水泥罐稳定性计算书.docx
水泥罐计算书
福民站80T水泥罐基础设计计算书一、水泥罐基础及承台设计1、水泥罐基础根据现场实际情况,采用人工素填土基础;2、基础承台设计为:承台砼C35、承台尺寸为5000*5000*600mm,水泥罐的预埋件规格为:450*450*20mm,由厂家提供,施工安装。
二、水泥罐基础、承台计算1、基础竖向承载力验算根据设计资料,本基础位置的持力层为素填土,该层土的承载力特征值为100Kpa。
V=80+7=87t=870KN,G=5*5*0.6*2.5*10=375KN, A=5*5=25m2σ地=(G+V)/A=(870+375)/ 25=49.8KN/ m2<[σ地]=100KN/ m2经计算地基承载满足要求。
其中式中:V——为水泥罐满载时总重量87T,根据厂家提供;G——为基础承台重量;A——为基础承台接触面积。
2、基础抗倾覆验算w k =βzμNμzwo=1*0.8*1.17*0.75=0.702 KN/ m2wk——风荷载标准值(KN/ m2);βz——高度z处的风振系数,查《建筑结构荷载规范》低于30m取1;μN——风荷载形体系数,查《建筑结构荷载规范》圆形取0.8;μz——风压高度变化系数,查《建筑结构荷载规范》靠近海边取1.17;wo——基本风压(KN/m2),查《建筑结构荷载规范》风压深圳地区按50年一遇,取0.75;只需计算水泥罐空载情况下抗倾覆即可:M稳= P1×1/2×基础宽=(70+375)/2*5=1112.5 KN•MM倾=P2×受风面×(7+7)= 0.702*6.5*2.6*7*7=581.326 KN•MM稳/ M倾≥1.5即满足要求=1112.5/581.326=1.91>1.5M稳—抵抗弯距 KN•MM倾—抵抗弯距 KN•MP1—储蓄罐与基础自重KNP2—风荷载 KN经计算满足抗倾覆要求。
为了提高储料罐的抗倾覆能力,水泥罐采用三根直径16mm的缆风绳三角对称加固,每根长度约15米。
水泥罐基础计算单(参考模板)
中南通道150t 水泥罐基础简算一、 空仓时整体抗倾覆稳定性稳定性计算1、计算模型2、风力计算:风荷载强度计算:0z s Z W W ⋅⋅⋅=μμβ基本风压:Pa v W 8516.19.366.1220===A 1=0.8×0.8×1.5=0.96m 2 F 1=0.8×1.25×1.5×851×0.96=1225N作用高度:H 1=20.4mA 2=3.4×12=40.8m 2 F 2=0.8×1×1.5×851×40.8=41665N作用高度:H 2=14mA 3=4/2×3.4=6.8 m 2 F 3=0.5×1×1×851×6.8=2893.4N作用高度:H 3=6mA 4=4×3.4×0.05=0.68 m 2 F 4=0.5×1×1×851×0.68=289N作用高度:H 4=2m3、倾覆力矩计算:m t F M i ⋅=⨯+⨯+⨯+⨯=⋅=∑6.6222896289314416654.201225h i 41倾4、稳定力矩计算:假定筒仓绕AB 轴倾覆,稳定力矩由两部分组成,一部分是仓体自重(按15t 计)稳定力矩M 稳1,另一部分是水泥仓立柱与基础连接螺栓抗拉产生的稳定力矩M 稳2。
m t M ⋅=⨯=182.1151稳考虑1.5倍的抗倾覆系数,则M 稳2≥75.9t ∙m ,单个支腿的需提供的抗拉力不小于15.8t 。
单支腿设计抗拉力为25t ,满足要求。
二、 管桩计算采用4根摩擦型Φ426δ=8mm 钢管桩,单桩承载力按70t 设计,由沉桩承载力容许值计算公式:Ra=11.5ui=1nailiqik+arAPqrkRa —单桩轴向受压承载力容许值,按规范应取1.25的抗力系数,因所给资料荷载不明确,对于150t 水泥罐单桩70t 应该有较大富裕,暂定70t 为单桩承载力容许值。
水泥罐计算书
哈大梁场200t 水泥筒仓设计计算书一、 设计依据:1、 《粮食钢板筒仓设计规范(GB50322-2001)》2、 《钢筋混凝土筒仓设计规范(GB5007-2003)》3、 《钢结构设计规范(GB50017-2003)》4、 《冷弯薄壁型钢结构技术规范(GB50018-2002)》5、 《钢结构工程施工质量验收规范(GB50205-2001)》6、 《建筑钢结构焊接技术规程(JGJ81-2002)》7、 哈大客运专线12#梁场指挥部提供的地质水文等资料。
