣1)×4=9×4=36(人)答:最外围有36人.故选:D.【点评】此题考查了方阵问题中:四周人数=(每边人数﹣1)×4;或最外层四周点数=每边点数×4﹣4的灵活应用.8.【分析】每边圆圈的个数=图形顺序+1;再利用方阵最外层四周点数=每边点数×4﹣4计算出最外层四周圆圈数即可.【解答】解:(8+1)×4﹣4=36﹣4=32(人)答:第8个图形有32个.故选:C.【点评】此题考查了方阵问题中:总点数=每边点数×每边点数;最外层四周点数=每边点数×4﹣4的灵活应用.9.【分析】根据公式“最外层四周点数=每边点数×4﹣4”代入数据解答即可.【解答】解:5×4﹣4=20﹣4=16(棵)答:四周共种了16棵.故选:C.【点评】此题考查了方阵问题中:最外层四周点数=每边点数×4﹣4的灵活应用.10.【分析】图形看做一个方阵,第n个点阵,每边就有n个点,然后根据“总点数=每边点数×每边点数”解答即可.【解答】解:点阵图中第n个点阵有n×n=n2个点.故选:C.【点评】此题考查了方阵问题中:总点数=每边点数×每边点数;的灵活应用.二.填空题(共8小题)11.【分析】根据题干,每行每列都是8人,如图所示,那么去掉一行一列共去掉了8×2﹣1=15人.【解答】解:8×2﹣1=15(人),答:一共去掉了15人.故答案为:15.【点评】实心方阵中,1行1列的点数等于每边点数×2﹣1.12.【分析】最外层人数=每边人数×4﹣4;实心方阵中总人数=每边人数×每边人数;代入数据即可解答.【解答】解:20×4﹣4=76(名),20×20=400(名),答:最外层一共有76名同学,整个方阵一共有400名学生.故答案为:76,400.【点评】此题考查了方阵问题:最外层点数=每边点数×4﹣4;实心方阵中总点数=每边点数×每边点数的灵活应用.13.【分析】四个角都不放时,摆的花盆数最多,利用总盆数=每边花盆数×4计算即可;四个角都放时,摆的花盆数最少,根据总盆数=每边花盆数×4﹣4即可解答.【解答】解:5×4=20(盆)5×4﹣4=20﹣4=16(盆)答:四条边上最多能摆20盆,最少能摆16盆.故答案为:20,16.【点评】此题考查了空心方阵中四周点数=每边点数×4﹣4的计算应用,要注意顶点处不放时,摆的花盆数最多.14.【分析】最外层人数=每边人数×4﹣4;实心方阵中总人数=每边人数×每边人数;代入数据即可解答.【解答】解:10×4﹣4=36(名),10×10=100(名),答:最外层一共有36名同学,整个方阵一共有100名学.故答案为:36,100.【点评】此题考查了方阵问题:最外层点数=每边点数×4﹣4;实心方阵中总点数=每边点数×每边点数的灵活应用.15.【分析】设x年前妈妈的年龄是小小的年龄的5倍,那么小小的年龄就是(15﹣x)岁,妈妈的年龄是(43﹣x)岁,用小小的年龄乘上5,就是妈妈的年龄,由此求解.【解答】解:设x年前妈妈的年龄是小小的年龄的5倍,由题意得:(15﹣x)×5=43﹣x75﹣5x=43﹣x4x=32x=8答:8年前小小妈妈的年龄是小小的5倍.故答案为:8.【点评】解决本题设出未知数,表示出小小和妈妈的年龄,再根据倍数关系列出方程求解.16.【分析】根据方阵最外层四周点数=每边点数×4﹣4可得:每边点数=四周点数÷4+1,然后代入数据解答即可.【解答】解:28÷4+1=7+1=8(盆)答:每边各有8盆花.故答案为:8.【点评】此题考查了方阵问题中:最外层四周点数=每边点数×4﹣4的灵活应用.17.【分析】由于每个顶点都是两条边的交点,即4个顶点上的人都被重复计算一次,每边28个同学,28×4=112,将四个顶点上的重复计算的人减去,则共有112﹣4=108个同学.【解答】解:28×4﹣4=112﹣4=108(个)答:一共108个同学在玩游戏.故答案为:108.【点评】本题要注意4个顶点上的人都被重复计算一次,可实际画下图更容易明白.18.【分析】注意观察前三个图形中圆点的个数可以发现分别为:4,8,12,后一个图形中的圆点个数比前一个图形中圆点多4,所以可得圆点的总数与每边上的圆点数之间的关系用字母表示为:S=4a﹣4.也可直接根据“空心方阵的四周点数=每边点数×4﹣4”解答.【解答】解:(1)4×6﹣4=24﹣4=20(个)答:第5 个正方形有20个点.(2)4a﹣4(个)答:这个正方形的点子总数可表示为4a﹣4个.故答案为:20;4a﹣4.【点评】此题属于空心方阵问题,空心方阵的四周点数=每边点数×4﹣4.三.判断题(共5小题)19.【分析】可以利用赋值法解答:如甲6岁,乙3岁,甲比乙大6﹣3=3岁,乙比甲小6﹣3=3岁,据此即可判断.【解答】解:根据题干分析可得,甲比乙大3岁,乙就一定比甲小3岁,此题说法正确.故答案为:√.【点评】此题考查了谁比谁大或谁比谁小多少的意义及叙述方法.20.【分析】利用空心方阵最外层总点数=每边点数×4﹣4,即可计算得出这个围棋盘最外层一共可以摆放的棋子数,据此即可判断.【解答】解:19×4﹣4,=76﹣4,=72(个);答:最外层一共可以摆放72个棋子.故答案为:×.【点评】此题主要考查空心方阵最外层总点数的计算方法的灵活应用,熟记公式即可解答.21.【分析】此题属于空心方阵问题:每边人数=(四周人数+4)÷4,由此代入数据即可解答.【解答】解:(28+4)÷4=32÷4=8(人)答:每边有学生8人.故答案为:×.【点评】此题考查了空心方阵问题中:每边点数=(四周点数+4)÷4的灵活应用.22.【分析】根据“小明今年a岁,哥哥比他大b岁,”可以求出今年哥哥的年龄;再分别求出c年后小明和哥哥的年龄,那哥哥比小明大的年龄即可求出.【解答】解:哥哥今年的年龄是:a+b岁,c年后小明的年龄是:a+c岁,c年后哥哥的年龄是:a+b+c岁,c年后哥哥比小明大的岁数是:a+b+c﹣(a+c)=a+b+c﹣a﹣c=b(岁)答:c年后哥哥比他大b岁,故答案为:√.【点评】此题主要是通过计算推导出两人的年龄差是不会随着年龄的变化而改变的,在推导计算时,把所给出的字母当作已知数,找出对应的量,根据基本的数量关系解决问题.23.【分析】39人减少4人还剩35人,35应是每边人数的完全平方数,但是35不是自然数的完全平方数,所以39人减少4人后不能排成方队.【解答】解:根据分析可知,39﹣4=35(人);因为35不是自然数的完全平方数,所以39人减少4人后不能排成方队;但是如果39人减少3人后能排成6×6的方队.故答案为:错误.【点评】本题考查了实心方阵的有关知识,计算公式是:总点数=每边点数×每边点数;总点数÷4+1=每边点数.四.应用题(共8小题)24.【分析】先把60分解质因数,根据相邻自然数相差1,从60的质因数中找出这四个数,然后找出最大的数即可.【解答】解:60=2×2×3×5,所以这四个数是:2、3、2×2=4、5,所以这四人中最大的是5岁;答:他们中年龄最大的是5岁.【点评】解答本题主要根据相邻自然数相差1,从60的质因数中找出这四个数.25.【分析】最外层每边都有6枚硬币,要求最外层一共有多少枚硬币,根据最外层点数=每边点数×4﹣4;代入数据即可解答.【解答】解:6×4﹣4=24﹣4=20(枚)答:最外层一共有20枚硬币.【点评】此题考查了方阵问题中:最外层点数=每边点数×4﹣4的灵活应用.26.【分析】设张亮的爸爸x岁,则妈妈的年龄是(x﹣6)岁,根据等量关系“爸爸、妈妈今年的岁数和是72”,列方程解答即可.【解答】解:设张亮的爸爸x岁,则妈妈的年龄是(x﹣6)岁,x+x﹣6=722x=78x=3939﹣6=33(岁)答:张亮的爸爸、妈妈今年分别是39岁、33岁.【点评】本题主要是考查年龄问题,首先要把题意弄清,再根据等量关系列出方程解答即可.27.【分析】此题可以把这个方形操队看做一个实心方阵问题来解决:无论是从前往后数还是从后往前数小明都第8个,那么每列8+8﹣1=15(人);无论是从左往右数还是从右往左数小明都是第12个,那么么每行有12+12﹣1=23(人),然后利用方阵的总点数=每边点数×每边点数,即可求得这个方阵共有多少人.【解答】解:8+8﹣1=15(人)12+12﹣1=23(人)15×23=345(人)答:三年级一共有345名同学参加会操活动.【点评】此题是考查了实心方阵的总点数=每边点数×每边点数在实际问题中的灵活应用.28.【分析】如图是每个方阵的情况,用6乘6求出每个方队的总人数,然后用6×4减去4求出最外圈举彩旗的人数,然后再乘4,就是举彩旗的同学一共有多少人;再用每个方队的总人数相减求出举彩旗的人数,求出每个方阵中举花束的人数,再乘4,就是举花束的一共有多少人.【解答】解:6×6=36(人)6×4﹣4=20(人)20×4=80(人)(36﹣20)×4=16×4=64(人)答:举彩旗的同学一共有80人,举花束的有64人.【点评】此题考查了方阵问题中:总点数=每边点数×每边点数;最外层四周点数=每边点数×4﹣4的灵活应用.29.【分析】年龄差26岁,相当于小明年龄的3﹣1=2倍,根据差倍公式求出小明的年龄,再求出爸爸的年龄即可.【解答】解:26÷(3﹣1)=26÷2=13(岁)13×3=39(岁)答:小明和爸爸今年分别是13岁、39岁.【点评】本题考查了年龄问题与差倍问题的综合应用,关键是找到数量差与它对应的倍数差,从而求出一倍的量.30.【分析】根据“四周人数=(每边人数﹣1)×4”代入数据即可求出三层的人数,然后相加即可.【解答】解:(13﹣1)×4+(11﹣1)×4+(9﹣1)×4=48+40+32=120(名)答:有120名同学.【点评】此题考查了方阵问题中:四周点数=(每边点数﹣1)×4的灵活应用.31.【分析】根据最外层人数=每边人数×4﹣4,先求出这个方阵的每边人数,再利用实心方阵总点数=每边点数×每边点数即可计算这个体操方阵的总人数.【解答】解:最外层每边人数:(24+4)÷4=28÷4=7(人)7×7=49(人)答:四年级体操队一共有49人.【点评】此题考查了最外层点数=每边点数×4﹣4,以及实心方阵总点数=每边点数×每边点数这两个计算公式的灵活应用.。

苏教版六年级数学下册第三单元《解决问题的策略》PPT课件(共4节,81页)

苏教版六年级数学下册第三单元《解决问题的策略》PPT课件(共4节,81页)

1
巧测灯泡容积
有一次,爱迪生把一只灯泡交给他的助手阿普顿,让他计算一下这
只灯泡的容积是多少。阿普顿拿着这只梨形的灯泡,打量了好半天,
又特地找来皮尺,上下量了尺寸,画出了各种示意图,还列出了一道 又一道的算式。一个钟头过去了。爱迪生着急了,跑来问他算出来了 没有。“正算到一半。”阿普顿慌忙回答,豆大的汗珠从他的额角上 滚了下来。“才算到一半?”爱迪生十分诧异,走近一看,哎呀,在 阿普顿的面前,好几张白纸上写满了密密麻麻的算式。 “何必这么复杂呢?”爱迪生微笑着说,“你把这只灯泡装满水, 再把水倒在量杯里,量杯量出来的水的体积,就是灯泡的容积。” “哦!”阿普顿恍然大悟。他飞快地跑进实验室,不到1分钟,没
探索提升
想一想:下面哪个图形的面积大?
数不准,算又难!怎么办?
探索提升
想一想:下面哪个图形的面积大?
探索提升
想一想:下面哪个图形的面积大?
探索提升
想一想:下面哪个图形的面积大?
探索提升
想一想:下面哪个图形的面积大?
探索提升
想一想:下面哪个图形的面积大?
探索提升
想一想:下面哪个图形的面积大?
司马光急中生智,砸破水缸, 救出同伴。
司马光砸缸救人
转化
人离开水 水离开人
曹冲称象
曹冲灵机一动,称大象转化为称石头。
回顾:
在以前的学习中,我们经常运用转
化的策略解决问题,比如说一些图形的 面积公式、体积公式的推导,你能想起 来吗?
自己先想一想,然后跟小组的伙伴交流。
s

s

s

v

数的计算
练习

复杂的问题
拓展应用
(共同探讨)

