高三数学精准培优专题练习20:几何概型(含答案解析)

高三数学精准培优专题练习20:几何概型(含答案解析)
高三数学精准培优专题练习20:几何概型(含答案解析)

高二数学几何概型知识与常见题型梳理

几何概型知识与常见题型梳理 几何概型和古典概型是随机概率中两类主要模型,是概率考查中的重点,下面就几何概型的知识与常见题型做一梳理,以期能使读者对于这一知识点做到脉络清晰,条理分明。 一 基本知识剖析 1.几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。 2.几何概型的概率公式: P (A )= 积) 的区域长度(面积或体试验的全部结果所构成积) 的区域长度(面积或体构成事件A ; 3.几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等. 4.几何概型与古典概型的比较:一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度(或面积、体积等)有关,即试验结果具有无限性,是不可数的。这是二者的不同之处;另一方面,古典概型与几何概型的试验结果都具有等可能性,这是二者的共性。 通过以上对于几何概型的基本知识点的梳理,我们不难看出其要核是:要抓住几何概型具有无限性和等可能性两个特点,无限性是指在一次试验中,基本事件的个数可以是无限的,这是区分几何概型与古典概型的关键所在;等可能性是指每一个基本事件发生的可能性是均等的,这是解题的基本前提。因此,用几何概型求解的概率问题和古典概型的基本思路是相同的,同属于“比例法”,即随机事件A 的概率可以用“事件A 包含的基本事件所占的图形的长度、面积(体积)和角度等”与“试验的基本事件所占总长度、面积(体积)和角度等”之比来表示。下面就几何概型常见类型题作一归纳梳理。 二 常见题型梳理 1.长度之比类型 例1. 小赵欲在国庆六十周年之后从某车站乘车外出考察,已知该站发往各站的客车均每小时一班,求小赵等车时间不多于10分钟的概率. 例2 在长为12cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,求这个正方形的面 积介于36cm 2 与81cm 2 之间的概率. 2.面积、体积之比类型 例3. (08江苏高考6).在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随意投一点,则落入E 中的概率为 。

高考数学《数列》大题训练50题含答案解析

一.解答题(共30小题) 1.(2012?上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值; (2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k; (3)设,.当b1=1时,求数列{b n}的通项公式. 2.(2011?重庆)设{a n}是公比为正数的等比数列a1=2,a3=a2+4. (Ⅰ)求{a n}的通项公式; ( (Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n. 3.(2011?重庆)设实数数列{a n}的前n项和S n满足S n+1=a n+1S n(n∈N*). (Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3. (Ⅱ)求证:对k≥3有0≤a k≤. 4.(2011?浙江)已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n 项和为S n,且,,成等比数列. (Ⅰ)求数列{a n}的通项公式及S n; ` (Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n与B n的大小. 5.(2011?上海)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+7(n∈N*).将集合{x|x=a n,n∈N*}∪{x|x=b n,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,

(1)写出c1,c2,c3,c4; (2)求证:在数列{c n}中,但不在数列{b n}中的项恰为a2,a4,…,a2n,…; (3)求数列{c n}的通项公式. 6.(2011?辽宁)已知等差数列{a n}满足a2=0,a6+a8=﹣10 * (I)求数列{a n}的通项公式; (II)求数列{}的前n项和. 7.(2011?江西)(1)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3,若数列{a n}唯一,求a的值; (2)是否存在两个等比数列{a n},{b n},使得b1﹣a1,b2﹣a2,b3﹣a3.b4﹣a4成公差不为0的等差数列若存在,求{a n},{b n}的通项公式;若不存在,说明理由. 8.(2011?湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5. (I)求数列{b n}的通项公式; ] (II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列. 9.(2011?广东)设b>0,数列{a n}满足a1=b,a n=(n≥2) (1)求数列{a n}的通项公式; (4)证明:对于一切正整数n,2a n≤b n+1+1.

