导学案(函数及其图像)

合集下载

第一轮导学案2013-18二次函数及图象

第一轮导学案2013-18二次函数及图象

OyxBAyx O课时18 二次函数及其图像【考点链接】1. 二次函数2()y a x h k =-+的图像和性质a >0a <0图 象开 口 对 称 轴 顶点坐标最 值 当x = 时,y 有最 值 当x = 时,y 有最 值 增减性在对称轴左侧 y 随x 的增大而 y 随x 的增大而 在对称轴右侧y 随x 的增大而y 随x 的增大而2. 二次函数c bx ax y ++=2用配方法可化成()k h x a y +-=2的形式,其中h = k = . 3. 二次函数2()y a x h k =-+的图像和2ax y =图像的关系.4. 二次函数c bx ax y ++=2中c b a ,,的符号的确定方法:( )确定a ,( )和( )确定b ,( )确定c. 【典例精析】例1 (06遂宁)已知二次函数24y x x =+,(1) 用配方法把该函数化为2()y a x h k =++ (其中a 、h 、k 都是常数且a ≠0)形式,并画出这个函数的图像,根据图象指出函数的对称轴和顶点坐标. (2) 求函数的图象与x 轴的交点坐标.例2 (08大连)如图,直线m x y +=和抛物线c bx x y ++=2都经过点A(1,0),B(3,2).⑴ 求m 的值和抛物线的解析式; ⑵ 求不等式m x c bx x +>++2的解集.(直接写出答案)D C B Ao y x o y x oy x o yxyxO【巩固练习】1. (08南昌)将抛物线23y x =-向上平移一个单位后,得到的抛物线解析式是 .2. (07四川) 如图1所示的抛物线是二次函数2231y ax x a =-+-的图象,那么a 的值是 .3.(08贵阳)二次函数2(1)2y x =-+的最小值是( )A.-2 B.2 C.-1 D.14.(08沈阳)二次函数22(1)3y x =-+的图象的顶点坐标是( )A.(1,3)B.(-1,3)C.(1,-3)D.(-1,-3) 5. 二次函数y ax bx c =++2的图象如图所示,则下列结论正确的是( )A. a b c ><>000,,B. a b c <<>000,,C. a b c <><000,,D. a b c <>>000,,【中考演练】1. 抛物线()22-=x y 的顶点坐标是 .2. (2012威海 3分)已知点A (x 1,y 1)、B (x 2,y 2)在二次函数y=(x -1)2+1的图象上,若 x 1>x 2>1,则y 1 y 2.3.(07江西)已知二次函数22y x x m =-++的部分图象如右图所示,则关于x 的一元二次方程220x x m -++=的解为 .4. 函数2y ax =与(0,0)y ax b a b =+>>在同一坐标系中的大致图象是( )5. (06浙江) 二次函数c bx ax y ++=2(0≠a )的图象如图所示,则下列结论:①a >0; ②c >0; ③ b 2-4a c >0,其中正确的个数是( )A.0个B.1个C.2个D.3个6. 二次函数y =ax 2+bx +c(a≠0)的图象的对称轴是直线x =1,其图象的一部分如图所示.下列说法正确的是 (填正确结论的序号).① abc <0;②a-b +c <0;③3a+c <0;④当-1<x <3时,y >0.7.已知二次函数y=ax 2+bx+c(a≠O)的图象如图所示,现有下列结论:①abc>0 ②b 2-4ac<0 ⑤c<4b ④a+b>0,则其中正确结论的个数是【 】A .1个 B .2个 C .3个 D .4个8. (2012山东威海3分)已知二次函数()2y=ax +bx+c a 0≠的图象如图所示,下列结论错误的是【 】A.abc >0B.3a >2bC.m (am +b )≤a-bD.4a -2b +c <。

八年级数学下册19.1.2函数的图象第1课时导学案新版新人教版2

八年级数学下册19.1.2函数的图象第1课时导学案新版新人教版2

19.1.2函数的图象(第一课时)学习目标:我能知道函数图象的意义,能使用描点法画出简单的函数图像。

学习重难点:认识函数图象的意义,会对简单的函数列表、描点、连线画出函数图象。

一、自主学习:请认真阅读教材第75页至76页思考止,第77页的例3至79页的思考止。

思考以下问题:1、回忆平面直角坐标系的相关概念:如各个象限内的点的特征,点P(x,y)关于x轴、y轴和原点对称的点的坐标分别是,过坐标平面内的点向x 轴作垂线可以找坐标、向y轴作垂线可以找坐标。

2、一般地,在一个变化过程中,有个变量x和y,对于变量x的每一个值,变量y都有的值和它对应,我们就把x称为,y是x的。

如果当x=a时y=b,那么b叫做当自变量的值为a时的。

3、什么是函数图像?函数的图像是由直角坐标系中的一系列点组成的,图像上的每一点坐标(x,y)代表了函数的一对对应值,即把自变量x与函数y的每一对对应值分别作为点的坐标和纵坐标,在直角坐标系中描出相应的点,这些点组成的图像,就是这个函数的图像。

4、如何作函数图像?具体步骤有哪些?5、如何判定一个图像是函数图像,你判断的依据是什么?6、有哪些方法表示函数关系?二、合作交流:1.画函数 (x>0)的图像(函数图像画在课前自己设计的坐标纸上)解:第一步:列表X 0 0.5 1 1.5 2 2.5 3 …Y第二步:描点:以x的值为坐标,相应的函数值为坐标,描出表格中数值对应的各点。

第三步:连线:按照坐标由小到大的顺序,把所描各点从左到右用平滑的曲线连接起来。

注意:原点要排除(为什么?)从所画的图像上可以看出,曲线从左向右 ,即当x 由小变大时,y 随x 的增大而 。

(1)一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的 坐标,那么坐标平面内由这些点组成的图形就是这个函数的 。