二、 各项参数: 1、 水泥计算参数:容重:γ=16KN/m 3; 内摩擦角:φ=30°;水泥与仓壁的摩擦系数:μ=0.3; 侧压力系数:k=()()2245φ-tg ; 筒仓内径:d n ;仓内储存料计算高度:h n ;筒仓水平净截面的水力半径:ρ=d n /42、 深仓计算修正系数:深仓贮料水平压力修正系数:C h ; 深仓贮料竖向压力修正系数:C v ; 3、 风荷载参数计算风力:v=35.6m/s 4、 仓体自重:G=15t三、 空仓时整体抗倾覆稳定性稳定性计算 1、 计算模型0.82F2、 风荷载强度计算:风荷载强度计算:0321W K K K W ⋅⋅⋅= 其中 基本风压:Pav W 1.7926.16.356.1220===风载体形系数:K1=0.8 风压高度变化系数:K2=1.0地形、地理变化系数,按一般平坦空旷地区取K3=1.0 W=0.8×1.0×1.0×792.1=634Pa3、 风力计算:A 1=0.85×0.82=0.697m 2,考虑仓顶护栏等,提高1.5倍 F 1=634×0.697×1.5=666N作用高度:H 1=10+11+0.82/2=21.41m A 2=(4.2+0.063×2) ×11.0=47.6m 2F 2=634×47.6=作用高度H1=10+11+0.82/2=21.41m 作用高度:H 2=10+11/2=15.5m A 3=(4.326+0.289)/2×3.4=7.8 m 2 F 3=634×7.8=4945N作用高度:H 3=10-3.4/3=8.87m A 4=3.85×1.5×0.4=2.31 m 2 F 4=634×2.31=1465N 作用高度:H 4=4.25+1.5/2=5m 4、 倾覆力矩计算:mt F M i ⋅=⨯+⨯+⨯+⨯=⋅=∑14.235146587.849455.153017841.21666h i 41倾稳定力矩计算:假定筒仓绕AB 轴倾覆,稳定力矩由两部分组成,一部分是仓体自重稳定力矩M稳1,另一部分是水泥仓立柱与基础连接螺栓抗拉产生的稳定力矩M 稳2。
水泥罐抗风验算详细计算书
京新高速公路临河至白疙瘩段三标一分部(K532+150~K565+000段)水泥罐抗风验算计算书中国交通建设股份有限公司京新高速公路LBAMSG-3项目总承包管理部第一项目部二〇一五年四月水泥罐抗风验算计算书一、验算内容及验算依据为保证我项目水泥罐安全性对我分部拌合站筒仓的抗风性能进行了验算。
主要从拌合站筒仓支撑构件的强度、稳定性及基础的倾覆性进行了验算,并提出相应的抗风加固措施。
验算依据为:《公路桥涵设计通用规范》(JTG D60-2004)及《公路桥梁钢结构设计规范》。
二、风荷载大小的确定根据现场调研及相关工区提供的资料,检算时取罐体长度为12m ,支腿长度为9.0m 。
罐体直径为5.0m, 自重为10 t ,满载时料重300 t 。
根据《公路桥涵设计基本规范》中的4.4.1条确定风荷载的大小。
根据资料显示,我项目部施工范围内混凝土搅拌站在沿线大风区分区范围、风向、最大风速分别为主导风向NW ,最大风速53m/s 。
相关抗风的设计计算以此为依据。
表1 风级风速换算表《公路桥涵设计基本规范》中的4.4.1条规定,作用于结构物上的风荷载强度可按下式计算:0321W K K K W = (1)式中 W —风荷载强度(Pa );0W —基本风压值(Pa ),206.11ν=W ,系按平坦空旷地面,离地面20m 高,频率1/100的10min 平均最大风速ν(m/s )计算确定;一般情况0W 可按《铁路桥涵设计基本规范》中附录D “全国基本风压分布图”,并通过实地调查核实后采用;K—风载体形系数,对桥墩可参照《铁路桥涵设计基本规范》中表4.4.1-1,1其它构件为1.3;K—风压高度变化系数,可参照《铁路桥涵设计基本规范》中表4.4.1-2,2风压随离地面或常水位的高度而异,除特殊高墩个别计算外,为简化计算,桥梁工程中全桥均取轨顶高度处的风压值;K—地形、地理条件系数,可参照《铁路桥涵设计基本规范》中表4.4.1-3。
水泥罐稳定性计算书
水泥罐稳定性计算书-CAL-FENGHAI.-(YICAI)-Company One1水泥罐稳定性计算书一、编制说明本验算编制是根据施工现场土质情况及水泥罐特点而进行的,为确保有足够的水泥储藏量,保证工程顺利进行,工程计划投入50t,100t两种水泥罐进行施工作业。
二、编制依据1、施工现场平面布置;2、水泥罐平面示意图及基础参数(华新水泥鄂州分厂提供);3、工程周边建筑情况。
三、水泥罐定位水泥罐定位布置见下图:四、水泥罐基础及承台设计1、本水泥罐基础根据现场实际情况,采用强夯处理过后地基,且经静力触探检测承载力大于150Kpa;2、基础承载设计为:承载砼为C25等级,承台尺寸为4500*4500*500mm,承台采取开挖半米浇筑混凝土布置。
五、水泥罐基础,承载验算,抗倾覆验算:1、基础竖向承载力验算,根据现场地基处理后土体检测,该层土的承载力特征值为150KN/㎡。
水泥罐自重根据水泥厂提供数据,50t罐取10t计算,100t罐取15t计算;分两种情况进行验算(1)50t水泥罐V=600KNG=***25=254KNδ地=(G+V)/A=(600+254)/(*)=㎡<〔δ地〕=150KN/㎡(2)100t水泥罐V=1150KNG=***25=254KNδ地=(G+V)/A=(1150+254)/(*)=㎡<〔δ地〕=150KN/㎡即承载能力满足要求;其中式中:V——为水泥罐满载时总重量,取水泥罐说明书;G——为基础承载重量;A——为基础承载接触面积。
