北师大版七年级数学下册知识点梳理
北师大版《数学》(七年级下册)知识点总结
北师大版《数学》(七年级下册)知识点总结第一章整式的运算 组长检查签名 _________ 家长检查签名_________一. 整式※1. 单项式①由数与字母的积组成的代数式叫做单项式。
单独一个数或字母也是单项式。
②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.③一个单项式中,所有字母的指数和叫做这个单项式的次数.※2.多项式①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数. ②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.※3.整式单项式和多项式统称为整式.⎪⎩⎪⎨⎧⎩⎨⎧其他代数式多项式单项式整式代数式二. 整式的加减1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.三. 同底数幂的乘法※同底数幂的乘法法则: n m n m a a a +=⋅(m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n m a a a a ++=⋅⋅(其中m 、n 、p 均为正数);⑤公式还可以逆用:n m n m a a a ⋅=+(m 、n 均为正整数)四.幂的乘方与积的乘方※1. 幂的乘方法则:mn n m a a =)((m,n 都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.),()()(都为正数n m a a a mn m n n m ==.在应用时需要注意以下几点:(1) 底数有负号时,运算时要注意,底数是a 与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a )3化成-a 3⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n(2)底数有时形式不同,但可以化成相同。
最新北师大版七年级数学下册全册知识点总结
1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
1
3、单项式中所有字母的指数和叫做单项式的次数。 4、单独一个数或一个字母也是单项式。 5、只含有字母因式的单项式的系数是 1 或―1。 6、单独的一个数字是单项式,它的系数是它本身。 7、单独的一个非零常数的次数是 0。 8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。 9、单项式的系数包括它前面的符号。 10、单项式的系数是带分数时,应化成假分数。 11、单项式的系数是 1 或―1 时,通常省略数字“ 1”。 12、单项式的次数仅与字母有关,与单项式的系数无关。 二、多项式 1、几个单项式的和叫做多项式。 2、多项式中的每一个单项式叫做多项式的项。 3、多项式中不含字母的项叫做常数项。 4、一个多项式有几项,就叫做几项式。 5、多项式的每一项都包括项前面的符号。 6、多项式没有系数的概念,但有次数的概念。 7、多项式中次数最高的项的次数,叫做这个多项式的次数。 三、整式的加减 1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。 2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。 3、几个整式相加减的一般步骤:
4
6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。 (二)单项式与多项式相乘 1、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多 项式中的每一项,再把所得的积相加。即: m(a+b+c)=ma+mb+m。c 2、运算时注意积的符号,多项式的每一项都包括它前面的符号。 3、积是一个多项式,其项数与多项式的项数相同。 4、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果。 (三)多项式与多项式相乘 1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一 个多项式的每一项,再把所得的积相加。即: (m+n)(a+b)=ma+mb+na+nb。 2、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个 多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两 个多项式项数的积。 3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正, 异号得负”。 4、运算结果中有同类项的要合并同类项。 5、对于含有同一个字母的一次项系数是 1 的两个一次二项式相乘时,可以运用下面的 公式简化运算: (x+a)(x+b)=x 2+(a+b)x+ab 。 十二、平方差公式 1、(a+b)(a-b)=a 2-b 2,即:两数和与这两数差的积,等于它们的平方之差。 2、平方差公式中的 a、b 可以是单项式,也可以是多项式。 3、平方差公式可以逆用,即: a2-b 2=(a+b)(a-b) 。 4、平方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成
北师大版七年级数学下册知识点梳理
北师大版七年级数学下册知识点梳理七年级数学(下)重要知识点总结第一章:整式的运算一、概念1.代数式是由数字、字母及其乘积、和、差、积、商等符号组成的式子。