宜城一中高三数学小题专项训练

宜城一中高三数学小题专项训练 1、一条长为2的线段,它的三视图分别是长为b a ,,3的三条线段,则ab 的最大值为 A .1 B .2.5 C .6 D .5 2、已知双曲线13 62 2=-y x 的左右焦点分别为21,F F ,点M 在双曲线上,且x MF ⊥1轴,则1F 到直线M F 2的距离为 A .563 B .665 C .56 D .65. 3、已知)3,1,2(-=,)2,4,1(--=,),5,7(λ=,若,,三向量共面,则实数λ等于 A .762 B .763 C .764 D .7 65 4、已知ABC ?的周长为12+,且C B A s i n 2s i n s i n = +。若A B C ?的面积为C sin 61,则角C 的大小为 A .6π B .3π C .2π D .32π. 5、当变量y x ,满足约束条件?? ???≥≤+≥m x y x x y 43时,y x z 3-=的最大值为8,则实数的值m 为 A .-4 B .-3 C .-2 D .-1. 6.函数=()y f x 的图像如图所示,在区间[],a b 上可找到 (2)n n ≥个不同的数12,...,,n x x x 使得 1212()()()==,n n f x f x f x x x x 则n 的取值范围是 A .{}3,4 B .{}2,3,4 C . {}3,4,5 D .{}2,3 7、“c b a 1113++”称为a ,b , c 三个正实数的“调和平均数”,若正数y x ,满足“xy y x ,,”的调和平均数为3,则y x 2+的最小值是 A .3 B .5 C .7 D .8. 8、已知边长都为1的正方形ABCD 与DCFE 所在的平面互相垂直,点Q P ,分别是线段DE BC ,上的动点(包括端点),2=PQ 。设线段PQ 中点轨迹为ω,则ω的长度为

【强烈推荐】2019届高三精准培优专练 数学(理)(学生版) - 最新

数学(理) 培优点一函数的图象与性质01 培优点二函数零点06 培优点三含导函数的抽象函数的构造10 培优点四恒成立问题14 培优点五导数的应用18 培优点六三角函数23 培优点七解三角形29 培优点八平面向量33 培优点九线性规划36 培优点十等差、等比数列40

培优点十一数列求通项公式43 培优点十二数列求和47 培优点十三三视图与体积、表面积51 培优点十四外接球56 培优点十五平行垂直关系的证明59 培优点十六利用空间向量求夹角67 培优点十七圆锥曲线的几何性质76 培优点十八离心率81 培优点十九圆锥曲线综合86 培优点二十几何概型93

2019届高三好教育精准培优专练 1.单调性的判断 例1:(1)函数()2 12 log (4)f x x -=的单调递增区间是( ) A .(0,)+∞ B .(0),-∞ C .(2,)+∞ D .(),2-∞- (2)2 23y x x +-+=的单调递增区间为________. 2.利用单调性求最值 例2:函数y x =+________. 3.利用单调性比较大小、解抽象函数不等式 例3:(1)已知函数()f x 的图象向左平移1个单位后关于y 轴对称,当211x x >>时, ()()2121()0f x f x x x -?-????<恒成立,设12 a f ??=- ?? ? ,()2b f =,()3c f =,则a ,b ,c 的大小关系为 ( ) A .c a b >> B .c b a >> C .a c b >> D .b a c >> (2)定义在R 上的奇函数()y f x =在(0,)+∞上递增,且102f ??= ? ??,则满足19log 0f x ??> ?? ?的x 的集合为________________. 4.奇偶性 例4:已知偶函数()f x 在区间[0,)+∞上单调递增,则满足1(21)3f x f ?? -< ??? 的x 的取值范围是( ) A .12,33?? ??? B .12,33?? ???? C .12,23?? ??? D .12,23?? ???? 5.轴对称 例5:已知定义域为R 的函数()y f x =在[]0,7上只有1和3两个零点,且()2y f x =+与()7y f x =+ 都是偶函数,则函数()y f x =在[]0,2013上的零点个数为( ) A .404 B .804 C .806 D .402 培优点一 函数的图象与性质

几何概型的常见题型

几 何 概 型 的 常 见 题 型 李凌奇2017-06-26 1.与长度有关的几何概型 例1.在区间]1,1[-上随机取一个数x ,2 cos x π的值介于0到 2 1 之间的概率为( ). A.31 B.π2 C.21 D.3 2 分析:在区间]1,1[-上随机取任何一个数都是一个基本事件.所取的数是区间]1,1[-的任意一个数,基本事件是无限多个,而且每一个基本事件的发生都是等可能的,因此事件的发生的概率只与自变量x 的取值范围的区间长度有关,符合几何概型的条件. 解:在区间]1,1[-上随机取一个数x ,即[1,1]x ∈-时,要使cos 2 x π的值介于0到 2 1 之间, 需使2 23x π ππ - ≤ ≤- 或 322x π ππ ≤ ≤ ∴213x -≤≤-或213x ≤≤,区间长度为3 2 , 由几何概型知使cos 2x π的值介于0到2 1 之间的概率为 3 1232 ===度所有结果构成的区间长符合条件的区间长度P . 故选A. 2.与面积有关的几何概型 例2.ABCD 为长方形,1,2==BC AB ,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( ) A . 4 π B.14 π - C. 8 π D.18π - 分析:由于是随机的取点,点落在长方形内每一个点的机会是等可能的,基本事件是无限多个,所以符合几何概型. 解:长方形面积为2,以O 为圆心,1为半径作圆,在矩形内部的部分(半圆)面积为 2 π 因此取到的点到O 的距离大于1的面积为2 2π -, 则取到的点到O 的距离大于1的概率为 A O D C B 1 图