2、基础抗倾覆验算:分两种情况进行验算按照抗倾覆验算公式δδδδ>0即满足要求其中式中:δδ——自重及压重产生的稳定力矩KN·m;δδ——风荷载标准值,此处为平原地带,根据设计图纸总说明,历史最大风速17m/s,根据风速与风压通用公式取δδ=δ2/1600,计算得;H ——风荷载计算力矩高度;S ——水泥罐侧面受力面积。
(1)50t水泥罐空罐:δδδδ=*(***25+100)*(2)*3**(+2)=·>0满罐:δδδδ=*(***25+600)*(2)*3**(+2)=·>0(2)100t水泥罐空罐:δδδδ=*(***25+150)*(2)*3**(+2)=·>0满罐:δδδδ=*(***25+1150)*(2)*3**(+2)=·>0抗倾覆均能满足要求,现场为防止突发情况,在罐体四周沿三个方向拉设缆风绳,保证稳定,且在罐体周围布置护栏防撞。
水泥罐抗风验算计算书
混凝土搅拌站罐体抗风验算计算书(二工区2#搅拌站大罐)兰州交通大学土木工程学院岩土与地下工程系2010.5一、验算内容及验算依据受中铁21局兰新指挥部的委托,对兰新铁路第二双线(新疆段)风区的拌合站筒仓的抗风性能进行了验算。
主要从拌合站筒仓支撑构件的强度、稳定性及基础的倾覆性进行了验算,并提出相应的抗风加固措施。
验算依据为:《铁路桥涵设计基本规范》(TB 10002.1-2005)及《铁路桥梁钢结构设计规范》(TB 10002.2-2005)。
二、风荷载大小的确定根据现场调研及相关工区提供的资料,检算时取罐体长度为12m ,支腿长度为9.0m 。
罐体直径为5.0m, 自重为10 t ,满载时料重300 t 。
根据《兰新铁路新疆有限公司文件》(新铁安质2010 33号)提供的风级凤速换算表(见表1)及《铁路桥涵设计基本规范》中的4.4.1条确定风荷载的大小。
根据《兰新铁路新疆有限公司文件》(新铁安质2010 47号)附件中兰新铁路第二双线(新疆段)大风区工程分区说明,资料显示,中铁二十一局(7标)项目部施工范围内混凝土搅拌站在沿线大风区分区范围、风向、最大风速分别为:三十里风区:DK1656+000~DK1746+227长86.398km ,主导风向NW ,最大风速53m/s 。
相关抗风的设计计算以此为依据。
表1 风级风速换算表《铁路桥涵设计基本规范》中的4.4.1条规定,作用于结构物上的风荷载强度可按下式计算:0321W K K K W = (1)式中 W —风荷载强度(Pa );0W —基本风压值(Pa ),206.11ν=W ,系按平坦空旷地面,离地面20m 高,频率1/100的10min 平均最大风速ν(m/s )计算确定;一般情况0W 可按《铁路桥涵设计基本规范》中附录D “全国基本风压分布图”,并通过实地调查核实后采用;1K—风载体形系数,对桥墩可参照《铁路桥涵设计基本规范》中表4.4.1-1,其它构件为1.3;2K—风压高度变化系数,可参照《铁路桥涵设计基本规范》中表4.4.1-2,风压随离地面或常水位的高度而异,除特殊高墩个别计算外,为简化计算,桥梁工程中全桥均取轨顶高度处的风压值;3K—地形、地理条件系数,可参照《铁路桥涵设计基本规范》中表4.4.1-3。
水泥灰罐桩基础承载力及稳定性计算书
水泥灰罐桩基础承载力及稳定性计算书项目名称_____________日期_____________计算_____________复核_____________审核_____________日期_____________一、设计资料1、扩大基础尺寸:10×10×0.5m(长、宽、高)兼作基础功能;承台底换填砂0.5m;木桩群桩桩径D=0.18m;入土深度8m。
(详见示意图)2、设计荷载:装满水泥的水泥灰罐自重65T×2+110T×2=330TC20混凝土扩大基础自重,10×10×0.5×2.5T/m3=125T基础与水泥灰罐全部自重455T3、土质自地面而下的分布情况为上述土质情况表明,淤泥土为荷载的主要承载体根据《泉州晋江大桥详勘—工程地质报告》,淤泥质软土地基容许承载力推荐值[σ]=50kPa[τ]取10KN二、木桩群桩基础及扩大基础示意图立面图平面图三、 验算内容①、 混凝土扩大基础的承载力验算 ②、 整体抗倾覆性验算 ③、 基础抗滑性验算④、 混凝土基础上表面细部承载力验算 四、 验算过程1、混凝土扩大基础的承载力①、混凝土扩大基础的容许承载力[σ]计算[σ]=[σ0]+K1r1(b-2)+k2r2(h-3)=[σ0] (淤泥质土k1=0,h <3m ) 则[σ]= [σ0]=50KPa砂垫层底面尺寸应为:11×11米,但不考虑砂垫层的内摩擦角的作用。
基底的最大应力σMAX 计算σMAX =AN =1004500=450KPa <[σ]=500KPa所以基础承载力小于地基承载力。
