人教版高中数学高二-数学学案 余弦定理 (人教A版必修5) (2)

合集下载

人教A版高中数学必修五正弦定理和余弦定理教案第课时(2)

人教A版高中数学必修五正弦定理和余弦定理教案第课时(2)

课题 正弦定理、余弦定理4【教学目的】1.正确运用正弦定理、余弦定理解斜三角形;2.会利用计算器解决斜三角形计算问题;3.通过解斜三角形培养学生用方程的思想理解有关问题,并培养学生解题的优化意识.【教学重点】正确运用正弦定理、余弦定理解斜三角形【教学难点】正弦定理、余弦定理运用求解中的技巧的应用和准确的计算【教学过程】一.复习:说出正弦定理、余弦定理的内容和它们各自的作用;二知识应用例1.在△ABC 中,已知sin 2B -sin 2C -sin 2A =3sin A sin C ,求B 的度数例2.在△ABC 中,已知2cos B sin C =sin A ,试判定△ABC 的形状例3.在△ABC 中已知a =2b cos C ,求证:△ABC 为等腰三角形例4.在ABC ∆中,(1)若bc c b a ++=222,求A. (2)若=-+++))((a c b c b a bc 3,求A例5.声速为a 米/秒,在相距a 10的A,B 两处,听到一爆炸声的时间差为6秒,且记录显示B处的声强是A 处的4倍.若声速340=a ,声强与距离的平方成反比,试确定爆炸点P 到AB 的中点M 的距离.三.小结(1)内角和定理及变换有:π=++C B A .)(C B A +-=π222C B A +-=π (2)边角转换的常用定理有:正弦定理、余弦定理、射影定理(+=C b a cos B c cos ).四.作业1.课本24页 14,2.课本24页 153.ABC ∆中,已知C B A 222sin sin sin ++2=,判断ABC ∆的形状.4.在ΔABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且31cos =A .求A CB 2cos 2sin 2++的值;。

高中数学余弦定理 教案(新人教A版必修5)

高中数学余弦定理 教案(新人教A版必修5)

数学:1.1《正弦定理与余弦定理》教案(新人教版必修5)(原创)余弦定理一、教材依据:人民教育出版社(A版)数学必修5第一章第二节二、设计思想:1、教材分析:余弦定理是初中“勾股定理”内容的直接延拓,是解三角形这一章知识的一个重要定理,揭示了任意三角形边角之间的关系,是解三角形的重要工具,余弦定理与平面几何知识、向量、三角形有着密切的联系。

因此,做好“余弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力。

2、学情分析:这节课是在学生已经学习了正弦定理及有关知识的基础上,转入对余弦定理的学习,此时学生已经熟悉了探索新知识的数学教学过程,具备了一定的分析能力。

3、设计理念:由于余弦定理有较强的实践性,所以在设计本节课时,创设了一些数学情景,让学生从已有的几何知识出发,自己去分析、探索和证明。

激发学生浓厚的学习兴趣,提高学生的创新思维能力。

4、教学指导思想:根据当前学生的学习实际和本节课的内容特点,我采用的是“问题教学法”,精心设计教学内容,提出探究性问题,经过启发、引导,从不同的途径让学生自己去分析、探索,从而找到解决问题的方法。

三、教学目标:1、知识与技能:理解并掌握余弦定理的内容,会用向量法证明余弦定理,能用余弦定理解决一些简单的三角度量问题2.过程与方法:通过实例,体会余弦定理的内容,经历并体验使用余弦定理求解三角形的过程与方法,发展用数学工具解答现实生活问题的能力。

3.情感、态度与价值观:探索利用直观图形理解抽象概念,体会“数形结合”的思想。

通过余弦定理的应用,感受余弦定理在解决现实生活问题中的意义。

四、教学重点:通过对三角形边角关系的探索,证明余弦定理及其推论,并能应用它们解三角形及求解有关问题。

五、教学难点:余弦定理的灵活应用六、教学流程:(一)创设情境,课题导入:1、复习:已知A=045,b=16解三角形。

最新人教版高中数学必修5第一章“余弦定理”教案2

最新人教版高中数学必修5第一章“余弦定理”教案2

1.1.2余弦定理教学目标1.掌握余弦定理,熟记定理的结论,会利用向量的数量积证明余弦定理.2.理解余弦定理与勾股定理的关系.教学重点和难点重点:利用向量的数量积证明余弦定理;理解掌握余弦定理的内容;初步对余弦定理进行应用.难点:利用向量的数量积证余弦定理的思路,及对余弦定理的熟练记忆.教学过程设计(一)师生共同复习正弦定理.正弦定理准确地反映了三角形中边与角之间的关系,即在一个三角形中,各边和它所对角的正弦成正比.请同学们回忆一下正弦定理的证明过程.(二)教师讲述新课.前面我们学习正弦定理时同学们已知道(1)如果已知三角形的两个角和任一边,我们用正弦定理可求出其它两边和一角.(2)如果已知三角形的两边和其中一边的对角,我们用正弦定理可求出另一边的对角,再进一步求出其他的边和角.现在我们来研究,如果已知三角形的一个角和夹此角的两边,能否求出此角的对边呢?如图,在△ABC中,AB、BC、CA的长分别为c、a、b.∴b2=a2+c2+2accos(180°-B),b2=a2+c2-2accosB.这个式子就表达了第三边b与另两边a和c及他们夹角之间的关系.b2=a2+c2-2accosB,同理可证出,a2=b2+c2-2bccosA,c2=a2+b2-2abcosC.我们得到余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.教师引导学生观察余弦定理公式的特征和规律帮助记忆公式,同时要求学生用语言叙述余弦定理,促进对公式的记忆.教师引导学生注意以下问题.(1)如三角形中有一个角是直角,三角形是直角三角形.如∠C=90°,则cosC=0.这时余弦定理为,c2=a2+b2-2abcos90°=a2+b2.这就是勾股定理.因之,勾股定理是余弦定理的特例,而余弦定理是勾股定理的推广.(2)我们用余弦定理求角时,有时为了方便,余弦定理变形为如下形状.(师生共同完成以下例题)解:这个问题是已知三角形的两边a、c,及其夹角B,直接用余弦定理,求第三边,即∠B的对边.由余弦定理,b2=a2+c2-2accosB.∴b=7.解:已知三角形的三边,可用余弦定理确定角.∴A=45°.例3.如图,在△ABC中,应用勾股定理证明余弦定理.解:设AB=c,AC=b,BC=a,过顶点C作AB边上的高CD.则CD=bsinA,AD=bcosA,DB=C-bcosA,在Rt△CDB中,BC2=CD2+DB2.a2=b2sin2A+(c-bcosA)2=b2sin2A+c2-2bccosA+b2cos2A=b2(sin2A+cos2A)-2bccosA+c2=b2+c2-2bccosA∴a2=b2+c2-2bccosA.(三)学生练习.1.课本练习3(1),a=7.2.课本练习3(2),B=90°.(四)教师小结.总结余弦定理的内容,余弦定理公式记忆的特征.余弦定理公式的两种形式.(1)求边形式:a2=b2+c2-2bccosA,b2=a2+c2-2accosB,c2=a2+b2-2abcosC.。