六年级下册数学讲义 小升初之解决问题的策略专题复习 苏教版(含答案)

六年级下册数学讲义   小升初之解决问题的策略专题复习   苏教版(含答案)

小升初专题复习之解决问题的策略教学目标掌握解决问题的策略教学重难点找出解题方法,理清数量关系教学内容【知识点总结】一、题型1.画图2.倒推3.列举4.假设5.转换【题型一】画图【典例精讲】【例1】一个长方形草坪,长90米,扩建后长增加了20米,面积增加了1400平方米。

原来这个草坪的面积是多少平方米(先在图上画一画,再解答)?【例2】一正方形的边长增加3厘米,则面积增加51平方厘米。

原来正方形的周长是多少厘米?现在正方形的面积是多少平方厘米?【例3】 把一条长100厘米的彩带剪成三段,第二段是第一段的2倍,第三段比第二段长10厘米。

第一段彩带长多少厘米(先把线段补充完整,再解答)? 第一段: 第二段: 第三段:【例4】一个书架有上、下两层,下层书的本数是上层书本数的52。

如果把上层的书搬30本放到下层,那么两层书的本数同样多。

原来上、下两层各有多少本书(先把线段图补充完整,再解答)? 上层: 下层:【例5】盒子里有黑、白两种颜色的围棋子共170枚,拿出白棋子的 ,再拿出8枚黑棋子,则剩下的白棋子和黑棋子一样多。

盒子里原来有白棋子多少枚(先把线段补充完整,再解答)?【题型二】 倒推51【例1】有1克、2克、4克和8克的砝码各一个,最多能称出()种不同质量的物体(砝码只能放在一边)。

A.6 B.14 C.15 D.64【例2】如果a与b的和是21(a、b为非零自然数),那么a与b两个数相最多相差()。

【例3】如下图,沿线从点A到点B,最近的路线一共有()条。

【例4】把18根1米长的小棒拼成一个长方形,有()种不同的拼法,拼成的长方形中面积最大的是()平方米,最小的是()平方米。

【例5】把1用15米长的篱笆围成长方形菜地(如下图),一面靠土墙(土墙足够长),边长都取整米数。

怎样为菜地的面积最大?请你用下面的表格试一试。

篱笆/m 15 15 15 15 15 15 15a/m 13b/m 1面积/m2当a是()m,b是()m时,所围成的菜地面积最大。

2020-2021学年苏教新版数学六年级下册期末学业考复习第三章《解决问题的策略》章节常考题集锦(解析版)

2020-2021学年苏教新版数学六年级下册期末学业考复习第三章《解决问题的策略》章节常考题集锦(解析版)

2020年苏教新版数学六年级下册重难点题型训练第三章《解决问题的策略》章节常考题集锦一、单选题1.“鸡兔同笼”问题是我国古代的数学名题之一,《孙子算经》中记载的题目是这样的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”,同学们,你得出的这个古代名题的结果是().A. 鸡23只兔12只B. 鸡12只兔23只C. 鸡14只兔21只【答案】 A【解析】【解答】解:假设都是鸡,则兔:(94-2×35)÷(4-2)=12(只)鸡:35-12=23(只)故答案为:A.【分析】假设都是鸡,则足数为35×2=70只,比实际少94-70=24只,因为每只鸡比每只兔少4-2=2只足,所以兔的只数是24÷2=12只,进而用减法即可求出鸡的只数。

2.鸡兔同笼,有8个头,26只脚,鸡有()只.A. 5B. 3C. 8D. 26【答案】 B【解析】【解答】解:假设全是兔子则有鸡:(8×4﹣26)÷(4﹣2)=6÷2=3(只);答:鸡有3只.故选:B.【分析】假设全是兔子则有脚8×4=32只,实际比假设少32﹣26=6只,这是因每只鸡比每只兔子少了4﹣2=2只脚,据此可求出鸡的只数.3.琳琳有2角和5角的人民币共20张,币值总额为5.8元。

其中2角的人民币有( )张。

A. 6B. 14C. 29【答案】 B【解析】【解答】解:5.8元=58角,(20×5-58)÷(5-2)=42÷3=14(张)故答案为:B。

【分析】5.8元=58角,假设都是5角的,则总钱数是20×5,一定大于58角,是因为把2角的也当作5角的来计算了,每张2角的多算了(5-2)角,这样用一共多算的钱数除以每张2角的多算的钱数即可求出2角的张数。

4.在英语竞赛中,做对一题得10分,做错一题倒扣4分,共有15题。

李晓得了108分,他做错了()题。

第三单元《解决问题的策略》(原卷+解析)2022-2023学年六年级数学下册同步重难点讲义(苏教版)

第三单元《解决问题的策略》(原卷+解析)2022-2023学年六年级数学下册同步重难点讲义(苏教版)

第三单元《解决问题的策略》(原卷+解析)2022-2023学年六年级数学下册同步重难点讲义精讲精练(苏教版)教学目标:1. 掌握“找规律”和“设未知数”两种解决数学问题的策略。

2. 能够运用所学策略解决简单的数学问题。

3. 培养学生的数学思维能力和解决问题的能力。

教学重点:1. 引导学生掌握“找规律”和“设未知数”两种解决数学问题的策略。

2. 教育学生养成良好的数学思维和解决问题的习惯。

教学难点:1. 如何让学生在数学问题中灵活运用所学策略。

2. 如何引导学生养成良好的数学思维和解决问题的习惯。

教学准备:1. 教案、课件、数学书、白板、笔。

2. 一些简单的数学问题作为教学案例。

3. 纸和铅笔供学生练习。

教学过程:Step1:引入新课1. 教师先引导学生回忆上一单元所学内容,并与本单元进行对比,引出本节课的学习主题——解决问题的策略。

2. 教师给学生出几个简单的数学问题,让学生思考怎么解决这些问题,再让学生说说自己的思路。

(例如:小明有7个苹果,小红给了他4个苹果,请问现在小明有多少个苹果?)3. 学生们纷纷表示可以把7和4相加得到答案11。

Step2:介绍“找规律”解决问题的策略。

1. 为了更好地引导学生掌握找规律的策略,教师将上一节课的题目再次呈现给学生们看:小明有7个苹果,小红给了他4个苹果,请问现在小明有多少个苹果?2. 教师引导学生思考还有什么另外的办法可以解决这个问题。

3. 学生们表示可以用找规律的方法来解决这个问题。

4. 教师言简意赅地给学生介绍了找规律的解题步骤,并给出了样例:(例如:有1个苹果,小红给了2个苹果,小明给了3个苹果,请问现在有多少个苹果?)Step3:让学生练习用“找规律”解决数学问题。

1. 教师给学生们出一些简单的数学问题,让学生自行运用找规律的策略解决问题,鼓励大家多举一些例子。

(例如:小华有5元钱,他去买了1根香蕉,2个苹果和3瓶饮料,他还剩下多少钱?)2. 学生们发现,题目中有金额,且其中含有减法运算,可以将所买物品的总价用加法计算出来,再用总金额减去总价,即可得到所剩余额。

苏教版小学数学六年级下册第三单元 解决问题的策略

苏教版小学数学六年级下册第三单元  解决问题的策略

大象的重量
曹冲பைடு நூலகம்象
转化成
石块的重量
答案
秤出石块的重量
学习目标
1.学会用转化的策略寻求解决问题的思路,并能根据具体 的问题确定合理的解题方法,从而有效地解决问题。 2.能把转化策略与以前学过的解决问题的方法进行比较, 体会转化策略的内在价值,进一步增强解决问题的策略意 识,提高从不同角度分析问题的能力。 3.获得解决问题的成功体验,提高学好数学的自信心。
3=7(0 只)
7
7
公鸡总数:70 4 =4(0 只) 7
公鸡 母鸡
随堂训练
张阿姨将59张卡片给13个小朋 友,有的分到3张,有的分到7张, 这些卡片正好分完,分到3张、7张 的各有多少人?
分到3张的人数:(13×7-59)÷(7-3)=8(人) 分到7张的人数:13-8=5(人)
答:分到3张的有8人,分到7张的有5人。
课后小结
通过这节课的学习活动,你有什么 收获?
课后作业
1.从教材习题中选取, 2.完成练习册本课时的习题.
全班42人去公园划船,租10只船正好坐满。 每只大船坐5人,每只小船坐3人。租的大 船、小船各有多少只?
解决这个问题,你准 备选择什么策略?
画图法 列举法 假设法
画图法
列举法
假设法
全班42人去公园划船,租10只船正好坐满。 每只大船坐5人,每只小船坐3人。租的大 船、小船各有多少只?
解答并检验。
回顾解决问题的过程,你有什么体会?
画图、列举、 先假设再调整都 是解决问题的有 效策略。
分析和解决同 一个问题,可以 用不同的策略。
要学会根据具 体问题灵活选择 策略。
随堂练习
鸡和兔一共有8只,它们的腿有22条。鸡 和兔各有多少只?