2、灰罐及基础整体抗倾覆验算图示:①基底偏心矩验算按基础受荷载组合Ⅱ、Ⅲ、Ⅳ作用于淤泥层时验算,即:e0=ΣM/NΣM………………………竖向荷载相对于基底形心的弯矩之和N……………………………………………基底合力的竖向分力ΣM=162KN×8=1.30×106N·MN=5000KN=5×106Ne0=1.30×106/5×106=0.26m又基础底面的核心半径ρ=W/A=1/6a3÷a2=1/6×103÷102=1.67mW ………………………基础底面的截面模量A ………………………基底的面积所以,e0=0.26m≤ρ=1.67m;在允许范围之内,满足要求。
水泥罐计算书
哈大梁场200t水泥筒仓设计计算书1、设计依据:1、《粮食钢板筒仓设计规范(GB50322-2001)》2、《钢筋混凝土筒仓设计规范(GB5007-2003)》3、《钢结构设计规范(GB50017-2003)》4、《冷弯薄壁型钢结构技术规范(GB50018-2002)》5、《钢结构工程施工质量验收规范(GB50205-2001)》6、《建筑钢结构焊接技术规程(JGJ81-2002)》7、哈大客运专线12#梁场指挥部提供的地质水文等资料。
2、各项参数:1、水泥计算参数:容重:γ=16KN/m3;内摩擦角:φ=30°;水泥与仓壁的摩擦系数:μ=0.3;侧压力系数:k=;筒仓内径:d n;仓内储存料计算高度:h n;筒仓水平净截面的水力半径:ρ=d n/42、深仓计算修正系数:深仓贮料水平压力修正系数:C h;深仓贮料竖向压力修正系数:C v;3、风荷载参数计算风力:v=35.6m/s4、仓体自重:G=15t3、空仓时整体抗倾覆稳定性稳定性计算1、计算模型2、风荷载强度计算:风荷载强度计算:其中基本风压:风载体形系数:K1=0.8风压高度变化系数:K2=1.0地形、地理变化系数,按一般平坦空旷地区取K3=1.0W=0.8×1.0×1.0×792.1=634Pa3、风力计算:A1=0.85×0.82=0.697m2,考虑仓顶护栏等,提高1.5倍F1=634×0.697×1.5=666N作用高度:H1=10+11+0.82/2=21.41mA2=(4.2+0.063×2) ×11.0=47.6m2F2=634×47.6=作用高度H1=10+11+0.82/2=21.41m作用高度:H2=10+11/2=15.5mA3=(4.326+0.289)/2×3.4=7.8 m2F3=634×7.8=4945N作用高度:H3=10-3.4/3=8.87mA4=3.85×1.5×0.4=2.31 m2F4=634×2.31=1465N作用高度:H4=4.25+1.5/2=5m4、倾覆力矩计算:稳定力矩计算:假定筒仓绕AB轴倾覆,稳定力矩由两部分组成,一部分是仓体自重稳定力矩M稳1,另一部分是水泥仓立柱与基础连接螺栓抗拉产生的稳定力矩M稳2。
(完整word版)水泥罐抗风验算计算书
京新高速公路临河至白疙瘩段三标一分部(K532+150 〜K565+000 段)中国交通建设股份有限公司京新高速公路LBAMSG-项目总承包管理部第一项目部二0—五年四月水泥罐抗风验算计算书一、验算内容及验算依据为保证我项目水泥罐安全性对我分部拌合站筒仓的抗风性能进行了验算。
主要从拌合站筒仓支撑构件的强度、稳定性及基础的倾覆性进行了验算,并提出相应的抗风加固措施。
验算依据为:《公路桥涵设计通用规范》(JTG D60-2004)及《公路桥梁钢结构设计规范》。
二、风荷载大小的确定根据现场调研及相关工区提供的资料,检算时取罐体长度为12m,支腿长度为9.0m。
罐体直径为5.0m,自重为10 t,满载时料重300 t。
根据《公路桥涵设计基本规范》中的441条确定风荷载的大小。
根据资料显示,我项目部施工范围内混凝土搅拌站在沿线大风区分区范围、风向、最大风速分别为主导风向NW,最大风速53m/s。
相关抗风的设计计算以此为依据。
《公路桥涵设计基本规范》中的441条规定,作用于结构物上的风荷载强度可按下式计算:W K1K2K3W0(1)式中W —风荷载强度(Pa);W。
一基本风压值(Pa),W。
2,系按平坦空旷地面,离地面20m1.6高,频率1/100的10min平均最大风速(m/s)计算确定;一般情况W0可按《铁路桥涵设计基本规范》中附录D “全国基本风压分布图”,并通过实地调查核实后米用;K i —风载体形系数,对桥墩可参照《铁路桥涵设计基本规范》中表441-1, 其它构件为1.3;K2 —风压高度变化系数,可参照《铁路桥涵设计基本规范》中表441-2, 风压随离地面或常水位的高度而异,除特殊高墩个别计算外,为简化计算,桥梁工程中全桥均取轨顶高度处的风压值;K3 —地形、地理条件系数,可参照《铁路桥涵设计基本规范》中表441-3。
针对本工程场地实际特点,取k1=1.3, k2=1.0,k3=1.3。
取风级11下的风速为30m/s,风级13下的风速为39m/s,风级15下的风速为48m/s;风级17 下的风速为58m/s。
(整理)100t水泥罐验算.