2.单项式是由数字与字母的乘积组成的代数式,不含加减运算,分母中不含字母。
3.多项式是由几个单项式相加(减)组成的代数式,含加减运算。
4.整式是单项式和多项式的统称。
二、公式、法则:1.同底数幂的乘法法则:a的m次方乘以a的n次方等于a的m+n次方。
逆用:a的m+n次方等于a的m次方乘以a的n次方。
2.同底数幂的除法法则:a的m次方除以a的n次方等于a的m-n次方(a≠0)。
逆用:a的m-n次方等于a的m次方除以a的n次方(a≠0)。
3.幂的乘方法则:a的m次方的n次方等于a的mn次方。
逆用:a的mn次方等于a的m次方的n次方。
4.积的乘方法则:ab的n次方等于a的n次方乘以b的n次方。
逆用:a的n次方乘以b的n次方等于ab的n次方(当ab=1或-1时常逆用)。
5.零指数幂:任何数的0次方等于1(注意考虑底数范围,底数a≠0)。
6.负指数幂:任何数的负整数次幂等于该数的倒数的正整数次幂(底数a≠0)。
7.单项式与多项式相乘:单项式m乘以多项式(a+b+c)等于ma+mb+mc。
8.多项式与多项式相乘:多项式(m+n)乘以多项式(a+b)等于ma+mb+na+nb。
9.平方差公式:(a+b)乘以(a-b)等于a的平方减去b的平方。
推广:有一项完全相同,另一项只有符号不同,结果等于相同。
连用变化。
10.完全平方公式:a+b)的平方等于a的平方加上2ab加上b的平方。
a-b)的平方等于a的平方减去2ab加上b的平方。
逆用:a的平方加上2ab加上b的平方等于(a+b)的平方。
a的平方减去2ab加上b的平方等于(a-b)的平方。
完全平方公式变形:a的平方加上b的平方等于(a-b)的平方加上2ab。
2a的平方加上b的平方等于(a+b)的平方减去2ab等于(a-b)的平方加上2ab等于1.完全平方和公式中间项等于完全平方差公式中间项的相反数,等于完全平方公式中间项的一半。
北师大版七年级下册数学各章知识点总结
北师大版七年级下册数学各章知识点总结第一章:集合与函数在本章中,我们学习了集合和函数的概念及其相关性质。
集合是由一些确定的元素所组成的整体,可以用各种方式进行表示和描述。
函数是一种具有特定关系的元素对应规则,它可以将每一个元素都与唯一的另一个元素对应起来。
1.1 集合的基本概念- 元素:构成集合的个体或对象。
- 集合的含义:具有某种特定性质的元素的整体。
- 集合的表示方法:列举法、描述法、图形法等。
- 空集:不包含任何元素的集合,用符号{}表示。
1.2 集合的运算- 并集:包含两个或多个集合中的所有元素,用符号∪表示。
- 交集:同时属于两个或多个集合的元素,用符号∩表示。
- 差集:属于一个集合而不属于另一个集合的元素,用符号-表示。
1.3 函数与映射- 函数的概念:具有唯一对应关系的元素对应规则。
- 定义域与值域:函数中可输入的元素的全体构成的集合称为定义域,函数中对应的输出元素的全体构成的集合称为值域。
- 映射:通过函数规则将一个集合中的元素对应到另一个集合中的元素。
第二章:有理数与运算该章节主要介绍了有理数的概念及其运算法则,以及有理数之间的大小比较和约分等操作。
2.1 有理数的基本概念- 有理数:能够表示为两个整数之比的数,包括正整数、负整数和零等。
- 整数:自然数、0和负整数的统称。
- 分数:用一个整数除以另一个非零整数所得的数。
2.2 有理数的加减法- 加法法则:同号两数相加,异号两数相减。
- 减法法则:将减法问题转化为加法问题。
- 有理数的加法运算法则:相同/不同符号数相加,绝对值相加、符号不变。
2.3 有理数的乘除法- 乘法法则:同号得正,异号得负。
- 除法法则:除以一个非零有理数相当于乘以它的倒数。
第三章:代数式的定义与计算该章节主要讲解了代数式的概念及其计算方法,介绍了加法、减法、乘法和幂运算等代数式的性质和规则。
3.1 代数式的定义与基本运算- 代数式:用字母和数字表示数的式子。
最新北师大版七年级数学下册全册知识点总结
2
(2)按去括号法则去括号。 (3)合并同类项。
4、代数式求值的一般步骤:
(1)代数式化简。 (2)代入计算 (3)对于某些特殊的代数式,可采用“整体
代入”进行计算。
四、同底数幂的乘法 1、n 个相同因式(或因数) a 相乘,记作 an,读作 a 的 n 次方(幂),其中 a 为底数, n 为指数, an 的结果叫做幂。
8
五、同位角、内错角、同旁内角 1、两条直线被第三条直线所截,形成了 8 个角。 2、同位角:两个角都在两条直线的同侧,并且在第三条直线(截线)的同旁,这样的 一对角叫做同位角。 ( F) 3、内错角:两个角都在两条直线之间,并且在第三条直线(截线)的两旁,这样的一 对角叫做内错角。 (Z) 4、同旁内角:两个角都在两条直线之间,并且在第三条直线(截线)的同旁,这样的 一对角叫同旁内角。 (U) 5、这三种角只与位置有关,与大小无关,通常情况下,它们之间不存在固定的大小关 系。 六、六类角 1、补角、余角、对顶角、同位角、内错角、同旁内角六类角都是对两角来说的。 2、余角、补角只有数量上的关系,与其位置无关。 3、同位角、内错角、同旁内角只有位置上的关系,与其数量无关。 4、对顶角既有数量关系,又有位置关系。 七、平行线的判定方法 1、同位角相等,两直线平行。 2 、内错角相等,两直线平行。 3、同旁内角互补,两直线平行。 4、在同一平面内,如果两条直线都平行于第三条直线,那么这两条直线平行。 5、在同一平面内,如果两条直线都垂直于第三条直线,那么这两条直线平行。 八、平行线的性质 1、两直线平行,同位角相等。 2、两直线平行,内错角相等。
9
3、两直线平行,同旁内角互补。 4、平行线的判定与性质具备互逆的特征,其关系如下:
北师大版七年级下册数学知识点总结