小学数学六年级下学期第3讲--解决问题的策略(教师版)苏教版

小学数学六年级下学期第3讲--解决问题的策略(教师版)苏教版

第3讲解决问题的策略热点难点选择策略解决实际问题考点1:选择策略解决分数和比的实际问题(1)画图、列举、转化、先假设再调整等都是解决问题的有效策略。

(2)分析和解决同一个问题,可以用不同的策略。

解决问题时,根据实际问题的特点,灵活选择合适的策略去思路分析数量关系,确定解题思路。

例1.(2019•揭阳)小明读一本书,上午读了110,下午比上午多读6页,这时已读的页数与未读的页数之比是1:3,这本书一共有多少页?【思路分析】把这本书的总页数看作单位“1”,根据“已读的页数与未读的页数的比是1:3”可知上午和下午已经读了这本书的14,又已知上午读了110,下午读了1 10多6页,由此即可得出这个“6页”所对应的份数是112410-⨯,由此即可列出算式解决问题.【规范解答】解:134+=,所以已读页数是这本书的14,116(2)410÷-⨯1620=÷120=(页),答:这本书一共有120页.【名师点评】本题考查了比的应用,根据题干,找出6页所对应的分率,是解决本题的关键.【举一反三】1.(2019秋•蓝山县期中)看一本书,第一天读的页数与未读页数的比是1:3,第二天看了36页,这时已读的与未读页数的比是2:3,这本书有多少页?【思路分析】把这本书的页数看作单位“1”,由“第一天读的页数与未读页数的比是1:3”可知,第一天看了全部的113+,又因为第二天看了36页,这时已读与未读页数的比是2:3得出:这时已读了全书的223+,所以36页就占全书的21()2313-++,用除法即可求出单位“1”的量,即全书的页数. 【规范解答】解:2136()2313÷-++ 2136()54=÷- 33620=÷ 240=(页)答:这本书有240页.【名师点评】解决此题的关键是把比转化为分数,统一单位“1”,求出36页的对应分率,用对应量除以对应分率就是这本书的总页数.2.(2019秋•荥阳市期中)水果店购进苹果和梨共420千克,其中苹果占总数的57.后来又购进一批苹果后,苹果的质量与梨的质量比是5:1,水果店又购进苹果多少千克?【思路分析】把“苹果和梨共420千克”看作单位“1”,已知苹果占总数的57,则梨占52177-=,根据分数乘法的意义分别求出苹果和梨的质量; 又购进一批苹果后,梨的质量未变,根据“苹果的质量与梨的质量比是5:1”可知这时苹果是梨的5倍,求出苹果的总质量,再减去之前的苹果质量则可求出又购进的苹果质量.【规范解答】解:55420(1)542077⨯-⨯-⨯ 242053007=⨯⨯- 600300=-300=(千克)答:水果店又购进苹果300千克.【名师点评】明确这一过程中梨的质量没有发生变化,通过后来梨和苹果的比求出增加苹果后的苹果总质量是完成本题的关键.3.(2019秋•洪泽区期末)学校买来一批图书要分给四、五、六年级,四年级分得总数的15,剩下的按3:4分给五、六年级.六年级分得的图书比四年级多90本.这批图书共多少本?【思路分析】根据题意可知,四年级分得总数的15,剩下总数的14155-=,剩下的按3:4分给五、六年级.可求出六年级分的本数占总数得分率,六年级分得的图书比四年级多90本.求出这90本对应的分率,再用除法规范解答即可.【规范解答】解:14190[(1)]5345÷-⨯-+ 16190()355=÷- 99035=÷ 350=(本)答:这批图书共350本.【名师点评】解决此题的关键是确定单位“1”,求出90本对应总数的分率,求单位“1”的量,用除法计算.考点2:选择策略解决鸡兔同笼问题例2.(2019秋•普陀区期中)学校进行了一次数学竞赛,共20题,做对一题得5分,做错一题或没做一题不得分并且扣2分,小明最后得了86分,他做对了几题?(必须要有计算过程)【思路分析】根据“每答对一道得5分,做错一道题或不答扣2分,”可知:做错或不答一题比做对一题少得257⨯=(分);+=分;全部做对20道题共得205100假设全部做对得分是100分,比86分多得1008614-=(分),那么做错或不答的数量:1472÷=(道);然后进一步规范解答即可.【规范解答】解:做错或不答:⨯-÷+(52086)(25)=÷147=(道)2-=(道)20218答:他做对了18题.【名师点评】解决鸡兔同笼问题往往用假设法规范解答,有些应用题中有两个或两个以上的未知量,思考问题时,可以假设要求的两个或两个以上的未知量相等,或假设它们为同一种量,然后按照题中的已知条件进行推算,如果数量上出现矛盾,可适当调整,以求出正确的结果.【举一反三】1.(2019秋•苍溪县期中)某公司委托搬运站送1000个玻璃花瓶,双方商定每个运费0.15元,如打碎一个,这个不但不计运费,还要赔偿0.95元.结果搬运站共得搬运费145.6元.搬运过程中打碎了几个玻璃花瓶?【思路分析】假设一只也没打破,将会获得运费:0.151000150⨯=(元),而实际共得运费145.6元,两者相差了:150145.6 4.4-=(元),因为每打破一只玻璃花瓶就会少得运费:0.950.15 1.1+=(元),因此根据这两个差可以求出打破的玻璃花瓶的只数,列式为:4.4 1.14÷=(个),据此规范解答.【规范解答】解:(10000.15145.6)(0.950.15)⨯-÷+=÷4.4 1.1=(个)4答:搬运过程中打碎了4个玻璃花瓶.【名师点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行思路分析,进而得出结论;也可以用方程进行规范解答.2.100个和尚吃100个馒头.大和尚1人吃3个,小和尚3人吃1个.问:大、小和尚各多少人?【思路分析】假设全是大和尚,那么一共需1003300⨯=个馒头,实际只有100个馒头,少了200个,每个大和尚比小和尚多吃1-个馒头,用少的馒头数除以(3)31-就是小和尚的人数,进而求出大和尚的人数.(3)3【规范解答】解:小和尚每人吃:113÷=(个)3假设全是大和尚,一共需馒头:1003300⨯=(个)小和尚的人数就是1-÷-(300100)(3)322002=÷3=(个)75大和尚的人数就是:1007525-=(个)答:大和尚有25个,小和尚有75个.【名师点评】本题是中国古代一个有名的数学问题,可以看成鸡兔同笼的问题,用假设法进行规范解答.3.(2019•益阳模拟)学校有象棋、跳棋共26副,2名学生下1副象棋,6名学生下1副跳棋,恰好可以同时供120名学生活动.象棋与跳棋各有多少副?【思路分析】假设全部为跳棋,一共有:266156-=人,⨯=人,比实际多了15612036这是因为我们把下象棋的人当作了下跳棋的人,每副多算了:624-=人;所以有象棋:3649-=(副);据此规范解答.÷=(副),那么跳棋就为:26917【规范解答】解:假设全部为跳棋,象棋:(266120)(62)⨯-÷-364=÷=(副)9跳棋:26917-=(副)答:象棋有9副,跳棋有17副.【名师点评】解决鸡兔同笼问题往往用假设法规范解答,有些应用题中有两个或两个以上的未知量,思考问题时,可以假设要求的两个或两个以上的未知量相等,或假设它们为同一种量,然后按照题中的已知条件进行推算,如果数量上出现矛盾,可适当调整,以求出正确的结果.A基础训练1.(2019秋•汉川市期中)甲、乙两数的平均数是18,甲、乙两数的比是5:4,甲数是20,乙数是.【思路分析】根据“甲乙两个数的平均数是18”可以求出甲乙两数的和是182⨯,再根据“甲数与乙数的比是5:4”,利用按比例分配的方法即可求出一份是多少,然后分别乘甲数和乙数的份数,进而求得甲数和乙数.【规范解答】解:182(54)⨯÷+369=÷4=4520⨯=4416⨯=答:甲数是20,乙数是16.故答案为:20、16.【名师点评】先依据平均数的意义求出两个数的和,再根据按比例分配的方法,先求得1份数是多少,是解题的关键.2.(2019秋•东莞市期中)一种合金是由铝和铁按4:1的质量比熔铸而成的.现有铝20kg ,需要加铁 5kg ,才能熔成这种合金,如果要熔铸这种合金1000kg ,需要铝 kg . 【思路分析】(1)由题意可知:现有铝20kg 相当于4份,然后用除法求出每份的质量,就是铁的质量;(2)由“铝和铁按4:1的质量比熔铸”,即铝占合金的441+,由此用乘法列式求出需要铝的重量.【规范解答】解:(1)2045÷=(千克)(2)4100080041⨯=+(千克) 答:现有铝20kg ,需要加铁5kg ,才能熔成这种合金,如果要熔铸这种合金1000kg ,需要铝800kg .故答案为:5,800.【名师点评】此题主要考查按比例分配应用题的特点:已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配规范解答.3.(2019秋•洪泽区期末)王大爷家养了一些兔子,白兔只数的2与黑兔只数相3等,黑兔只数与灰兔只数的比是4:5,若灰兔养了60只,则白兔养了72只,黑兔养了只.【思路分析】根据题意可知,黑兔只数与灰兔只数的比是4:5,也就是黑兔只数,已知灰兔有60只,根据一个数乘分数的意义,用乘法求出黑兔是灰兔只数的45与黑兔只数相等,再根据已知一个数的几分之几是多的只数,又知白兔只数的23少,求这个数,用除法求出白兔的只数.【规范解答】解:46048⨯=(只)52÷4833=⨯482=(只)72答:白兔养了72只,黑兔养了48只.故答只能为:72、48.【名师点评】此题考查的目的是理解比的意义,掌握比与分数之间的联系及应用.4.(2019秋•渭滨区期末)电影院在一小时内售出甲、乙两种票共12张,甲种票30元一张,乙种票25元一张,共收入335元,其中售出甲种票7张,乙种票张.【思路分析】假设全是买的乙种票,则一共要花掉1225300⨯=元,已知实际花掉了335元,少了33530035-=元,所以甲-=元,因为1张乙种票比1张甲种票少30255种票有3557÷=张,然后进一步规范解答即可.【规范解答】解:假设全是买的乙种票,则甲种票有:-⨯÷-(3351225)(3025)=÷3557=(张)乙种票:1275-=(张)答:其中售出甲种票7张,乙种票5张.故答案为:7,5.【名师点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行思路分析,进而得出结论;也可以用方程进行规范解答.5.(2019秋•南康区期末)王老师带领五(1)班50名同学参加植树.王老师一人栽5棵,男生一人栽3棵,女生一人栽2棵,总共栽树苗120棵.请问全班男生和女生分别有15名和名.【思路分析】假设都是女生,则可以栽502100⨯=棵,除去老师栽的5棵,这样少载了120510015-=棵,则男生有15115÷=人;--=棵;因为一名女生比一名男生少栽321进而得出女生人数.【规范解答】解:男生:(1205250)(32)--⨯÷-=÷151=(名)15女生:501535-=(名)答:有15名男生,35名女生.故答案为:15;35.【名师点评】此题属于典型的鸡兔同笼问题,规范解答此类题的关键是用假设法,也可以用方程进行规范解答.6.(2019•永州模拟)某班女生人数与男生人数的比是4:5,最近又转进1名女生,这时女生人数是男生人数的56,现在全班有学生()A.30人B.25人C.45人D.55人【思路分析】根据题意可知:某班女生人数与男生人数的比是4:5,也就是女生人数是男生人数的45,最近又转进1名女生,这时女生人数是男生人数的56,由此可以求出又转了的1名女生占男生人数的54()65-,根据已知一个数的几分之几是多少,求这个数,用除法求出男生人数,再根据一个数乘分数的意义,用乘法求出现在的女生人数,然后把男生、女生人数合并起来即可.【规范解答】解:541()65÷-25241()3030=÷-1130=÷30=(人),530306+⨯3025=+55=(人),答:现在全班有学生55人.故选:D.【名师点评】此题考查的目的是理解比的意义,掌握比与分数之间的联系及应用,由于男生人数没变,所以先求出男生人数,再求出现在的女生人数.7.(2019•天津)把一个长6cm,宽3cm的长方形的各边按3:1的比扩大画到图纸上,图纸上长方形的面积是(2)cm.A.2B.6C.54D.162【思路分析】此题要先求出放大后的长和宽,然后根据“长方形的面积=长⨯宽”即可得出.【规范解答】解:6318⨯=(厘米)⨯=(厘米)339⨯=(平方厘米)189162答:得到的图形的面积是162平方厘米.故选:D.【名师点评】此题考查的是对比例尺知识的应用,要明确比例尺、图上距离和实际距离的关系.8.(2019秋•龙华区期末)一场篮球比赛,一名队员总共投中了11个球,只有两分球和三分球,得了28分.他两分球投中了()个.A.4B.5C.6D.7【思路分析】假设投中的全部是3分球,可得:31133⨯=(分),比实际得的28分多:33285-= -=(分),是因为我们把每个2分球当作了3分球,每个球算了321分,所以可以求出2分球的个数:515÷=(个),据此规范解答.【规范解答】解:假设投中的全部是3分球,2分球的个数:⨯-÷-(31128)(32)=÷51=(个)5答:他两分球投中了5个.故选:B.【名师点评】本题属于鸡兔同笼问题的综合应用,可以利用假设法来规范解答,是这种类型应用题的规范解答规律.B.拓展提高9.(2019秋•东莞市期末)有一工程队铺路,第一天铺了全程的15,第二天铺了余下的14,第三天铺的是第二天工作量的34.还剩下9千米没有铺完.求: (1)第三天铺了全程的几分之几?(2)这条路全长多少千米?【思路分析】(1)把这条路的长度看作单位“1”,第一天铺了全程的15,还余下程的1(1)5-,根据分数乘法的意义,第二天铺了全程的11(1)54-⨯,第三天铺了全程的113(1)544-⨯⨯. (2)根据分数除法的意义,用还剩下的长度除以剩下部分所占的分率(1减去前三天铺的长度所占全程的分率)就是这条路的全长.【规范解答】解:第二天铺了全程的:11(1)54-⨯ 4354=⨯ 15= 第三天铺了全程的1335420⨯= 答:第三天铺了全程的320.(2)1139(1)5520÷--- 9920=÷20=(千米)答:这条路全长20千米.【名师点评】求一个数的几分之几是多少,把这个数看作单位“1”,用这个数乘分率;已知一个数的几分之几是多少,把这个数看作单位“1”,用已知量除以它所占的分率.10.(2019秋•临河区期中)大象的寿命是70年,老虎的寿命是大象的4,蓝鲸7的寿命是老虎的8倍.蓝鲸最多可活多少年?5,是把大象的寿命看成单位“1”,用大象的【思路分析】老虎的寿命是大象的47即可求出老虎的寿命;再把老虎的寿命看成单位“1”,蓝鲸的寿命是老寿命乘47倍,再用老虎的寿命乘这个分率,即可求出蓝鲸的寿命.虎的85【规范解答】解:48⨯⨯70758=⨯405=(年)64答:蓝鲸最多可活64年.【名师点评】规范解答此题的关键是分清两个不同的单位“1”,已知单位“1”的量,求它的几分之几是多少用乘法求解.11.(2019秋•吉水县期中)一件衬衣、一条裤子和一双鞋的价格比是2:3:5,已知一条裤子的价格是126元,衬衣和鞋子各多少元?【思路分析】根据衬衣、裤子和鞋的价格比可知:如果裤子的价钱需要3份的钱,则衬衣的价钱就需要2份的钱,鞋子的价钱就需要5份的钱,用126除以3求出一份是几元,然后用乘法分别求出衬衣和鞋子的单价.【规范解答】解:126342÷=(元)衬衣:42284⨯=(元)鞋子:425210⨯=(元)答:衬衣84元,鞋子210元.【名师点评】此题也可以运用比的知识进行规范解答,先求出裤子的单价占衬衣、裤子、鞋子总价的几分之几,进而根据已知一个数的几分之几是多少,用除法求出衬衣、裤子、鞋子总价,然后根据一个数乘分数的意义,用乘法分别计算即可.12.(2019秋•汉川市期中)两地相距816千米,客车和货车同时从两地相对开出,6小时相遇,已知客车和货车的速度比是10:7.客车每小时比货车多行多少千米?【思路分析】由总路程和客货车的相遇时间,先求出客车和货车的速度和,又已知客车和货车速度的比,由此利用按比例分配求得客车、货车的速度,最后规范解答问题.【规范解答】解:客车和货车的速度和:8166136÷=(千米), 客车的速度:1013680107⨯=+(千米), 货车的速度:713656107⨯=+(千米), 客车每小时比货车每小时多的:805624-=(千米);答:客车每小时比货车每小时多走24千米.【名师点评】此题重在根据路程÷相遇时间=速度和,再由速度比,用按比例分配求得两个数量,此后再求这两个数量之间的关系,规范解答时一定要抓住题目的特点.13.(2019秋•博兴县期末)六年级一、二、三3个班献爱心捐书,一班捐的本数是三个班总数的25,二、三两个班捐的本数比是4:3.已知三个班捐书总数为700本.求三班捐了多少本?【思路分析】把六年级三个班捐书的总数看作单位“1”,一班捐的本数是三个班总数的25,根据一个数乘分数的意义,用乘法即可得出一班捐的本数,用总数减去一班捐的本数就是二班和三班共捐书多少本,已知二、三两个班捐的本数比是4:3,也就是三班捐书的本数占二、三班捐书本数的343+,根据一个数乘分数的意义,用乘法即可求得三班捐了多少本.【规范解答】解:27002805⨯=(本) 3(700280)43-⨯+ 34207=⨯ 180=(本)答:三班捐书180本.【名师点评】此题考查的目的是理解掌握比的意义及应用,以及比与分数之间的联系及应用.14.(2019•江西模拟)某运输工搬运1000只花瓶,规定每只运费0.4元,如果打碎一只不但不给运费,还要赔1.6元.某运输工运完后得到运费360元,他打碎了几只花瓶?【思路分析】损坏一只,不给运费,还要赔偿1.6元,那么每损坏一只就要少收入1.60.42+=元;先求出应付的运费钱数,然后求出实际少付了多少钱,用实际少付的钱数除以每损坏一只就要少收入的钱数就是损坏花瓶的只数.【规范解答】解:10000.4360⨯-400360=-40=(元)40(0.4 1.6)÷+402=÷20=(只)答:他打碎了20只花瓶.【名师点评】解决本题关键是求出每损坏一只花瓶少收入的钱数,再由少收入的总钱数与每损坏一只花瓶少收入的钱数之间的关系求解.15.(2019•湖南模拟)小红规范解答15道数学竞赛题,每做对一题得8分,不做或做错一题扣4分.小红共得72分.她做对几道题?【思路分析】如果全做对应该得815120⨯=分,针对一道题来说,做对得8分,做错扣4分,我们发现做错一题就等于少得4812+=分,小红得了72分,少得-=分,看48里面有几个12,就做错了几道题.用15减去做错的就是做1207248对的数量.【规范解答】解:假设全部做对,则做错的数量为:⨯-÷+(81572)(48)=-÷(12072)12=÷48124=(道)做对:15411-=(道)答:她做对了11道题.【名师点评】此题属于典型的鸡兔同笼问题,规范解答此类题的关键是用假设法进行思路分析比较,进而得出结论;也可以用方程,设其中的一个数为未知数,另一个数也用未知数表示,列出方程规范解答即可.16.(2019•郴州模拟)放学时,妈妈给小芸送伞,母女俩同时从家和学校出发相向而行,当妈妈走到全程的1时,小芸走了320米,已知妈妈与小芸的速度比3是5:4,求小芸家到学校的路程.【思路分析】本题时间一定,速度的比就是路程的比,妈妈与小芸的速度比是5:4,那么妈妈与小芸行走的路程比就是5:4,又由于小云走了320千米,那么妈妈走了53204⨯,是全程的13,此题得解. 【规范解答】解:5132043⨯÷ 14003=÷ 1200=(米)答:小芸家到学校的路程是1200米.【名师点评】此题关键是理解妈妈与小芸的速度比就是两人的路程比.C.挑战名校17.(2019秋•忻州期中)小毛参加数学竞赛,共做20道题,得64分,已知做对一道得5分,不做得0分,错一题扣2分,又知道他做错的题和没做的一样多.问小毛做对几道题?【思路分析】根据题意,运用鸡兔同笼问题原理,设x 道题错了,则x 道题没做,(202)x -道题做对了,列方程为:(202)5264x x -⨯-⨯=,解方程可求出做错的题目数,然后求做对的道数即可.【规范解答】解:设x 道错了,x 道没做,(202)x -道做对了,则(202)5264x x -⨯-⨯=1236x =3x = 2032-⨯206=- 14=(道)答:小毛做对14道题.【名师点评】本题主要考查鸡兔同笼问题,关键根据题意,利用假设法,先求出做错的题数,再求做对的题目数.18.(2019•泉州)某玻璃厂委托运输公司运送4000块玻璃,每块运费0.4元.如果损坏一块玻璃,得不到运费外,还得赔偿7元.最后运输公司得到运费1422.4元.请问:运输公司共损坏了多少块玻璃?【思路分析】通过思路分析可知:因为损坏一块玻璃需要扣除0.4元以外还要加扣7元,就是一共需要扣钱70.47.4⨯=+=(元).如果一块不损坏可得40000.41600(元),现在实际得运费1422.4元,那么赔偿的运费为应得运费-实得运费,损失的块数=赔偿运费÷每块赔偿的运费.故损坏的玻璃块数=(赔偿的运费为应得运费-实得运费)÷每块赔偿的运费【规范解答】解:40000.41422.4)(70.4)⨯-÷+=÷177.67.4=(块)24答:运输公司共损坏了24块玻璃.【名师点评】此题属于典型的鸡兔同笼问题,规范解答此类题的关键是用假设设法进行思路分析比较,进而得出结论;也可以用方程,设其中的一个数为未知数,另一个数也用未知数表示,列出方程规范解答即可.19.(2019•江宁区)在刚刚结束的2019年德国世界乒乓球锦标赛当中,我国运动员共获得四项冠军.某天正式比赛前,场地上有15张乒乓球桌,共有42位选手在比赛场地进行单打和双打的适应性训练,请问:进行双打适应性训练的乒乓球桌共有多少张?【思路分析】假设全是双打桌,则有15460⨯=(人),而比实际多604218-=(人),因为每张单打桌比每张双打桌少422-=人,所以单打桌有1829÷=(张).双打桌有1596-=(张)据此规范解答即可.【规范解答】解:假设全是双打桌,则单打桌有:(15442)(42)⨯-÷-182=÷9=(张)1596-=(张)答:进行双打适应性训练的乒乓球桌共有6张.【名师点评】此题属于典型的鸡兔同笼问题,规范解答此类题的关键是用假设设法进行思路分析比较,进而得出结论;也可以用方程,设其中的一个数为未知数,另一个数也用未知数表示,列出方程规范解答即可.20.(2019•广州模拟)在虎门镇阳光体育启动仪式上,虎门外语学校共有370名中学学加长跑活动,分成男生与女生2个组,如果男生组人数增加本组的13,女生组人数减少20人,则两组人数相同,男女各有多少人参加这次长跑活动?【思路分析】设原来男生组有x 人,那么女生组就有(370)x -人,依据题意:男生组的人数1(1)3⨯+=女生组人数20-人,可列方程:1(1)370203x x +=--,依据等式的性质即可规范解答.【规范解答】解:设原来男生组有x 人,那么女生组就有(370)x -人,依据题意可得方程:1(1)370203x x +=-- 43503x x =-73503x =150x = 370150220-=(人)答:男生组有150人,女生组有220人.【名师点评】此题考查列方程解应用题,关键是根据题意找出基本数量关系,设未知数为x ,由此列方程解决问题.21.(2019•广州)工程队用3天修完一段路,第一天修的是第二天的910,第三天修的是第二天修的65倍,已知第三天比第一天多修270米,这段路长多少米?【思路分析】把第二天修的长度看作单位“1”,第一天修的是第二天的910,第三天修的是第二天的65倍,已知第三天比第一天多修的270米对应的分率是59()610-,根据分数除法的意义,因此第二天修了59270()900610÷-=(米).然后根据三天所修路之间的关系,求出全长即可.【规范解答】解:第二天修了:69270()510÷- 327010=÷ 900=(米)这段路长:96900900900105⨯++⨯ 8109001080=++2790=(米)答:这段路长2790米.【名师点评】此题解决的关键是把第二天修的长度看作单位“1”,求出第二天修的米数.22.(2019•郴州模拟)服装城以85元一套的价格购进一批服装,以130元一套时,已收回全部进款还获利润1710元,该服的零售价出售,当卖出这批服装的45装城一共购进这种服装多少套?,如果看成全部卖出,那么每套的零售价也相当于130【思路分析】只卖出了45,先用此时每套的零售价减去进价,求出每套可以赚的钱数,再用获利的元的45总钱数除以每套获利的钱数,即可求出该服装城一共购进这种服装多少套.【规范解答】解:4÷⨯-1710(13085)5=÷171019=(套)90答:该服装城一共购进这种服装90套.【名师点评】解决本题也可以运用方程的方法求解,设该服装城一共购进这种服装x套,则卖出的总价是4130x⨯元,总进价是85x元,根据卖出的总价-总进价=获5得的利润列出方程求解.23.(2019•宿迁模拟)盒子里有三种颜色的球,黄球个数与红球个数的比是2:3,红球个数与白球个数的比是4:5.已知三种颜色的球共175个,红球有多少个?【思路分析】由“黄球个数与红球个数的比是2:3,红球个数与白球个数的比是4:5”可推出黄、红、白球之比为8:12:15,然后求出三种球分别占总数的几分之几,再根据乘法的意义,列式规范解答即可.【规范解答】解:黄、红、白球之比:(24):(34):(53)8:12:15⨯⨯⨯=++=812153512⨯=(个)1756035答:红球有60个.【名师点评】规范解答此题的关键是推出黄、红、白球之比,找准对应量,根据数量关系,列式规范解答即可.24.(2019•福建模拟)两筐苹果共130千克,如果把甲筐苹果的16放入乙筐,这时甲乙两筐苹果的重量比是7:6,甲、乙两筐原来各有苹果多少千克?【思路分析】如果将甲筐苹果的16装入乙筐,则此时甲筐还剩下全部的116-,又这时甲、乙两筐苹果的质量比是7:6,即此时甲筐占总量的776+,所以此时甲筐有713076⨯+千克,则甲筐原有:71130(1)766⨯÷-+(千克),进而求出乙筐原有多少千克.【规范解答】解:71130(1)766⨯÷-+ 5706=÷ 84=(千克)1308446-=(千克)答:甲筐原来有苹果84千克,乙筐原来有苹果46千克.【名师点评】首先根据将甲筐苹果的16放入乙筐后,这时甲、乙两筐苹果的质量比求出甲筐此时占总数的分率是完成本题的关键.。