(2)函数图像上的点的坐标与解析式的关系:A .函数图像上任意一点(x,y )中的x 与y 满足函数的 。

正切函数的图像与性质学习的教案导学案.doc

正切函数的图像与性质学习的教案导学案.doc

正切函数的图像与性质一、教学目标:,π内的性质 (重点 ).1. 推导并理解正切函数在区间-π2 22.能画出 y=tan x 的图象通过正切函数的图象的作图过程,进一步体会函数线的作用 (重点 ).3.会用正切函数的性质解决有关问题二、教学重点1、推导并理解正切函数在区间π π内的性质-2,22、能画出 y=tan x 的图象通过正切函数的图象的作图过程,进一步体会函数线的作用.3.会用正切函数的性质解决有关问题三、教学难点1、推导并理解正切函数在区间π π- 2 , 2内的性质2、能画出 y=tan x 的图象通过正切函数的图象的作图过程,进一步体会函数线的作用,会用正切函数的性质解决有关问题四、教学过程解析式y=tan x图象定义域_________________________ 值域R周期π奇偶性奇单调性上都是增函数提示函数 y= tan x 的对称中心的坐标是kπ,0 , (k∈Z) ,不是 (kπ,0)(k∈Z) 2思考尝试1.思考判断 (正确的打“√”,错误的打“×” ) (1)正切函数在整个定义域内是增函数. ( )(2)存在某个区间,使正切函数为减函数.( ) (3)正切函数图象相邻两个对称中心的距离为周期 π .()(4)函数 y =tan x 为奇函数,故对任意 x ∈ R 都有 tan(-x)=- tan x. () 2.函数 y =tan 2x 的最小正周期是 ()ππ A . 2π B .π C. 2 D. 4.函数 = tan x -π的定义域是 ( )3 y 4ππA. x x ≠ 4B. x x ≠- 4C x x≠ π+ π,k ∈ ZD. ≠ π+3π,k ∈Zk4x x k 44. 函数 = tan x - π≤ x ≤π且x ≠0 的值域是 ____________ y 4 45.函数 y =- tan x 的单调递减区间是 __________ 正切函数的定义域、值域问题例 1、 (1)函数 y =lg( 3-tan x)的定义域为 ____.π π(2)函数 y =sin x +tan x , x ∈ - 4 , 3 的值域为 ___.1.求与正切函数有关的函数的定义域时, 除了求函数定义域的一般要求外, 还要π 保证正切函数 y = tan x 有意义即 x ≠ 2 + k π,k ∈Z2.求解与正切函数有关的函数的值域时, 要注意函数的定义域, 在定义域内求值域;对于求由正切函数复合而成的函数的值域时,常利用换元法,但要注意新 “ 元” 的范围.变式训练、(1)函数 y = 1 的定义域为 ()tan xA . {x|x ≠0}B .{x|x ≠k π, k ∈ Z}C. x x ≠ π+ π,k ∈ZD. x x ≠k π, k ∈ Z k 22(2)函数 tan(sin x)的值域为 ________________.正切函数的单调性及其应用 (互动探究 )例 2、(1)比较下列两个数的大小 (用“>”或 “<”填空 ):① tan 2π10π 7 ________tan7 .② tan 6π________tan 13π.5 - 51π(2)求函数 y=tan 2x+4的单调增区间.1π迁移探究、(变换条件、改变问法 )把本例 (2)中改为:求函数 y=tan -2x+4的单调减区间.归纳升华1.求函数 y= Atan(ωx+φ)(A,ω,φ都是常数 )的单调区间的方法:(1)若ω>0,由于 y=tan x 在每一个单调区间上都是增函数,故可用“整体代换”的思想,令 kπ -πω +φπ+π∈Z),解得x的范围.2 <x <k 2 (k(2)若ω<0,可利用诱导公式先把y=Atan(ωx+φ)转化为 y=Atan[- (-ωx-φ)] =- Atan(-ωx-φ),即把 x 的系数化为正值,再利用“整体代换”的思想.2.运用正切函数单调性比较大小的方法:(1)运用函数的周期性或诱导公式将角化到同一单调区间内.(2)运用单调性比较大小的关系.正切函数的奇偶性与周期性π例 3、(1)函数 y=4tan 3x+6的周期为 _______.(2)判断下列函数的奇偶性:①y= tan2x- tan x;1- tan x②y= xtan 2x+ x4.归纳π1.一般地,函数 y= Atan(ωx+φ)的最小正周期为T=|ω|,常常利用此公式来求周期.2.判断函数的奇偶性要先求函数的定义域,判断其是否关于原点对称.若不对称,则该函数无奇偶性,若对称,再判断f(-x)与 f(x)的关系.变式训练、直线 y=3 与函数 y= tan ωx(ω>0)的图象相交,则相邻两交点间的距离是 ()A.π2πB. ωπC.2ωπD.ω五、课堂练习:见变式训练六、教学小结: 1. 正切函数的性质(1)正切函数常用的三条性质.k π①对称性:正切函数图象的对称中心是2 ,0 (k ∈Z) ,不存在对称轴.ππ②单调性:正切函数在每个区间 k π- 2 ,k π+ 2 (k ∈Z) 内是单调递增的,但不能说其在定义域内是递增的.2.“三点两线法 ”作正切曲线的简图(1) “三点”分别为 π, , π +π, 1 , π -π,- 1 ,其中 k ∈ Z ;(k0) k 4 k 4ππ两线为直线 x = k π + 2 和直线 x = k π-2 ,其中 k ∈Z( 两线也称为正切曲线的渐近线,即无限接近但不相交 ).(2)作简图时,只需先作出一个周期中的两条渐近线,然后描出三个点,用光滑的曲线连接得到一条曲线,最后平行移动至各个周期内.七、教学反思正切函数的图像与性质一、学习目标:1.推导并理解正切函数在区间 - π π内的性质.2 , 2 2.能画出 y =tan x 的图象通过正切函数的图象的作图过程,进一步体会函数线的作用.3.会用正切函数的性质解决有关问题 二、学习过程解析式 y = tan x图象定义域_________________________值域R周期π奇偶性奇单调性上都是增函数提示 函数 y = tan x 的对称中心的坐标是 k π,0 , (k ∈Z) ,不是 (k π ,0)(k ∈Z) 2思考尝试1.思考判断 (正确的打“√”,错误的打“×” )(1)正切函数在整个定义域内是增函数. ()(2)存在某个区间,使正切函数为减函数.() (3)正切函数图象相邻两个对称中心的距离为周期 π .()(4)函数 y =tan x 为奇函数,故对任意 x ∈ R 都有 tan(-x)=- tan x. () 2.函数 y =tan 2x 的最小正周期是 ()ππ A . 2π B .πC. 2D. 4.函数 = tan x -π的定义域是 ( )3 y 4ππA. x x ≠ 4B. x x ≠- 4C x x≠ π+ π,k ∈ ZD. ≠ π+3π,k ∈Zk4x x k 44. 函数 = tan x - π≤ ≤π且 ≠ 的值域是 ____________ y 4 x 4 x 05.函数 y =- tan x 的单调递减区间是 __________ 正切函数的定义域、值域问题例 1、 (1)函数 y =lg( 3-tan x)的定义域为 ____.π π(2)函数 y =sin x +tan x , x ∈ - 4 , 3 的值域为 ___.1.求与正切函数有关的函数的定义域时, 除了求函数定义域的一般要求外, 还要π 保证正切函数 y = tan x 有意义即 x ≠ 2 + k π,k ∈Z2.求解与正切函数有关的函数的值域时, 要注意函数的定义域, 在定义域内求值域;对于求由正切函数复合而成的函数的值域时,常利用换元法,但要注意新“ 元” 的范围.变式训练、(1)函数1y =tan x 的定义域为()A . {x|x ≠0}B .{x|x ≠k π, k ∈ Z}≠ π+ π,k ∈Z D. x x ≠k π, k ∈ Z C. x x k 22(2)函数 tan(sin x)的值域为 ________________.正切函数的单调性及其应用 (互动探究 )例 2、 (1)比较下列两个数的大小 (用“>”或 “<”填空 ):① tan2π10π 7 ________tan7.6ππ② tan135 ________tan - 5.(2)求函数 y =tan 1π的单调增区间.2x +4迁移探究、 (变换条件、改变问法 )把本例 (2)中改为:求函数 y =tan -1+ π 的2x4单调减区间.归纳升华1. 求函数 y = Atan(ωx+ φ)(A , ω,φ都是常数 )的单调区间的方法:(1)若 ω>0,由于 y =tan x 在每一个单调区间上都是增函数,故可用“整体代换 ”的思想,令 k π -πω +φ π+ π ∈ Z) ,解得 x 的范围.2 <x <k 2 (k(2)若 ω<0,可利用诱导公式先把 y =Atan(ωx+φ)转化为 y =Atan[- (-ωx-φ)]=- Atan(- ωx- φ),即把 x 的系数化为正值,再利用“整体代换 ”的思想.2.运用正切函数单调性比较大小的方法:(1)运用函数的周期性或诱导公式将角化到同一单调区间内.(2)运用单调性比较大小的关系.正切函数的奇偶性与周期性π例 3、 (1)函数 y =4tan 3x + 6 的周期为 _______.(2)判断下列函数的奇偶性:① y =tan 2x - tan x ;1- tan x② y = xtan 2x + x 4.归纳π1.一般地,函数 y= Atan(ωx+φ)的最小正周期为T=|ω|,常常利用此公式来求周期.2.判断函数的奇偶性要先求函数的定义域,判断其是否关于原点对称.若不对称,则该函数无奇偶性,若对称,再判断f(-x)与 f(x)的关系.变式训练、直线 y=3 与函数 y= tan ωx(ω>0)的图象相交,则相邻两交点间的距离是 ()A.π2πB. ωπC.2ωπD.ω五、课堂练习:见变式训练六、教学小结:1.正切函数的性质(1)正切函数常用的三条性质.kπ①对称性:正切函数图象的对称中心是 2 ,0 (k∈Z) ,不存在对称轴.ππ②单调性:正切函数在每个区间 kπ-2 ,kπ+2 (k∈Z) 内是单调递增的,但不能说其在定义域内是递增的.2.“三点两线法”作正切曲线的简图(1)“三点”分别为 (kπ, 0),π, 1 ,π,其中 k∈ Z;π +π -,- 1k4 k 4ππ两线为直线 x= kπ+2和直线 x= kπ-2,其中 k∈Z( 两线也称为正切曲线的渐近线,即无限接近但不相交 ).(2)作简图时,只需先作出一个周期中的两条渐近线,然后描出三个点,用光滑的曲线连接得到一条曲线,最后平行移动至各个周期内.七、教学反思。