水泥罐矩形板式基础计算书计算依据:1、《混凝土结构设计规范》GB50010-20102、《建筑地基基础设计规范》GB50007-2011一、水泥罐属性二、水泥罐荷载1、水泥罐传递至基础荷载标准值2、水泥罐传递至基础荷载设计值三、基础验算矩形板式基础布置图基础及其上土的自重荷载标准值:G k=blhγc=4×4×1.25×25=500kN基础及其上土的自重荷载设计值:G=1.35G k=1.35×500=675kN荷载效应标准组合时,平行基础边长方向受力:M k''=235.2kN·mF vk''=F vk'/1.2=16.8/1.2=14kN荷载效应基本组合时,平行基础边长方向受力:M''=317.52kN·mF v''=F v'/1.2=22.68/1.2=18.9kN基础长宽比:l/b=4/4=1≤1.1,基础计算形式为方形基础。
W x=lb2/6=4×42/6=10.67m3W y=bl2/6=4×42/6=10.67m3相应于荷载效应标准组合时,同时作用于基础X、Y方向的倾覆力矩:M kx=M k b/(b2+l2)0.5=235.2×4/(42+42)0.5=166.31kN·mM ky=M k l/(b2+l2)0.5=235.2×4/(42+42)0.5=166.31kN·m1、偏心距验算满罐时:相应于荷载效应标准组合时,基础边缘的最小压力值:P kmin=(F k+G k)/A-M kx/W x-M ky/W y=(1150+500)/16-166.31/10.67-166.31/10.67=71.94kPa≥0偏心荷载合力作用点在核心区内。
空罐时,相应于荷载效应标准组合时,基础边缘的最小压力值:P kmin=(F k+G k)/A-M kx/W x-M ky/W y(150+500)/16-166.31/10.67-166.31/10.67=9.45kPa≥0=偏心荷载合力作用点在核心区内。
水泥罐基础计算书
水泥罐基础计算书1、基本参数水泥罐自重6t ,满装水泥100t ,共重106t 。
支腿高3m ,罐身8.05m 。
基础深度1.7m ,底面为边长4m 的正方形。
2、地基承载力①修正地基承载力计算公式:按《建筑地基基础设计规范》(GB 50007-2002)下列公式验算: f a = f ak +ηb ·γ·(b -3)+ηd ·γm ·(d -0.5) (式5.2.4)111水泥罐基础平面图1-1剖面-配筋图式中:f ak = 100.00 kPaηb = 0.00,ηd = 1.00γ = 19 kN/m3,γm = 19 kN/m3b = 4 m,d = 1.7 mfa = fak+ηb·γ·(b-3)+ηd·γm·(d-0.5)= 100.00+0.00×19×(4.00-3.00)+1.00×19×(1.7-0.50)= 122.80 kPa修正后的地基承载力特征值f a = 122.80 kPa②轴心荷载作用下地基承载力:P1+P2=1560KN,受力面积A=16×106mm2,P/A=1560KN/16=97.5KPa≤f a,满足要求。
3、抗倾覆计算①风力计算水泥罐体按通体罐接受水平风荷载计算,所受风荷载:F=A×W=3.4×8.05×0.7=19.159KN式中W为基本风压,深圳市为0.7KN/m2平均作用高度:H=8.05÷2+3=7.025m倾覆力矩:M倾=F×H=19.159×7.025=134.6KN·m②抗倾覆计算:抗倾覆计算以空罐计算,空罐计算满足及抗倾覆满足。
基础及水泥罐总重:P=60+500=560KN稳定力矩:M稳=560×1.7/2=476KN·mM倾/M稳=476/134.6=3.5>2即水泥罐的抗倾覆满足要求,水泥罐是安全的。
《水泥罐验算》
水泥罐矩形板式基础计算书计算依据:1、《混凝土结构设计规范》GB50010-20102、《建筑地基基础设计规范》GB50007-2011一、水泥罐属性二、水泥罐荷载1、水泥罐传递至基础荷载标准值2、水泥罐传递至基础荷载设计值三、基础验算矩形板式基础布置图基础布置基础长l(m)4基础宽b(m)4基础高度h(m) 1.25基础参数基础混凝土强度等级C25基础混凝土自重γ(kN/m3)25c基础上部覆土厚度h’(m)0基础上部覆土的重度γ’(kN/m3)19基础混凝土保护层厚度δ(mm)40地基参数地基承载力特征值f ak(kPa)100基础宽度的地基承载力修正系数ηb0.3基础埋深的地基承载力修正系数ηd 1.6基础底面以下的土的重度γ(kN/m3)19基础底面以上土的加权平均重度γ19基础埋置深度d(m) 1.25基础及其上土的自重荷载标准值:Gk =blhγc=4×4×1.25×25=500kN基础及其上土的自重荷载设计值:G=1.35Gk=1.35×500=675kN 荷载效应标准组合时,平行基础边长方向受力:Mk''=235.2kN·mFvk ''=Fvk'/1.2=16.8/1.2=14kN荷载效应基本组合时,平行基础边长方向受力:M''=317.52kN·mFv ''=Fv'/1.2=22.68/1.2=18.9kN基础长宽比:l/b=4/4=1≤1.1,基础计算形式为方形基础。