北师大版七年级下册数学知识点总结第一章:整式的乘除。
1. 同底数幂的乘法。
- 法则:同底数幂相乘,底数不变,指数相加。
即a^m· a^n=a^m + n(m,n 都是正整数)。
- 例如:2^3×2^4=2^3 + 4=2^7。
2. 幂的乘方与积的乘方。
- 幂的乘方:(a^m)^n=a^mn(m,n都是正整数)。
例如(3^2)^3=3^2×3=3^6。
- 积的乘方:(ab)^n=a^nb^n(n是正整数)。
例如(2×3)^2=2^2×3^2=4×9 = 36。
3. 同底数幂的除法。
- 法则:同底数幂相除,底数不变,指数相减。
即a^m÷ a^n=a^m - n(a≠0,m,n都是正整数,且m>n)。
例如3^5÷3^2=3^5 - 2=3^3。
- 零指数幂:a^0=1(a≠0)。
例如5^0=1。
- 负整数指数幂:a^-p=(1)/(a^p)(a≠0,p是正整数)。
例如2^-3=(1)/(2^3)=(1)/(8)。
4. 整式的乘法。
- 单项式与单项式相乘:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
例如2x^2·3x^3=(2×3)(x^2·x^3) = 6x^5。
- 单项式与多项式相乘:就是用单项式去乘多项式的每一项,再把所得的积相加。
例如a(b + c)=ab+ac。
- 多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
例如(a + b)(c + d)=ac+ad+bc+bd。
5. 平方差公式。
- 公式:(a + b)(a - b)=a^2-b^2。
例如(3 + 2)(3 - 2)=3^2-2^2=9 - 4 = 5。
6. 完全平方公式。
- (a + b)^2=a^2+2ab + b^2;(a - b)^2=a^2-2ab + b^2。
北师大版七年级下册数学知识点总结
北师大版数学七年级下册知识点总结第一章整式的乘除1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。
2、多项式:几个单项式的和叫做多项式。
多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。
3、整式:单项式和多项式统称整式。
注意:凡分母含有字母代数式都不是整式。
也不是单项式和多项式。
4、同底数塞的乘法法则(〃中都是正整数)同底数塞相乘,底数不变,指数相加。
注意:底数可以是多项式或单项式。
如:(a + b)2•(〃 + 〃)3 = (a + b)55、赛的乘方法则:产(〃?,〃都是正整数)• ••累的乘方,底数不变,指数相乘。
如:(-35)2=3,0累的乘方法则可以逆用:即* =如:46 =(42)3 =(43)26、积的乘方法则:(")"=//(〃是正整数)积的乘方;等于各因数乘方的积。
如:(-2x3y2z)s = (-21• (1)5 •3y •=-32X,5J,O Z57、同底数器的除法法则:a,n^a n=a m-n ( a市0,孙〃都是正整数,且〃?人〃)同底数用相除,底数不变,指数相减。
如:(,必)4+(加)=(皿)3=//8、零指数和负指数;a0 = 1 , (a^O)即任何不等于零的数的零次方等于1。
〃-,=二(。
工0,〃是正整数),即一个不等于零的数的-〃次方等于这个数的〃次方的倒cr 数。
9、科学记数法:如:=7.21x10”(第一个非零数字前零的个数)10、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母的基分别相乘,其余字母连同它的指数不变,作为积的因式。
注意:①积的系数等于各因式系数的积,先确定符号,再计算绝对值。
②相同字母相乘,运用同底数塞的乘法法则。
③只在一个单项式里含有的字母,则连同它的指数作为积的一个因式④单项式乘法法则对于三个以上的单项式相乘同样适用。
(完整版)北师大版七年级数学下册数学各章节知识点总结
in 3、互余和互补是指两角和为直角或两角和为平角,它们只与角的度数有关,与角的位置
无关。
s 4、余角和补角的性质:同角或等角的余角相等,同角或等角的补角相等。 g 5、余角和补角的性质用数学语言可表示为: in (1) 1 2 900 (1800 ), 1 3 900 (1800 ), 则 2 3(同角的余角
3
ethin (6)过点×和点×画直线××(或画射线××); m (7)在∠×××的外部(或内部)画∠×××=∠×××; o 6、在作较复杂图形时,涉及基本作图的地方,不必重复作图的详细过程,只用一句话概 s 括叙述就可以了。 r (1)画线段××=××; (2)画∠×××=∠×××;
等于它们的平方和,加上(或减去)它们的积的 2 倍。
2、公式中的 a,b 可以是单项式,也可以是多项式。
3、掌握理解完全平方公式的变形公式:
(1) (2)
a2 (a
b2 (a b)2 2ab b)2 (a b)2 4ab
(a
b)2
2ab
1 2
[(a
b)2
(a
b)2 ]
(3)
ab
1 4
(1)列出代数式:用括号把每个整式括起来,再用加减号连接。 (2)按去括号法则去括号。 (3)合并同类项。 4、代数式求值的一般步骤: (1)代数式化简。 (2)代入计算 (3)对于某些特殊的代数式,可采用“整体代入”进行计算。 五、同底数幂的乘法 1、n 个相同因式(或因数)a 相乘,记作 an,读作 a 的 n 次方(幂),其中 a 为底数,n 为指数,an 的结果叫做幂。 2、底数相同的幂叫做同底数幂。 3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。 4、此法则也可以逆用,即:am+n = am﹒an。 5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再 运用法则。 六、幂的乘方 1、幂的乘方是指几个相同的幂相乘。(am)n 表示 n 个 am 相乘。 2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n =amn。 3、此法则也可以逆用,即:amn =(am)n=(an)m。 七、积的乘方 1、积的乘方是指底数是乘积形式的乘方。 2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相