2019-2020学年八年级数学 《函数的图像》导学案 人教新课标版.doc

2019-2020学年八年级数学 《函数的图像》导学案 人教新课标版.doc

备课时间2019-2020学年八年级数学 《函数的图像》导学案 人教新课标版 月日 上课时间月 日 星期 第 节课 题第课时 累计课时 学习目标学习重点 学习难点学 习 过 程学习内容及预见性问题时间学习要求一、巩固旧知,激趣导入:二、明确目标,自主学习:三、合作探究,落实目标:函数的图像知识与技能:1、能根据函数图像所提供的信息获取函数的性质;2、判断点与函数图形的位置关系;过程与方法:1、通过图像可以数形结合地研究函数; 2、让学生观察分析,获得变量之间关系的直观体验情感、态度与价值观:渗透数形结合思想,体会到数学来源于生活,又应用于生活,培养学生的团结协作精神、探索精神和合作交流能力。

函数的图像正确无误的观察函数图形。

下图是自动测温仪记录的图像,它反映了北京的春季某天气温T 如何随时间t 的变化而变化,你从图像中得到什么信息? (1)这一天中凌晨4时气温最低(-3℃),14时气温最低最高(8℃) (2)从0时至4时气温呈下降状态(即温度随时间的增长而下降,从4时到14时气温呈上升状态,从14时至24时的气温又呈下降状态。

从图中得到气温T 是时间t 的函数。

1、正方形边长x 与面积S 的函数关系是S=x ²(x>0) 思考:(1)能否利用在坐标系中画图的方法来表示S 和x 的关系? (2)自变量x 的一个确定的值与它所对应的唯一的数值S ,是否确定了一个点(x ,S)?2、根据上面的例子,思考什么事函数图像?3、用描点法画函数图像的一般步骤是什么? 1、函数图像的定义:一般地,对于一个函数,如果把自变量和函数的每对对应值分别作为点的横、纵左边,那么坐标平面内由这些点组成的图形,就是这个函数的图像。

学习内容及预见性问题学习要求四、交流展示,体验成功:五、抽测达标,拓展延伸。

备课组 学科组 教务处2、用描点法画函数图像的一般步骤: (1)列表:给出自变量和函数的一些对应值。

一次函数和它的图像(第一课时)导学案

一次函数和它的图像(第一课时)导学案

11.5 一次函数和它的图象(第一课时) 导学案学习目标1、理解正比例函数、一次函数的概念。

2、会根据数量关系,求正比例函数、一次函数的解析式。

3、会求一次函数的值。

重点、难点1、 一次函数和正比例函数的概念、。

2、 求正比例函数、一次函数的解析式。

学习过程一、课前延伸:1、列车自上海机场出发,运行1000米后,以110米/秒的速度匀速行驶,写出列车离开浦东机场的距离s(单位:米)和时间t (单位:秒)的关系: 。

2、指出下列函数中的常量和变量,并比较下列各函数,它们有哪些共同特征: 。

,6t m = ,2x y -= ,32+=x y 9362.3+-=t Q二、合作探究:1、形如________________________的函数叫做x 的一次函数,其中,在k,x,y,b 中,哪些是常量,哪些是变量?哪一个是自变量,哪一个是自变量的函数?其中k,b 符合什么条件?2、在什么条件下,y=kx+b(k ≠0)为正比例函数?3、已知函数y=2x+b ,当x=1时,y 的值为7,则b=__________.4、一次函数Y=(k-3)x+(k+3),当k=__________时,它是x 的正比例函数。

三、巩固新知:1、下列函数中,哪些是一次函数?哪些是正比例函数?系数k 和常数项b 的值各为多少?C=2∏r, y=32x+200, t=v200 , (),32x y -= ()x x s -=502、某农场种植玉米,每平方米种玉米6株,玉米株数y 与种植面积)(2m x 之间的关系。

3、已知一次函数y=kx+3,当x=-1时,y=-1那么当x=1时,y 等于( ).(A) 1 (B) -1 (C) 7 (D) -7四、拓展提升:例1、已知函数y=(m-3)x 113m -+m+2.(1)当m 为何值时,y 是x 的正比例函数?∣(2)当m 为何值时,y 是x 的一次函数?例2.已知y 是x 的一次函数,当1-=x 时,2=y ;当2=x 时,3-=y(1)、求y 关于x 的一次函数关系式。

《正弦函数、余弦函数的图像》教案与导学案

《正弦函数、余弦函数的图像》教案与导学案

《第五章三角函数》《5.4.1正弦函数、余弦函数的图像》教案【教材分析】由于三角函数是刻画周期变化现象的数学模型,这也是三角函数不同于其他类型函数的最重要的地方,而且对于周期函数,我们只要认识清楚它在一个周期的区间上的性质,那么它的性质也就完全清楚了,因此本节课利用单位圆中的三角函数的定义、三角函数值之间的内在联系性等来作图,从画出的图形中观察得出五个关键点,得到“五点法”画正弦函数、余弦函数的简图.【教学目标与核心素养】课程目标1.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.2.理解正弦曲线与余弦曲线之间的联系.数学学科素养1.数学抽象:正弦曲线与余弦曲线的概念;2.逻辑推理:正弦曲线与余弦曲线的联系;3.直观想象:正弦函数余弦函数的图像;4.数学运算:五点作图;5.数学建模:通过正弦、余弦图象图像,解决不等式问题及零点问题,这正是数形结合思想方法的应用.【教学重难点】重点:正弦函数、余弦函数的图象.难点:正弦函数与余弦函数图象间的关系.【教学方法】:以学生为主体,小组为单位,采用诱思探究式教学,精讲多练。