Wx=lb2/6=4×42/6=10.67m3Wy=bl2/6=4×42/6=10.67m3相应于荷载效应标准组合时,同时作用于基础X、Y方向的倾覆力矩:Mkx =Mkb/(b2+l2)0.5=235.2×4/(42+42)0.5=166.31kN·mMky =Mkl/(b2+l2)0.5=235.2×4/(42+42)0.5=166.31kN·m1、偏心距验算满罐时:相应于荷载效应标准组合时,基础边缘的最小压力值:Pkmin =(Fk+Gk)/A-Mkx/Wx-Mky/Wy=(1150+500)/16-166.31/10.67-166.31/10.67=71.94kPa≥0偏心荷载合力作用点在核心区内。
水泥罐稳定性计算书.docx
水泥罐稳定性计算书.docx水泥罐稳定性计算书一、编制说明本验算编制是根据施工现场土质情况及水泥罐特点而进行的,为确保有足够的水泥储藏量,保证工程顺利进行,工程计划投入50t,100t两种水泥罐进行施工作业。
二、编制依据1、施工现场平面布置;2、水泥罐平面示意图及基础参数(华新水泥鄂州分厂提供);3、工程周边建筑情况。
三、水泥罐定位水泥罐定位布置见下图:四、水泥罐基础及承台设计1、本水泥罐基础根据现场实际情况,采用强夯处理过后地基,且经静力触探检测承载力大于150Kpa;2、基础承载设计为:承载砼为C25等级,承台尺寸为4500*4500*500mm,承台采取开挖半米浇筑混凝土布置。
五、水泥罐基础,承载验算,抗倾覆验算:1、基础竖向承载力验算,根据现场地基处理后土体检测,该层土的承载力特征值为150KN/㎡。
水泥罐自重根据水泥厂提供数据,50t罐取10t计算,100t罐取15t 计算;分两种情况进行验算(1)50t水泥罐V=600KNG=4.5*4.5*0.5*25=254KN=(G+V)/A=(600+254)/(4.5*4.5)=42.12KN/㎡<〔〕=150KN/㎡(2)100t水泥罐V=1150KNG=4.5*4.5*0.5*25=254KN=(G+V)/A=(1150+254)/(4.5*4.5)=69.33KN/㎡<〔〕=150KN/㎡即承载能力满足要求;其中式中:V——为水泥罐满载时总重量,取水泥罐说明书;G——为基础承载重量;A——为基础承载接触面积。
2、基础抗倾覆验算:分两种情况进行验算按照抗倾覆验算公式0.95-S>0即满足要求其中式中:——自重及压重产生的稳定力矩KNm;——风荷载标准值,此处为平原地带,根据设计图纸总说明,历史最大风速17m/s,根据风速与风压通用公式取=/1600,计算得0.18;H ——风荷载计算力矩高度;S ——水泥罐侧面受力面积。
水泥罐抗倾覆验算
混凝土搅拌站水泥罐抗倾覆验算计算书复核:计算:日期:2015年4月15日一、工程概况根据本工程的砼需求量和拌和站的设计要求,设置JS1000型搅拌站2台、HZS90P搅拌站1台。
每个JS1000型搅拌站设置水泥储存罐2个,HZS90P搅拌站设置水泥储存罐4个。
为了保证拌和站能正常安全使用,现在将水泥罐的抗倾覆性进行受力验算。
二、各项参数水泥储存罐各项参数:直径3m,高12.5m,自重3.8T;满罐时水泥重100t。
立柱采用4根Φ220×6、壁厚10mm无缝钢管与基础连接,JS1000型搅拌站水泥储存罐立柱高5.7m,HZS90P型搅拌站水泥储存罐立柱高6.3m。
水泥储存罐基础参数:JS1000型:长3.6m,宽3.6m,埋深2.5m,采用整体式C30基础HZS90P型:长14m,宽3.6m,埋深2m,采用整体式C30基础拌和站示意图如下:(图1)三、计算说明:1、由于水泥储存罐建在高处,所以没有发生意外碰撞的可能,计算时不考虑外界碰撞;水泥储存罐基础在浇筑时,已经对基底标高,顶面标高,预埋钢板标高经过严格控制,高差都控制在±1cm内,所以对水泥储存罐自身倾斜带来的水平分力忽略不计。
计算时主要考虑风对罐体的影响。
2、计算时均按最不利因素考虑,风力采用当地极少见的10级风(风速28.4m/s),有效的受风面按(图1)所示分别计算。
2个或4个罐按连接体计算,对罐与罐之间的空隙不再折减。
但立柱受的风压不考虑。
3、计算时主要考虑三个方面的安全性:1)验算基底承载力够不够;2)验算从罐体到基础作为整体时的抗倾覆性;3)验算罐体立柱与基础连接处的安全性。