高三数学小题训练(10)(附答案)

高三数学小题训练(10) 一、选择题:本大题共10小题,每小题5分;共50分. 1.已知函数x b x a x f cos sin )(-=(a 、b 为常数,0≠a ,R x ∈)在4 π =x 处取 得最小值,则函数)4 3( x f y -=π 是( ) A .偶函数且它的图象关于点)0,(π对称 B .偶函数且它的图象关于点)0,2 3(π 对称 C .奇函数且它的图象关于点)0,2 3(π 对称 D .奇函数且它的图象关于点)0,(π对称 2.已知函数()2sin (0)f x x ωω=>在区间,34ππ?? -???? 上的最小值是2-,则ω的最小值等于 ( ) (A )23 (B )3 2 (C )2 (D )3 3.将函数sin (0)y x ωω=>的图象按向量,06a π?? =- ??? 平移,平移后的图象如图所示,则平移后的图象所对应函数的解析式是( ) A .sin()6y x π =+ B .sin()6y x π =- C .sin(2)3y x π=+ D .sin(2)3 y x π =- 4.设0a >,对于函数()sin (0)sin x a f x x x π+= <<,下列结论正确的是( ) A .有最大值而无最小值 B .有最小值而无最大值 C .有最大值且有最小值 D .既无最大值又无最小值 5.已知1,3,.0,OA OB OAOB ===点C 在AOC ∠30o =。 设(,)OC mOA nOB m n R =+∈,则 m n 等于 ( )

(A ) 1 3 (B )3 (C )33 (D 3 6.与向量a =71,,22b ?? = ??? ?? ? ??27,21的夹解相等,且模为1的向量是 ( ) (A) ???- ??53,54 (B) ???- ??53,54或?? ? ??-53,54 (C )???- ??31,322 (D )???- ??31,3 22或??? ??-31,322 7.如图,已知正六边形123456PP P P P P ,下列向量的数量积中最大的是( ) (A )1213,PP PP (B )1214,PP PP (C )1215,PP PP (D ) 1216,PP PP 8.如果111A B C ?的三个内角的余弦值分别等于222A B C ?的三个内角的正弦值,则( ) A .111A B C ?和222A B C ?都是锐角三角形 B .111A B C ?和222A B C ?都是钝角三角形 C .111A B C ?是钝角三角形,222A B C ?是锐角三角形 D .111A B C ?是锐角三角形,222A B C ?是钝角三角形 9.已知不等式1 ()()9a x y x y ++≥对任意正实数,x y 恒成立,则正实数a 的最小值为 ( ) (A)8 (B)6 (C )4 (D )2 10.若a ,b ,c >0且a (a +b +c )+bc =4-23,则2a +b +c 的最小值为 ( ) (A )3-1 (B) 3+1 (C) 23+2 (D) 23-2 二、填空题(本大题共6小题,每小题5分,共30分) 11.cos 43cos77sin 43cos167o o o o +的值为 12.已知βα,??? ??∈ππ,43,sin(βα+)=-,53 sin ,13124=??? ??-πβ则os ??? ? ? +4πα=___.