苏教版六年级下册数学教学案 解决问题的策略 含答案

苏教版六年级下册数学教学案 解决问题的策略 含答案

根据上述表格的计算 , 我们发现少了 2 人 , 原因 是 小 船 多 了 一 条 , 把
������������������
������������������������������������������������������������������������������������������������������������������������������������������������������������ 在遇到比较困难的题目的时候 , 我 们 需 要 用 到 画 图㊁ 列 表㊁ 假设等等策略帮
人, 女生有
人㊂
法, 根据分率条件求出男 ㊁ 女生人数的比 , 再按比 例 分 配 ㊂ 也 可 以 用 方 程 的方法来解答 ㊂ ʌ 也就 方法精析 ɔ 方法一 : 通过画图的策略 , 男生 人 数 是 女 生 的 2 , 3
占女生的分率转化成占总人数的分率 , 再进行解答 ㊂ 可 以 转 化 成 比 的 方
知能点 2 选择合适的策略解决实际问题 ㊂
ʌ 问题切入 ɔ 全班 4 租1 2 人去公园划船 , 0 只 船 正 好 坐 满㊂每 只 大
大船只数 9 8
小船只数 1 2
乘坐的总人数 9ˑ5+3=4 8
和4 2 人比较 多了 6 人
大船只数 5
小船只数 5
乘坐的总人数 5ˑ5+5ˑ3=4 0
和4 2 人比较 少了 2 人
ʌ 方法精析 ɔ 方法一 : 通过画图的策略 , 先画1 再 0只大船坐5 0 人,
序列举 ㊂
方法二 : 通过列表的策 略 , 从 大 船 有 9 只, 小 船 有 1 只 开 始, 进行有 大船只数 9 8 7 6 小船只数 1 2 3 4 乘坐的总人数 8ˑ5+3ˑ2=4 6 7ˑ5+3ˑ3=4 4 6ˑ5+3ˑ4=4 2 9ˑ5+3=4 8 和4 2 人比较 多了 6 人 多了 4 人 多了 2 人 正好