四、计算过程1、1个罐○1基地承载力:取最不利因素1个罐水泥全满时计算罐体和基础总重F重=M•10=(3.8×1+100×1+3.6×3.6×2.5×2.4) ×10=1815.6KN 基底面积A=3.6×3.6=12.96m2基底应力δ= F重/A=1815.6/12.96=140.093KPa<(实测)说明基底承载力满足需要。
水泥罐及粉煤灰罐基础计算书
水泥罐及粉煤灰罐基础计算书1、计算参数水泥罐自重2.5t,自重压力P1=25KN,粉煤灰罐自重2.5t,自重压力P2=25KN。
水泥罐装满水泥约为45t,水泥重量为P1’=450KN,粉煤灰罐装满粉煤灰为45t,粉煤灰重量为P2’=450KN。
基础尺寸为8m×6m×1m,采用C30钢筋混凝土结构。
2、地基承载力验算σ1=(P1+P1’+ P2+ P2’)/A=(25+450+25+450)/(8×6)=19.79Kpa<670KPa,满足要求。
根据《鹏飞路站地质详勘图》中取泥质粉砂岩天然抗压强度最小值670KPa。
3、基础抗倾覆验算水泥罐、粉煤灰为空罐时,抗倾覆能力最不利。
Kc=M1/M2=((P1+ P2)×0.5×基础宽)/(P3×cos34°×受风面积×受力点到倾覆点的距离)=((25+25)×0.5×3)/(0.25×cos34°×13.5×8.143)=3.29>1.5,满足要求。
根据《建筑结构荷载规范》(GB50009-2001)荷载取值,南宁市风荷载P3=0.25KN/m2。
4、基础抗滑稳定性验算K0=(P1+ P2)×f/(P3×受风面积)=(25+25)×0.25/(0.25×3×4.5)=3.7>1.3,满足要求。
5、基础承载力σ2=(P1+P1’+ P2+ P2’)/8/0.0005/103=2.375MPa<25MPa,满足要求。
6、车站结构承载力通过与车站设计单位联系,车站顶板承载力按22KPa考虑。
根据“2地基承载力验算”σ1=19.79KPa<22KPa,满足车站顶板受力要求。
3#水泥罐基础结构计算书(广乐)(1)
广乐T23标1#拌和站拌和楼水泥罐基础计算书计算:复核:审定:日期:拌和楼水泥罐基础结构计算一、设计概况本拌和站设置2套拌和楼,每套拌和楼根据施工需要,设置3个储量80t的水泥罐。
二、载荷计算(以单个水泥罐计算)水泥罐自重为80KN,满载时竖向总荷载900KN,空罐时为100K N,水平力按受风压面积:3.11×12m=37.32m2,最高风速v=34m/S(台风) ,风压q=v*v/16*12=867Pa,则H=37.32*867=32.36KN。
则基础所受的荷载为:竖向力N1=900KN,N2=100KN,水平力H=32.36KN 三、基础验算:水泥罐基础为长4×宽4×高1m的C25普通钢筋砼,重400KN,拌和楼地基基底为淤泥地质 [G]=50KPa~100Kpa。
基础顶上预埋钢板作为与水泥罐的基脚螺丝相连连接,锚固板采用4ф16㎜的锚固筋锚固于基础内。
1、基底应力:作用在基底的力为:N=900+400=1300KN基底应力为σ=N/A=1300/16=81.25KPa<[σ0]=100KPa2、基础计算M=32.36*12=388.32KN-M,N1=900KN,N1=100KN,W=bh2/6=0.67m3满载σ1=N/A±M/W=900/16±388.32/0.67=0.64MPa<[σ]=13.5MPa-0.52MPa<[σl]=1.3MPa空载σ2=N/A±M/W=100/16±388.32/0.67=]=13.5MPa0.59MPa<[σ-0.57MPa<[σl]=1.3MPa(拉应力)3、剪应力计算水泥罐基座处的剪力Q max=900KN复核截面尺寸h0=1000mm,hw/b=h0/b=1000/4000=0.25<4按公式复核截面尺寸,即0.25βc*f c*b*h0=0.25*1.0*11.9*4000*1000=1190000N=11900KN>V max=900KN(满足要求)确定是否需配置腹筋0.7f t*b*h0=0.7*1.27*4000*1000=3556000N=3556KN>V max=900KN按计算不需配置腹筋,按构造要求配置腹筋和箍筋。
水泥罐抗倾覆验算
混凝土搅拌站水泥罐抗倾覆验算计算书复核:计算:日期:2015年4月15日一、工程概况根据本工程的砼需求量和拌和站的设计要求,设置JS1000型搅拌站2台、HZS90P搅拌站1台。
每个JS1000型搅拌站设置水泥储存罐2个,HZS90P搅拌站设置水泥储存罐4个。
为了保证拌和站能正常安全使用,现在将水泥罐的抗倾覆性进行受力验算。