【教学过程】一、情景导入遇到一个新的函数,非常自然地是画出它的图象,观察图象的形状,看看有什么特殊点,并借助图象研究它的性质,如:值域、单调性、奇偶性、最大值与最小值等.我们也很自然地想知道y=sinx与y=cosx的图象是怎样的呢?回忆我们在必修1中学过的指数函数、对数函数的图象是什么?是如何画出它们图象的(列表描点法:列表、描点、连线)?请学生尝试画出当x∈[0,2π]时,y=sinx 的图象.要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本196-199页,思考并完成以下问题1.任意角的正弦函数在单位圆中是怎样定义的?2.怎样作出正弦函数y=sinx的图像?3.怎样作出余弦函数y=cosx的图像?4.正弦曲线与余弦曲线的区别与联系.要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

人教版高中数学必修四导学案1.4正切函数的定义、图像及性质 Word版

人教版高中数学必修四导学案1.4正切函数的定义、图像及性质 Word版

普兰店市第一高一年级数学导学案
正切函数的定义、图像及性质
编制人:季士春校对:刘莹
学习目标:()了解任意角的正切函数概念;()理解正切函数中的自变量取值范围;()掌握正切线的画法;()能用单位圆中的正切线画出正切函数的图像;()熟练根据正切函数的图像推导出正切函数的性质;()掌握利用数形结合思想分析问题、解决问题的技能;
重点:正切函数的图象及其主要性质
难点:利用正切线画出函数的图象,并认识到直线是
此图象的两条渐近线
学习过程:
活动一(知识回顾):
.指出下列各角的正切线:
活动二(自主学习)
类比正弦函数用几何法做出正切函数的图像:
.
把上述图像向左、右扩展,得到正切函数,且的
图像,称为
.观察正切曲线,回答正切函数的性质:
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中: 一.合作探究:。

正切函数的定义图像及性质(北师版必修4) 导学案

正切函数的定义图像及性质(北师版必修4)   导学案

宁陕中学导学案(数学.北师大版必修四)高一级 班 小组 姓名正切函数的定义、图像及性质学习目标:1.能借助单位圆理解任意角的正切函数的定义2.能画出y =tan x 的图像3.掌握正切函数的基本性质学习重点:正切函数的图像和性质;学习难点:画正切函数的图像,探索正切函数的诱导公式一.自主学习:(认真阅读课本第35----37页内容,完成下列自学要求)1.指出下列各角的正切线:2.类比正弦函数用几何法做出正切函数⎪⎭⎫⎝⎛∈=22-tan ππ,x x y 的图象:3.把上述图象向左、右扩展,得到正切函数Rx x y ∈=tan ,且()z k k x ∈+≠ππ2的图象,称为 __________________________4.观察正切曲线,回答正切函数的性质:同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中:二.合作探究:例1.画出函数⎪⎭⎫⎝⎛+=4tan πx y 的图像并讨论其性质变式.求函数y =tan2x 的定义域、值域和周期.例2. 2tan ,3αα=若借助三角函数定义求角的正弦函数值和余弦函数值例3. tan 135tan 138︒︒比较与的大小三、反思总结:1、数学知识:2、数学思想方法:四.训练检测1. 1317tan()tan()45ππ--比较与的大小2. 函数)4tan(x y -=π的定义域为 ( )(A)},4|{R x x x ∈≠π(B)},4|{R x x x ∈-≠π(C) },,4|{Z k R x k x x ∈∈+≠ππ (D)},,43|{Z k R x k x x ∈∈+≠ππ3.下列函数中,同时满足(1)在(0, 2π)上递增, (2)以2π为周期, (3)是奇函数的是 ( )(A)x y tan = (B)x y cos = (C)xy 21tan = (D)x y tan -=4. 若tan 0x ≤,则( ).A .22,2k x k k Zπππ-<<∈ B .2(21),2k x k k Zπππ+≤<+∈C .,2k x k k Zπππ-<≤∈ D .,2k x k k Zπππ-≤≤∈5.tan 315tan 570tan(60)tan 675︒+︒-︒-︒求的值.(能力提升)6. 求出函数y =.7. 求函数y=lg(1-tanx)的定义域8.已知0cos 〉x ,且0tan 〈x ,求 (1)角x 的集合; (2)判断2x tan ,2cos x ,的符号.。

反比例函数的图像与性质导学案

反比例函数的图像与性质导学案

y = x
1 反比例函数的图像与性质(一)
学习目标:
1、进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;
2、观察反比例函数图象的特征从中得到反比例函数的简单性质
3、在自主探究反比例函数性质的过程中,感知反比例函数图象的对称性 过程:
一、复习回顾,引入新知
1. 下列函数中哪些是反比例函数? ① y = 3x -1 ②y = 2x ③ ④
⑤ ⑥ ⑦ ⑧
二、动手画画,认识图象 画出反比例函数 x
y 4
= 的函数图象
2、 描点
3、 连线
通过刚刚的画图,你认为,画图时应注意哪些问题? 三、观察图象,揭示函数 1、 画出反比例函数
y 4
-
=的函数图象。

观察:函数x
y =
和x y -= 的图象有什么相同点和不同点?
四、运用新知,巧妙解答
3、反比例函数 经过点(1, )。

选作:5、若点 在函数 (x <0)的图象上,且 ,则它的图象大致是( )(2008年江西中考题)
五、自我反思,自我收获 1、 知识收获 2、合作收获 六、作业 必做: 选作:
自留作业:根据今天画 和 两个 函数图象,请你继续探索,反比例函数还存在什么性质?
),(00y x x
k y =200-=y x。

1.4.3正切函数的性质与图像导学案

1.4.3正切函数的性质与图像导学案

课题:1.4.3正切函数的性质与图象编制:钱丽娟
【学习目标】
1.理解正切函数的定义域、值域、周期性、奇偶性、单调性,并掌握其应用。

2.能借助单位圆中的正切线画出正切函数的图象。

【教学重难点】
教学重点:用单位圆中的正切线画出正切函数图象。

教学难点:正切函数的性质。

【授课类型】新授课
【复习、预习思考】
2、思考:回忆正弦函数与余弦函数的图象与性质的学习过程,想一想如何研究正切函数的图象与性质?
【探究性质、图象】
1、 探究正切函数tan y x =的性质、图象
问题1、定义域
1、利用正切函数的定义,给出正切函数的定义域。

问题2、周期性
2、正切函数 tan y x = 是否是周期函数?
3、探究正切函数tan y x =的图象
问题3、奇偶性
问题4、单调性
3、能否利用正切线帮助理解正切函数 tan y x 的单调性?
问题5、值域
【例题讲解】
例1. 求函数 的定义域、周期、单调区间.
方法归纳:___________________________________________________________ 【本节小结】
1、正切曲线是先利用平移正切线得tan ()22
y x x =∈-ππ
,,的图象,再利用周期性
把该段图象向左、右拓展得到。