2019-2020学年苏教版六年级下册期末数学同步复习小升初《解决问题的策略》专题讲义

2019-2020学年苏教版六年级下册期末数学同步复习小升初《解决问题的策略》专题讲义
3.小刚:96元;小红:72元
【解析】
【分析】
先认真读懂题意,分析清楚题目中的数量关系,设小刚储蓄x元,则小红储蓄 x元,根据题意找出等量关系,列方程解答即可。
【详解】
解:设小刚储蓄x元,则小红储蓄 x元。
x+4=(x-6)×
x+4= x-
x- x= +4
x=
x=102
102-6=96(元)
小红储蓄: ×102=68(元)
【详解】
解:设原来白球x个,原来篮球 x个。
( x-24)÷(x+12)=
x-24= (x+12)
x-24= x+
x- x= +24
x=
x=208
208× =156(个)
156-24=132(个)
208+12=220(个)
答:现在蓝球和白球各有132个,220个。
【点睛】
本题考查了列方程解决问题,算术法数量关系较复杂,用方程比较简单,但计算难度有所增加。
参考答案
1.乙袋:120克;甲袋:480克
【解析】
【分析】
甲、乙两袋糖的质量比是4∶1,我们可设乙袋原有x克糖,那么甲袋就有4x克糖,再根据已知条件列出方程式作答。
【详解】
解:设乙袋原有x克糖,那么甲袋就有4x克糖。
(4x-130)∶(x+130)=7∶5
7(x+130)=5(4x-130)
7x+910=20x-650
37.星光玻璃制品有限公司委托运输公司搬运30000个玻璃杯,运1个玻璃杯可得运费0.3元,损坏一个赔偿0.8元。运输公司共得到运费8670元。途中损坏了多少个玻璃杯?
38.某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分,小华参加了这次竞赛,得了64分。问:小华做对几道题?

苏教版六下数学《解决问题的策略》ppt课件

苏教版六下数学《解决问题的策略》ppt课件
在生活中遇到各种问题时,运 用有效的策略有助于找到更好 的解决方案,提高生活质量。
策略的重要性与应用场景
重要性
掌握解决问题的策略有助于提高问 题解决的效率和成功率,提升个人
的思维能力和解决问题的能力。
学习领域
在学习新知识或解决学科问题 时,运用有效的策略有助于更 好地理解和掌握知识。
工作领域
在解决工作中的实际问题时, 运用合适的策略能够提高工作 效率和效果。
苏教版六下数学《解决问题的策略 》ppt课件
contents
目录
• 引言 • 解决问题的策略概述 • 解决问题的常用策略 • 解决问题的策略在数学中的应用 • 案例分析 • 总结与展望
contents
目录
• 引言 • 解决问题的策略概述 • 解决问题的常用策略 • 解决问题的策略在数学中的应用 • 案例分析 • 总结与展望
02 03
注重实践应用
在学习过程中,学生应注重将所学知识应用于实际问题中,提高自己的 实践应用能力。可以通过解决生活中的实际问题、参与数学竞赛等方式 进行实践应用。
持续学习和探索
数学是一门不断发展的学科,学生应保持持续学习的态度,了解数学领 域的最新动态和研究成果。同时,也要勇于探索、尝试新的解决问题的 策略和方法,提高自己的学习能力和创新精神。
学习建议与展望
01
深入理解基本概念
学生应深入理解数学的基本概念和原理,为解决问题打下坚实的基础。
可以通过多做练习、参加课外辅导等方式加深对知识的理解。
类比法
总结词
根据已知事物的情况,推导出类似未知事物的情况。
详细描述
类比法是根据已知事物的情况,推导出类似未知事物的情况。这种方法需要找到已知事物和未知事物 的相似之处,并从中提取出有用的信息,以得出正确的结论。类比法在数学、科学和工程等领域中广 泛应用。

六年级下册数学答案与解析-第3单元 解决问题的策略

六年级下册数学答案与解析-第3单元 解决问题的策略

2019-2020学年苏教版小学数学六年下册第3单元解决问题的策略同步答案与试题解析一.选择题(共8小题)1.【分析】根据年龄差不会变这一特性,从年龄差入手:年龄差+3=学生现在的年龄,年龄差+老师现在的年龄=39,由此可知:老师+学生=42 再联系3岁和39岁的条件,可知老师27岁,学生15岁.【解答】解:39﹣(39﹣3)÷(2+1)=39﹣12=27(岁);答:老师的年龄是27岁.故选:C.【点评】解答此题的关键是:抓住年龄差不会变这一特性,从年龄差入手,进行分析进行解答即可.2.【分析】先求得增补的两名队员的平均年龄是多少,再与10.8比较得解.【解答】解:(10+11)÷2=21÷2=10.5(岁)10.5<10.8答:这时田径队的平均年龄应该小于10.8岁.故选:A.【点评】此题考查了求平均数的方法在年龄问题中的运用.3.【分析】根据题干分析可得,这个方阵的每边人数都是8,由此根据最外层人数=每边人数×4﹣4即可解答问题.【解答】解:8×4﹣4=28(人),答:最外层有28人.故选:C.【点评】此题考查了方阵问题中,最外层点数=每边点数×4﹣4这个公式的计算应用.4.【分析】李红比刘强大5岁,即刘强比李红小5岁,由于年龄差不随时间的变化而改变,所以再过3年,他们相差的岁数不变,由此求解.【解答】解:李红比刘强大5岁,即刘强比李红小5岁,再过三年刘强还是比李红小5岁.故选:B.【点评】理解年龄差不随时间的变化而改变是解答此题的关键.5.【分析】由题意,此题可看作是一个空心方阵,要求四周一共要摆多少盆花,根据“四周的盆数=(每边的盆数﹣1)×4”解答即可.【解答】解:(5﹣1)×4=4×4=16(盆)答:一共要准备16盆花.故选:A.【点评】此题考查了方阵问题中最外层点数=每边点数×4﹣4的灵活应用.6.【分析】方阵每边人数与四周人数的关系:四周人数=(每边人数﹣1)×4;据此解答即可.【解答】解:(10﹣1)×4=9×4=36(人)答:最外围有36人.故选:D.【点评】此题考查了方阵问题中:四周人数=(每边人数﹣1)×4;或最外层四周点数=每边点数×4﹣4的灵活应用.7.【分析】每边圆圈的个数=图形顺序+1;再利用方阵最外层四周点数=每边点数×4﹣4计算出最外层四周圆圈数即可.【解答】解:(8+1)×4﹣4=36﹣4=32(人)答:第8个图形有32个.故选:C.【点评】此题考查了方阵问题中:总点数=每边点数×每边点数;最外层四周点数=每边点数×4﹣4的灵活应用.8.【分析】根据题意可得等量关系式,今年母亲的年龄﹣儿子的年龄=26岁,设儿子今年是x岁,那么今年母亲的年龄是3x岁,然后列方程解答即可.【解答】解:设儿子今年是x岁,那么今年母亲的年龄是3x岁,3x﹣x=262x=26x=13答:儿子今年是13岁.故选:C.【点评】此题考查列方程解应用题,关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.二.填空题(共8小题)9.【分析】爸爸今年a岁,小华今年(a﹣25)岁,那么爸爸与小华的年龄差是25岁,无论再过多少年,两人的年龄差都是25岁.【解答】解:a﹣(a﹣25)=a﹣a+25=25(岁)答:再过x年后,爸爸与小华差25岁.故答案为:25.【点评】解决本题关键是熟知两人的年龄差是始终不变的.10.【分析】“爸爸今年40岁,明明今年8岁”,8年后爸爸和明明的年龄都增加了8岁,由此求出8年后除爸爸和明明的年龄,然后用爸爸的年龄除以明明的年龄即可.【解答】解:(40+8)÷(8+8)=48÷16=3答:8年后爸爸的年龄是明明的3倍.故答案为:3.【点评】本题的关键是求出8年后除爸爸和明明的年龄,再根据基本的数量:求一个数是另一个数的几倍用除法计算.11.【分析】要求这个学校一共有多少个学生,就是求这个方阵的总点数;需要先求得这个方阵最外层的每边人数,根据方阵问题中:四周点数=每边点数×4﹣4可知:每边点数=(四周点数+4)÷4.再利用总点数=每边点数×每边点数解答.【解答】解:最外层每边人数为:(64+4)÷4=68÷4=17(人),所以这个方阵的总人数为:17×17=289(人),答:这个方阵共有289人.故答案为:289.【点评】此题考查了方阵问题中的数量关系:最外层每边点数=(四周点数+4)÷4和总点数=每边点数×每边点数.12.【分析】四个角都不放时,需要的棋子数最多,利用每边棋子数×4计算即可;四个角都放时,需要的棋子数最少,根据每边棋子数×4﹣4即可解答.【解答】解:4×4=16(枚)4×4﹣4=12(枚)答:四条边上最多能摆16枚,最少能摆12枚.故答案为:16,12.【点评】此题考查了空心方阵中四周点数=每边点数×4﹣4的计算应用,要注意顶点处不放时,需要的棋子数最多.13.【分析】5年后爸爸比小明大22岁,他们现在的年龄差也是22岁,用两人的年龄和加上年龄差,再除以2就是爸爸的年龄,进而求出小明的年龄.【解答】解:(46+22)÷2=68÷2=34(岁)34﹣22=12(岁)答:爸爸今年34岁,小明今年12岁.故答案为:34,12.【点评】本题根据年龄差不变,得出现在两人的年龄差,再根据和差公式:(两数和+两数差)÷2=较大数进行求解.14.【分析】根据三个学生的年龄乘积是1620,先把1620分解质因数(即写成几个因数相乘的形式),然后再根据他们的年龄一个比一个大3岁的条件进行组合.【解答】解:1620=2×2×3×3×3×3×5,又因为,他们的年龄一个比一个大3岁,所以,他们中最小的年龄不可能是偶数,只能是奇数,1620=9×12×15,这三个学生年龄分别是:9岁,12岁,15岁,所以,他们年龄的和是:9+12+15=36(岁),答:这三个学生年龄的和是36岁,故答案为:36.【点评】解答此题的关键是,将1620分解质因数后,在将他们的年龄进行组合时,可以根据条件(年龄一个比一个大3岁)缩小范围,再一步一步的确定.15.【分析】利用方阵最外层四周点数=每边点数×4﹣4计算出最外层四周个数即可.【解答】解:14×4﹣4=56﹣4=52(个);答:小红一共用了52个棋子.故答案为:52.【点评】此题考查了方阵问题中:总点数=每边点数×每边点数;最外层四周点数=每边点数×4﹣4的灵活应用.16.【分析】先根据“四年后王平16岁”求出王平今年的年龄是16﹣4=12岁,再根据“今年王平、刘军、张华三个人的年龄和为39岁”求出今年刘军和张华的年龄和是39﹣12=28岁,求四年后刘军和张华的年龄之和分别加4即可.【解答】解:16﹣4=12(岁)39﹣12=27(岁)27+4+4=35(岁)答:刘军和张华的年龄之和为35岁.故答案为:35.【点评】解答本题关键是明确:经过4年,即每个人都增加4岁.三.判断题(共5小题)17.【分析】因为不管经过多长时间,小红与妈妈的年龄差是不变的,今年相差24岁,所以过10年后妈妈和小红仍相差24岁.【解答】解:两个人的年龄差是不变的,今年小红今年比妈妈小24岁,再过十年她比妈妈仍然小24岁.故答案为:×.【点评】此题应抓住年龄差不变来求解,因为不管经过多长时间,二人增长的时间是一样的,故差不变.18.【分析】今年明明与爸爸的年龄比是1:4,可知明明的年龄相当于1份的数,爸爸的年龄相当于4份的数;再过三年后,明明的年龄是1份的数加上3,爸爸的年龄是4份的数加上3,比值改变了,所以他俩的年龄比就一定不会是1:4,据此解答.【解答】解:由于年龄是每过一年都增加1岁,今年明明与爸爸的年龄比是1:4,可知明明的年龄相当于1份的数,爸爸的年龄相当于4份的数;再过三年后,明明的年龄是1份的数加上3,爸爸的年龄是4份的数加上3,比值改变了,所以他俩的年龄比就一定不会是1:4,所以原题说法错误;故答案为:×.【点评】此题考查年龄问题与比的性质的综合运用,比的前项和后项同乘或除以一个相同的数(0除外),比值不变;此题是比的前、后项同加上3,所以比值变了,比也就变了,可举例进一步验证.19.【分析】由于方阵每向里面进一层,每边的个数就减少2个,所以四条边一共减少2×4=8个,据此解答.【解答】解:2×4=8(个).答:方阵每向里面进一层,每层的个数就减少8个.故答案为:√.【点评】本题关键是求出每边减少的个数;方阵问题相关的知识点是:四周的人数=(每边的人数﹣1)×4,每边的人数=四周的人数÷4+1,外层边长数2﹣中空边长数2=实面积数.20.【分析】先用6×4,求出正方形的四个边从理论上放置花的盆数,但四个角上只要各有一盆花即可,所以要去掉重复的4盆,由此得出最少的答案.【解答】解:6×4﹣4=24﹣4=20(盆)答:这个花坛四周最少需要准备20盆.故答案为:×.【点评】解答此题的关键是,四个角上都要有一盆花,所以要把重复放置的花减去.21.【分析】根据事件发生的可能性和不可能性进行分析:奶奶的年龄一定比爸爸的年龄大;据此解答.【解答】解:奶奶的年龄一定比爸爸的年龄大,属于确定事件中的必然事件;故答案为:√.【点评】此题考查了事件发生的可能性和不可能性.四.应用题(共6小题)22.【分析】根据题意可知,左数的人数加上右数的人数,这样就把小刚多数了一次,再减去1就是每行的人数,同样可以求出每列的人数;然后每行与每列的人数相乘即可得出答案.【解答】解:每行的人数:6+12﹣1=17(人),每列的人数:7+13﹣1=19(人),所以总人数:17×19=323(人);答:一共有323个同学在做早操.【点评】解题的关键是找到每行和每列的人数,求每行和每列的人数时,把数重的人数减去,才能准确求出结果.23.【分析】根据题意可得等量关系式:淘气爸爸的年龄+妈妈的年龄=66岁,设妈妈的年龄是x岁,那么淘气爸爸的年龄就是(x+4)岁,然后列方程解答即可.【解答】解:设妈妈的年龄是x岁,那么淘气爸爸的年龄就是(x+4)岁,x+(x+4)=662x=62x=3131+4=35(岁)答:淘气爸爸和妈妈的年龄分别是35岁、31岁.【点评】此题考查列方程解应用题,关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.24.【分析】“照这样的效率”,说明每人每小时织布的长度是相同的,先用320米除以8小时,再除以5人,求出每人每小时织布的长度,再乘10小时,1名工人10小时织布的长度,然后再用1600米除以1名工人10小时织布的长度,求出需要工人的总数,再减去5人,即可求出需要增加的人数.【解答】解:1600÷[(320÷5÷8×10)]﹣5=1600÷80﹣5=20﹣5=15(名)答:10小时织布1600米需要增加15名工人.【点评】解决本题先求出不变的每人的工作效率,进而求出1人10小时的工作量,再根据除法的意义,求出需要的工人数,进而求出增加的人数.25.【分析】排成一个正方形空心方阵,最外层方阵总人数=四周人数=(每边人数﹣1)×4,由此即可解答.【解答】解:(8﹣1)×4=7×4=28(人)所以,排成一个正方形空心方阵,每边都是8个小朋友,公共顶点各一人,答:排成一个正方形空心方阵,每边都是8个小朋友.【点评】此题考查了方阵问题中:方阵每边人数与四周人数的关系:四周人数=(每边人数﹣1)×4.26.【分析】根据题意可得等量关系式:爷爷的年龄﹣壮壮的年龄=60,设壮壮今年x岁,则爷爷今年7x 岁,然后列方程解答即可.【解答】解:设壮壮今年x岁,则爷爷今年7x岁.7x﹣x=606x=60x=10爷爷:10×7=70(岁)答:壮壮和爷爷今年分别10岁和70岁.【点评】此题考查列方程解应用题,关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.27.【分析】最外层每边可站21人,根据“最外层四周点数=每边点数×4﹣4”可以求出最外层可站多少人,然后根据“总点数=每边点数×每边点数”解答即可.【解答】解:21×4﹣4=84﹣4=80(人)21×21=441(人)答:最外层可站80人,操场上一共可站441人.【点评】此题考查了方阵问题中:总点数=每边点数×每边点数;最外层四周点数=每边点数×4﹣4的灵活应用.。

