电磁场与电磁波(第8章)
电磁场与电磁波教案
电磁场与电磁波教案第一章:电磁场的基本概念1.1 电荷与电场介绍电荷的性质和分类解释电场的概念和电场线电场的叠加原理1.2 磁场与磁力介绍磁铁和磁性的概念解释磁场的概念和磁场线磁场的叠加原理和磁力计算1.3 电磁感应介绍法拉第电磁感应定律解释电磁感应现象的应用第二章:电磁波的基本性质2.1 电磁波的产生与传播介绍麦克斯韦方程组解释电磁波的产生和传播过程电磁波的波动方程和相位2.2 电磁波的波动性质介绍电磁波的波长、频率和波速波动方程的解和电磁波的波动性质2.3 电磁波的能量与辐射解释电磁波的能量和辐射机制介绍电磁波的辐射压和光电效应第三章:电磁波的传播与应用3.1 电磁波在自由空间的传播自由空间中电磁波的传播方程电磁波的传播速度和天线原理3.2 电磁波在介质中的传播介绍电磁波在介质中的传播方程介质的折射率和反射、透射现象3.3 电磁波的应用介绍电磁波在通信、雷达和医学等领域的应用第四章:电磁波的辐射与接收4.1 电磁波的辐射介绍电磁波的辐射机制和天线理论电磁波的辐射强度和辐射功率4.2 电磁波的接收介绍电磁波接收原理和接收器设计调制和解调技术在电磁波接收中的应用4.3 电磁波的辐射与接收实验设计实验来观察和测量电磁波的辐射和接收现象第五章:电磁波的传播特性与调控5.1 电磁波的传播特性介绍电磁波的传播损耗和传播距离电磁波的多径传播和散射现象5.2 电磁波的调控技术介绍电磁波的调制技术和幅度、频率和相位的调控方法5.3 电磁波的传播调控应用介绍电磁波在无线通信和雷达系统中的应用和调控技术第六章:电磁波的波动方程与电磁波谱6.1 电磁波的波动方程推导电磁波在均匀介质中的波动方程讨论电磁波的横向和纵向波动特性6.2 电磁波谱介绍电磁波谱的分类和各频段的特征讨论电磁波谱中常见的波段,如射频、微波、红外、可见光、紫外、X射线和γ射线等6.3 电磁波谱的应用分析电磁波谱在不同领域的应用,如通信、医学、材料科学等第七章:电磁波的传播环境与传播效应7.1 电磁波的传播环境分析不同传播环境对电磁波传播的影响,如自由空间、大气层、陆地、海洋等讨论传播环境中的衰减、延迟和散射等效应7.2 电磁波的传播效应介绍电磁波的折射、反射、透射、绕射和干涉等传播效应分析这些效应在实际应用中的影响和应对措施7.3 电磁波的传播环境与效应应用探讨电磁波传播环境与效应在通信、雷达、遥感等领域的应用和解决方案第八章:电磁波的辐射与天线技术8.1 电磁波的辐射原理分析电磁波辐射的物理机制,如开放电极、偶极子、天线阵列等讨论电磁波辐射的方向性和极化特性8.2 天线的基本理论介绍天线的基本参数,如阻抗、辐射效率、增益等分析天线的设计方法和性能优化策略8.3 电磁波的辐射与天线技术应用探讨天线技术在无线通信、广播、雷达等领域的应用和实例第九章:电磁波的接收与信号处理9.1 电磁波的接收原理介绍电磁波接收的基本过程,如放大、滤波、解调等分析接收机的性能指标,如灵敏度、选择性、稳定性等9.2 信号处理技术介绍信号处理的基本方法,如采样、量化、编码、调制等讨论数字信号处理技术在电磁波接收中的应用9.3 电磁波的接收与信号处理应用探讨电磁波接收与信号处理技术在通信、雷达、遥感等领域的应用和实例第十章:电磁波的测量与实验技术10.1 电磁波的测量原理分析电磁波测量的基本方法,如直接测量、间接测量、网络分析等讨论测量仪器和设备的选择与使用10.2 实验技术介绍电磁波实验的基本步骤和方法,如实验设计、数据采集、结果分析等分析实验中可能遇到的问题和解决策略10.3 电磁波的测量与实验技术应用探讨电磁波测量与实验技术在科研、工程、教学等领域的应用和实例重点解析第一章:电磁场的基本概念重点:电荷与电场的性质,电场的概念和电场线,电场的叠加原理。
电磁场与电磁波(杨儒贵_版)课后思考题答案
电磁场与电磁波(杨儒贵_版)课后思考题答案电磁场与波课后思考题1-1 什么是标量与⽮量?举例说明.仅具有⼤⼩特征的量称为标量.如:长度,⾯积,体积,温度,⽓压,密度,质量,能量及电位移等.不仅具有⼤⼩⽽且具有⽅向特征的量称为⽮量.如:⼒,位移,速度,加速度,电场强度及磁场强度.1-2 ⽮量加减运算及⽮量与标量的乘法运算的⼏何意义是什么?⽮量加减运算表⽰空间位移.⽮量与标量的乘法运算表⽰⽮量的伸缩.1-3⽮量的标积与⽮积的代数定义及⼏何意义是什么? ⽮量的标积: ,A ⽮量的模与⽮量B 在⽮量A ⽅向上的投影⼤⼩的乘积.