北师大版七年级数学下册全部知识点归纳
第一章:整式的运算单项式式多项式同底数幂的乘法幂的乘方积的乘方幂运算同底数幂的除法零指数幂负指数幂整式的加减单项式与单项式相乘单项式与多项式相乘整式的乘法多项式与多项式相乘整式运算平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式一、单项式1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以与乘法分配率。
2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
4、代数式求值的一般步骤:(1)代数式化简。
(2)代入计算(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
北师大版七年级数学下全部知识点归纳
北师大版七年级数学下册全部知识点归纳第一章:整式的运算 单项式: 。
整 式 多项式: 。
同底数幂的乘法:幂的乘方:积的乘方:幂的运算 同底数幂的除法: 零指数幂: 负指数幂: 整式的加减单项式与单项式相乘整式运算单项式与多项式相乘: 整式的乘法 多项式与多项式相乘:平方差公式: 完全平方公式:单项式除以单项式整式的除法 多项式除以单项式:完全平方公式的变形公式:(1)22222212()2()2[()()]a b a b ab a b ab a b a b +=+-=-+=++-(2)22()()4a b a b ab +=-+ (3)2214[()()]ab a b a b =+-- 第二章 平行线与相交线平行线: 。
对顶角的性质:垂线的性质:性质1:过一点有 。
性质2:连接直线外一点 。
平行线的性质:1、平行公里:过 性质2:平行于 平行。
整 式 的 运算余角:余角和补角 补角:邻补角:两线相交 对顶角:同位角三线八角 内错角同旁内角平行线的判定:平行线平行线的性质:尺规作图:第三章 变量之间的关系自变量变量的概念 因变量变量之间的关系 表格法关系式法变量的表达方法 图象法第四章 三角形三角形概念: 称为三角形。
三角形按内角的大小可分为三类:直角三角形的性质: ;直角三角形的两直角边为a 、b ,斜边为c ,斜边上的高为h,则h= 。
任意三角形都有三条角平分线,并且它们相交于三角形内一点。
这个点叫三角形的 任意三角形都有三条中线,它们相交于三角形内一点。
这个点叫三角形的 任意三角形都有三条高线,它们所在的直线相交于一点。
这个点叫三角形的平行线与相交线三角形都有三条高线:区 别相 同中 线 平分对边 三条中线交于三角形内部 (1)都是线段 (2)都从顶点画出 (3)所在直线相交于一点 角平分线 平分内角三条角平分线交于三角形内部高 线 垂直于对边(或其延长线)锐角三角形:三条高线交于直角三角形:三条高线交于钝角三角形:三条高线交于三角形三边关系:三角形 三角形内角和定理:角平分线三条重要线段 中线高线三角形 全等图形的概念: 全等三角形的性质:SSSSAS全等三角形 全等三角形的判定 ASAAASHL (适用于Rt Δ)全等三角形的应用 利用全等三角形测距离作三角形第五章 生活中的轴对称: 轴对称图形于轴对称: 轴对称图形轴对称区别是一个图形自身的对称特性 是两个图形之间的对称关系 对称轴可能不止一条对称轴只有一条共同点沿某条直线对折后都能够互相重合如果轴对称的两个图形看作一个整体,那么它就是一个轴对称图形;如果把轴对称图形分成两部分(两个图形),那么这两部分关于这条对称轴成轴对称。
(完整版)北师大版七年级数学下册数学各章节知识点总结
北七下知识要点分章梳理第一章:整式的运算单项式整 式多项式同底数幂的乘法幂的乘方 积的乘方3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
幂运算同底数幂的除法零指数幂负指数幂整式的加减单项式与单项式相乘单项式与多项式相乘 4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配律。
2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
3、几个整式相加减的一般步骤:一、单项式整式的乘法多项式与多项式相乘 整式运算平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式(1) 列出代数式:用括号把每个整式括起来,再用加减号连接。
(2) 按去括号法则去括号。
(3) 合并同类项。
4、代数式求值的一般步骤:(1) 代数式化简。
(2) 代入计算(3) 对于某些特殊的代数式,可采用“整体代入”进行计算。
1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是 1 或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是 0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是 1 或―1 时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