人教A版数学必修5第一章第2节《余弦定理》 教学设计

人教A版数学必修5第一章第2节《余弦定理》 教学设计

“体现高中数学相关分支教育价值的教学设计”余弦定理(人教A必修5第一章第2节)一、教学设计⏹内容和内容解析余弦定理是《普通高中课程标准实验教科书•数学》(人教版)必修5第1章“解三角形”的主要内容,是反映三角形边角之间等量关系的重要定理,是三角函数和平面向量知识在三角形中的具体运用,是解决可转化为三角形计算问题的其他数学问题以及生产、生活实际中的测量、设计、计算等问题的重要工具,具有广泛的应用价值.此前学生已经学习了“三角函数”、“平面向量”、“三角恒等变换”,并且学习了正弦定理的发现、证明和应用,具有初步的归纳、猜想和证明意识,因此在余弦定理教学中,应以学生的已有知识为固着点,突出问题引导,着眼多元联系,诱导学生展开有质量的联想,有效地激发学生的思维,让学生全程参与到定理的探究、发现和证明之中,体验数学发现和创造的历程.为此,本节课教学重点:余弦定理的探究、发现与证明.教学难点:余弦定理的证明思路的引导与发现.⏹目标和目标解析1经历发现、猜想、推导余弦定理的过程,享受数学发现的快乐,激发学习兴趣.2通过与三角、向量、平面几何等知识的联系,能多个角度证明余弦定理,体会向量方法的作用,比较不同证法的区别与联系,体验余弦定理的不同结构、表现形式和含义.3感悟“类比”、“函数与方程”、“特殊到一般”、“化归与转化”、“数形结合”、不变量”等思想方法. 4能用余弦定理解决一些简单的解三角形问题.⏹教学问题诊断分析在已有勾股定理和正弦定理学习的基础上,让学生独立地“再发现”余弦定理是有困难的,学生难以想到“由两边夹角求第三边“时还要先建立平方关系;让学生比较”自然地”想到向量方法来证明也是困难的,定理证明所包含的数学思想学生也不容易体会到.因此需要教师真正洞察余弦定理的知识结构,把握余弦定理的认知基础,在生成和证明余弦定理时,教师启发的着力点要放在如何发现余弦定理,怎样运用向量法去证明.⏹教学支持条件分析定理的教学绝对不应该是定理的直接灌输、简单记忆、表面应用,重要的是发现问题、提出问题、探索结论、猜想归纳、模拟实验、演绎证明。

人教A版高中数学必修五正弦定理和余弦定理教案二新

人教A版高中数学必修五正弦定理和余弦定理教案二新

1.1.2余弦定理一、教学目标:1、能力要求:①掌握余弦定理,能初步运用余弦定理解一些斜三角形。

②明确余弦定理可解决哪种类型的三角形问题。

2、过程与方法:①探究式教学使学生明确余弦定理的用途。

②在探究学习中,认识到余弦定理可以解决某些与几何计算和测量有关的实际问题。

二、教学重点、难点:重点:余弦定理公式及其推论的应用;难点:综合运用正弦定理、余弦定理等知识和方法解斜三角形三、预习问题处理:1、余弦定理:三角形中 平方等于 减去 的两倍,即=2a ;=2b ;=2c 。

2、从余弦定理,可以得到它的推论:=A cos ;=B cos ;=C cos 。

3、从余弦定理和余弦函数的性质可知,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是 ;如果小于第三边的平方,那么第三边所对的角是 ;如果大于第三边的平方,那么第三边所对的角是 。

4、只利用余弦定理,我们可以解决何种类型的问题?四、新课讲解:通过上一节课的学习我们知道,利用正弦定理可以解决两类三角形问题:①已知三角形两角和任一边解三角形;②已知两边和其中一边的对角解三角形。

那么其它类型的解三角形问题是否就没有办法解决了呢?下面我们由正弦定理出发,进行一下探索。

正弦定理:R Cc B b A a 2sin sin sin ===(R 为ABC ∆外接圆半径) 由正弦定理可知:C R c B R b A R a sin 2,sin 2,sin 2===()()[]C B C B C B R AC B C B R A bc c b +++=-+=-+∴cos sin sin 2sin sin 4cos sin sin 2sin sin 4cos 222222222[]()()[][]()()()22222222222222222222222sin 2sin 4sin 4cos sin cos sin 4cos cos sin sin 2cos sin cos sin 4cos cos sin sin 2sin 1sin sin 1sin 4cos cos sin sin 2sin sin 2sin sin 4a A R A R C B R B C C B R C B C B B C C B R C B C B B C C B R C B C B C B C B R ===+=+=++=+-+-=+-+=即A bc c b a cos 2222-+=。

人教新课标版数学高二-2015年人教A版数学必修5教案2 正弦、余弦定理的综合应用

人教新课标版数学高二-2015年人教A版数学必修5教案2 正弦、余弦定理的综合应用

【学习目标】
1.掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。

2.通过引导学生分析,解答三个典型例子,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题。

【学习重点】在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。

【学习难点】正、余弦定理与三角形的有关性质的综合运用
【授课类型】新授课
【教具】课件、电子白板
【学习方法】
.在∆ABC。

最新人教版高中数学必修5导学案 1.1.2余弦定理(2)

最新人教版高中数学必修5导学案 1.1.2余弦定理(2)

1.1.2 余弦定理(2)【学习目标】1. 利用余弦定理求三角形的边长.2. 利用余弦定理的变形公式求三角形的内角.【重点难点】灵活运用余弦定理求三角形边长和内角 【学习过程】一、自主学习:任务1:余弦定理 :2a =____________2b = ____________2c =_____________任务2:求角公式:=A cos ____________=B cos ____________=C cos ____________二、合作探究归纳展示1. 已知在△ABC 中,sinA ∶sinB ∶sinC =3∶5∶7,那么这个三角形的最大角是( ). . A .135° B .90°. C .120° D .150°2. 如果将直角三角形三边增加同样的长度,则新三角形形状为( ).A .锐角三角形B .直角三角形C .钝角三角形D .由增加长度决定3. 在△ABC 中,sinA:sinB:sinC =4:5:6,则cosB = .4. 已知△ABC 中,cos cos b C c B =,试判断△ABC 的形状三、讨论交流点拨提升例1. 在ABC ∆中,已知C B A cos sin 2sin =,试判断该三角形的形状.分析:题目中有B A sin ,sin ,很容易想到________定理,之后再利用______定理建立关系.例 2. 在ABC ∆中,已知角C B A ,,所对的三边长分别为c b a ,,,且2=a ,41cos ,3==B c 。