⽮积: ⽮积的⽅向与⽮量A,B 都垂直,且由⽮量A 旋转到B,并与⽮积构成右旋关系,⼤⼩为1-4 什么是单位⽮量?写出单位⽮量在直⾓坐标中的表达式. 模为1的⽮量称为单位⽮量.1-5 梯度与⽅向导数的关系是什么?试述梯度的⼏何意义,写出梯度在直⾓坐标中的表⽰式.标量场在某点梯度的⼤⼩等于该点的最⼤⽅向导数, ⽅向为该点具有最⼤⽅向导数的⽅向.梯度⽅向垂直于等值⾯,指向标量场数值增⼤的⽅向在直⾓坐标中的表⽰式: 1-6 什么是⽮量场的通量?通量值为正,负或零时分别代表什么意义?⽮量A 沿某⼀有向曲⾯S 的⾯积分称为⽮量A 通过该有向曲⾯S 的通量,以标量表⽰,即通量为零时表⽰该闭合⾯中没有⽮量穿过. 通量为正时表⽰闭合⾯中有源;通量为负时表⽰闭合⾯中有洞.1-7 给出散度的定义及其在直⾓坐标中的表⽰式. 散度:当闭合⾯S 向某点⽆限收缩时,⽮量A 通过该闭合⾯S 的通量与该闭合⾯包围的体积之⽐的极限称为⽮量场A 在该点的散度。
直⾓坐标形式: 1-8 试述散度的物理概念,散度值为正,负或零时分别表⽰什么意义?物理概念:通过包围单位体积闭合⾯的通量。
散度为正时表⽰辐散,为负时表⽰辐合,为零时表⽰⽆能量流过.1-9 试述散度定理及其物理概念.散度定理:建⽴了区域 V 中的场和包围区域V 的闭合⾯S 上的场之间的关系θcos B A BA B A B A B A z z y y x x =++=?z y x z y x z y x B B B A A A e e e B A =?θsin B A e z θsin B A a e zy x e e e γβαcos cos cos ++=z y x e ze y e x ??+??+??=??=S S A Ψ d VS V Δd lim div 0Δ??=→S A A zA y A x A A div z y x ??+??+??= A ??=物理概念: 散度定理建⽴了区域 V 中的场和包围区域 V 的闭合⾯ S 上的场之间的关系。
《电磁场与电磁波》习题参考答案
况下,电场和磁场可以独立进行分析。( √ )
12、静电场和恒定磁场都是矢量场,在本质上也是相同的。( × )
13、静电场是有源无旋场,恒定磁场是有旋无源场。( √ ) 14、位移电流是一种假设,因此它不能象真实电流一样产生磁效应。(
×)
15、法拉第电磁感应定律反映了变化的磁场可以产生变化的电场。( √ ) 16、物质被磁化问题和磁化物质产生的宏观磁效应问题是不
D.有限差分法
6、对于静电场问题,仅满足给定的泊松方程和边界条件,
而形式上不同的两个解是不等价的。( × )
7、研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物 质内发生的静电现象。( √ )
8、泊松方程和拉普拉斯方程都适用于有源区域。( × )
9、静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方 程的解都是唯一的。( √ )
是( D )。
A.镜像电荷是否对称
B.电位所满足的方程是否未改变
C.边界条件是否保持不变 D.同时选择B和C
5、静电场边值问题的求解,可归结为在给定边界条件下,对拉普拉斯
方程的求解,若边界形状为圆柱体,则宜适用( B )。
A.直角坐标中的分离变量法
B.圆柱坐标中的分离变量法
C.球坐标中的分离变量法
两个基本方程:
3、写出麦克斯韦方程组,并简述其物理意义。
答:麦克斯韦方程组的积分形式:
麦克斯韦方程组的微分形式:
每个方程的物理意义: (a) 安培环路定理,其物理意义为分布电流和时变电场均为磁
场的源。 (b) 法拉第电磁感应定律,表示时变磁场产生时变电场,即动
磁生电。 (c) 磁场高斯定理,表明磁场的无散性和磁通连续性。 (d)高斯定理,表示电荷为激发电场的源。
电磁场与电磁波-8 平面电磁波
E1( z) Ei ( z) Er ( z) ax ( Eioe j1z Er 0e j1z )
图8-9 垂直入射到导体的平面波
jwt E ( z, t ) = R e 轾 E ( z ) e = a x 2 Ei 0sinb1 zsinwt 犏 臌1
Ei 0 jwt H ( z, t ) = R e 轾 H ( z ) e = a 2 cosb1 zcoswt y 犏1 臌 h
图8-3 多普勒效应的说明
8.2.2 横电磁波
横电磁波(TEM):E和H是相互垂直的,且二者都位于与传播方向 垂直的横向平面内。