高三数学培优专练

高三培优专练 1.单调性的判断 例1:(1)函数()2 12 log (4)f x x -=的单调递增区间是( ) A .(0,)+∞ B .(0),-∞ C .(2,)+∞ D .(),2-∞- (2)2 23y x x +-+=的单调递增区间为________. 2.利用单调性求最值 例2:函数1y x x =+-的最小值为________. 3.利用单调性比较大小、解抽象函数不等式 例3:(1)已知函数()f x 的图象向左平移1个单位后关于y 轴对称,当211x x >>时, ()()2121()0f x f x x x -?-????<恒成立,设12 a f ??=- ?? ? ,()2b f =,()3c f =,则a ,b ,c 的大小关系为 ( ) A .c a b >> B .c b a >> C .a c b >> D .b a c >> (2)定义在R 上的奇函数()y f x =在(0,)+∞上递增,且10 2f ??= ???,则满足19log 0f x ??> ?? ?的x 的集合为________________. 4.奇偶性 例4:已知偶函数()f x 在区间[0,)+∞上单调递增,则满足1(21)3f x f ?? -< ??? 的x 的取值范围是( ) A .12,33?? ??? B .12,33?? ? ??? C .12,23?? ??? D .12,23?? ? ??? 5.轴对称 例5:已知定义域为R 的函数()y f x =在[]0,7上只有1和3两个零点,且()2y f x =+与()7y f x =+ 都是偶函数,则函数()y f x =在[]0,2013上的零点个数为( ) A .404 B .804 C .806 D .402 6.中心对称 例6:函数()f x 的定义域为R ,若()1f x +与()1f x -都是奇函数,则( ) A .()f x 是偶函数 B .()f x 是奇函数 C .()()2f x f x =+ D .()3f x +是奇函数 7.周期性的应用 例7:已知()f x 是定义在R 上的偶函数,()g x 是定义在R 上的奇函数,且()()1g x f x =-, 则()()20172019f f +的值为( ) A .1- B .1 C .0 D .无法计算 一、选择题 培优点一 函数的图象与性质 对点增分集训

连云港市田家炳中学高三数学小题训练(1)

一、填空题: 1.已知集合{|3,},{1,2,3,4}A x x x R B =>∈=,则()R A B = e . 2.已知复数1(1) a z i =+ -,若复数z 为纯虚数,则实数a 的值为 . 3.已知角α的终边经过点(2,1)P --,则cos()3 π α+ 的值为 . 4.已知数据a ,4,2,5,3的平均数为b ,其中a ,b 是方程2430x x -+=的两个根,则这组数据的标准差是 . 5.已知函数()f x 是以5为周期的奇函数,且(3)2f -=,则(2)f -= . 6.以下程序运行后结果是__________. 1i ← 8While i < 2 233 i i S i i i ←+←?+←+ End While Pr int S 7.如图,一个正四面体的展开图是边长为22的正三角形ABC ,则该四面体的外接球 的表面积为 . 8.已知||1,(1,3)==-a b ,||3+=a b ,则a 与b 的夹角为 . 9.已知数列{}n a 的前n 项和为n S ,11=a ,且3231=++n n S a (n 为正整数)则数列{}n a 的通项公式为 . 10.命题:“存在实数x ,满足不等式2(1)10m x mx m +-+-≤”是假命题,则实数m 的取值范围是 . 11.已知直线20ax by --=(,)a b R ∈与曲线3 y x =过点(1,1)的切线垂直,则 b a = . 12.如果椭圆)0(122 22>>=+b a b y a x 上存在一点P ,使得点P 到左准线的距离等于 它到右焦点的距离的两倍,那么椭圆的离心率的取值范围为 . 13、(已知函数2()2sin 23sin cos 13f x x x x =--+的定义域为0, 2π?? ???? ,求函数()y f x =的值域和零点. C B A (第7题)

2020新课改高考数学小题专项训练1

2020新课改高考数学小题专项训练1 1.设p 、q 是两个命题,则“复合命题p 或q 为真,p 且q 为假”的充要条件是 ( ) A .p 、q 中至少有一个为真 B .p 、q 中至少有一个为假 C .p 、q 中中有且只有一个为真 D .p 为真,q 为假 2.已知复数 ( ) A . B .2 C .2 D .8 3.已知a 、b 、c 是三条互不重合的直线,α、β是两个不重合的平面,给出四个命题: ① ②a 、 ③ ④.其中正确命题的个数是 ( ) A .1个 B .2个 C .3个 D .4个 4.已知等差数列 ( ) A . B . C . D . 5.定义在R 上的偶函数的x 的 集合为 ( ) A . B . C . D . 6.在如图所示的坐标平面的可行域内(阴影部分且 包括周界),若使目标函数z =ax +y (a >0)取最大值的最优解有无穷多个,则a 的值等于( ) A . B .1 C .6 D .3 7.已知函数的值等于 ( ) A . B . C .4 D .-4 =-=||,13 z i z 则22; //,//,//ααa b b a 则; //,//,//,βαββα则b a b ?;,//,βαβα⊥⊥则a a b a b a ⊥⊥则,//,αα==16 884,31 ,}{S S S S S n a n n 那么且 项和为的前8 1 319 110 30)(log ,0)2 1(,),0[)(4 1<=+∞=x f f x f y 则满足且上递减在),2()21 ,(+∞?-∞)2,1()1,2 1(?),2()1,2 1(+∞?),2()2 1,0(+∞?3 1 )41(,2),3(log ,2,43 )(116 2 -?????≥+-<-=-f x x x x x f 则21 16 2 5-