二、各项参数水泥储存罐各项参数:直径3m,高12.5m,自重3.8T;满罐时水泥重100t。
立柱采用4根Φ220×6、壁厚10mm无缝钢管与基础连接,JS1000型搅拌站水泥储存罐立柱高5.7m,HZS90P型搅拌站水泥储存罐立柱高6.3m。
水泥储存罐基础参数:JS1000型:长3.6m,宽3.6m,埋深2.5m,采用整体式C30基础HZS90P型:长14m,宽3.6m,埋深2m,采用整体式C30基础拌和站示意图如下:(图1)三、计算说明:1、由于水泥储存罐建在高处,所以没有发生意外碰撞的可能,计算时不考虑外界碰撞;水泥储存罐基础在浇筑时,已经对基底标高,顶面标高,预埋钢板标高经过严格控制,高差都控制在±1cm内,所以对水泥储存罐自身倾斜带来的水平分力忽略不计。
计算时主要考虑风对罐体的影响。
2、计算时均按最不利因素考虑,风力采用当地极少见的10级风(风速28.4m/s),有效的受风面按(图1)所示分别计算。
2个或4个罐按连接体计算,对罐与罐之间的空隙不再折减。
但立柱受的风压不考虑。
3、计算时主要考虑三个方面的安全性:1)验算基底承载力够不够;2)验算从罐体到基础作为整体时的抗倾覆性;3)验算罐体立柱与基础连接处的安全性。
四、计算过程1、1个罐○1基地承载力:取最不利因素1个罐水泥全满时计算罐体和基础总重F重=M•10=(3.8×1+100×1+3.6×3.6×2.5×2.4) ×10=1815.6KN 基底面积A=3.6×3.6=12.96m2基底应力δ= F重/A=1815.6/12.96=140.093KPa<(实测)说明基底承载力满足需要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水泥罐稳定性计算书
一、编制说明
本验算编制是根据施工现场土质情况及水泥罐特点而进行的,为确保有足够的水泥储藏量,保证工程顺利进行,工程计划投入50t,100t两种水泥罐进行施工作业。
二、编制依据
1、施工现场平面布置;
2、水泥罐平面示意图及基础参数(华新水泥鄂州分厂提供);
3、工程周边建筑情况。
三、水泥罐定位
水泥罐定位布置见下图:
四、水泥罐基础及承台设计
1、本水泥罐基础根据现场实际情况,采用强夯处理过后地基,且经静力触探检测承载力大于150Kpa;
2、基础承载设计为:承载砼为C25等级,承台尺寸为4500*4500*500mm,承台采取开挖半米浇筑混凝土布置。
五、水泥罐基础,承载验算,抗倾覆验算:
1、基础竖向承载力验算,根据现场地基处理后土体检测,该层土的承载力特征值为150KN/㎡。
水泥罐自重根据水泥厂提供数据,50t罐取10t计算,100t罐取15t计算;
分两种情况进行验算
(1)50t水泥罐
V=600KN
G=4.5*4.5*0.5*25=254KN
=(G+V)/A=(600+254)/(4.5*4.5)=42.12KN/㎡<〔〕=150KN/㎡
(2)100t水泥罐
V=1150KN
G=4.5*4.5*0.5*25=254KN
=(G+V)/A=(1150+254)/(4.5*4.5)=69.33KN/㎡<〔〕=150KN/㎡
即承载能力满足要求;
其中式中:
V——为水泥罐满载时总重量,取水泥罐说明书;
G——为基础承载重量;
A——为基础承载接触面积。
2、基础抗倾覆验算:
分两种情况进行验算
按照抗倾覆验算公式
0.95-S>0即满足要求
其中式中:
——自重及压重产生的稳定力矩KNm;
——风荷载标准值,此处为平原地带,根据设计图纸总说明,历史最大风速17m/s,根据风速与风压通用公式取=/1600,计算得0.18;
H ——风荷载计算力矩高度;
S ——水泥罐侧面受力面积。
(1)50t水泥罐
空罐:
0.95-SH=0.95*(4.5*4.5*0.5*25+100)*(4.5/2)-0.18*3*4.35*(3.714+4.35/2)=742.84KNm>0
满罐:
0.95-SH=0.95*(4.5*4.5*0.5*25+600)*(4.5/2)-0.18*3*4.35*(3.714+4.35/2)=1811.59KNm>0
(2)100t水泥罐
空罐:
0.95-SH=0.95*(4.5*4.5*0.5*25+150)*(4.5/2)-0.18*3*8.7*(3.714+8.7/2)=2963.16KNm>0
满罐:
0.95-SH=0.95*(4.5*4.5*0.5*25+1150)*(4.5/2)-0.18*3*8.7*(3.714+8.7/2)=825.66KNm>0
抗倾覆均能满足要求,现场为防止突发情况,在罐体四周沿三个方向拉设缆风绳,保证稳定,且在罐体周围布置护栏防撞。
知识改变命运。