1.求b 的值.2.求C sin 的值.分析:(1)由余弦定理2b = ____________即可得到(2)由余弦定理=C c os ____________,再利用同角三角函数的_______关系可得到 .例3.已知 c b a ,,为ABC ∆的三边,其面积312=∆ABC S ,,48=bc 2=-c b .求a .分析:由三角形的面积公式_________可求得_________,再利用______定理求得a .四、学能展示课堂闯关知识拓展若C=90︒,则cos C = ,这时222c a b =+由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例利用它可以判断三角形状1.若222a b c +=,则角C 是直角;2.若222a b c +<,则角C 是钝角;3.若222a b c +>,则角C 是锐角课堂检测1. 已知三角形的三边长分别为3、5、7,则最大角为( ).A .60B .75C .120D .1503. 已知锐角三角形的边长分别为2、3、x ,则x 的取值范围是( ).A .513x <<B .13<x <5..C . 2<x <5 D .5<x <5五、学后反思余弦定理 :2a =____________ 求角公式:=A cos ____________2b = ____________=B cos ___________ 2c =_____________=C cos ____________【课后作业】(1)在ABC ∆中,若C B C B A cos cos sin sin sin ++=,试判断ABC ∆的形状. (2)已知ABC ∆中,060=A ,最大边和最小边的长是方程0322732=+-x x 的两实根,求边BC 的长.。

新人教A版必修5高中数学第一章1.1.2余弦定理(二)导学案

新人教A版必修5高中数学第一章1.1.2余弦定理(二)导学案

1.1.2 余弦定理(二)课时目标1.熟练掌握正弦定理、余弦定理;2.会用正、余弦定理解三角形的有关问题.1.正弦定理及其变形(1)a sin A =b sin B =csin C=2R . (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C .(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R.(4)sin A ∶sin B ∶sin C =a ∶b ∶c .2.余弦定理及其推论 (1)a 2=b 2+c 2-2bc cos_A .(2)cos A =b 2+c 2-a 22bc.(3)在△ABC 中,c 2=a 2+b 2⇔C 为直角;c 2>a 2+b 2⇔C 为钝角;c 2<a 2+b 2⇔C 为锐角.3.在△ABC 中,边a 、b 、c 所对的角分别为A 、B 、C ,则有:(1)A +B +C =π,A +B 2=π2-C2.(2)sin(A +B )=sin_C ,cos(A +B )=-cos_C ,tan(A +B )=-tan_C .(3)sin A +B 2=cos C 2,cos A +B 2=sin C2.一、选择题1.已知a 、b 、c 为△ABC 的三边长,若满足(a +b -c )(a +b +c )=a b,则∠C的大小为( )A .60°B .90°C .120°D .150° 答案 C解析 ∵(a +b -c )(a +b +c )=ab , ∴a 2+b 2-c 2=-ab , 即a 2+b 2-c 22ab =-12,∴cos C =-12,∴∠C =120°.2.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是 ( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等边三角形 答案 C解析 ∵2cos B sin A =sin C =sin(A +B ), ∴sin A cos B -cos A sin B =0, 即sin(A -B )=0,∴A =B .3.在△ABC 中,已知sin A ∶sin B ∶sin C =3∶5∶7,则这个三角形的最小外角为 ( )A .30°B .60°C .90°D .120° 答案 B解析 ∵a ∶b ∶c =sin A ∶sin B ∶sin C =3∶5∶7, 不妨设a =3,b =5,c =7,C 为最大内角,则cos C =32+52-722×3×5=-12.∴C =120°.∴最小外角为60°.4.△ABC 的三边分别为a ,b ,c 且满足b 2=ac,2b =a +c ,则此三角形是( )A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等边三角形答案 D解析∵2b=a+c,∴4b2=(a+c)2,即(a-c)2=0.∴a=c.∴2b=a+c=2a.∴b=a,即a=b=c.5.在△ABC中,角A,B,C所对的边长分别为a,b,c,若C=120°,c=2a,则( )A.a>b B.a<bC.a=b D.a与b的大小关系不能确定答案 A解析在△ABC中,由余弦定理得,c2=a2+b2-2ab cos 120°=a2+b2+ab.∵c=2a,∴2a2=a2+b2+ab.∴a2-b2=ab>0,∴a2>b2,∴a>b.6.如果将直角三角形的三边增加同样的长度,则新三角形的形状是( )A.锐角三角形 B.直角三角形C.钝角三角形 D.由增加的长度确定答案 A解析设直角三角形三边长为a,b,c,且a2+b2=c2,则(a+x)2+(b+x)2-(c+x)2=a2+b2+2x2+2(a+b)x-c2-2cx-x2=2(a+b-c)x+x2>0,∴c+x所对的最大角变为锐角.二、填空题7.在△ABC中,边a,b的长是方程x2-5x+2=0的两个根,C =60°,则边c=________.答案19解析由题意:a+b=5,ab=2.由余弦定理得:c2=a2+b2-2ab cos C=a2+b2-ab=(a+b)2-3ab=52-3×2=19,∴c=19.8.设2a+1,a,2a-1为钝角三角形的三边,那么a的取值范围是________.答案2<a<8解析 ∵2a -1>0,∴a >12,最大边为2a +1.∵三角形为钝角三角形,∴a 2+(2a -1)2<(2a +1)2, 化简得:0<a <8.又∵a +2a -1>2a +1, ∴a >2,∴2<a <8.9.已知△ABC 的面积为23,BC =5,A =60°,则△ABC 的周长是________.答案 12解析 S △ABC =12AB ·AC ·sin A=12AB ·AC ·sin 60°=23, ∴AB ·AC =8,BC 2=AB 2+AC 2-2AB ·AC ·cos A =AB 2+AC 2-AB ·AC =(AB +AC )2-3AB ·AC , ∴(AB +AC )2=BC 2+3AB ·AC =49, ∴AB +AC =7,∴△ABC 的周长为12.10.在△ABC 中,A =60°,b =1,S △ABC =3,则△ABC 外接圆的面积是________.答案 13π3解析 S △ABC =12bc sin A =34c =3,∴c =4,由余弦定理:a 2=b 2+c 2-2bc cos A =12+42-2×1×4cos 60°=13, ∴a =13.∴2R =a sin A =1332=2393,∴R =393.∴S 外接圆=πR 2=13π3. 三、解答题11.在△ABC 中,求证:a 2-b 2c 2=A -Bsin C.证明 右边=sin A cos B -cos A sin B sin C =sin Asin C·cos B -sin Bsin C·cos A =a c ·a 2+c 2-b 22ac -b c ·b 2+c 2-a 22bc =a 2+c 2-b 22c 2-b 2+c 2-a 22c 2=a 2-b 2c 2=左边.所以a 2-b 2c 2=A -B sin C.12.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边的长,cosB =53, 且·=-21. (1)求△ABC 的面积; (2)若a =7,求角C .解 (1)∵·=-21,∴·=21.∴· = ||·||·cosB = accosB = 21.∴ac=35,∵cosB = 53,∴sinB = 54.∴S △ABC = 21acsinB = 21×35×54 = 14. (2)ac =35,a =7,∴c =5.由余弦定理得,b 2=a 2+c 2-2ac cos B =32, ∴b =4 2.由正弦定理:c sin C =bsin B. ∴sin C =c b sin B =542×45=22.∵c <b 且B 为锐角,∴C 一定是锐角. ∴C =45°. 能力提升13.已知△ABC 中,AB =1,BC =2,则角C 的取值范围是( )A .0<C ≤π6B .0<C <π2C.π6<C <π2D.π6<C ≤π3 答案 A解析 方法一 (应用正弦定理)∵AB sin C =BC sin A ,∴1sin C =2sin A∴sin C =12sin A ,∵0<sin A ≤1,∴0<sin C ≤12.∵AB <BC ,∴C <A ,∴C 为锐角,∴0<C ≤π6.方法二 (应用数形结合)如图所示,以B 为圆心,以1为半径画圆,则圆上除了直线BC 上的点外,都可作为A 点.从点C 向圆B 作切线,设切点为A 1和A 2,当A 与A 1、A 2重合时,角C 最大,易知此时:BC =2,AB =1,AC ⊥AB ,∴C =π6,∴0<C ≤π6.14.△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知b 2=ac 且cos B =34.(1)求1tan A +1tan C的值;(2)设· = 23,求a+c 的值.解 (1)由cos B =34,得sin B =1-⎝ ⎛⎭⎪⎫342=74.由b 2=ac 及正弦定理得sin 2 B =sin A sin C .于是1tan A +1tan C =cos A sin A +cos C sin C=sin C cos A +cos C sin A sin A sin C =A +C sin 2 B=sin B sin 2B =1sin B =477. (2)由· = 23得ca ·cosB = 23 由cos B =34,可得ca =2,即b 2=2.由余弦定理:b 2=a 2+c 2-2ac ·cos B , 得a 2+c 2=b 2+2ac ·cos B =5,∴(a +c )2=a 2+c 2+2ac =5+4=9,∴a +c =3.。