图8-4 半径矢量和垂直于均匀平面波波前的波
H ( R)
H ( R) 1
1 j
E ( R)
a n E ( R ) (A/m)
媒质的本征阻抗
8.2.1 多普勒效应
当时谐信源和接收机间有相对运动,接收机检测到的波的频率会与信源 发出的频率不同,这种现象称为多普勒效应。
1 f = u Dt¢ 骣 ç 1 cos q÷ ÷ ç ÷ ç 桫 c 骣 u @fç 1 + cos q÷ ÷ ç ÷ ç 桫 c f'=
(a)当t=0时
( b当 t
= D t 时)
在媒质1中的合成波不是行波。它是 驻波,是两个沿相反方向传播的行波 的叠加。
图(8-10)当 t 为不同值时,E1 = ax E1( z ) 和 H1 = a y H1的驻波
例8-9 一频率为100MHz的y方向极化的均匀平面波 ( Ei , Hi ) 在空气中沿+x 方向传播,并在x=0处垂直入射到理想导体平面。假设 Ei 的振幅为6mV/m, 写出下面(1)~(3)的相量表达式和瞬间表达式:(1)入射波的 E1和 H1 ; (2)反射波的 Er 和 H r ;(3)空气中合成波的 E1 和 H1 。(4)求距导电平 面最近的 E1 = 0 的位置。
第八章 金属波导
TE30
TE11 ,TM11 TE01 TE20
单模区(Ⅱ): a < < 2a 多模区(Ⅲ): < a
TE10
2b a
Ⅰ
2a
电磁场微波技术与天线
第8章 金属波导
说明: 截止区:
由于2a 是矩形波导中能出现的最长截止波长,因此,当工作 波长λ> 2a 时,电磁波就不能在波导中传播,故称为“截止区”。
单模传输条件
第8章 金属波导
a 1.8a,b / 2
由设计的波导尺寸实现单模传输。
截止波长相同时,传输TE10 模所要求的 a 边尺寸最小。同时 TE10 模的截止波长与 b 边尺寸无关,所以可尽量减小 b 的尺 寸以节省材料。但考虑波导的击穿和衰减问题,b 不能太小。
TE10 模和TE20 模之间的距离大于其他高阶模之间的距离, TE10 模波段最宽。 可以获得单方向极化波,这正是某些情况下所要求的。 对于一定比值a/b,在给定工作频率下TE10模具有最小的衰减。
同轴线没有电磁辐射,工作频带很宽。
电磁场微波技术与天线
2. 波导管
第8章 金属波导
矩形波导
波导是用金属管制作的导 波系统,电磁波在管内传播, 损耗很小,主要用于 3GHz ~ 30GHz 的频率范围。
电磁场微波技术与天线
圆波导
第8章 金属波导
8.1 导行电磁波概论
分析均匀波导系统时, 做如下假定:
第8章 金属波导
电磁场微波技术与天线
第8章 金属波导 导行电磁波 —— 被限制在某一特定区域内传播的电磁波 导波系统 —— 引导电磁波从一处定向传输到另一处的装置 常用的导波系统的分类 :
TEM传输线、金属波导管、表面波导。
电磁场与电磁波复习重点
梯度: 高斯定理:A d S ,电磁场与电磁波知识点要求第一章矢量分析和场论基础1理解标量场与矢量场的概念;场是描述物理量在空间区域的分布和变化规律的函数。
2、理解矢量场的散度和旋度、标量场的梯度的概念,熟练掌握散度、旋度和梯度的计算公 式和方法(限直角坐标系)。
:u;u;u e xe ye z ,-X;y: z物理意义:梯度的方向是标量u 随空间坐标变化最快的方向;梯度的大小:表示标量 u 的空间变化率的最大值。
散度:单位空间体积中的的通量源,有时也简称为源通量密度,旋度:其数值为某点的环流量面密度的最大值, 其方向为取得环量密度最大值时面积元的法 线方向。
斯托克斯定理:■ ■(S?AdS|L )A d l数学恒等式:' Cu )=o ,「c A )=o3、理解亥姆霍兹定理的重要意义:a时,n =3600/ a , n为整数,则需镜像电荷XY平面, r r r.S(—x,y ,z)-q ■严S(-x , -y ,z)S(x F q R 1qS(x;-y ,z )P(x,y,z)若矢量场A在无限空间中处处单值,且其导数连续有界,源分布在有限区域中,则矢量场由其散度和旋度唯一地确定,并且矢量场A可表示为一个标量函数的梯度和一个矢量函数的旋度之和。
A八F u第二、三、四章电磁场基本理论Q1、理解静电场与电位的关系,u= .E d l,E(r)=-V u(r)P2、理解静电场的通量和散度的意义,「s D d S「V "v dV \ D=,VE d l 二0 ' ' E= 0静电场是有散无旋场,电荷分布是静电场的散度源。