2、正切函数的性质。

【思考:周期公式推导】
1、正切型函数 y =A tan(ωx +φ)(ω≠0)的周期
一般结论:_____________________________
【作业】
1、课本P46 A 组第6、7题
2、练习册P29-30。

八年级数学下册19.1.2函数的图象第2课时导学案新版新人教版2

八年级数学下册19.1.2函数的图象第2课时导学案新版新人教版2

19.1.2函数的图象(第二课时)学习目标:1.我会总结函数的三种表示方法.2.我能了解三种表示方法的优缺点.3.会根据具体情况选择适当方法并能认识函数图像表示的实际意义。

教学重难点:1.认清函数的不同表示方法,知道各自优缺点.2.能按具体情况选用适当方法并能利用函数图像解决简单的实际问题。

一、自主学习与合作交流:问题(一):如图是自动测温仪记录的图象,它反映了北京的春季某天气温T如何随时间t变化而变化,你从图中得到了哪些信息?(1)这一天中时气温最低,是℃时气温最高,是℃(2)从时到时气温呈下降趋势,从时到时气温呈上升趋势,从时到时气温又呈下降趋势;(3)从图像中我们可以找出一天中任意时刻的气温,而且这个气温显然有且只有一个值,因此气温T是时间x的函数。

反过来,对于这一天的某一个气温值,如6℃对应的时刻不止一个,因此,时间x就(填“是”或“不是”)气温T的函数。

(4)对实际问题的函数图像,一定要理清楚自变量和函数值的意义。

组成图像的所有点的横坐标的集合恰好是自变量的。

组成图像的所有点的纵坐标的集合恰好是函数值的变化范围。

(5)请你从图中再写出几条信息来:答:①;②;③;④。

问题(二)等腰△ABC的周长为10cm,底边BC的长为ycm,腰AB的长为xcm.(1)写出y关于x的函数关系式(2)求x的取值范围(3)求y的取值范围(4)画出该函数的图像(注意:函数的图像是一条不包括两个端点的线段,为什么?)●正确理解函数图象与实际问题间的内在联系1、函数的图象是由一系列的点组成,图象上每一点的坐标(x,y)代表了该函数关系的一对对应值。

2、读懂横、纵坐标分别所代表的实际意义;3、读懂两个量在变化过程中的相互关系及其变化规律。

4、表示函数的方法有、、。

●总结:这三种表示函数的方法各有优缺点。

1.用解析法表示函数关系优点:简单明了。

能从解析式清楚看到两个变量之间的全部相依关系,并且适合进行理论分析和推导计算。

精品导学案:正切函数的图像与性质(教、学案)

精品导学案:正切函数的图像与性质(教、学案)

精品导学案:正切函数的图像与性质【教材分析】正切函数的图象和性质》 它前承正、余弦函数,后启必修五中的直线斜率问题。

研究正切函数的图象与性质过程不仅是对正、余弦曲线研讨方法的一种再现,更是一种提升,同时又为后续的学习奠定了基石。

教材单刀直入,直接进入画图工作,没有给出任何提示。

正切函数与正弦函数在研究方法上类似,我采用以类比的方式,让学生回忆正弦曲线的作图过程与方法,进而启发、引导学生发现作正切曲线的一种方法。

教材上直接圈定了区间(2,2ππ-),这样限制了学生的思维,我把空间留给学生,采用让学生自己选择周期,设计一个得到正切曲线的方法。

这样,不仅发挥了学生的能动性,增强动脑、动手绘图的能力,而且,在此过程中,学生会注意到画正切曲线的细节。

在得到图象后,单调性是一个难点,我设计了几个判断题帮助学生理解该性质,并用比大小的题型启发学生从代数和几何两种角度看问题。

【教学目标】正切函数是继正、余弦之后的又一个三角函数,三者在研究方法与研究内容上类似,但某些性质有所不同,这就养成学生在画图时必须全面考虑问题。

本着课改理念,养成学生对知识的勇于探索精神,学生亲自体会正切曲线的获得过程,这样学生的动手实践能力有了提高,又体会到学习数学的乐趣,根据教学要求及学生现有的认知水平,现制定以下教学目标: 1.会用单位圆内的正切线画正切曲线,并根据正切函数图象掌握正切函数的性质,用数形结合的思想理解和处理问题。

2.首先学生自主绘图,通过投影仪纠正图像,投影完整的正确图象,然后再让学生观察,类比正弦,探索知识。

3.在得到正切函数图像的过程中,学会一类周期性函数的研究方式,通过自己动手得到图像让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。

【教学重点难点】教学重点:正切函数的图象及其主要性质。

教学难点:利用正切线画出函数y =tan x 的图象,对直线x =2ππ+k ,Z k ∈是y =tan x的渐近线的理解,对单调性这个性质的理解。

19.1.2函数的图像第1课时与第2课时导学案

19.1.2函数的图像第1课时与第2课时导学案

19.1.2函数的图象(第一课时)导学案【学习目标】1、使学生了解函数图象的意义;2、初步掌握画函数图象的方法(列表、描点、连线);3、学会通过观察、分析函数图象来获取相关信息;【学习重点】初步掌握画函数图象的方法;【学习难点】通过观察、分析函数图象来获取信息.【学习过程】活动一、课前小测1、在一个变化过程中,我们称数值____________的量为变量;在一个变化过程中,我们称数值____________的量为常量.2、长方形相邻两边长分别为x、•y•,面积为10•,•则用含x•的式子表示y•为____________,则这个问题中,__________是常量;______________是变量.3.一般地,在一个变化过程中,如果有两个变量x与y,并且对于x•的每一个确定的值,y•都有唯一确定的值与其对应,•那么我们就说x•是_________,y是x的____.如果当x=a时y=b,那么b•叫做当自变量的值为a时的_______.4.已知三角形底边长为8,高为h,三角形的面积为s,则s与h的函数关系式为____________,其中自变量是_______,自变量的函数是________。

活动二:观察分析,探究新知问题一:正方形的面积S与边长x的函数关系为________,其中自变量x的取值范围是______,我们还可以利用在坐标系中画图的方法来表示S与x的关系.想一想:自变量x的一个确定的值与它所对应的唯一的函数值S,是否能确定一个点(x,S)呢?(1(2)描点:(建立直角坐标系,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点)(3)连线:(按照横坐标由小到大的顺序,把所描出的各点用平滑曲线连接起来)想一想:这条曲线包括原点吗?应该怎样表示?强调:用表示不在曲线上的点;在函数图象上的点要画成的点.归纳总结:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的_________.问题二:下面的图象反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家。

人教版高中数学全套教案导学案15函数 的图象教学案

人教版高中数学全套教案导学案15函数 的图象教学案

??的图象1. 5函数)sin(?A?xy一、教材分析三角函数是中学数学的重要内容之一,它既是解决生产实际问题的工具,又是学习高等数学及其它的基础.本节课是在学习了任意角的三角函数,正、余弦函数的图象和性质后,yx+φ)Asin(ω的简图的画法,进一步研究函数由此揭示这类函数的图象与正弦曲线的关=系,以及A、ω、φ的物理意义,并通过图象的变化过程,进一步理解正、余弦函数的性质,它是研究函数图象变换的一个延伸,也是研究函数性质的一个直观反映.二、教学目标1. 分别通过对三角函数图像的各种变换的复习和动态演示进一步让学生了解三角函数图像各种变换的实质和内在规律。