高中数学新人教A版必修5教案1.1.2余弦定理

高中数学新人教A版必修5教案1.1.2余弦定理

余弦定理教学分析 一、教学导图二、教学目标1.通过实践与探究,会利用数量积证明余弦定理,提高数学语言的表达能力,体会向量工具在解决三角形的度量问题时的作用。

2.会从方程的角度理解余弦定理的作用及适用范围,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题。

3.会结合三角函数利用计算器处理解斜三角形的近似计算问题。

4.在方程思想指导下,提升处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一。

三、教学重难点教学重点:余弦定理的发现、证明过程及其基本应用。

教学难点:理解余弦定理的作用及适用范围。

突破关键:将余弦定理的三个公式视为三个方程组成的方程组。

教学设计一、温故引新 特例激疑1,正弦定理是三角形的边与角的等量关系。

正弦定理的内容是什么?你能用文字语言、数学语言叙述吗?你能用哪些方法证明呢?正弦定理:在一个三角形中各边和它的对边的正弦比相等,即:2sin sin sin a b c R A B C===,其中2R 为三角形外接圆的直径。

说明:正弦定理说明同一个三角形中,边与它所对角的正弦成正比,且比例系数为同一正数,即存在正数2R ,使2sin ,2sin ,2sin a R A b R B c R C ===。

2,运用正弦定理可以解决一些怎样的解三角形问题呢? 由,sin sin sin sin a b b cA B B C==,可以解决“已知两角及其一边可以求其他边。