北师大版七年级数学下册全部知识点归纳(新)
北师大版七年级数学下册全部知识点归纳
第一章有理数
•有理数的概念
•有理数的比较
•有理数的四则运算
•有理数的拓展
第二章代数式
•代数式的概念
•代数式的基本性质
•代数式的加减法
•代数式的乘法
•代数式的应用
第三章一次方程与不等式
•一次方程的解法
•一元一次方程的应用
•不等式的概念
•不等式的解法
•不等式组的解法
•不等式的应用
第四章图形的认识
•图形的基本概念
•直线和角的性质
•三角形的性质
•四边形的性质
•圆的性质
第五章数系的拓展
•无理数的概念
•无理数的运算
•实数的概念和性质
•实数的有理数部分和无理数部分
•实数的换底公式
第六章平面几何
•平面几何基本概念
•平面内角和定理
•同位角、同旁内角、同旁外角
•平行线及其性质
•相交线和同位角
第七章运算的性质
•乘法分配律
•加法逆元和乘法逆元
•加法交换律和结合律
•乘法交换律和结合律
•分配律和合并同类项
第八章统计与概率
•统计的基本概念
•统计图形
•数据分析和统计应用
•概率的基本概念
•事件与概率
第九章空间几何
•空间几何基本概念
•空间几何中点和距离
•空间几何连线
•空间几何角与面
第十章函数与方程
•函数的概念
•同解方程组
•二元一次方程组
•一元二次方程
•解法及应用
以上是北师大版七年级数学下册全部知识点的归纳,希望能够对参加中考或者其他考试的同学有所帮助。
2024年北师大版初一下册数学知识点复习总结
2024年北师大版初一下册数学知识点复习总结一、整数与有理数1. 自然数、整数和有理数的概念a. 自然数:1,2,3,4,5,...b. 整数:正整数、负整数和0的集合c. 有理数:整数和分数的集合,可以表示为有限小数或无限循环小数2. 整数的比较与排序a. 正整数的大小比较b. 负整数的大小比较c. 正整数和负整数的比较d. 多个整数的排序3. 有理数的加法与减法a. 有理数的加法规律b. 有理数的减法规律c. 多个有理数的加法和减法4. 有理数的乘法与除法a. 有理数的乘法规律b. 有理数的除法规律c. 多个有理数的乘法和除法5. 分数与小数的转换及其运算a. 分数转换为小数b. 小数转换为分数c. 分数和小数的加减法d. 分数和小数的乘除法6. 数轴与有理数a. 数轴的概念与应用b. 有理数与数轴的对应关系c. 数轴上有理数的加法与减法二、代数与方程1. 代数的基本概念a. 代数表达式的定义与概念b. 代数式的加减法规则c. 代数式的乘法规则d. 代数式的除法规则2. 代数式的求值a. 代数式的求值过程b. 求值实际问题的解答3. 一元一次方程a. 一元一次方程的概念与解的概念b. 一元一次方程的解的判定c. 一元一次方程的解的求解方法d. 一元一次方程实际问题的解答e. 一元一次方程的应用4. 一元一次方程的应用a. 进行信息整理和变量引入b. 分析问题,列方程c. 解方程,得到答案d. 检验所得答案是否正确5. 图形与代数a. 图形与式子的关系b. 表格与式子的关系c. 几何问题的代数化三、图形与几何1. 平面图形a. 点、线、线段、角、多边形的基本概念与性质b. 直线和点的位置关系c. 多边形的内角和、外角和的性质d. 图形的相似与全等2. 空间图形a. 立体图形的基本概念与性质b. 立体图形的表面积和体积的计算c. 图形的投影与展开图3. 几何变换a. 平移、旋转、翻转和对称的概念与性质b. 平移、旋转、翻转和对称的变换规律4. 图形的相似a. 相似图形的定义与性质b. 相似图形的判定与构造c. 相似图形的比例关系与纵横比5. 勾股定理与三角形a. 直角三角形的性质及勾股定理的概念与性质b. 利用勾股定理解决实际问题6. 三角形的知识扩展a. 三角形的角度和b. 三角形的周长与面积c. 三角形的分类与性质四、数据与统计1. 数据的收集和整理a. 数据的获取与整理b. 数据的统计与展示2. 数据的分析与推理a. 数据的分析与推理方法b. 利用统计结果进行问题求解3. 概率与统计a. 事件与概率的概念与性质b. 事件的排列与组合c. 用统计方法解决问题这是关于____年北师大版初一下册数学知识点的大致总结,总结了整数与有理数、代数与方程、图形与几何、数据与统计等方面的知识点。
(完整版)北师大版七年级下册数学各章知识点总结
北师大版《数学》(七年级下册)知识点总结第一章整式的运算单项式 整 式 多项式同底数幂的乘法 幂的乘方 积的乘方幂运算 同底数幂的除法 零指数幂 负指数幂 整式的加减 单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式一、单项式、单项式的次数:只含有数字与字母的积的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
二、多项式1、多项式、多项式的次数、项 几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式:单项式和多项式统称为整式。
四、整式的加减法:整式加减法的一般步骤:(1)去括号;(2)合并同类项。
五、幂的运算性质: 1、同底数幂的乘法:a m﹒a n =am+n(m,n 都是正整数);2、幂的乘方:(am)n=amn(m,n 都是正整数); 3、积的乘方:(ab )n=a n bn(n 都是正整数);4、同底数幂的除法:am÷a n=am-n(m,n 都是正整数,a ≠0) ;整 式 的 运算六、零指数幂和负整数指数幂: 1、零指数幂:a=1(a ≠0);2、负整数指数幂:p 是正整数。
七、整式的乘除法:1、单项式乘以单项式:法则:单项式与单项式相乘,把它们的系数、p 是正整数相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。