3、理解静电场边值问题的唯一性定理,能用平面镜像法解简单问题;唯一性定理表明:对任意的静电场,当电荷分布和求解区域边界上的边界条件确定时,空间区域的场分布就唯一地确定的镜像法:利用唯一性定理解静电场的间接方法。
关键在于在求解区域之外寻找虚拟电荷,使求解区域内的实际电荷与虚拟电荷共同产生的场满足实际边界上复杂的电荷分布或电位边界条件,又能满足求解区域内的微分方程。
电磁场与电磁波第八章习题及参考答案
第八章 电磁辐射与天线8.1 由(8.1-3)式推导(8.1-4)及(8.1-5)式。
解)sin ˆcos ˆ(4θθθπμ-=-rrIdle A jkrρ (8.1-3) 代入A H ρρ⨯∇=μ1,在圆球坐标系ˆsin ˆˆsin 112θ∂ϕ∂∂θ∂∂∂ϕθθθμμrA A rr r rr A H r=⨯∇=ρρ)]cos ()sin ([4ˆ])([sin sin ˆ2r e e r r Idl A rA r r r jkr jkr r θθθπϕθθμθϕθ--∂∂--∂∂=∂∂-∂∂=可求出H ρ的3个分量为jkre kr kr j Idl k H -+=))(1(sin 422θπϕ (8.1-4) 0==θH H r将上式代入E j H ρρωε=⨯∇,可得到电场为H j E ρρ⨯∇=ωε1ϕθ∂ϕ∂∂θ∂∂∂ϕθθθωεH r rr r rr j sin 0ˆsin ˆˆsin 12=代入ϕH 得jkrr e kr kr j Idl k j E -+-=))(1)((cos 2323θπωε jkr e kr jkr kr j Idl k E --+=))()(1(sin 4323θπωεθ (8.1-5) 0=ϕE8.2 如果电流元yIl ˆ放在坐标原点,求远区辐射场。
解 解1 电流元yIl ˆ的矢量磁位为 jkr e rIl y A -=πμ4ˆρ 在圆球坐标系中jkry r e rIl A A -==πϕθμϕθ4sin sin sin sinjkry e rIl A A -==πϕθμϕθθ4sin cos sin cosjkry e rIl A A -==πϕμϕϕ4cos cos由A H ρρ⨯∇=μ1,对远区辐射场,结果仅取r1项,得jkre rIl jH -=λϕθ2cos jkre r Il j H --=λϕθϕ2sin cos根据辐射场的性质,E r ZH ρρ⨯=ˆ1得 jkre r Il jZ E --=λϕθθ2sin cosjkre r Il jZ E --=λϕϕ2cos解2 根据 jkR e RRl Id jH -⨯=λ2ˆρρ (8.1-13) RH Z E ˆ⨯=ρρ (8.1-14) ϕϕϕθθϕθcos ˆsin cos ˆsin sin ˆˆˆ++==r y lr Rˆˆ≈ ϕθϕθϕcos ˆsin cos ˆˆˆ+-=⨯rl ϕϕϕθθcos ˆsin cos ˆˆ)ˆˆ(--=⨯⨯r rl jkRer Idl j H -=λ2ρ)cos ˆsin cos ˆ(ϕθϕθϕ+- jkR erIdl jZ H -=λ2ρ)cos ˆsin cos ˆ(ϕϕϕθθ--8.3 三副天线分别工作在30MHz,100MHz,300MHz,其产生的电磁场在多远距离之外主要是辐射场。
电磁场与电磁波习题参考答案
电磁场与电磁波习题参考答案(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《电磁场与电磁波》知识点及参考答案第1章 矢量分析1、如果矢量场F 的散度处处为0,即0F∇⋅≡,则矢量场是无散场,由旋涡源所产生,通过任何闭合曲面S 的通量等于0。
2、如果矢量场F 的旋度处处为0,即0F ∇⨯≡,则矢量场是无旋场,由散度源所产生,沿任何闭合路径C 的环流等于0。
3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是:散度(高斯)定理:S VFdV F dS ∇⋅=⋅⎰⎰和斯托克斯定理:sCF dS F dl∇⨯⋅=⋅⎰⎰。
4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。
( √ )5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。
( √ )6、标量场的梯度运算和矢量场的旋度运算都是矢量。
( √ )7、梯度的方向是等值面的切线方向。
( × )8、标量场梯度的旋度恒等于0。