”“已知两边及其一边的对角可以求其他角。

”等解三角形问题。

3,思考:如图,在ABC ∆中,已知,,ABC c AC b BAC A ∆==∠=,求a 即BC 。

本题是“已知三角形的两边及它们的夹角,求第三边。

”的解三角形的问题。

本题能否用正弦定理求解?困难:因为角B C 、未知, 较难求a 。

二、类比探究 理性演绎 (一)类比探究当一个三角形的两边和它们的夹角确定后,那么第三边也是确定不变的值,也就是说角A 的对边随着角A 的变化而变化。

人教A版高中数学必修五正弦定理和余弦定理学案

人教A版高中数学必修五正弦定理和余弦定理学案

正余弦定理学习点拨正、余弦定理是应用很广泛的定理,它将三角形的边和角有机地联系起来,从而使三角形与代数产生联系,如求与三角形有关的量、判断三角形形状、证明三角形中有关的等式等,并为此提供重要依据.下面我们结合实例谈一谈复习正余弦定理这部分应从哪几方面加强学习.一、 重视数学思想方法的运用解三角形作为几何度量问题,要突出几何背景,注意数形结合思想的运用,具体解题过 程中要注意函数与方程思想的运用.例1 如图1所示,隔河看两目标A B ,,但不能到达,在岸边选取相距千米的C D ,两点,并测得7545453A CB BCD A D B A D C ∠=∠=∠=∠=º,º,º,º(A B C D ,,,在同一平面内).求两目标A B ,之间的距离. 分析:要求出A B ,之间的距离,可以在ACB △或ADB△中去找关系式.但不管在哪个三角形中,除AB 边是已知外其他两边都是未知的,需要借助其他三角形找出合适的关系式,从而求出另两边的值.解:在ACD △中, 30120ADC ACD ACB BCD ∠=∠=∠+∠=,,30CAD ADC ∴∠==∠,AC CD ∴==在BDC △中,18045(3045)60CBD ∠=--+=,由正弦定理可得:sin 756sin 602CD BC ==·, 在ABC △中,由余弦定理得:2222cos AB AC BC ACBC BCA =+-∠··, AB ∴=(千米).故A B ,二、 加强知识之间的联系学习本章知识要与初中学过的三角形的边、角关系联系起来.同时,要注意与三角函数、平面向量等知识联系起来,将新知识融入已有的知识体系,从而提高综合运用知识的能力.例2 在ABC △中,已知222222sin sin sin 1cos 2sin sin sin 1cos 2A B C C A B C B+-+=-++. 求证:ABC △是等腰三角形或直角三角形.分析:从题中的等式结构来看,情况较为复杂,且求证的是判定ABC △为等腰或直角 三角形两种情况.因此,应综合应用正余定理、三角形内角和定理、勾股定理,先进行化简,再讨论.证明:应用正弦定理及二倍角公式,将已知等式变形为:222222222cos 2cos a b c C a b c B+-=-+, 再由余弦定理将其变形为:222cos cos 2cos cos ab C C ac B B=, 整理得:cos cos 0cos cos C b C B c B ⎛⎫-= ⎪⎝⎭, 由cos 0cos C B=,得90C =, 由cos 0cos b C c B -=,及依据正弦定理得:sin cos sin cos B C C B=, 即sin cos sin cos B B C C =.sin 2sin 2B C ∴=. 22B C ∴=或22180B C +=,即B C =或90B C +=.综上所述:ABC △是等腰三角形或直角三角形.三、 提高数学建模能力利用解三角形的知识解决相关的实际问题,关键是读懂题意,找出量与量之间的关系, 然后根据题意作出示意图,将实际问题转化为三角问题来解决.例3 在半径为R 的扇形OAB 中,圆心角60AOB ∠=,在扇形中有一个内接矩形, 求内接矩形的最大面积.分析:我们可以在扇形中按图2或者图3的方法得到矩形.然后分别求在这两种情况下,哪种方法得到的矩形面积最大.解:若按图2方式作一内接矩形,设PQ x MP y ==,,则矩形面积S xy =. 连结ON ,令AON θ∠=,则sin y R θ=.对ONM △依据正弦定理有:sin(60)sin(60)x R θθ=--,x ∴=故22S R ==,当30θ=时,2max 6S R =; 若按如图3方式作一内接矩形,则可设PN x =,MN y AON θ=∠=,.连结ON ,则在OPN △中,有sin sin ON PN OPN θ=∠, 即sin 2sin sin150R x R θθ==·. 过O 作OH MN ⊥于H ,则122y NH NM ==. 又1302AOH AOB ∠=∠=,2sin(30)y R θ∴=-, 224sin sin(30)2cos 2(15)cos30S xy R R θθθ⎡⎤∴==-=--⎣⎦,当15θ=时,2max (2S R =.比较2(2R 2R 2R .巧 用 余 弦 定 理余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活.变式1:222(2cos )()0a b C a b c -+-=,222(2cos )()0b c A b c a -+-=,222(2cos )()0c a B c a b -+-=.例1 在ABC △中,D 是AB 边上一点,CD BC =.求证:22AB AD AC BC =-. 证明:在ABC △和ADC △中,由变式1,得2222cos 0AB AC AB A AC BC -+-=,2222cos 0AD AC AD A AC CD -+-=.由CD BC =知AB AD ,为方程222(2cos )0x AC A x AC BC -+-=的两根.依根与系数的关系得22AB AD AC BC =-.注:①余弦定理的变式1可视为关于其中一边的二次方程,这在许多问题的处理上,显得简洁明快,此变式常与根与系数的关系联用;②给定三角形两边与其中一边的对角,可用变式1求第三边.变式2:22()2(1cos )a b c bc A =+-+,22()2(1cos )b a c ac B =+-+,22()2(1cos )c a b ab C =+-+.例2 ABC △中,已知61030c a b C =+=∠=,,,求ABC △的面积.解:由22()2(1cos )c a b ab C =+-+,得226102(1cos30)ab =-+.64(2ab ∴=.1sin 16(22ABC S ab C ∴==△. 注:给定三角形两边之和及其夹角求第三边,利用变式2显得非常便利.变式3:2212cos a c c A b b b ⎛⎫⎛⎫=+-⨯ ⎪ ⎪⎝⎭⎝⎭,2212cos b a a B c c c ⎛⎫⎛⎫=+-⨯ ⎪ ⎪⎝⎭⎝⎭, 2212cos c b b C a a a ⎛⎫⎛⎫=+-⨯ ⎪ ⎪⎝⎭⎝⎭. 例3 已知A B C ,,是ABC △的三个内角,它们的对边分别为a b c ,,,且1()2B AC =+,c a =,求此三角形的各内角的度数. 解:1(180)22A CB B +==-∵,60B ∴=.由22312cos 2b c c B a a a ⎛⎫⎛⎫=+-⨯= ⎪ ⎪⎝⎭⎝⎭,b a ∴=.又由正弦定理得sin sin b B a A=,sin 2A ∴=. 45A ∴=或135(不合题意,舍去). 180456075C ∴=--=.因此ABC △的三内角分别是456075,,. 注:已知三角形两边之比及三角形三个角之间的关系,可用变式3求另两边之比,此变式常与正弦定理联用.变式4:将2222cos a b c bc A =+-,2222cos b a c ac B =+-,两式相加可得222cos 2cos 0c bc A ac B --=,即cos cos c b A a B =+这就是三角形中的射影定理.例4 在ABC △中,求证:2222cos2cos211A B a b a b -=-. 证明:左边乘以22a b 得2222cos2cos22(cos cos )(cos cos )b A a B b A a B b A a B a b -=+-+-22222(cos cos )c b A a B a b b a =-+-=-,再除以22a b 有左边22222211b a a b a b-==-,原式即可得证.。