2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
3、多项式乘以多项式: 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
北师大版七年级数学下册全部知识点归纳
北师大版七年级数学下册全部知识点归纳如下:一、比例与比例关系1.比例的概念及表示方法2.比例的性质:比例恒定、比例的交叉相等、比例中项的乘积等于其他项的乘积3.比例的应用:物体的相似性、航空地图的比例尺等二、利用比例解决问题1.比例数值法:已知两个比例相等,求其中一个比例的值2.比例线段法:利用线段的比例关系解决问题3.比例面积法:利用面积的比例关系解决问题三、数的四则运算1.加法与减法2.乘法与除法3.括号的运算顺序4.分数的加法与减法四、图形的认识与变换1.平面图形的基本要素:点、线、线段、射线、角、平行线、垂直线、四边形等2.平面图形的分类及特点:三角形、四边形、正方形、矩形、平行四边形、菱形、梯形等3.图形的移动:平移、旋转、翻转4.图形的轴对称与中心对称五、数与式1.代数表达式的定义与基本运算:合并同类项、提取公因式、乘法公式、分配律等2.正数、负数与零的概念与表示方法3.数轴的概念与使用方法4.方程的概念与解的方法六、面积与体积1.平面图形的面积:矩形、三角形、平行四边形、正方形等2.立体图形的体积:长方体、正方体、棱柱、棱锥等3.圆的面积与周长七、统计与概率1.数据的整理与分析:频数表、直方图、折线图等2.概率的基本概念与计算方法:可能性、事件、概率的计算公式等3.点阵图与统计问题的探究八、函数与方程1.函数的概念与表示方法:自变量、因变量、函数值等2.函数的图象与性质3.一次函数与一元一次方程九、三角形与三角函数1.三角形的面积与三角形的性质:直角三角形、等腰三角形、等边三角形等2.三角函数的引入与基本概念:正弦、余弦、正切等3.利用三角函数解决实际问题以上是北师大版七年级数学下册的全部知识点。
不同章节的知识点内容可能会有所不同,如有遗漏请谅解。
希望以上内容对您有所帮助!。
新北师大版七年级数学下册知识点总结
第一章 整式运算知识点(一)公式应用1 、n m n m a a a +=⋅ (m,n 都是正整数)如=⋅-23b b ________。
拓展运用 如已知 =2, =8,求 。
解: ___________________.已知 =2, =8,求 .解: _____________________.2 、mn n m a a =)( (m,n 都是正整数) 如=-4362)()(2a a _________________。
拓展应用 。
若 , 则 __________。
3. (n 是正整数) 拓展运用 。
4. (a 不为0, m,n 都为正整数, 且m 大于n)。
拓展应用 如若 , , 则 _____________。
5. ; , 是正整数)。
如6、平方差公式 a 为相同项, b 为相反项。
如22224)2()2)(2(n m n m n m n m -=--=--+-7、完全平方公式2222)(b ab a b a ++=+ 2222)(b ab a b a +-=-逆用:如22244)2(y xy x y x +-=-8、应用式:ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=-两位数 10a +b 三位数 100a +10b +c 。
9、单项式与多项式相乘: m(a+b+c)=ma+mb+mc 。
10、、多项式与多项式相乘: (m+n)(a+b)=ma+mb+na+nb 。
11.多项式除以单项式的法则:12.常用变形:知识点(三)运算:1、常见误区:1. ( );2. ( ); 3、 ( );4. ( ); 5、 ( );6. ( ); 7、 ( );8、 ( ); 9、 (1), (1);10、222)2)(2(b a b a b a -=-+ (224(b a -);11. ( );12. ( )。
2 、简便运算:①公式类2525125)2504.0(252504.02504.0200520052005200520062005=⨯=⨯⨯=⨯⨯=⨯11)8125.0(8125.0)2(125.02125.01001001001001003100300100==⨯=⨯=⨯=⨯②平方差公式11123123)1123)(1123(1231221241232222=+-=-+-=⨯-③完全平方公式998001120001000000)11000(99922=+-=-=第二章 平行线与相交线知识点(一)理论1. 若∠1+∠2=90, 则∠1与∠2互余。
北师大版七年级数学下册全册知识点归纳
北师大版七年级数学下册全册知识点归纳第一章:整式的运算单项式整式多项式同底数幂的乘法幂的乘方积的乘方幂运算 同底数幂的除法零指数幂负指数幂整式的加减单项式与单项式相乘单项式与多项式相乘整式的乘法 多项式与多项式相乘整式运算 平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式一、单项式1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
4、代数式求值的一般步骤:(1)代数式化简。
(2)代入计算(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
四、同底数幂的乘法1、n个相同因式(或因数)a相乘,记作a n,读作a的n次方(幂),其中a为底数,n为指数,a n的结果叫做幂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学(下)重要知识点总结第一章:整式的运算一、概念1、代数式:2、单项式:由数字与字母的乘积的代数式叫做单项式。