2. 通过对函数y = Asin(wx+4)(A>0,w>0)图象的探讨,让学生进一步掌握三角函数图像各种变换的内在联系。

3. 培养学生观察问题和探索问题的能力。

三、教学重点难点y= xyx+φ)的图象变换规律。

sin 到ω重点:通过五点作图法正确找出函数=sin(难点:对周期变换、相位变换先后顺序调整后,将影响图象平移量的理解.四、学法分析??)sin(?xy?A的本节课是在学习了三角函数的性质和图象的基础上来学习图像,应用三角函数的基本知识来解决实际问题对学生来说应该不会很陌生,所以对本节的学习应让学生能够多参与多思考,培养他们的分析解决问题和解决问题的能力,提高应用所学知识的能力。

在教师的引导下,积极、主动地提出问题,自主分析,再合作交流,达到殊途同归.在思维训练的过程中,感受数学知识的魅力,成为学习的主人.五、教法分析教学的目的是以知识为平台,全面提升学生的综合能力.本节课突出体现了以学生能力的发展为主线,应用启发式、讲述式引导学生层层深入,培养学生自主探索以发现问题、分析问题和解决问题的能力,注重利用非智力因素促进学生的学习,实现数学知识价值、思维价值和人文价值的高度统一。

六、课时安排:2课时七、教学程序及设计意图?xAy)+sin(ω的函数解析(一)复习引入:在现实生活中,我们常常会遇到形如=??xAAxy∈R 的简图的画法=)sin(ω,式(其中+,ω,都是常数)下面我们讨论函数(二)讲解新课:??),x∈R,y=+sin(x-),x∈R的简图sin(x例1、画出函数y=34解:列表通过比较,发现:??),x∈R的图象可看作把正弦曲线上所有的点向左平行移动(1)函数y=sin(x+个单33位长度而得到??),x∈R的图象可看作把正弦曲线上所有点向右平行移动个单位(2)函数y=sin(x-44长度而得到??≠0)的图象,可以看作把正弦曲线上所有点R(x+其中),x∈一般地,函数y=sin(???|个单位长度而得到时=平行移动|(或向右(当用平移法注意讲<当向左(0>0时)清方向:“加左”“减右”)?)与y=sinsin(x+x的图象只是在平面直角坐标系中的相对位置不一样,这一变换y=称为相位变换??),x∈R,y=sin(x-),x∈R设计意图:引导学生学习y=sin(x+43??的图象的影响)y=sinx的图象上点的坐标的关系,获得=对ysin(x+图象上点的坐标和的具体认识。

一次函数和它的图像导学案贾秀娟

一次函数和它的图像导学案贾秀娟

一次函数和它的图象(第一课时) 导学案学习目标1、理解正比例函数、一次函数的概念。

2、会根据数量关系,求正比例函数、一次函数的解析式。

3、会求一次函数的值。

重点、难点1、 一次函数和正比例函数的概念、。

2、 求正比例函数、一次函数的解析式。

学习过程一、课前延伸:1、列车自上海机场出发,运行1000米后,以110米/秒的速度匀速行驶,写出列车离开浦东机场的距离s(单位:米)和时间t (单位:秒)的关系: 。

2、指出下列函数中的常量和变量,并比较下列各函数,它们有哪些共同特征: 。

,6t m = ,2x y -= ,32+=x y 9362.3+-=t Q 二、合作探究:1、形如________________________的函数叫做x 的一次函数,其中,在k,x,y,b 中,哪些是常量,哪些是变量?哪一个是自变量,哪一个是自变量的函数?其中k,b 符合什么条件?2、在什么条件下,y=kx+b(k ≠0)为正比例函数?3、已知函数y=2x+b ,当x=1时,y 的值为7,则b=__________.4、一次函数Y=(k-3)x+(k+3),当k=__________时,它是x 的正比例函数。

三、巩固新知:1、下列函数中,哪些是一次函数?哪些是正比例函数?系数k 和常数项b 的值各为多少?C=2∏r, y=32x+200, t=v200 , (),32x y -= ()x x s -=502、某农场种植玉米,每平方米种玉米6株,玉米株数y 与种植面积)(2m x 之间的关系。

3、已知一次函数y=kx+3,当x=-1时,y=-1那么当x=1时,y 等于( ).(A) 1 (B) -1 (C) 7 (D) -7四、拓展提升:例1、已知函数y=(m-3)x 113m -+m+2.(1)当m 为何值时,y 是x 的正比例函数?∣(2)当m 为何值时,y 是x 的一次函数?例2.已知y 是x 的一次函数,当1-=x 时,2=y ;当2=x 时,3-=y(1)、求y 关于x 的一次函数关系式。

一次函数图像导学案

一次函数图像导学案

一次函数和它的图像青州市何官中学鞠明军一次函数和它的图像一、教案背景函数图像是数学学习的重点内容,一次函数图像是函数图像的基础,因此需要熟练掌握一次函数图像,为函数图像打好基础。

二、教学课题认识一次函数图像,熟练绘制函数图像,根据函数图像写出一次函数解析式。

三、教材分析青岛版教材,能够贴合实际讲解数学问题,讲解了一次函数的解析式,y=kx+b(k≠0)。

正比例函数y=kx,k叫做比例系数。

四、教学方法通过实际问题,引申出所学内容,对重难点详细讲解。

五、教学目标:1. 知识与技能:(1)了解一次函数与正比例函数的关系和意义。

(2)掌握一次函数的一般形式,并能根据所给条件写出实际问题中正比例关系与一次函数关系的解析式。

(3)了解一次函数的图像是一条直线,会画一次函数和正比例函数的图像。

(4)学会用列表法、图像法表示一次函数。

(5)掌握一次函数及其图像的性质。

2. 过程与方法:经历一般规律的探索过程,体会数学建模的基本思想方法,发展抽象思维能力和应用能力。

3. 情感态度与价值观:体会数学与人类社会的密切联系,增强学好数学的信心。

六、教学重点和难点:重点:理解一次函数的概念。

难点:掌握一次函数的性质。

七、教学过程教学知识要点:1. 理解一次函数和正比例函数的定义:一般地,如果y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数。

特别地,当一次函数y=kx+b中b为0时,y=kx(k为常数,k≠0),这时,y叫做x的正比例函数。

强调指出:①一次函数的解析式为y=kx+b(b为常数,k≠0)。

②正比例函数的解析式为y=kx(k为常数,k≠0)。

③正比例函数与一次函数的关系是:正比例函数是一次函数的特例,一次函数包含正比例函数。

2. 一次函数的图像与画法:①图像:一次函数y =kx +b (k ≠0)的图像是一条直线,其图像也称为直线y =kx +b 。

正比例函数y =kx 的图像是经过原点(0,0)的一条直线。

最全二次函数概念的图像与性质导学案完整版.doc

最全二次函数概念的图像与性质导学案完整版.doc

第二节 二次函数的图像与性质(第1课时)环节一 回顾旧知,导入新课。

1.一次函数的图像是 ,反比例函数的图像是 。

2.画函数图象的一般步骤是什么?, , .环节二 小组合学,探究新知。

1.试画出二次函数y=x 2的图像。

(1.2.3组黑色笔完成)(1)列表(2)描点 (3)连线2. 试画出二次函数y=-x 2的图像。

(4.5.6组黑色笔完成)3. 在1中画出二次函数y =2x 2的图象(1.2.3组红色笔完成) 在2中画出二次函数y =-2x 2的图象(4.5.6组红色笔完成)环节三:归纳总结,提炼升华。