2020-2021学年高二数学人教A版必修5学案:1.1.2 余弦定理 Word版含解析

2020-2021学年高二数学人教A版必修5学案:1.1.2 余弦定理 Word版含解析

1.1.2余弦定理[目标] 1.了解向量法推导余弦定理的过程;2.能利用余弦定理求三角形中的边角问题;3.能利用正、余弦定理解决综合问题.[重点] 能利用余弦定理求三角形中的边角问题.[难点] 余弦定理的推导及能利用正、余弦定理解决综合问题.知识点一余弦定理[填一填][答一答]1.在△ABC中,若a2=b2+c2,a2>b2+c2,a2<b2+c2,能否说△ABC分别是直角三角形,钝角三角形,锐角三角形?提示:若a2=b2+c2,则△ABC是直角三角形;若a2>b2+c2,则△ABC是钝角三角形;若a2<b2+c2,则△ABC不一定是锐角三角形,因为a不一定是最大边.2.已知三角形内角的余弦值求角时,是否存在多解的情况?提示:在已知三角形内角的余弦值求角时,由于函数y=cos x在(0,π)上单调递减,所以角的余弦值与角一一对应,故不存在多解的情况.知识点二余弦定理及其推论的应用[填一填]余弦定理及其推论可解决两类基本的解三角形的问题:一类是已知两边及夹角解三角形;另一类是已知三边解三角形.[答一答]3.在三角形中,已知两边及一边的对角,可用正弦定理解三角形,能否用余弦定理解该三角形?提示:能用余弦定理解.设另一边为x,由余弦定理列出方程求解.4.余弦定理推论的作用有什么?提示:余弦定理的推论是余弦定理的第二种形式,适用于已知三角形三边来确定三角形的角的问题.用余弦定理的推论还可以根据角的余弦值的符号来判断三角形中的角是锐角还是钝角.类型一已知三角形三边解三角形[例1]已知△ABC中,a b c=26(3+1),求△ABC 的各内角度数.[分析]根据三边比例关系设出三边,然后用余弦定理推论求出两个内角,再用三角形内角和定理求出第三个内角. [解] ∵a b c =26(3+1),令a =2k ,b =6k ,c =(3+1)k (k >0). 由余弦定理的推论得:cos A =b 2+c 2-a 22bc=6+(3+1)2-42×6×(3+1)=22,∴A =45°, cos B =a 2+c 2-b 22ac =4+(3+1)2-62×2×(3+1)=12, ∴B =60°.∴C =180°-A -B =180°-45°-60°=75°.已知三角形的三边求三角时,一般利用余弦定理的推论先求出两角,再根据三角形内角和定理求出第三个角.,利用余弦定理的推论求角时,应注意余弦函数在(0,π)上是单调的.当余弦值为正时,角为锐角;当余弦值为负时,角为钝角.[变式训练1] (1)在△ABC 中,已知a 2=b 2+c 2+bc ,则角A 为( C )A.π3B.π6C.2π3D.π3或2π3解析:在△ABC 中,由余弦定理,得cos A =b 2+c 2-a 22bc =-bc 2bc =-12.∵A ∈(0,π),∴A =2π3.(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知a -b =4,a +c =2b ,且最大角为120°,则此三角形的最大边长为14.解析:已知a -b =4,则a >b 且a =b +4.又a +c =2b ,则b +4+c =2b ,所以b =c +4,则b >c ,从而知a >b >c ,所以a 为最大边,故A=120°,b =a -4,c =2b -a =a -8. 由余弦定理,得a 2=b 2+c 2-2bc cos A =b 2+c 2+bc =(a -4)2+(a -8)2+(a -4)(a -8),即a 2-18a +56=0,解得a =4或a =14.又b =a -4>0,所以a =14,即此三角形的最大边长为14.类型二 已知三角形两边及一角解三角形[例2] (1)在△ABC 中,已知b =3,c =23,A =30°,求a ;(2)在△ABC 中,已知b =3,c =33,B =30°,求角A 、角C 和边a .[分析] (1)已知两边及其夹角,可直接利用余弦定理求出第三条边;(2)已知两边及一边的对角,可利用余弦定理求解,也可利用正弦定理求解.[解] (1)由余弦定理,得a 2=b 2+c 2-2bc cos A =32+(23)2-2×3×23cos30°=3,所以a = 3.(2)解法一:由余弦定理b 2=a 2+c 2-2ac cos B ,得32=a 2+(33)2-2a ×33×cos30°,即a 2-9a +18=0,解得a =3或a =6.当a =3时,A =30°,C =120°;当a =6时,由正弦定理,得sin A =a sinB b =6×123=1.∴A =90°,∴C =60°.解法二:由b <c ,B =30°,b >c sin30°=33×12=332,知本题有两解.由正弦定理,得sin C =c sin B b =33×123=32,∴C =60°或120°.当C =60°时,A =90°,由勾股定理,得a =b 2+c 2=32+(33)2=6;当C =120°时,A =30°,△ABC 为等腰三角形,∴a =3.已知三角形的两边及一角解三角形的方法:已知三角形的两边及一角解三角形,必须先判断该角是给出两边中一边的对角,还是给出两边的夹角.若是给出两边的夹角,可以由余弦定理求第三边;若是给出两边中一边的对角,可以利用余弦定理建立一元二次方程,解方程求出第三边(也可以两次应用正弦定理求出第三边).[变式训练2] 设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =4.解析:由3sin A =2sin B 及正弦定理知:3a =2b .又因为a =2,所以b =3.由余弦定理得:c 2=a 2+b 2-2ab cos C =4+9-2×2×3×⎝ ⎛⎭⎪⎫-14=16,所以c =4.类型三 判断三角形的形状[例3] 在△ABC 中,若(a +b +c )(a +b -c )=3ab ,且sin C =2cos A sin B ,试判断△ABC 的形状.[分析] 判断三角形的形状时,一般有两种思路:一种是考虑三角形的三边关系;另一种是考虑三角形的内角关系.当然有时可将边和角巧妙结合,同时考虑.[解] 方法一:利用边的关系来判断.由正弦定理得sin C sin B =c b ,由2cos A sin B =sin C ,得cos A =sin C 2sin B =c 2b .又cos A =b 2+c 2-a 22bc ,∴c 2b =b 2+c 2-a 22bc ,即c 2=b 2+c 2-a 2,∴a =b .又(a +b +c )(a +b -c )=3ab ,∴(a +b )2-c 2=3ab ,∴4b 2-c 2=3b 2,∴b =c .综上,a =b =c ,∴△ABC 为等边三角形.方法二:利用角的关系来判断.∵△ABC 中,sin C =sin(A +B ),又2cos A sin B =sin C =sin A cos B +cos A sin B ,∴sin(A -B )=0,又∵-180°<A -B <180°,∴A -B =0°.即A =B .又∵(a +b +c )(a +b -c )=3ab ,∴(a +b )2-c 2=3ab ,∴a 2+b 2-c 2=ab .∴由余弦定理知2ab cos C =ab ,∴cos C =12.∴C =60°,∴△ABC 为等边三角形.利用三角形的边角关系判断三角形的形状时,需要从“统一”入手,即使用转化思想解决问题.一般有两条思考路线:(1)先化边为角,再进行三角恒等变换,求出三角之间的数量关系.(2)先化角为边,再进行代数恒等变换,求出三边之间的数量关系.[变式训练3] 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos A =13,b =3c ,试判断△ABC 的形状.解:由余弦定理得a 2=b 2+c 2-2bc cos A .又因为cos A =13,b =3c ,所以a 2=b 2+c 2-2×3c ×c ×13=b 2-c 2. 所以a 2+c 2=b 2,所以B =π2,所以△ABC 是直角三角形.1.在△ABC 中,已知A =30°,且3a =3b =12,则c 的值为( C )A .4B .8C .4或8D .无解解析:由3a =3b =12,得a =4,b =43,利用余弦定理可得a 2=b 2+c 2-2bc cos A ,即16=48+c 2-12c ,解得c =4或c =8.2.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若c 2-a 2-b 22ab >0,则△ABC ( C )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .是锐角或直角三角形解析:由c 2-a 2-b 22ab >0得-cos C >0,所以cos C <0,从而C 为钝角,因此△ABC 一定是钝角三角形.3.在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c .若a =2,B =π6,c =23,则b =2.解析:由余弦定理得b 2=a 2+c 2-2ac cos B =4+12-2×2×23×32=4,所以b =2.4.在△ABC 中,已知a =7,b =3,c =5,则最大的角是120°. 解析:∵a >c >b ,∴A 为最大角.cos A =b 2+c 2-a 22bc =32+52-722×3×5=-12, 又∵0°<A <180°,∴A =120°.5.在△ABC 中,已知a =5,b =3,角C 的余弦值是方程5x 2+7x-6=0的根,求第三边c 的长.解:5x 2+7x -6=0可化为(5x -3)·(x +2)=0.∴x 1=35,x 2=-2(舍去).∴cos C =35.根据余弦定理,c 2=a 2+b 2-2ab cos C=52+32-2×5×3×35=16.∴c =4,即第三边长为4.——本课须掌握的四大方面1.适用范围:余弦定理对任意的三角形都成立.2.结构特征:“平方”、“夹角”、“余弦”.3.揭示的规律:余弦定理指的是三角形中三条边与其中一个角的余弦之间的关系式,它描述了任意三角形中边与角的一种数量关系.4.主要功能:余弦定理的主要功能是实现三角形中边角关系的互化. 莘莘学子,最重要的就是不要去看远方模糊的,而要做手边清楚的事。