单项式不含加减运算,分母中不含字母。
3、多项式:几个单项式的和叫做多项式。
多项式含加减运算。
4、整式:单项式和多项式统称为整式。
二、公式、法则:(1)同底数幂的乘法:a m ﹒a n =a m+n(同底,幂乘,指加) 逆用: a m+n =a m ﹒a n (指加,幂乘,同底)(2)同底数幂的除法:a m ÷a n =a m-n(a ≠0)。
(同底,幂除,指减) 逆用:a m-n = a m ÷a n (a ≠0)(指减,幂除,同底)(3)幂的乘方:(a m )n =a mn (底数不变,指数相乘)逆用:a mn =(a m )n(4)积的乘方:(ab )n =a n b n推广:逆用, a n b n =(ab )n (当ab=1或-1时常逆用) (5)零指数幂:a 0=1(注意考底数范围a ≠0)。
(6)负指数幂:11()(0)p p p a a a a -==≠(底倒,指反)(7)单项式与多项式相乘:m(a+b+c)=ma+mb+mc 。
(8)多项式与多项式相乘:(m+n)(a+b)=ma+mb+na+nb 。
(9)平方差公式:(a+b )(a-b)=a 2-b 2 公式特点:(有一项完全相同,另一项只有符号不同,结果=22()-相同)(不同 推广(项数变化):连用变化:(10)完全平方公式: 222222()2,()2,a b a ab b a b a ab b +=++-=-+逆用:2222222(),2().a ab b a b a ab b a b ++=+-+=-完全平方公式变形(知二求一):222()2a b a b ab+=-+222()2a b a b ab +=+-222212[()()]a b a b a b +=++-22222212()2()2[()()]a b a b ab a b ab a b a b +=+-=-+=++-22()()4a b a b ab +=-+ 2214[()()]ab a b a b =+-- (11)多项式除以单项式的法则:().a b c m a m b m c m ++÷=÷+÷+÷(12)常用变形:221((n n x y x y +--2n 2n+1)=(y-x), )=-(y-x)第二章 平行线与相交线一、余角与补角1、如果两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。
2、如果两个角的和是平角,那么称这两个角互为补角,简称为互补,称其中一个角是另一个角的补角。
3、余角和补角的性质:同角或等角的余角相等,同角或等角的补角相等。
二、对顶角1、两条直线相交成四个角,其中不相邻的两个角是对顶角。
2、一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。
3、对顶角的性质:对顶角相等。
三、同位角、内错角、同旁内角1、两条直线被第三条直线所截,形成了8个角。
2、同位角:两个角都在两条直线的同侧,并且在第三条直线(截线)的同旁,这样的一对角叫做同位角。
3、内错角:两个角都在两条直线之间,并且在第三条直线(截线)的两旁,这样的一对角叫做内错角。
4、同旁内角:两个角都在两条直线之间,并且在第三条直线(截线)的同旁,这样的一对角叫同旁内角。
四、平行线的判定方法1、同位角相等,两直线平行。
2、内错角相等,两直线平行。
3、同旁内角互补,两直线平行。
4、在同一平面内,如果两条直线都平行于第三条直线,那么这两条直线平行。
(简称为:平行于同一直线的两直线平行)5、在同一平面内,如果两条直线都垂直于第三条直线,那么这两条直线平行(简称为:垂直于同一直线的两直线平行)平行线的性质 1、两直线平行,同位角相等。
2、两直线平行,内错角相等。
3、两直线平行,同旁内角互补。
尺规作线段和角1、在几何里,只用没有刻度的直尺和圆规作图称为尺规作图。
2、尺规作图是最基本、最常见的作图方法,通常叫基本作图。
第三章 三角形一、1、不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“Δ”表示。
2、顶点是A 、B 、C 的三角形,记作“ΔABC ”,读作“三角形ABC ”。
3、组成三角形的三条线段叫做三角形的边,即边AB 、BC 、AC ,有时也用a ,b ,c 来表示,顶点A 所对的边BC 用a 表示,边AC 、AB 分别用b ,c 来表示;4、∠A 、∠B 、∠C 为ΔABC 的三个内角。
二、三角形中三边的关系1、三边关系: 三角形任意两边之和大于第三边,任意两边之差小于第三边。
用字母可表示为a+b>c, a+c>b, b+c>a ;a-b<c ,a-c<b, b-c<a 。
2、判断三条线段a,b,c 能否组成三角形:(1)当a+b>c,a+c>b,b+c>a 同时成立时,能组成三角形;(2)当两条较短线段之和大于最长线段时,则可以组成三角形。
3、确定第三边(未知边)的取值范围时,它的取值范围为大于两边的差而小于两边的和,即a b c a b -<<+.三、三角形中三角的关系1、三角形内角和定理:三角形的三个内角的和等于1800。
n 边行内角和公式(n-2)0108⨯2、三角形按内角的大小可分为三类:(1)锐角三角形,即三角形的三个内角都是锐角的三角形;(2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ”表示“直角三角形”,其中直角∠C所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边。
注:直角三角形的性质:直角三角形的两个锐角互余。