高三数学培优资料用泰勒公式和拉格朗日中值定理来处理高中函数不等式问题(教师版)

2012级高三数学培优资料(教师版) 泰勒公式与拉格朗日中值定理在证明不等式中的简单应用 泰勒公式是高等数学中的重点,也是一个难点,它贯穿于高等数学的始终。泰勒公式的重点就在于使用一个n 次多项式()n p x ,去逼近一个已知的函数()f x ,而且这种逼近有很好的性质:()n p x 与()f x 在x 点具有相同的直到阶n 的导数 ] 31[-.所以泰勒 公式能很好的集中体现高等数学中的“逼近”这一思想精髓。泰勒公式的难点就在于它的理论性比较强,一般很难接受,更不用说应用了。但泰勒公式无论在科研领域还是在证明、计算应用等方面,它都起着很重要的作用.运用泰勒公式,对不等式问题进行分析、构造、转化、放缩是解决不等式证明问题的常用方法与基本思想.本文拟在前面文献研究的基础上通过举例归纳,总结泰勒公式在证明不等式中的应用方法. 泰勒公式知识:设函数()f x 在点0x 处的某邻域内具有1n +阶导数,则对该邻域内异于0x 的任意点x ,在0x 与x 之间至少存在一点ξ,使得: ()f x =()0f x +()0' f x 0(x -x )+()0f''x 2!02(x -x )+???+ ()()0 n f x n! 0n (x -x )+()n R x , 其中()n R x = ()(1)(1)! n f n ξ++10)(+-n x x 称为余项,上式称为n 阶泰勒公式; 若0x =0,则上述的泰勒公式称为麦克劳林公式, 即()f x = ()0f +()0' f x +()02!f''2x +???+()()0! n f n n x +0()n x . 利用泰勒公式证明不等式:若函数)(x f 在含有0x 的某区间有定义,并且有 直到)1(-n 阶的各阶导数,又在点0x 处有n 阶的导数)(0) (x f n ,则有公式 )()(! )()(!2)()(!1)()()()(00)(2 00000x R x x n x f x x x f x x x f x f x f n n n +-++-''+-'+= 在上述公式中若0)(≤x R n (或0)(≥x R n ),则可得

高一数学培优专题(已修正)

厦大附中高一数学培优专题(一) (2010-3-6/13) 知识要点梳理 本节公式中,,2a b c s ++=,r 为切圆半径,R 为外接圆 半径,Δ为三角形面积. (一). 三角形中的各种关系 设△ABC 的三边为a 、b 、c ,对应的三个角A 、B 、C . 1.角与角关系:A +B +C = π, 2.边与边关系:a + b > c ,b + c > a ,c + a > b , a - b < c ,b -c < a ,c -a < b . 3.边与角关系: 正弦定理; R C c B b A a 2sin sin sin === 余弦定理; c 2 = a 2+b 2-2ba cos C , b 2 = a 2+ c 2-2ac cos B ,a 2 = b 2+c 2-2bc cos A . 它们的变形形式有:a = 2R sin A ,b a B A =sin sin , bc a c b A 2cos 2 22-+=. 3)射影定理:a =b ·cos C +c ·cos B , b =a ·cos C + c ·cos A , c =a ·cos B +b ·cos A . 4 )面积公式:11sin 224a abc S ah ab C rs R ?=====

(二)、关于三角形角的常用三角恒等式: 1.三角形角定理的变形 由A +B +C =π,知A =π-(B +C )可得出: sin A =sin (B +C ),cos A =-cos (B +C ). 而 2 22C B A +-=π.有:2cos 2sin C B A +=,2 sin 2cos C B A +=. 2.常用的恒等式: (1)sin A +sin B +sin C =4cos 2 A cos 2 B cos 2 C ; (2)cos A +cos B +cos C =1+4sin 2 A sin 2 B sin 2 C ; (3)sin A +sin B -sin C =4sin 2 A sin 2 B cos 2 C ; (4)cos A +cos B -cos C =-1+4cos 2 A cos 2 B sin 2 C . 3.余弦定理判定法:如果c 是三角形的最大边,则有: a 2+ b 2> c 2 ? 三角形ABC 是锐角三角形 a 2+b 2<c 2 ? 三角形ABC 是钝角三角形 a 2+b 2=c 2 ? 三角形ABC 是直角三角形 (三) 三角形度量问题:求边、角、面积、周长及有关圆半径等。