反思小结:1.当a>0时,a 越大,a ,抛物线开口 。

当a<0时,a 越小,a ,抛物线开口 。

综上:对于任意a ≠0,a越大, 抛物线开口 。

环节四:达标检测,反馈提高 A 组1.二次函数2x y =的函数图像为_________,开口______,顶点坐标为______对称轴为________ 二次函数2-x y =的函数图像为_________,开口______,顶点坐标为______对称轴为________2.判断正误(1)函数y = x2与y = -x2的图像都是抛物线( ); (2)函数y = x2与y = -x2的图像对称轴都是x 轴 ( ); (3)函数y = x2与y = -x2的图像形状相同,开口方向相反( ) (4)抛物线y = 3x2在x 轴的下方(除顶点外)( )(5)在抛物线y = -5x2左侧, y 随着x 的增大而增大( ) 3.已知72)2(--=ax a y 是二次函数,且当0>x 时,y 随x 的增大而增大,则=a 。

4.设边长为x 的正方形的面积为y ,y 是x 的二次函数,该函数的图象是下列各图形中( )B 组:1.在函数y = x 2上有两点,(-1,y 1),(-3,y 2),那么y 1,y 2,0的大小关系是( )A .y 1 < y 2 <0 B. y 2 < y 1 <0 C. y 1 > y 2 >0 D. y 2 > y 1 >02、直线1+-=x y 与抛物线2x y =有( )A .1个交点B . 2个交点C .3个交点D .没有交点3、如图边长为2的正方形ABCD 的中心在直 角坐标系的原点O ,AD ∥x 轴,抛物线y = x 2和 y = -x 2别经过A ,B ,C ,D 点,将正方形成几部 分,则图中阴影部分的面积为 .探索乐趣 :课下猜想并验证抛物线y = 3x2与y = 3x2+4之间有什么关系?它们是轴对称图形吗?开方方向,对称轴、定点坐标分别是什么?温馨提示:只有不断的思考,才会有新的发现;只有量的变化,才会有质的进步.赠送以下资料《二次函数的应用》中考题集锦10题已知抛物线222(0)y x mx m m =+-≠.(1)求证:该抛物线与x 轴有两个不同的交点;(2)过点(0)P n ,作y 轴的垂线交该抛物线于点A 和点B (点A 在点P 的左边),是否存在实数m n ,,使得2AP PB =?若存在,则求出m n ,满足的条件;若不存在,请说明理由.答案:解:(1)证法1:22229224m y x mx m x m ⎛⎫=+-=+- ⎪⎝⎭,当0m ≠时,抛物线顶点的纵坐标为2904m -<, ∴顶点总在x 轴的下方.而该抛物线的开口向上,∴该抛物线与x 轴有两个不同的交点.(或者,当0m ≠时,抛物线与y 轴的交点2(02)m -,在x 轴下方,而该抛物线的开口向上,∴该抛物线与x 轴有两个不同的交点.)证法2 :22241(2)9m m m ∆=-⨯⨯-=,当0m ≠时,290m >,∴该抛物线与x 轴有两个不同的交点. (2)存在实数m n ,,使得2AP PB =.设点B 的坐标为()t n ,,由2AP PB =知,①当点B 在点P 的右边时,0t >,点A 的坐标为(2)t n -,,且2t t -,是关于x的方程222x mx m n +-=的两个实数根.2224(2)940m m n m n ∴∆=---=+>,即294n m >-.且(2)t t m +-=-(I ),2(2)t t m n -=--(II )由(I )得,t m =,即0m >.将t m=代入(II )得,0n =.∴当0m >且0n =时,有2AP PB =.②当点B 在点P 的左边时,0t <,点A 的坐标为(2)t n ,,且2t t ,是关于x 的方程222x mx m n +-=的两个实数根. 2224(2)940m m n m n ∴∆=---=+>,即 294n m >-.且2t t m +=-(I ),222t t m n =--(II )由(I )得,3mt =-,即0m >. 将3m t =-代入(II )得,2209n m =-且满足294n m >-. ∴当0m >且2209n m =-时,有2AP PB =第11题一人乘雪橇沿如图所示的斜坡笔直滑下,滑下的距离S (米)与时间t (秒)间的关系式为210S t t =+,若滑到坡底的时间为2秒,则此人下滑的高度为( )A.24米 B.12米C.米 D.6米答案:B第12题我市英山县某茶厂种植“春蕊牌”绿茶,由历年来市场销售行情知道,从每年的3月25日起的180天内,绿茶市场销售单价y (元)与上市时间t (天)的关系可以近似地用如图(1)中的一条折线表示.绿茶的种植除了与气候、种植技术有关外,其种植的成本单价z (元)与上市时间t (天)的关系可以近似地用如图(2)的抛物线表示.(2)求出图(2)中表示的种植成本单价z (元)与上市时间t (天)(0t >)的函数关系式;(3)认定市场销售单价减去种植成本单价为纯收益单价,问何时上市的绿茶纯收益单价最大? (说明:市场销售单价和种植成本单价的单位:元/500克.)答案:解:(1)依题意,可建立的函数关系式为:2160(0120)380(120150)220(150180)5t t y t t t ⎧-+<<⎪⎪=<⎨⎪⎪+⎩,,. ≤ ≤≤ (2)由题目已知条件可设2(110)20z a t =-+. 图象过点85(60)3,,2851(60110)203300a a ∴=-+∴=.. 21(110)20300z t ∴=-+ (0)t >.(3)设纯收益单价为W 元,则W =销售单价-成本单价. )图(1)图(2)(天)故22221160(110)20(0120)3300180(110)20(120150)3002120(110)20(150180)5300t t t W t t t t t ⎧-+---<<⎪⎪⎪=---<⎨⎪⎪+---⎪⎩,,. ≤ ≤≤ 化简得2221(10)100(0120)3001(110)60(120150)3001(170)56(150180)300t t W t t t t ⎧--+<<⎪⎪⎪=-+<⎨⎪⎪--+⎪⎩,,. ≤ ≤≤①当21(10)100(0120)300W t t =--+<<时,有10t =时,W 最大,最大值为100; ②当21(110)60(120150)300W t t =--+<≤时,由图象知,有120t =时,W 最大,最大值为2593;③当21(170)56(150180)300W t t =--+≤≤时,有170t =时,W 最大,最大值为56.综上所述,在10t =时,纯收益单价有最大值,最大值为100元.第13题如图,足球场上守门员在O 处开出一高球,球从离地面1米的A 处飞出(A 在y 轴上),运动员乙在距O 点6米的B 处发现球在自己头的正上方达到最高点M ,距地面约4米高,球落地后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半. (1)求足球开始飞出到第一次落地时,该抛物线的表达式. (2)足球第一次落地点C距守门员多少米?(取7=)(3)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取5=)答案:解:(1)(3分)如图,设第一次落地时, 抛物线的表达式为2(6)4y a x =-+. 由已知:当0x =时1y =. 即1136412a a =+∴=-,. ∴表达式为21(6)412y x =--+.(或21112y x x =-++)(2)(3分)令210(6)4012y x =--+=,.212(6)4861360x x x ∴-===-<.≈,(舍去). ∴足球第一次落地距守门员约13米.