第三单元 解决问题的策略(讲义)-六年级下册数学单元题型归纳总结 苏教版

第三单元  解决问题的策略(讲义)-六年级下册数学单元题型归纳总结  苏教版

第三单元解决问题的策略(讲义)-六年级下册数学单元题型归纳总结苏教版一、前言解决问题的策略,是数学教育的核心之一。

在学习数学的过程中,我们不仅需要学会掌握一定的知识和技能,更重要的是培养解决问题的能力和方法。

本文将针对小学数学第三单元,对六年级下册数学单元题型进行归纳总结,并提供解决问题的策略,希望对小学生们的学习有所帮助。

二、数学单元题型在小学数学的学习中,很多知识点都会被分为不同的单元,以便于学生们更好地掌握和理解。

下面是六年级下册数学单元题型的归纳总结:1.有理数的加减:题目形式多变,主要考查加减两个有理数的能力。

2.有理数的乘法:题目形式多变,主要考查乘法运算的熟练掌握程度。

3.有理数的除法:题目难度较大,主要考查除法运算的掌握程度。

4.实数的认识:题目形式较为简单,主要考查学生对实数概念的基本理解。

5.计算器的应用:题目形式多变,主要考查学生在使用计算器时的熟练程度。

6.约分和化简:题目形式多变,主要考查学生在约分和化简时的掌握能力。

7.分数的加减:题目形式多变,主要考查分数的加减法的熟练掌握程度。

8.分数的乘法:题目形式多变,主要考查分数的乘法运算的熟练掌握程度。

9.分数的除法:题目难度较大,主要考查分数的除法运算的掌握程度。

10.小数的认识:题目形式简单,主要考查学生对小数概念的基本理解。

11.小数的加减:题目形式多变,主要考查小数加减法运算的熟练掌握程度。

12.小数的乘法:题目形式多变,主要考查小数乘法运算的熟练掌握程度。

13.小数的除法:题目难度较大,主要考查小数除法运算的掌握程度。

14.面积的认识:题目形式简单,主要考查学生对面积概念的基本理解。

15.图形的面积:题目形式简单,主要考查图形面积的求解能力。

16.容积的认识:题目形式简单,主要考查学生对容积概念的基本理解。

17.图形的体积:题目形式简单,主要考查图形体积的求解能力。

18.几何图形的认识:题目形式简单,主要考查学生对几何图形的基本认识。

苏教版小学六年级数学下册3.1-2《解决问题的策略》PPT课件

苏教版小学六年级数学下册3.1-2《解决问题的策略》PPT课件
苏教版小学六年级数学下册
第三单元 解决问题的策略 3.1 解决问题的策略(1)
复习导入
下面这两个图形的面积相等吗?
左边 的大。
右边 的大。
复习导入
把上面的半圆 向下平移5格。
复习导入
把两个半圆分 别旋转1800 。
复习导入
把原来的图形化成长方 形后,面积是相等的。
转化
探究新知 知识点:用画图和转化的策略解决分数问题 已知条件
练一练
赵大娘家养的公鸡与母鸡只数的比是4:7,公 鸡比母鸡少30只。赵大娘家养的公鸡有多少只?
30÷(7-4)×4=40(只) 答:赵大娘家养的公鸡有40只。
课 堂 检 测 (教材第30页第1题)
1.看图填空。
(1)一杯果汁,喝了 2 还剩 3 。已喝
5
5
的和剩下的果汁的比是( 2 ):( 3 )
答:白兔和黑兔一共有48只。
课 堂 检 测 (教材第30页第3题)
3. 学校举办春季运动会,参加比赛的运动员在170~180 人之间,男运动员的人数是女运动员的 —43 。
提示:由男运动员的人数是女运 动员的—43 可知,男、女运动员 的人数比是3:4,即男女运动员 共3+4=7(份)。170--180之间 是7的倍数的数是175,因此得出 运动员的总人数是175人。
1 星河小学美术组男生人数占总人数的 2 。
5
已知女生有21人,男生有多少人?
所求问题
探究新知
你想用什么样的方法解题? 小组讨论解题方法。
探究新知
1.画图法。
女生每份的人数:
21÷(5-2)=7(人)
男生的人数:
7×2=14(人)
把总人数看 作单位“1” 男生人数有 2份,女生 人数有3份。

六年级下数学课件-第3单元 解决问题的策略 3.2 解决问题的策略 单元复习 苏教版(共9张PPT)

六年级下数学课件-第3单元 解决问题的策略 3.2 解决问题的策略 单元复习 苏教版(共9张PPT)
大展板块数 小展板块数 蜘蝶标本总件数 和78件比较
5
4
5×10+4×6=74
少了4件
例题讲解
1元和5角的硬 1元和5角的硬币一 共13枚,共有10元。 币各有多少枚?
根据表中数据,接着想一想、填一填,并找出答案。
1元的枚数 1 5角的枚数 12 总元数 1+12×0.5=7 和10元比较 少了3元
例题讲解
小明的书橱一共有三层,上、中、下层书的本数 比是5:6:4。已知上层放了100本书,求中、下层 各放了多少本书。(先画图表示题意,再解答)
例题讲解
甲、乙两地间的铁路长300千米。一列客车和一 列货车分别从甲、乙两地同时出发,相向而行, 2 货车的速度是客车的 。相遇时客车和货车各行 3 驶了多少千米?(先在图中画一画,再解答)

客车 货车

谢谢!
六年级(下册)
解决问题的策略 单元复习
例题讲解
先根据题意把线段图补充完整,再解答。 (1)ー辆汽年从甲地开往乙地,已经行驶了全程的30%, 离乙地还有140千米。这辆汽车行驶了多少千米?
甲地 乙地
例题讲解
先根据题意把线段图补充完整,再解答。 (2)六年级生物小组养的白兔和黑兔只数的比是5:3, 白免比黑兔多12只。白兔和黑兔一共有多少只?
白兔 黑兔
例题讲解
学校举办春季运动会,参加比赛的运动员在1703 180人之间,男运动员的人数是女运动员的 。 4
你知道男、女 运动员各有多 少人吗?
例题讲解
六年级同学制作了78件蝴蝶标本,贴在9块展板 上展出。每块小展板贴6件,每块大展板贴10件。 两种展板各有多少块?
假设两种展板的块数如下表, 你能通Байду номын сангаас调整得出结果吗?