几何概型的五类重要题型

剖析几何概型的五类重要题型 解决几何概型问题首先要明确几何概型的定义,掌握几何概型中事件A 的概率计算公 式:积等) 的区域长度(面积或体试验的全部结果所构成积等)的区域长度(面积或体构成事件)(A A P = .其次要学会构造随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率. 1.几何概型的两个特征: (1)试验结果有无限多; (2)每个结果的出现是等可能的. 事件A 可以理解为区域Ω的某一子区域,事件A 的概率只与区域A 的度量(长度、面积或体积)成正比,而与A 的位置和形状无关. 2..解决几何概型的求概率问题 关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率. 3.用几何概型解简单试验问题的方法 (1)适当选择观察角度,把问题转化为几何概型求解. (2)把基本事件转化为与之对应的总体区域D. (3)把随机事件A 转化为与之对应的子区域d. (4)利用几何概型概率公式计算. 4.均匀随机数 在一定范围内随机产生的数,其中每一个数产生的机会是一样的,通过模拟一些试验,可以代替我们进行大量的重复试验,从而求得几何概型的概率.一般地.利用计算机或计算器的rand ()函数可以产生0~1之间的均匀随机数.a ~b 之间的均匀随机数的产生:利用计算机或计算器产生0~1之间的均匀随机数x= rand( ),然后利用伸缩和平移变换x= rand( )*(b-a)+a,就可以产生[a ,b]上的均匀随机数,试验的结果是产生a ~b 之间的任何一个实数,每一个实数都是等可能的. 5.均匀随机数的应用 (1)用随机模拟法估计几何概率; (2)用随机模拟法计算不规则图形的面积. 下面举几个常见的几何概型问题. 一.与长度有关的几何概型 例1 如图,A,B 两盏路灯之间长度是30米,由于光线较暗,想在其间再随意安装两盏路灯C,D,问A 与C,B 与D 之间的距离都不小于10米的概率是多少? 思路点拨 从每一个位置安装都是一个基本事件,基本事件有无限多个,但在每一处安装的可能性相等,故是几何概型. 解 记 E :“A 与C,B 与D 之间的距离都不小于10米”,把AB 三等分,由于中间长度为30× 31=10米, ∴3 13010)(==E P . 方法技巧 我们将每个事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型就可以用几何概型来求解. 二.与面积有关的几何概型 例2 如图,射箭比赛的箭靶涂有五个彩色的分环.从外向内依次为白色、黑色、蓝色、红色,靶心为金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm,靶心直径为12.2 cm.运动员在70 m 外射箭.假设运动员射的箭都能中靶,且射中靶面内任一点都是等可能的,那么射中黄心的概率为多少? 思路点拨 此为几何概型,只与面积有关.

高三数学小题训练(学生用)(14)

数学小题训练(14) 班级 姓名 1.已知a,b,c 分别是△ABC 的三个内角A,B,C 所对的边,若, A+C=2B,则sinC= . 2.函数()(sin )(cos )f x x a x a =++(0<a )的最大值为 . 3.已知22()53196196f x x x x x =-++| -53+ |,则(1)(2)(50)......f f f +++= . 4.设()x f 定义在正整数集上,且(1)()()()1,x y x y f f f f xy +==++,则()x f = . 5.边长为1的正五边形的对角线长= . 6.已知函数f(x)=3sin(x-)(>0)6π ωω和g(x)=2cos(2x+)+1?的图象的对称轴完全相同。若 x [0,]2π ∈,则f(x)的取值范围是 . 7.等比数列{}n a 中,12a =,8a =4,函数 ()128()()()f x x x a x a x a =---,则()'0f = . 8.直线x+2y-3=0与ax+4y+b=0关于点(1,0)对称,则b= . 9.在区间(-1,1)上任意取两点a 、b,方程2x +ax +b=0的两根均为实数的概率为p,则p 的值为 . 10.设0<x <2 π,则“x sin 2x <1”是“x sinx <1”的 条件. 11.定义平面向量之间的一种运算“ ”如下: 对任意的(,)a m n =,(,)b p q =,令a b mq np =-,下面说法正确的是 . (A)若a 与b 共线,则0a b = (B)a b b a = (C)对任意的R λ∈,有() ()a b a b λλ= (D)2222()()||||a b a b a b +?= 12.设集合A={}{}|||1,,|||2,.x x a x R B x x b x R -<∈=->∈,则A ?B 成立的充要条件是 .