( √ )9、习题, 。
第2章 电磁场的基本规律(电场部分)1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。
2、在国际单位制中,电场强度的单位是V/m(伏特/米)。
3、静电系统在真空中的基本方程的积分形式是:V V sD dS dV Q ρ⋅==⎰⎰和0lE dl⋅=⎰。
4、静电系统在真空中的基本方程的微分形式是:V D ρ∇⋅=和0E∇⨯=。
5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。
6、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =0;而磁场→B 的法向分量 B 1n -B 2n =0。
7、在介电常数为的均匀各向同性介质中,电位函数为 2211522x y z ϕ=+-,则电场强度E=5x y zxe ye e --+。
电磁场与电磁波课后习题答案全杨儒贵
1-13试证式(1-7-11)及式(1-7-12)。
证明①式(1-7-11)为 ( 为常数)
令 , ,则
②式(1-7-12)为
令 , ,则
若将式(1-7-12)的右边展开,也可证明。
1-14试证 , 及 。
证明已知在球坐标系中,矢量A的旋度为
对于矢量 ,因 , , ,代入上式,且
因r与角度,无关,那么,由上式获知 。
解利用高斯定理, ,则
第二章静电场
2-1若真空中相距为d的两个电荷q1及q2的电量分别为q及4q,当点电荷 位于q1及q2的连线上时,系统处于平衡状态,试求 的大小及位置。
解要使系统处于平衡状态,点电荷 受到点电荷q1及q2的力应该大小相等,方向相反,即 。那么,由 ,同时考虑到 ,求得
可见点电荷 可以任意,但应位于点电荷q1和q2的连线上,且与点电荷 相距 。
2-17若在一个电荷密度为 ,半径为a的均匀带电球中,存在一个半径为b的球形空腔,空腔中心与带电球中心的间距为d,试求空腔中的电场强度。
2-3直接利用式(2-2-14)计算电偶极子的电场强度。
解令点电荷 位于坐标原点, 为点电荷 至场点P的距离。再令点电荷 位于+ 坐标轴上, 为点电荷 至场点P的距离。两个点电荷相距为 ,场点P的坐标为(r, ,)。
根据叠加原理,电偶极子在场点P产生的电场为
考虑到r>>l, =er, ,那么上式变为
因两个边矢量 ,意味该两个边矢量相互垂直,所以该三角形是直角三角形。
因
,
所以三角形的面积为
1-4已知矢量 ,两点P1及P2的坐标位置分别为 及 。若取P1及P2之间的抛物线 或直线 为积分路径,试求线积分 。
电磁场理论与微波技术 第8章 微波传输线
所以 ▽× = -jωμH
③
4.全电流定律▽×H = Jc + ∂D/∂t ,现无传导电流,Jc = 0 , 以及D = εE ,E正比于ejωt ,
所以 ▽×H = jωεE
④
第8章 微波传输线
Maxwell方程组变成:
▽•E = 0
①
▽•B = 0
②
▽×E = -jωμH ③
▽×H = jωεE ④
第8章 微波传输线 图 8―1―1
第8章 微波传输线
在微波的低频段,可以用平行双线来传输微波能量和信号;而 当频率提高到其波长和两根导线间的距离可以相比时,电磁能量会 通过导线向空间辐射出去,损耗随之增加,频率愈高,损耗愈大, 因此在微波的高频段,平行双线不能用来作为传输线。
为了避免辐射损耗,可以将传输线做成封闭形式,像同轴线 那样电磁能量被限制在内外导体之间,从而消除了辐射损耗。因 此,同轴线传输线所传输的电磁波频率范围可以提高,是目前常 用的微波传输线。但随频率的继续提高,同轴线的横截面尺寸必 须相应减小,才能保证它只传输TEM模,这样会导致同轴线的导 体损耗增加,尤其内导体引起损耗更大,传输功率容量降低。因 此同轴线又不能传输更高频率的电磁波,一般只适用于厘米波 段。
= ω2 με
(即以后的波数k = 2π/λε:k = ω√με,2πf / v = 2π/λε,v=λεf)
左边 = 右边:
即:▽2 E + k2 E = 0
其中k2
2.同样对▽×H式两边再取▽×:得 :▽2 H + k2 H = 0
第8章 微波传输线
(三)直角坐标系下的场量:
E = ax Ex + ay Ey + az Ez H = ax Hx + ay Hy + az Hz ▽2 E = ax▽2Ex + ay▽2Ey + az▽2Ez ▽2 H = ax▽2Hx + ay▽2Hy + az▽2Hz