苏教版数学六年级下册同步复习与测试讲义-第3章解决问题的策略(含解析)

苏教版数学六年级下册同步复习与测试讲义-第3章解决问题的策略(含解析)

苏教版数学六年级下册同步复习与测试讲义- 第 3 章解决问题的策略(含分析)姓名 :________班级:________成绩:________小朋友,带上你一段时间的学习成就,一同来做个自我检测吧,相信你必定是最棒的!一、选择题1 . 被减数,减数与差的和是169,减数比差大 15.5 ,减数是()A. 75 B.75.5 C. 50 D. 50.52 . 王叔叔的婚宴上有200 位贵宾,坐满 22 张桌子 ( 圆桌和方桌 ) ,每张圆桌坐10 人,每张方桌坐8 人,圆桌有()张。

A. 10 B.8 C. 12 D. 143 . 小红看一本故事书,已经看的比未看的少45 页,已看的页数和未看的页数的比是5 8,这本书共()页。

A. 90 B.180 C. 195 D. 154 . 0.72 ÷=6,里应填()。

A. 0.12 B.4.32 C. 1.2 D. 0.0125 . m 是三个连续自然数中间一个数,三个数之和是()A. 3m+2 B.3m C. 3m+1 D. 3m﹣ 16 . 方程 2x+1.9=2 的解是()。

A. x=0.5 B. x=5 C. x=0.057 . 园子里有龟和鹤共30 只,龟的腿数和鹤的腿数共有96 条。

园子里龟和鹤的只数分别为()。

A. 20 只和10只B.10 只和 20 只C. 18 只和12只D.12 只和 18 只8 . 在一个圆形的跑道上, 每隔 10m插一面彩旗 , 一共插了40 面彩旗 , 跑道的周长是() m.第1页共5页A. 400B. 410C. 390二、填空题9 .(2011?越秀区)一只船发现漏水时,已经进了一些水,水匀速进入船内,假如10 人淘水, 3 小时淘完;假如 5 人淘水 8 小时淘完.假如要求 2 小时淘完,要安排人淘水.10 .一个数除以a,商 6 余 5,这个数是6a+5.11 .在两幢相距60 米的楼房中间种杨树,一共种了11 棵,每隔( ______)米种一棵。

苏教版六年级数学下册第三单元《 解决问题的策略》同步练习附答案

苏教版六年级数学下册第三单元《 解决问题的策略》同步练习附答案

苏教版六年级数学下册第三单元培优卷解决问题的策略一、我会填。

(每空2分,共40分)1.乙绳比甲绳短( ),甲绳比乙绳长( )。

2. 六年级二班的学生人数在40~45之间,女生人数是男生人数的56。

六年级二班女生有( )人,男生有( )人。

3.实验小学买了9副球拍,有乒乓球拍和羽毛球拍两种球拍,一共用了275元。

乒乓球拍和羽毛球拍各买了多少副?假设9副球拍都是乒乓球拍,共用( )元,和275元相比较,少了( )元,1副羽毛球拍比乒乓球拍多( )元,( )副羽毛球拍比乒乓球拍多( )元,乒乓球拍有( )副,羽毛球拍有( )副。

4. 小军的邮票张数比小海多13,小海的邮票张数是小明的67,已知小军比小海多30张邮票,小明有( )张邮票,小军有( )张邮票,小海有( )张邮票。

5. 六(1)班46名同学去公园划船,租10只船正好坐满,其中大船每只坐6人,小船每只坐4人。

租的大船有( )只,小船有( )只。

6.假设桃树、苹果树的棵数都和梨树同样多,三种树的总数会减少( )棵; 假设梨树、苹果树的棵数都和桃树同样多,三种树的总数会减少( )棵; 假设梨树、桃树的棵数都和苹果树同样多,三种树的总数会增加( )棵。