(3)(4分)解法一:如图,第二次足球弹出后的距离为CD根据题意:CD EF =(即相当于将抛物线AEMFC 向下平移了2个单位)212(6)412x ∴=--+解得1266x x =-=+1210CD x x ∴=-=. 1361017BD ∴=-+=(米). 解法二:令21(6)4012x --+=.解得16x =-,2613x =+.∴点C 坐标为(13,0).设抛物线CND 为21()212y x k =--+.将C 点坐标代入得:21(13)2012k --+=.解得:11313k =-(舍去),2667518k =+++=.21(18)212y x =--+ 令210(18)212y x ==--+,0.118x =-,21823x =+. 23617BD ∴=-=(米). 解法三:由解法二知,18k =, 所以2(1813)10CD =-=, 所以(136)1017BD =-+=. 答:他应再向前跑17米.第14题荆州市“建设社会主义新农村”工作组到某县大棚蔬菜生产基地指导菜农修建大棚种植蔬菜.通过调查得知:平均修建每公顷大棚要用支架、农膜等材料费2.7万元;购置滴灌设备,这项费用(万元)与大棚面积(公顷)的平方成正比,比例系数为0.9;另外每公顷种植蔬菜需种子、化肥、农药等开支0.3万元.每公顷蔬菜年均可卖7.5万元. (1)基地的菜农共修建大棚x (公顷),当年收益(扣除修建和种植成本后)为y (万元),写出y 关于x的函数关系式.(2)若某菜农期望通过种植大棚蔬菜当年获得5万元收益,工作组应建议他修建多少公项大棚.(用分数表示即可)(3)除种子、化肥、农药投资只能当年受益外,其它设施3年内不需增加投资仍可继续使用.如果按3年计算,是否修建大棚面积越大收益越大?修建面积为多少时可以得到最大收益?请帮工作组为基地修建大棚提一项合理化建议.答案:(1)()227.5 2.70.90.30.9 4.5y x x x x x x =-++=-+. (2)当20.9 4.55x x -+=时,即2945500x x -+=,153x =,2103x =从投入、占地与当年收益三方面权衡,应建议修建53公顷大棚. (3)设3年内每年的平均收益为Z (万元)()()2227.50.90.30.30.3 6.30.310.533.075Z x x x x x x x =-++=-+=--+(10分)不是面积越大收益越大.当大棚面积为10.5公顷时可以得到最大收益.建议:①在大棚面积不超过10.5公顷时,可以扩大修建面积,这样会增加收益. ②大棚面积超过10.5公顷时,扩大面积会使收益下降.修建面积不宜盲目扩大.③当20.3 6.30x x -+=时,10x =,221x =.大棚面积超过21公顷时,不但不能收益,反而会亏本.(说其中一条即可)第15题一家用电器开发公司研制出一种新型电子产品,每件的生产成本为18元,按定价40元出售,每月可销售20万件.为了增加销量,公司决定采取降价的办法,经市场调研,每降价1元,月销售量可增加2万件.(1)求出月销售量y (万件)与销售单价x (元)之间的函数关系式(不必写x 的取值范围); (2)求出月销售利润z (万元)(利润=售价-成本价)与销售单价x (元)之间的函数关系式(不必写x 的取值范围);(3)请你通过(2)中的函数关系式及其大致图象帮助公司确定产品的销售单价范围,使月销售利润不低于480万元.答案:略.第16题一座隧道的截面由抛物线和长方形构成,长方形的长为8m ,宽为2m ,隧道最高点P 位于AB 的中央且距地面6m ,建立如图所示的坐标系(1)求抛物线的解析式;(2)一辆货车高4m ,宽2m ,能否从该隧道内通过,为什么?(3)如果隧道内设双行道,那么这辆货车是否可以顺利通过,为什么?答案:(1)由题意可知抛物线经过点()()()024682A P B ,,,,,设抛物线的方程为2y ax bx c =++ 将A P D ,,三点的坐标代入抛物线方程. 解得抛物线方程为21224y x x =-++ (2)令4y =,则有212244x x -++=解得1244x x =+=-212x x -=>∴货车可以通过.(3)由(2)可知21122x x -=>∴货车可以通过.第17题如图,在矩形ABCD 中,2AB AD =,线段10EF =.在EF 上取一点M ,分别以EM MF ,为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令M N x=,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少?答案:解:矩形MFGN ∽矩形ABCD ,MN MFAD AB∴=. 2AB AD MN x ==,,2MF x ∴=.102EM EF MF x ∴=-=-. (102)S x x ∴=-2210x x =-+ 2525222x ⎛⎫=--+ ⎪⎝⎭.∴当52x =时,S 有最大值为252.第18题某企业信息部进行市场调研发现:信息一:如果单独投资A 种产品,则所获利润A y (万元)与投资金额x (万元)之间存在正比例函数关系:A y kx =,并且当投资5万元时,可获利润2万元.信息二:如果单独投资B 种产品,则所获利润B y (万元)与投资金额x (万元)之间存在二次函数关系:2B y ax bx =+,并且当投资2万元时,可获利润2.4万元;当投资4万元时,可获利润3.2万元.(1)请分别求出上述的正比例函数表达式与二次函数表达式;(2)如果企业同时对AB ,两种产品共投资10万元,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?答案:解:(1)当5x =时,12250.4y k k ===,,, 0.4A y x ∴=,当2x =时, 2.4B y =;当4x =时, 3.2B y =.2.4423.2164a ba b =+⎧∴⎨=+⎩解得0.21.6a b =-⎧⎨=⎩∴20.2 1.6B y x x =-+.(2)设投资B 种商品x 万元,则投资A 种商品(10)x -万元,获得利润W 万元,根据题意可得220.2 1.60.4(10)0.2 1.24W x x x x x =-++-=-++ 20.2(3) 5.8W x ∴=--+当投资B 种商品3万元时,可以获得最大利润5.8万元,所以投资A 种商品7万元,B 种商品3万元,这样投资可以获得最大利润5.8万元.第19题如图所示,图(1)是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m ,支柱3350m A B =,5根支柱1122334455A B A B A B A B A B ,,,,之间的距离均为15m ,1515B B A A ∥,将抛物线放在图(2)所示的直角坐标系中.(1)直接写出图(2)中点135B B B ,,的坐标; (2)求图(2)中抛物线的函数表达式; (3)求图(1)中支柱2244A B A B ,的长度.答案:(1)1(30)B -,0,3(030)B ,,5(300)B ,; (2)设抛物线的表达式为(30)(30)y a x x =-+,把3(030)B ,代入得(030)(030)30y a =-+=.B A D MFB 图(1)图(2)l130a =-∴. ∵所求抛物线的表达式为:1(30)(30)30y x x =--+. (3)4B ∵点的横坐标为15, 4B ∴的纵坐标4145(1530)(1530)302y =--+=. 3350A B =∵,拱高为30,∴立柱44458520(m)22A B =+=. 由对称性知:224485(m)2A B A B ==。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档