几何概型的经典题型及标准答案

几何概型的经典题型及答案

————————————————————————————————作者:————————————————————————————————日期: 2

3 几何概型的常见题型及典例分析 一.几何概型的定义 1.定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型. 2.特点: (1)无限性,即一次试验中,所有可能出现的结果(基本事件)有无限多个; (2)等可能性,即每个基本事件发生的可能性均相等. 3.计算公式:.)(积) 的区域长度(面积或体试验的全部结果所构成积) 的区域长度(面积或体构成事件A A P = 说明:用几何概率公式计算概率时,关键是构造出随机事件所对应的几何图形,并对几何图形进行度量. 4.古典概型和几何概型的区别和联系: (1)联系:每个基本事件发生的都是等可能的. (2)区别:①古典概型的基本事件是有限的,几何概型的基本事件是无限的; ②两种概型的概率计算公式的含义不同. 二.常见题型 (一)、与长度有关的几何概型 例1、在区间]1,1[-上随机取一个数x ,2 cos x π的值介于0到 2 1 之间的概率为( ). A.31 B.π 2 C.21 D.32 分析:在区间]1,1[-上随机取任何一个数都是一个基本事件.所取的数是区间]1,1[-的任意一个数,基本事件是无限多个,而且每一个基本事件的发生都是等可能的,因此事件的发生的概率只与自变量x 的取值范围的

4 区间长度有关,符合几何概型的条件. 解:在区间]1,1[-上随机取一个数x ,即[1,1]x ∈-时,要使cos 2 x π的值介于 0到21之间,需使 223x πππ-≤≤-或322 x πππ≤≤ ∴213x -≤≤-或213x ≤≤,区间长度为3 2 , 由几何概型知使cos 2x π的值介于0到2 1 之间的概率为 3 1232 ===度所有结果构成的区间长符合条件的区间长度P . 故选A. 例2、 如图,A,B 两盏路灯之间长度是30米,由于光线较暗,想在其间 再随意安装两盏路灯C,D,问A 与C,B 与D 之间的距离都不小于10米的概率是多少? 思路点拨 从每一个位置安装都是一个基本事件,基本事件有无限多个,但在每一处安装的可能性相等,故是几何概型. 解 记 E :“A 与C,B 与D 之间的距离都不小于10米”,把AB 三 等分,由于中间长度为30×3 1 =10米, ∴3 1 3010)(==E P . 方法技巧 我们将每个事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型就可以用几何概型来求解. 例3、在半径为R 的圆内画平行弦,如果这些弦与垂直于弦的直径的交点在该直径上的位置是等可能的,求任意画的弦的长度不小于R 的概率。 思考方法:由平面几何知识可知,垂直于弦的直径平分这条弦,所以,题中的等可能参数是平行弦的中点,它等可能地分布在于平行弦垂直的直径上(如图1-1)。也就是说,样本空间所对应的区域G 是一维空 间(即直线)上的线段MN ,而有利场合所对 应的区域G A 是长度不小于R 的平行弦的中点K 所在的区间。 [解法1].设EF 与E 1F 1是长度等于R 的两条弦, K K K1图1-2图1-1 O O M N E F M N E F E1F1

2021高考数学二轮复习小题专题练3

小题专题练(三) 数 列 1.无穷等比数列{a n }中,“a 1>a 2”是“数列{a n }为递减数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件 2.设S n 为等比数列{a n }的前n 项和,a 2-8a 5=0,则S 8S 4 的值为( ) A.12 B.1716 C .2 D .17 3.设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为( ) A .2 B .-2 C.12 D .-12 4.已知数列{a n }满足2a 1+22a 2+…+2n a n =n (n ∈N * ),数列?? ?? ??1log 2a n log 2a n +1的前n 项和为S n ,则S 1·S 2·S 3·…·S 10=( ) A.1 10 B.15 C.111 D.211 5. 如图,矩形A n B n C n D n 的一边A n B n 在x 轴上,另外两个顶点C n ,D n 在函数f (x )=x +1 x (x >0) 的图象上,若点B n 的坐标为(n ,0)(n ≥2,n ∈N * ),记矩形A n B n C n D n 的周长为a n ,则a 2+a 3+…+a 10=( ) A .208 B .212 C .216 D .220 6.设等差数列{a n }的公差为d ,其前n 项和为S n .若a 1=d =1,则S n +8 a n 的最小值为( ) A .10 B.92