梨树、桃树和苹果树的数量分别是( )。

二、我会判。

(对的在括号里打“√”,错的打“×”。

每题2分,共10分) 1. 甲比乙少517,则乙比甲多175。

( ) 2. 一杯果汁喝掉27,喝掉的是剩下的37。

( ) 3. 两名老师带36名同学去公园玩,门票共用去600元,已知每张学生票是成人票价的一半,则每张学生票15元,成人票30元。

( ) 4. 已知六(6)班男生人数是女生人数的23,小华数了一下,发现这个班共有51人,小华数得对。

( ) 5. 一条公路,已修的与剩下的比是5 ∶8,则剩下的比已修的多全长的313。

( ) 三、我会选。

(将正确答案的字母填在括号里。

每题2分,共10分)1. 美术组人数是合唱组人数的79,美术组人数与合唱组人数的比是( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏教版版小学六年级数学下册同步复习与测试讲义第3章解决问题的策略【知识点归纳总结】1. 归一归总问题1.归一应用题分为两类.(1)直进归一:求出一个单位量后,再用乘法求出结果.(2)逆转归一:求出一个单位量后,再用包含除法求出结果.从应用题的结构上看,给了单一量和数量,根据前两个条件就可以求出总数(工作总量),总数量是固定不变的,然后根据总数量求出每份数,份数.总数量÷份数=每份数,总数量÷每份数=份数.归一问题应用题中必有一种不变的量.如汽车的速度不变,拖拉机每小时耕地的公顷数不变.在归一问题应用题中,常常用“照这样计算”、“用同样的…”等词句来表达不变的量,我们要抓准题中数量的对应关系.归一应用题分为正归一应用题、反归一应用题两类.正、反归一问题的相同点是:一般情况下,第一步先求出单一量;不同点在第二步,正归一问题是求几个单一量是多少,反归一是求包含多少个单一量.2.归总问题:(1)定义:在解答某一类应用题时,先求出总数是多少(归总),然后再用这个总数和题中的有关条件求出问题.这类应用题叫做归总应用题.(2)解决方法:归总应用题的特点是先总数,再根据应用题的要求,求出每份是多少,或有这样的几份.【经典例题】分析:这是一个和生活相关的问题,存在这样一个关系:锯的次数=锯成的段数-1;锯成3段,要锯2次,锯成4段要锯3次,那么本题就可以改成,锯2次要9分钟,那么锯3次要几分钟?先求锯1次要几分钟,用除法即9÷2=4.5(分),再求锯3次要几分钟,用乘法,即4.5×3=13.5(分)解:3-1=2(次)9÷2=4.5(分)4-1=3(次)4.5×3=13.5(分)故答案为:13.5点评:这是生活实际问题,锯1次就可以锯成2段,存在这个关系:锯的次数=锯成的段数-1.2. 方阵问题将若干人或物依一定条件排成正方形(简称方阵),根据已知条件求总人数或总物数,这类问题就叫做方阵问题.数量关系:(1)方阵每边人数与四周人数的关系:四周人数=(每边人数-1)×4每边人数=四周人数÷4+1(2)方阵总人数的求法:实心方阵:总人数=每边人数×每边人数空心方阵:总人数=(外边人数)2-(内边人数)2内边人数=外边人数-层数×2(3)若将空心方阵分成四个相等的矩形计算,则:总人数=(每边人数-层数)×层数×4.【经典例题】例1:四年级共选49位同学参加校运会开幕式,他们排成一个方阵.这个方阵的最外层一共有多少人?分析:先根据方阵总人数=每边人数×每边人数,求出这个方阵的每边人数,再利用方阵最外层四周人数=每边人数×4-4计算出最外层四周人数即可.解:因为7×7=49,所以49人组成的方阵的每边人数是7人,7×4-4,=28-4,=24(人);答:这个方阵的最外层有24人.点评:此题考查了方阵问题中:总点数=每边点数×每边点数;最外层四周点数=每边点数×4-4的灵活应用.3. 年龄问题年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;解题规律:抓住年龄差是个不变的数(常数),而倍数却是每年都在变化的这个关键.解答年龄问题的一般方法是:几年后年龄=大小年龄差÷倍数差-小年龄几年前年龄=小年龄-大小年龄差÷倍数差.【经典例题】例1:儿子今年6岁,父亲10年前的年龄等于儿子20年后的年龄.当父亲的年龄恰好是儿子年龄的2倍时是在公元哪一年?分析:根据题意,可知儿子20年后是6+20=26岁,父亲今年26+10=36岁.根据年龄增长是一样的,找出等量关系列出方程解答即可.解:儿子20年后是6+20=26岁,父亲今年26+10=36岁.设x年后,父亲的年龄恰好是儿子年龄的2倍.由题意得36+x=2(x+6)36+x=2x+12x=24由今年是公元2011年,则2011+24=2035,故当父亲的年龄恰好是儿子年龄的2倍时是公元2035年.点评:本题主要是考查年龄问题,首先要把题意弄清,再根据等量关系列出方程解答即可.【同步测试】单元同步测试题一.选择题(共8小题)1.学生问老师多少岁,老师说:“当我像你这么大时,你刚3岁;当你像我这么大时,我已经39岁了.”老师的年龄是()岁.A.21 B.24 C.27 D.302.成都高新区小学组田径队有若干人,经过统计已知田径队平均年龄为10.8岁,后来因为项目调整又增补了两名队员,这两名队员年龄刚好分别为10岁和11岁,那么这时田径队的平均年龄应该()10.8岁.A.小于B.大于C.等于D.以上三种都可能3.学校运动会开幕式上,彩旗方阵,横、竖每行都是8个学生,它的最外围有()个学生.A.32 B.64 C.28 D.304.刘强今年x岁,李红比刘强大5岁,再过三年刘强比李红小()岁.A.(x﹣3)岁B.5岁C.2岁D.(x+3)岁5.学校要美化校园,要在正方形水池四周摆花,四个角都摆一盆,每边都摆5盆,那么一共要准备()盆花.A.16 B.20 C.24 D.266.五年级同学体操表演,站成一个方阵,最外围每边站10人,最外围有()人.A.100 B.81 C.40 D.367.观察下面3个图形的规律,按这样的规律排列,第8个图形有()个.A.24 B.28 C.328.母亲的年龄比儿子大26岁,今年母亲的年龄恰好是儿子的3倍,儿子今年是多少岁?解:设儿子今年是x岁,依题意列方程,正确的是()A.3x﹣26﹣x B.3x=26 C.3x﹣x=26 D.3x+x=26二.填空题(共8小题)9.今年小华爸爸a岁,小华(a﹣25岁),再过x年后,爸爸与小华差岁.10.爸爸今年40岁,明明今年8岁,8年后爸爸的年龄是明明的倍.11.学校组织学生排成一个实心方阵进行团体操表演,最外层共站了64人,这个方阵共有人.12.在一个正方形的每条边上摆4枚棋子,四条边上最多能摆枚,最少能摆枚.13.爸爸和小明年龄的和是46岁,5年后爸爸比小明大22岁,爸爸今年岁,小明今年岁.14.有三个学生,他们的年龄一个比一个大3岁,他们三个人年龄数的乘积是1620,这三个学生年龄的和是岁.15.小红用棋子摆了一个空心方阵,每边可看到14个棋子,小红一共用了个棋子.16.今年王平、刘军、张华三个人的年龄和为39岁,四年后王平16岁,刘军和张华的年龄之和为岁.三.判断题(共5小题)17.小红今年比妈妈小24岁,再过十年她比妈妈小14岁.(判断对错)18.今年明明与爸爸的年龄比是1:4,三年后明明与爸爸的年龄还是1:4..(判断对错)19.方阵每向里面进一层,每层的个数就减少8 .(判断对错)20.在一个正方形的花坛四周摆放花盆.如果每边都要放6盆,最少需要准备24盆..(判断对错)21.奶奶的年龄一定大于爸爸的年龄..(判断对错)四.应用题(共6小题)22.同学们做早操,小刚站在左起第6列,右起第12列;从前面数是第7个,从后面数是第13个.如果每列的人数同样多,每行的人数也同样多,则一共有多少个同学在做早操?23.淘气的爸爸和妈妈的年龄和是66岁,爸爸比妈妈大4岁,淘气爸爸和妈妈的年龄分别是多少岁?(用方程解)24.某织布车间5名工人8小时织布320米,照这样的效率,要在10小时内织布1600米,需要增加多少名工人?25.28个小朋友要排成一个正方形,要求每边都是8个小朋友,你知道怎么排吗?26.壮壮和爷爷今年分别多少岁?(列方程解决问题)27.学校为了方便同学们做早操时排队,在正方形操场上做了记号(如图).如果每个点站1人,最外层每边可站21人.最外层可站多少人?操场上一共可站多少人?参考答案与试题解析一.选择题(共8小题)1.【分析】根据年龄差不会变这一特性,从年龄差入手:年龄差+3=学生现在的年龄,年龄差+老师现在的年龄=39,由此可知:老师+学生=42 再联系3岁和39岁的条件,可知老师27岁,学生15岁.【解答】解:39﹣(39﹣3)÷(2+1)=39﹣12=27(岁);答:老师的年龄是27岁.故选:C.【点评】解答此题的关键是:抓住年龄差不会变这一特性,从年龄差入手,进行分析进行解答即可.2.【分析】先求得增补的两名队员的平均年龄是多少,再与10.8比较得解.【解答】解:(10+11)÷2=21÷2=10.5(岁)10.5<10.8答:这时田径队的平均年龄应该小于10.8岁.故选:A.【点评】此题考查了求平均数的方法在年龄问题中的运用.3.【分析】根据题干分析可得,这个方阵的每边人数都是8,由此根据最外层人数=每边人数×4﹣4即可解答问题.【解答】解:8×4﹣4=28(人),答:最外层有28人.故选:C.【点评】此题考查了方阵问题中,最外层点数=每边点数×4﹣4这个公式的计算应用.4.【分析】李红比刘强大5岁,即刘强比李红小5岁,由于年龄差不随时间的变化而改变,所以再过3年,他们相差的岁数不变,由此求解.【解答】解:李红比刘强大5岁,即刘强比李红小5岁,再过三年刘强还是比李红小5岁.故选:B.【点评】理解年龄差不随时间的变化而改变是解答此题的关键.5.【分析】由题意,此题可看作是一个空心方阵,要求四周一共要摆多少盆花,根据“四周的盆数=(每边的盆数﹣1)×4”解答即可.【解答】解:(5﹣1)×4=4×4=16(盆)答:一共要准备16盆花.故选:A.【点评】此题考查了方阵问题中最外层点数=每边点数×4﹣4的灵活应用.6.【分析】方阵每边人数与四周人数的关系:四周人数=(每边人数﹣1)×4;据此解答即可.【解答】解:(10﹣1)×4=9×4=36(人)答:最外围有36人.故选:D.【点评】此题考查了方阵问题中:四周人数=(每边人数﹣1)×4;或最外层四周点数=每边点数×4﹣4的灵活应用.7.【分析】每边圆圈的个数=图形顺序+1;再利用方阵最外层四周点数=每边点数×4﹣4计算出最外层四周圆圈数即可.【解答】解:(8+1)×4﹣4=36﹣4=32(人)答:第8个图形有32个.故选:C.【点评】此题考查了方阵问题中:总点数=每边点数×每边点数;最外层四周点数=每边点数×4﹣4的灵活应用.8.【分析】根据题意可得等量关系式,今年母亲的年龄﹣儿子的年龄=26岁,设儿子今年是x岁,那么今年母亲的年龄是3x岁,然后列方程解答即可.【解答】解:设儿子今年是x岁,那么今年母亲的年龄是3x岁,3x﹣x=262x=26x=13答:儿子今年是13岁.故选:C.【点评】此题考查列方程解应用题,关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.二.填空题(共8小题)9.【分析】爸爸今年a岁,小华今年(a﹣25)岁,那么爸爸与小华的年龄差是25岁,无论再过多少年,两人的年龄差都是25岁.【解答】解:a﹣(a﹣25)=a﹣a+25=25(岁)答:再过x年后,爸爸与小华差25岁.故答案为:25.【点评】解决本题关键是熟知两人的年龄差是始终不变的.10.【分析】“爸爸今年40岁,明明今年8岁”,8年后爸爸和明明的年龄都增加了8岁,由此求出8年后除爸爸和明明的年龄,然后用爸爸的年龄除以明明的年龄即可.【解答】解:(40+8)÷(8+8)=48÷16=3答:8年后爸爸的年龄是明明的 3倍.故答案为:3.【点评】本题的关键是求出8年后除爸爸和明明的年龄,再根据基本的数量:求一个数是另一个数的几倍用除法计算.11.【分析】要求这个学校一共有多少个学生,就是求这个方阵的总点数;需要先求得这个方阵最外层的每边人数,根据方阵问题中:四周点数=每边点数×4﹣4可知:每边点数=(四周点数+4)÷4.再利用总点数=每边点数×每边点数解答.【解答】解:最外层每边人数为:(64+4)÷4=68÷4=17(人),所以这个方阵的总人数为:17×17=289(人),答:这个方阵共有 289人.故答案为:289.【点评】此题考查了方阵问题中的数量关系:最外层每边点数=(四周点数+4)÷4和总点数=每边点数×每边点数.12.【分析】四个角都不放时,需要的棋子数最多,利用每边棋子数×4计算即可;四个角都放时,需要的棋子数最少,根据每边棋子数×4﹣4即可解答.【解答】解:4×4=16(枚)4×4﹣4=12(枚)答:四条边上最多能摆16枚,最少能摆12枚.故答案为:16,12.【点评】此题考查了空心方阵中四周点数=每边点数×4﹣4的计算应用,要注意顶点处不放时,需要的棋子数最多.13.【分析】5年后爸爸比小明大22岁,他们现在的年龄差也是22岁,用两人的年龄和加上年龄差,再除以2就是爸爸的年龄,进而求出小明的年龄.【解答】解:(46+22)÷2=68÷2=34(岁)34﹣22=12(岁)答:爸爸今年34岁,小明今年12岁.故答案为:34,12.【点评】本题根据年龄差不变,得出现在两人的年龄差,再根据和差公式:(两数和+两数差)÷2=较大数进行求解.14.【分析】根据三个学生的年龄乘积是1620,先把1620分解质因数(即写成几个因数相乘的形式),然后再根据他们的年龄一个比一个大3岁的条件进行组合.【解答】解:1620=2×2×3×3×3×3×5,又因为,他们的年龄一个比一个大3岁,所以,他们中最小的年龄不可能是偶数,只能是奇数,1620=9×12×15,这三个学生年龄分别是:9岁,12岁,15岁,所以,他们年龄的和是:9+12+15=36(岁),答:这三个学生年龄的和是36岁,故答案为:36.【点评】解答此题的关键是,将1620分解质因数后,在将他们的年龄进行组合时,可以根据条件(年龄一个比一个大3岁)缩小范围,再一步一步的确定.15.【分析】利用方阵最外层四周点数=每边点数×4﹣4计算出最外层四周个数即可.【解答】解:14×4﹣4=56﹣4=52(个);答:小红一共用了 52个棋子.故答案为:52.【点评】此题考查了方阵问题中:总点数=每边点数×每边点数;最外层四周点数=每边点数×4﹣4的灵活应用.16.【分析】先根据“四年后王平16岁”求出王平今年的年龄是16﹣4=12岁,再根据“今年王平、刘军、张华三个人的年龄和为39岁”求出今年刘军和张华的年龄和是39﹣12=28岁,求四年后刘军和张华的年龄之和分别加4即可.【解答】解:16﹣4=12(岁)39﹣12=27(岁)27+4+4=35(岁)答:刘军和张华的年龄之和为 35岁.故答案为:35.【点评】解答本题关键是明确:经过4年,即每个人都增加4岁.三.判断题(共5小题)17.【分析】因为不管经过多长时间,小红与妈妈的年龄差是不变的,今年相差24岁,所以过10年后妈妈和小红仍相差24岁.【解答】解:两个人的年龄差是不变的,今年小红今年比妈妈小24岁,再过十年她比妈妈仍然小24岁.故答案为:×.【点评】此题应抓住年龄差不变来求解,因为不管经过多长时间,二人增长的时间是一样的,故差不变.18.【分析】今年明明与爸爸的年龄比是1:4,可知明明的年龄相当于1份的数,爸爸的年龄相当于4份的数;再过三年后,明明的年龄是1份的数加上3,爸爸的年龄是4份的数加上3,比值改变了,所以他俩的年龄比就一定不会是1:4,据此解答.【解答】解:由于年龄是每过一年都增加1岁,今年明明与爸爸的年龄比是1:4,可知明明的年龄相当于1份的数,爸爸的年龄相当于4份的数;再过三年后,明明的年龄是1份的数加上3,爸爸的年龄是4份的数加上3,比值改变了,所以他俩的年龄比就一定不会是1:4,所以原题说法错误;故答案为:×.【点评】此题考查年龄问题与比的性质的综合运用,比的前项和后项同乘或除以一个相同的数(0除外),比值不变;此题是比的前、后项同加上3,所以比值变了,比也就变了,可举例进一步验证.19.【分析】由于方阵每向里面进一层,每边的个数就减少2个,所以四条边一共减少2×4=8个,据此解答.【解答】解:2×4=8(个).答:方阵每向里面进一层,每层的个数就减少8个.故答案为:√.【点评】本题关键是求出每边减少的个数;方阵问题相关的知识点是:四周的人数=(每边的人数﹣1)×4,每边的人数=四周的人数÷4+1,外层边长数2﹣中空边长数2=实面积数.20.【分析】先用6×4,求出正方形的四个边从理论上放置花的盆数,但四个角上只要各有一盆花即可,所以要去掉重复的4盆,由此得出最少的答案.【解答】解:6×4﹣4=24﹣4=20(盆)答:这个花坛四周最少需要准备20盆.故答案为:×.【点评】解答此题的关键是,四个角上都要有一盆花,所以要把重复放置的花减去.21.【分析】根据事件发生的可能性和不可能性进行分析:奶奶的年龄一定比爸爸的年龄大;据此解答.【解答】解:奶奶的年龄一定比爸爸的年龄大,属于确定事件中的必然事件;故答案为:√.【点评】此题考查了事件发生的可能性和不可能性.四.应用题(共6小题)22.【分析】根据题意可知,左数的人数加上右数的人数,这样就把小刚多数了一次,再减去1就是每行的人数,同样可以求出每列的人数;然后每行与每列的人数相乘即可得出答案.【解答】解:每行的人数:6+12﹣1=17(人),每列的人数:7+13﹣1=19(人),所以总人数:17×19=323(人);答:一共有323个同学在做早操.【点评】解题的关键是找到每行和每列的人数,求每行和每列的人数时,把数重的人数减去,才能准确求出结果.23.【分析】根据题意可得等量关系式:淘气爸爸的年龄+妈妈的年龄=66岁,设妈妈的年龄是x岁,那么淘气爸爸的年龄就是(x+4)岁,然后列方程解答即可.【解答】解:设妈妈的年龄是x岁,那么淘气爸爸的年龄就是(x+4)岁,x+(x+4)=662x=62x=3131+4=35(岁)答:淘气爸爸和妈妈的年龄分别是35岁、31岁.【点评】此题考查列方程解应用题,关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.24.【分析】“照这样的效率”,说明每人每小时织布的长度是相同的,先用320米除以8小时,再除以5人,求出每人每小时织布的长度,再乘10小时,1名工人10小时织布的长度,然后再用1600米除以1名工人10小时织布的长度,求出需要工人的总数,再减去5人,即可求出需要增加的人数.【解答】解:1600÷[(320÷5÷8×10)]﹣5=1600÷80﹣5=20﹣5=15(名)答:10小时织布1600米需要增加15名工人.【点评】解决本题先求出不变的每人的工作效率,进而求出1人10小时的工作量,再根据除法的意义,求出需要的工人数,进而求出增加的人数.25.【分析】排成一个正方形空心方阵,最外层方阵总人数=四周人数=(每边人数﹣1)×4,由此即可解答.【解答】解:(8﹣1)×4=7×4=28(人)所以,排成一个正方形空心方阵,每边都是8个小朋友,公共顶点各一人,答:排成一个正方形空心方阵,每边都是8个小朋友.【点评】此题考查了方阵问题中:方阵每边人数与四周人数的关系:四周人数=(每边人数﹣1)×4.26.【分析】根据题意可得等量关系式:爷爷的年龄﹣壮壮的年龄=60,设壮壮今年x岁,则爷爷今年7x 岁,然后列方程解答即可.【解答】解:设壮壮今年x岁,则爷爷今年7x岁.7x﹣x=606x=60x=10爷爷:10×7=70(岁)答:壮壮和爷爷今年分别10岁和70岁.【点评】此题考查列方程解应用题,关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.27.【分析】最外层每边可站21人,根据“最外层四周点数=每边点数×4﹣4”可以求出最外层可站多少人,然后根据“总点数=每边点数×每边点数”解答即可.【解答】解:21×4﹣4=84﹣4=80(人)21×21=441(人)答:最外层可站80人,操场上一共可站441人.【点评】此题考查了方阵问题中:总点数=每边点数×每边点数;最外层四周点数=每边点数×4﹣4的灵活应用.。

相关文档
最新文档