电磁场与电磁波期末复习考试要点
第一章矢量分析①A A Ae =②cos A B A Bθ⋅=⋅③A 在B 上的分量B AB A B A COS BA θ⋅==④e xyz x y z xyzA B e e A A AB B B⨯=⑤A B A B⨯=-⨯ ,()A B C A B A C⨯+=⨯+⨯ ,()()()A B C B C A C A B ⋅⨯=⋅⨯=⋅⨯(标量三重积),()()()A B C B A C C A B ⨯⨯=⋅-⋅⑥ 标量函数的梯度xy z u u u ux y ze e e ∂∂∂∇=++∂∂∂⑦ 求矢量的散度=y x z A xyzA A A ∂∂∂∇⋅++∂∂∂散度定理:矢量场的散度在体积V 上的体积分等于在矢量场在限定该体积的闭合曲面S 上的面积分,即VSFdV F d S ∇⋅=⋅⎰⎰,散度定理是矢量场中的体积分与闭合曲面积分之间的一个变换关系。
⑧ 给定一矢量函数和两个点,求沿某一曲线积分E dl ⋅⎰,x y CCE dl E dx E dy ⋅=+⎰⎰积分与路径无关就是保守场。
⑨ 如何判断一个矢量是否可以由一个标量函数的梯度表示或者由一个矢量函数的旋度表示?如果0A ∇⋅= 0A ∇⨯=,则既可以由一个标量函数的梯度表示,也可以由一个矢量函数的旋度表示;如果0A ∇⋅≠,则该矢量可以由一个标量函数的梯度表示;如果0A ∇⨯≠,则该矢量可以由一个矢量函数的旋度表示。
矢量的源分布为A ∇⋅ A ∇⨯.⑩ 证明()0u ∇⨯∇=和()0A ∇⋅∇⨯=证明:解 (1)对于任意闭合曲线C 为边界的任意曲面S ,由斯托克斯定理有()d d dSCCuu u l l ∂∇⨯∇=∇==∂⎰⎰⎰S l 由于曲面S 是任意的,故有()0u ∇⨯∇=(2)对于任意闭合曲面S 为边界的体积τ,由散度定理有12()d ()d ()d ()d SS S ττ∇∇⨯=∇⨯=∇⨯+∇⨯⎰⎰⎰⎰A A S A S A S 其中1S 和2S 如题1.27图所示。
谢处方《电磁场与电磁波》(第4版)课后习题-第8章 电磁辐射【圣才出品】
即
当接收台的位置偏离正南 时,接收到的电场强度减小到最大值的 1 。
4
2
8.2 上题中如果接收台不动,将元天线在水平面内绕中心旋转,结果如何?如果接收 天线也是元天线,讨论收发两天线的相对方位对测量结果的影响。
解:如果接收台不动,将天线在水平面内绕中心旋转的话,接收到的场强将按
f ( ) sin 的规律变化,由最大值( 90o ),逐渐减小到零( 180o ),再逐渐增 大到最大值( 270o ),又逐渐减小到零( 360o)。如果继续旋转元天线,接收台收
假设 r0 l ,则有
6 / 17
圣才电子书
十万种考研考证电子书、题库视频学习平 台
则矢量位可表示为:
① (2)P 点的矢量位在球坐示系中的三分分量为:
8.8 试述方向图相乘原理。 答:由相同形式和相同取向的单元天线组成的天线阵,其方向性图是单元天线的方向 性乘上阵因子,这就是方向性相乘原理。
(二)习题 8.1 设电偶极子天线的轴线沿东西方向放置,在远方有一移动接收台停在正南方而收 到最大电场强度,当电台沿以元天线为中心的圆周在地面移动时,电场强度渐渐减小,问
收到的电场强度介于最大值和零之间。
8.3 如图 8-2-1 所示一半波天线,其上电流分布为
。
(1)当 r0 l 时,
图 8-2-1
(2)求远区的磁场和电场; (3)求坡印廷矢量;
(4)已知 (5)求方向性系数。
,求辐射电阻;
解:(1)沿 z 方向的电流 I z 在空间任意一点 P(r0, ) 产生的矢量磁位为:
圣才电子书
十万种考研考证电子书、题库视频学习平 台
第 8 章 电磁辐射
(一)思考题 8.1 试解释滞后位的意义,并写出滞后位满足的方程。 答:滞后位的意义:矢量位 A(r,t)和标量位 φ(r,t)的值是由此时刻之前的源 J
2023大学_电磁场与电磁波(李一玫 邵小桃著)课后答案下载
2023电磁场与电磁波(李一玫邵小桃著)课后
答案下载
2023电磁场与电磁波(李一玫邵小桃著)课后答案下载
本书以“麦克斯韦”作为主线,从一般到具体(由静到动、由无界到有界、由无源到有源),系统地阐述了电磁场与电磁波的基本理论和分析方法,重点突出电磁场的传输特性。
本书主要内容包括电磁理论必要的数学基础、电磁场的基本问题、静态场、时变电磁场、平面电磁波、导行电磁波、电磁波的辐射。