人教新课标版数学高二必修5导学案 余弦定理(二)教师版

人教新课标版数学高二必修5导学案  余弦定理(二)教师版

1.1.2余弦定理(二)教学目标1.熟练掌握余弦定理及其变形形式.2.会用余弦定理解三角形.3.能利用正弦、余弦定理解决有关三角形的恒等式化简、证明及形状判断等问题.教学过程一、创设情景教师首先提出问题:通过学生对课本的预习,让学生与大家分享自己对余弦定理及其变形形式的了解。

通过举例说明和互相交流.做好教师对学生的活动的梳理引导,并给予积极评价.二、自主学习1.在△ABC中,若B=30°,AB=23,AC=2,可以先用正弦定理bsin B=csin C求出sin C=32.那么能不能用余弦定理解此三角形?如果能,怎么解?提示:能.在余弦定理b2=a2+c2-2ac cos B中,已知三个量AC=b,AB=c,cos B,代入后得到关于a的一元二次方程,解此方程即可.2.已知两边及其一边的对角,既可先用正弦定理,也可先用余弦定理,满足条件的三角形个数为0,1,2,具体判断方法为:设在△ABC中,已知a,b及A的值.由正弦定理asin A =bsin B,可求得sin B=b sin Aa.(1)当A为钝角时,则B必为锐角,三角形的解唯一;(2)当A为直角且a>b时,三角形的解唯一;(3)当A为锐角时,如图,以点C为圆心,以a为半径作圆,三角形解的个数取决于a与CD和b的大小关系:①当a<CD时,无解;②当a=CD时,一解;③当CD<a<b时,则圆与射线AB有两个交点,此时B为锐角或钝角,此时B的值有两个.④当a ≥b 时,一解.(4)如果a >b ,则有A >B ,所以B 为锐角,此时B 的值唯一.二、合作探究探究点1:判断三角形的形状问题1 三角形的形状类别很多,按边可分为等腰三角形,等边三角形,其他;按角可分为钝角三角形,直角三角形,锐角三角形.在判断三角形的形状时是不是要一个一个去判断?提示:不需要.如果所知条件方便求角,只需判断最大的角是钝角,直角,锐角;如果方便求边,假设最大边为c ,可用a 2+b 2-c 2来判断cos C 的正负.而判断边或角是否相等则一目了然,不需多说.问题2 △ABC 中,sin2A =sin2B .则A ,B 一定相等吗?提示:∵A ,B ∈(0,π),∴2A,2B ∈(0,2π),∴2A =2B 或2A =π-2B ,即A =B 或A +B =π2. 例1 在△ABC 中,已知(a +b +c )(b +c -a )=3bc ,且sin A =2sin B cos C ,试判断△ABC的形状.解 由(a +b +c )(b +c -a )=3bc ,得b 2+2bc +c 2-a 2=3bc ,即b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =bc 2bc =12. ∵0<A <π,∴A =π3. 又sin A =2sin B cos C .∴由正弦、余弦定理,得a =2b ·a 2+b 2-c 22ab =a 2+b 2-c 2a, ∴b 2=c 2,b =c ,∴△ABC 为等边三角形.变式训练:将本例中的条件(a +b +c )(b +c -a )=3bc 改为(b 2+c 2-a 2)2=b 3c +c 3b -a 2bc ,其余条件不变,试判断△ABC 的形状.解 由(b 2+c 2-a 2)2=b 3c +c 3b -a 2bc ,得(b 2+c 2-a 2)2=bc (b 2+c 2-a 2),∴(b 2+c 2-a 2)(b 2+c 2-a 2-bc )=0,∴b 2+c 2-a 2=0或b 2+c 2-a 2-bc =0,∴a 2=b 2+c 2或b 2+c 2-a 2=bc ,由a 2=b 2+c 2,得A =90°,由b 2+c 2-a 2=bc ,得cos A =12, ∴A =60°,∴△ABC 为等边三角形或等腰直角三角形.名师点评: (1)判断三角形形状,往往利用正弦定理、余弦定理将边、角关系相互转化,经过化简变形,充分暴露边、角关系,继而作出判断.(2)在余弦定理中,注意整体思想的运用,如:b 2+c 2-a 2=2bc cos A ,b 2+c 2=(b +c )2-2bc 等等.探究点2:证明三角形中的恒等式问题: 前面我们用正弦定理化简过a cos B =b cos A ,当时是把边化成了角;现在我们学了余弦定理,你能不能用余弦定理把角化成边?提示:由余弦定理得a a 2+c 2-b 22ac =b b 2+c 2-a 22bc,去分母得a 2+c 2-b 2=b 2+c 2-a 2,化简得a =b .例2 在△ABC 中,有(1)a =b cos C +c cos B ;(2)b =c cos A +a cos C ;(3)c =a cos B +b cos A ,这三个关系式也称为射影定理,请给出证明.证明 方法一 (1)由正弦定理,得b =2R sin B ,c =2R sin C ,∴b cos C +c cos B=2R sin B cos C +2R sin C cos B=2R (sin B cos C +cos B sin C )=2R sin(B +C )=2R sin A =a .即a =b cos C +c cos B .同理可证(2)b =c cos A +a cos C ;(3)c =a cos B +b cos A .方法二 (1)由余弦定理,得cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab, ∴b cos C +c cos B=b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac=a 2+b 2-c 22a +a 2+c 2-b 22a =2a 22a=a . ∴a =b cos C +c cos B .同理可证(2)b =c cos A +a cos C ;(3)c =a cos B +b cos A .名师点评:证明三角形中边角混合关系恒等式,可以考虑两种途径:一是把角的关系通过正弦、余弦定理转化为边的关系,正弦借助正弦定理转化,余弦借助余弦定理转化;二是通过正弦定理把边的关系转化为角的关系.四、当堂检测1.在△ABC 中,若b 2=a 2+c 2+ac ,则B 等于( )A .60°B .45°或135°C .120°D .30°2.在△ABC 中,若b 2sin 2C +C 2sin 2B =2bc cos B cos C ,则△ABC 的形状一定是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等边三角形3.在△ABC 中,若B =30°,AB =23,AC =2,则满足条件的三角形有几个?提示:1.C 2.B3.解设BC=a,AC=b,AB=c,由余弦定理得b2=a2+c2-2ac cos B,∴22=a2+(23)2-2a×23cos30°,即a2-6a+8=0,解得a=2或a=4.当a=2时,三边长为2,2,23,可组成三角形;当a=4时,三边长为4,2,23,也可组成三角形.∴满足条件的三角形有两个.五、课堂小结本节课我们学习过哪些知识内容?1.已知两边及其中一边的对角解三角形,一般情况下,利用正弦定理求出另一边所对的角,再求其他的边或角,要注意进行讨论.如果采用余弦定理来解,只需解一个一元二次方程,即可求出边来,比较两种方法,采用余弦定理较简单.2.根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.3.在余弦定理中,每一个等式均含有四个量,利用方程的观点,可以知三求一.4.利用余弦定理求三角形的边长时容易出现增解,原因是余弦定理中涉及的是边长的平方,通常转化为一元二次方程求正实数.因此解题时需特别注意三角形三边长度所应满足的基本条件.六、课例点评本节课是进一步学习余弦定理,为突破以往“基础自测”+“典型例题”+“变式巩固”的模式,本节课突出了教材回归,在强调知识运用的同时也更强调知识的由来和其中蕴含的思想方法,真正发挥教材的作用,帮助学生建构完整的知识和方法网络,提升学生分析和认识问题的高度。