(3)钝角三角形,即有一个内角是钝角的三角形。
3、判定一个三角形的形状主要看三角形中最大角的度数。
4、直角三角形的面积等于两直角边乘积的一半。
四、三角形的三条重要线段1、三角形的角平分线:(1)三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
(2)任意三角形都有三条角平分线,并且它们相交于三角形内一点。
(内心)3、三角形的中线:(1)在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。
(2)三角形有三条中线,它们相交于三角形内一点。
(重心)(3)三角形的中线把这个三角形分成面积相等的两个三角形4、三角形的高线:(1)从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称为三角形的高。
(2)任意三角形都有三条高线,它们所在的直线相交于一点。
(垂心)(3)注意等底等高知识的考试五、全等图形1、两个能够重合的图形称为全等图形。
2、全等图形的性质:全等图形的形状和大小都相同。
六、全等三角形1、能够重合的两个三角形是全等三角形,用符号“≌”连接,读作“全等于”。
2、用“≌”连接的两个全等三角形,表示对应顶点的字母写在对应的位置上。
八、全等三角形的判定1、三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。
2、两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”。
3、两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”。
4、两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”。
九、作三角形;十、利用三角形全等测距离;十一、直角三角形全等的条件在直角三角形中,斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。
第四章生活中的轴对称一、轴对称图形如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
二、轴对称对于两个图形,如果沿一条直线对折后,它们能互相重合,那么称这两个图形成轴对称,这条直线就是对称轴。
可以说成:这两个图形关于某条直线对称。
三、角平分线的性质1、角平分线所在的直线是该角的对称轴。
2、性质:角平分线上的点到这个角的两边的距离相等。
四、线段的垂直平分线1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。
2、性质:线段垂直平分线上的点到这条线段两端点的距离相等。
五、等腰三角形1、有两条边相等的三角形叫做等腰三角形;2、相等的两条边叫做腰;另一边叫做底边;3、两腰的夹角叫做顶角,腰与底边的夹角叫做底角;4、三条边都相等的三角形也是等腰三角形。
5、等腰三角形是轴对称图形,有一条对称轴(等边三角形除外),其底边上的高或顶角的平分线,或底边上的中线所在的直线都是它的对称轴。
6、、等腰三角形底边上的高,底边上的中线,顶角的平分线互相重合,简称为“三线合一”。
7、等腰三角形的两个底角相等,简写成“等边对等角”。
六、等边三角形1、等边三角形是指三边都相等的三角形,又称正三角形2、等边三角形有三条对称轴,三角形的高、角平分线和中线所在的直线都是它的对称轴。
3、等边三角形的三边都相等,三个内角都是600。
七、轴对称的性质1、两个图形沿一条直线对折后,能够重合的点称为对应点(对称点),能够重合的线段称为对应线段,能够重合的角称为对应角。
2、关于某条直线对称的两个图形是全等图形。
3、如果两个图形关于某条直线对称,那么对应点所连的线段被对称轴垂直平分。
4、如果两个图形关于某条直线对称,那么对应线段、对应角都相等。
九、镜面对称1.当物体正对镜面摆放时,镜面会改变它的左右方向;2.当垂直于镜面摆放时,镜面会改变它的上下方向;3.如果是轴对称图形,当对称轴与镜面平行时,其镜子中影像与原图一样;学生通过讨论,可能会找出以下解决物体与像之间相互转化问题的办法:(1)利用镜子照(注意镜子的位置摆放);(2)利用轴对称性质;(3)可以把数字左右颠倒,或做简单的轴对称图形;(4)可以看像的背面;(5)根据前面的结论在头脑中想象。
第五章变量之间的关系一、变量、自变量、因变量1、在某一变化过程中,不断变化的量叫做变量。
2、如果一个变量y随另一个变量x的变化而变化,则把x叫做自变量,y叫做因变量。
一.列表法。
采用数表相结合的形式,运用表格可以表示两个变量之间的关系。
列表时要选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出因变量的对应值。
列表法最大的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分。
例1:在全国抗击“非典”的斗争中,黄城研究所的医学专家们经过日夜奋战,终于研制出一种治疗非典型肺炎的抗生素。
据临床观察:如果成人按规定的剂量注射这种抗生素,注射药液后每毫升血液中的含药量(微克)与时间(分钟)之间的关系近似地满足下表:时间0 20 40 60 80 100 120 140 160 180 200 220 240 260(分钟)含药量0 2 4 6 5.7 5.2 4.8 4.4 4 3.6 3.2 2.8 2.4 2(微克)(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当注射药液60分钟后血液中含药量是多少?(3)据临床观察:每毫升血液中含药量不少于4微克时,控制“非典”病情是有效的。