C.72 D.1 2 +2 2 7.已知数列{a n }满足a 1a 2a 3…a n =2n 2(n ∈N *),且对任意n ∈N * 都有1a 1+1a 2+…+1a n 0,6S n =a 2 n +3a n ,n ∈N *, b n =

高三数学 高考大题专项训练 全套 (15个专项)(典型例题)(含答案)

1、函数与导数(1) 2、三角函数与解三角形 3、函数与导数(2) 4、立体几何 5、数列(1) 6、应用题 7、解析几何 8、数列(2) 9、矩阵与变换 10、坐标系与参数方程 11、空间向量与立体几何 12、曲线与方程、抛物线 13、计数原理与二项式分布 14、随机变量及其概率分布 15、数学归纳法

高考压轴大题突破练 (一)函数与导数(1) 1.已知函数f (x )=a e x x +x . (1)若函数f (x )的图象在(1,f (1))处的切线经过点(0,-1),求a 的值; (2)是否存在负整数a ,使函数f (x )的极大值为正值?若存在,求出所有负整数a 的值;若不存在,请说明理由. 解 (1)∵f ′(x )=a e x (x -1)+x 2 x 2, ∴f ′(1)=1,f (1)=a e +1. ∴函数f (x )在(1,f (1))处的切线方程为 y -(a e +1)=x -1, 又直线过点(0,-1),∴-1-(a e +1)=-1, 解得a =-1 e . (2)若a <0,f ′(x )=a e x (x -1)+x 2 x 2 , 当x ∈(-∞,0)时,f ′(x )>0恒成立,函数在(-∞,0)上无极值;当x ∈(0,1)时,f ′(x )>0恒成立,函数在(0,1)上无极值. 方法一 当x ∈(1,+∞)时,若f (x )在x 0处取得符合条件的极大值f (x 0), 则???? ? x 0>1,f (x 0)>0,f ′(x 0)=0, 则0 0000 2 00 201,e 0,e (1)0,x x x a x x a x x x ? > +> -+ = ? ①②③ 由③得0 e x a =-x 20 x 0-1,代入②得-x 0x 0-1+x 0 >0, 结合①可解得x 0>2,再由f (x 0)=0 e x a x +x 0>0,得a >-02 0e x x , 设h (x )=-x 2 e x ,则h ′(x )=x (x -2)e x , 当x >2时,h ′(x )>0,即h (x )是增函数, ∴a >h (x 0)>h (2)=-4 e 2.

高三数学课外培优练习

省始兴县风度数学 课外培优练习 2.如图,在正四棱柱ABCD —A 1B 1C 1D 1中,AA 1=2 1A B ,点E 、M 分别为A 1B 、C 1C 的中点,过点A 1,B ,M 三点的平面A 1BMN 交C 1D 1于点N. (Ⅰ)求证:EM ∥平面A 1B 1C 1D 1; (Ⅱ)求二面角B —A 1N —B 1的正切值.

1.解法一:PO ⊥平面ABCD , PO BD ∴⊥ 又,2,2PB PD BO PO ⊥==, 由平面几何知识得:1,3,6OD PD PB == = (Ⅰ)过D 做//DE BC 交于AB 于E ,连结PE ,则PDE ∠或其补角为异面直线PD 与BC 所成的角, 四边形ABCD 是等腰梯形,1,2,OC OD OB OA OA OB ∴====⊥ 5,22,2BC AB CD ∴=== 又//AB DC ∴四边形EBCD 是平行四边形。 5,2ED BC BE CD ∴==== E ∴是AB 的中点,且2AE = 又6PA PB ==,PEA ∴?为直角三角形,22622PE PA AE ∴= -=-= 在PED ?中,由余弦定理得 222215cos 215235 PD DE PE PDE PD DE +-∠===??? 故异面直线PD 与BC 所成的角的余弦值为215 (Ⅱ)连结OE ,由(Ⅰ)及三垂线定理知,PEO ∠为二面角 P AB C --的平面角 2sin 2 PO PEO PE ∴∠==,045PEO ∴∠= ∴二面角P AB C --的大小为045 (Ⅲ)连结,,MD MB MO , PC ⊥平面,BMD OM ?平面BMD ,PC OM ⊥ 又在Rt POC ?中, 3,1,2PC PD OC PO ====, 233,33PM MC ∴==,2PM MC ∴= 故2λ=时,PC ⊥平面BMD 解法二: PO ⊥平面ABCD PO BD ∴⊥

相关文档
最新文档