各章例题具体实用,并配有习题和参考答案。
本书可作为高等院校通信与电子信息类及相关专业本科生的`教材,也可供从事电磁场理论、微波技术、天线领域的工程技术人员学习和参考。
电磁场与电磁波(李一玫邵小桃著):内容简介
第0章绪论
第1章矢量分析与场论
第2章基本电磁场
第3章静态场
第4章时变场的基本问题
第5章均匀平面电磁波的传播
第6章平面电磁波的反射与折射
第7章导行电磁波
第8章电磁波的辐射
部分习题参考答案
参考文献
电磁场与电磁波(李一玫邵小桃著):图书目录
点击此处下载电磁场与电磁波(李一玫邵小桃著)课后答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由于
2 x / t 2=0
vx=x / t
Jx vx Nq 2 Nq Ex Ex m
qEx m vx
Nq 2 m
或
其中
1
8.2 导电介质在高频或低频时的特性
1、介质的折射率与导电介质的频率特性
如果
由
n nr ini
n2 nr2 ni2 2inr ni
Zi 1 1 i l l
1
2
1 Ri l
Li
1 l
通过计算可以得知,在频率为10kHz时,铜的趋肤深度 为0.66mm;在频率为10MHz时,铜的趋肤深度为0.02mm。 于是,在频率为10MHz时,当经过0.1mm(5 )距离后, 铜内的场几乎已消失。
ni
为有限值,电磁波将会有着明显的衰减。
2、导电介质的趋肤深度
当电磁波的振幅衰减到
e
1 时,有
1
即
1
因为电磁波能量与其幅值的平方成正比,所以在经过了这个传播距离
之后,辐射功率就衰减到 1/ e .
2
若将复折射率表示为 n nr ini
那么,平面极化波中场强表示式
E ex Ex ex E0 exp[i(t nz / c)]
2
2 0c 2 ε
3.随着电流频率的升高,导体上所流过的电流将越来越集中于导体的表 面附近,导体内部的电流却越来越小,这种现象称为趋肤效应。
4. 沿着电磁波的传播方向,电场和磁场的幅值随z的增加按指数 e 5. 衰减系数
z
衰减。
的物理意义为平均能流密度对距离的相对减少率的1/2。
6. 磁场在相位上比对应的电场有一个滞后角 ,会随电导率增大而增大。 7. 在导电介质中,电磁波传播的相速与频率有关,故导电介质是色散介质。 8. 导电介质中电场能量密度和磁场能量密度不相等。 9. 导电介质中平面电磁波的性质主要由参数 、和 决定。 10. 当 Q 1 介质中的位移电流密度远大于传导电流密度,介质特性与理想 电介质比较接近。
v远
比较大,电磁与磁场幅度衰减快。
(3)在同一场点上,电场达到最大值的1/8周期后,
磁场才达到最大值。 (4)在良导体中,磁场占有主要地位,磁场能量远大于 电场能量。 (5)由于导体的电导率很大,所以产生很大的传导电流。 (6)良导体中的平均功率流密度为
* 1 1 S av Re[ E ( z ) H ( z )] ez H02e2 z 2 2 2
表明衰减系数 与频率 的平方根成正比,这样它
将随着频率的增加而增加。
导体内的电场强度为
I i e Ez ( y) l
i y
I ( i )e y ei y l
1
2
对于高度导电媒质,即使在中等频率时衰减常数也会很 大,使得场在随着y方向距离增加时衰减很快,极端情形 时电流成为处于导体表面的电流外壳。 定义
e 1 时它在介质中的趋肤深度或穿透深度
,根据
就可以测量出电磁波在开始明显衰减之前的
传播距离。
3、导电介质的趋肤效应
H Jc
由
E i H
E i J
2
在导电媒质中 可得
2
J E
J i J
就是导电媒质中电流密度 J 的一般波动方程。实际上,
它就是决定导体内涡流的方程。
接下来讨论导电介质中 J 的分布情况
由波动方程的通解
J z ( y) Ae
i y
Be
i y
可得
J z ( y ) J 0e
i y
J 0e y ei y ei
8.4
等离子体
等离子体对波的反射
是除气体、液体和固体以外的第四种物态,它是由电子、负离子、正 离子和未电离的中性分子组成的混合体。
等离子体的电特性 1、等离子体中总的正负电量相等,因此对外呈现中性。 2、与导体相比,其电子浓度远远小于导体中自由电子的浓度。 3、在外场作用下,等离子体中电子和离子作定向运动形成 运流电流 4、对于频率很高的外加电磁场运流电流仅由电子运动所引起, 即等离子体的电特性将主要取决于自由电子的运动。
J
第8章 重点:
导电介质中的电磁波
1. 导电介质的一般模型 2. 导电介质在高频与低频时的特性 3. 导电介质中的电磁波 4. 等离子体对波的反射
以金属媒质作为模型来讨论电磁波在其中的传播情况,模 型建立在萨姆菲尔德(Sommerfeld)、德鲁德(Drude)和洛 伦兹(Lorentz)等人的理论研究基础之上的,
1 1 2Q
/
1 i 1 Q
2 v 1/
Q i /4 (1 i) e i 2
在频率较高的频段内,电磁波具有如下特点:
(1)很小的 值使良导体内电磁波的传播速度 小于真空中的电磁波速度 c ,并且速度与速率有关。 (2)衰减常数
S (ex Ex ) (ey H y ) E02 2 z ez e cos(t z ) cos(t z )
平均坡印廷矢量为
1 * 1 Sav Re[ (ex Ex ) (ey H y ) ez E0e2 z cos 2 2
Nq 2 m 0
这时,波就会反射。
当法向入射角
i 0
,即
cos i 1
时
Nq 2 m 0
可得
法向入射波会发生反射的最大频率(临界频率
fc )
1 fc 2
Nq 2 m 0
本章要点
1.高频电磁波能穿透金属,而低频电磁波在金属中则会被大大衰减
2.在低频范围内,即 f Nq / m 时,电磁波的穿透深度为
如果电荷在x方向的平均运动速度为
vx
,那么电流则为
J x Nqvx
稳恒电流受两个相反因素的影响: (i) 场加速电荷的移动 (ii)与晶格的碰撞减缓电荷的移动。 电流得以稳恒是这两种影响平均后的结果,即其 平均加速度为零。
对于单个的电荷,有
2 x x qEx m( 2 ) t t
Nq 2 / m 0 / 0 n2 1 1 2 i 2 i
n2 1
2 nr ni2 1
/ 0 / i 2 2 0 2 2 1 1
/ 0 ( 2 2 1)
nr
/ 2 0 1 ( ) ( 2 2 1) ni
都服从斯耐尔定律
及转换角
nr sint sini
因此,当
nr 由于N的增大而减小时, sin t
sin t 1,t 900
1 cos i
,即
t
一定会增大。这样,我们就可以得出波的反射条件:
如果 即当
nr sin i
Nq 2 1 sin i 2 m 0
上式仅仅适用于气体,而对于密度较高的物质,如液体或固体,由 于其中分子极化形成偶极子从而产生局部场的原因,上式需要修改。 但是金属分子或原子中的自由电荷不可能发生极化,因而对于高 密度的金属媒质,上式无需修改。 另一方面,由于自由电荷没有被束缚在原子周围,所以不存在着 正比于位移的恢复力,同时这些电荷在原子内部也没有自然频率或谐 振频率。为了利用上述一般模型来描述金属,在上面式中令
可变为
E ex E0 exp(ni z / c)exp[i(t nr z / c)]
又从前面的平面极化波中场强表示式可知
ni / c 1
所 以
c / ni
折射率的虚部决定了波穿过介质时被衰减的程度,因此当我们研 究电磁波在金属中的传播问题时,需要求出该金属的 ni 若将电磁波的振幅衰减到 定义为
8.3
导电介质中的电磁波
1、导电介质中波的传播特性 根据第7章中的内容,且假定电磁波仍然沿着z轴传播
则
Ex E0e z cos(t z)
其中
E H y 0 e z cos(t z )
k
1 i
ei
电磁波的瞬时坡印廷矢量为
J
8.1 导电介质的一般模型
思路
修改描述分子或原子中的电荷特性的一般模型 (第三 章),使其能够适用于金属介质 。
2 x x 2 qEx m( 2 0 x) t t
Nq 2 / m 0 n 1 2 (0 2 ) i
2
原子中移动电荷的受力方程为
低密度介质的折射率关系式为
0=0
于是上面的两个式子变为
2 x x qEx m( 2 ) t t
Nq 2 / m 0 n 1 2 i
2
接下来,我们来建立这些微观模型参数与金属的电导率 对于各向同性的导体,电流与场成正比,所以有 在一维坐标中,则有
J E
J x Ex
(2)沿着电磁波的传播方向,例如z方向,电场和磁场的 幅值随z的增加按指数 e z 衰减。
(3) 的物理意义为平均能流密度对距离的相对减少率 的1/2。
1 dSav / dz 2 Sav
(4)磁场在相位上比对应的电场有一个滞后角
(5)由第7章的分析可知,导电媒质中电磁波的相速由 相位系数和角频率共同决定,如
它表明了介质的 导电性与介质性 的比例关系。
当 Q 100 时,这样的媒质称为低损耗媒质 有
v
2Q 2
1
k