人教A版高中数学必修五河南省安阳二中最新学案第课时余弦定理学生(2)

人教A版高中数学必修五河南省安阳二中最新学案第课时余弦定理学生(2)

听课第6课时 【学习导航】知识网络⎩⎨⎧判断三角形的形状平面几何中的某些问题余弦定理 学习要求1.余弦定理的教学要达到“记熟公式”和“运算正确”这两个目标;2.能够利用正、余弦定理判断三角形的形状;3.进一步运用余弦定理解斜三角形. 【课堂互动】自学评价1.余弦定理:(1)_______________________,_______________________,_______________________.(2) 变形:____________________,_____________________,_____________________ .2.判断三角形的形状一般都有______或_________两种思路.【精典范例】【例1】在∆ABC 中,求证:(1);sin sin sin 222222CB A c b a +=+ (2))cos cos cos (2222C ab B ca A cb c b a ++=++【解】【例2】在ABC ∆中,已知acosA = bcosB 用两种方法判断该三角形的形状. 分析:利用正弦定理或余弦定理,“化边为角”或“化角为边”。

【解】方法1o方法2o点评: 判断三角形的形状一般都有“走边”或“走角”两条路。

【例3】在四边形ABCD 中,∠ADB=∠BCD=75︒,∠ACB=∠BDC=45︒,DC=3,求:(1) AB 的长(2) 四边形ABCD 的面积【解】追踪训练一1. 在△ABC 中,090C ∠=,00450<<A ,则下列各式中正确的是( )A.A A cos sin >B.A B cos sin >C.B A cos sin >D.B B cos sin >2. 在△ABC 中,若1cos cos cos 222=++C B A ,则△ABC 的形状是______________3. 如图,已知圆内接四边形ABCD的边长分别为AB=2,BC=6,AD =CD=4,如何求出四边形ABCD的面积?听课【选修延伸】【例4】如图:在四边形ABCD 中,∠B=∠D=750,∠C=060,AB=3,AD=4,求对角线AC 的长。

新人教A版必修5高中数学1.1.2余弦定理学案

新人教A版必修5高中数学1.1.2余弦定理学案

高中数学 1.1.2余弦定理学案新人教A 版必修5 学习目标1. 掌握余弦定理的两种表示形式;2. 证明余弦定理的向量方法;3. 运用余弦定理解决两类基本的解三角形问题. 学习重难点 重点:掌握余弦定理内容难点:运用余弦定理解斜三角形一、知识链接问题1:在一个三角形中,各 和它所对角的 的 相等,即 = = .问题2:在△ABC 中,已知10c =,A =45︒,C =30︒,解此三角形.思考:已知两边及夹角,如何解此三角形呢?二、试一试※ 课前练习探究:在ABC ∆中,AB 、BC 、CA 的长分别为c 、a 、b . ∵AC = ,∴AC AC ∙= 同理可得: 2222cos a b c bc A =+-,2222cos c a b ab C =+-.新知:余弦定理:三角形中任何一边的 等于其他两边的 的和减去这两边与它们的夹角的 的积的两倍.思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?从余弦定理,又可得到以下推论:222cos 2b c a A bc+-=, , . [理解定理](1)若C =90︒,则cos C = ,这时222c a b =+由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例. (2)余弦定理及其推论的基本作用为:①已知三角形的任意两边及它们的夹角就可以求出第三边;②已知三角形的三条边就可以求出其它角.试试:(1)△ABC 中,33a =,2c =,150B =,求b .(2)△ABC 中,2a =,2b =,31c =+,求A .cab A B C※ 模仿练习例1. 在△ABC 中,已知3a =,2b =,45B =,求,A C 和c .变式:在△ABC 中,若AB =5,AC =5,且cos C =910,则BC =________.例2. 在△ABC 中,已知三边长3a =,4b =,37c =,求三角形的最大内角.变式:在∆ABC 中,若222a b c bc =++,求角A .三、总结提升※ 学习小结1. 余弦定理是任何三角形中边角之间存在的共同规律,勾股定理是余弦定理的特例;2. 余弦定理的应用范围:① 已知三边,求三角; ② 已知两边及它们的夹角,求第三边.※ 知识拓展在△ABC 中,若222a b c +=,则角C 是直角;若222a b c +<,则角C 是钝角;若222a b c +>,则角C 是锐角.当堂检测1. 已知a =3,c =2,B =150°,则边b 的长为( ). A. 132 B. 13 C. 222 D. 222. 已知三角形的三边长分别为3、5、7,则最大角为( ).A .60B .75C .120D .1503. 已知锐角三角形的边长分别为2、3、x ,则x 的取值范围是( ).A .513x <<B .13<x <5C . 2<x <5D .5<x <54. 在△ABC 中,|AB |=3,|AC |=2,AB 与AC 的夹角为60°,则|AB -AC |=________.5. 在△ABC 中,已知三边a 、b 、c 满足222b a c ab +-=,则∠C 等于 .课后作业1. 在△ABC 中,已知a =7,b =8,cos C =1314,求最大角的余弦值.2. 在△ABC 中,AB =5,BC =7,AC =8,求AB BC ⋅的值.课后反思。

高中数学第一章解三角形1.1.2余弦定理(二)学案新人教A版必修5(2021学年)

高中数学第一章解三角形1.1.2余弦定理(二)学案新人教A版必修5(2021学年)

2018版高中数学第一章解三角形1.1.2 余弦定理(二)学案新人教A版必修5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高中数学第一章解三角形1.1.2余弦定理(二)学案新人教A版必修5)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高中数学第一章解三角形 1.1.2 余弦定理(二)学案新人教A版必修5的全部内容。

1.1.2 余弦定理(二)[学习目标] 1。

熟练掌握余弦定理及其变形形式,能用余弦定理解三角形。

2。

能应用余弦定理判断三角形形状.3。

能利用正弦、余弦定理解决解三角形的有关问题.知识点一余弦定理及其推论1.a2=b2+c2-2bc cos__A,b2=c2+a2-2ca cos__B,c2=a2+b2-2abcos__C.2.cos A=错误!,cos B=错误!,cosC=错误!.3.在△ABC中,c2=a2+b2⇔C为直角,c2>a2+b2⇔C为钝角;c2<a2+b2⇔C为锐角.知识点二正弦、余弦定理解决的问题思考以下问题不能用余弦定理求解的是________.(1)已知两边和其中一边的对角,解三角形;(2)已知两角和一边,解三角形;(3)已知一个三角形的两条边及其夹角,解三角形;(4)已知一个三角形的三条边,解三角形.答案 (2)题型一利用余弦定理判断三角形的形状例1 在△ABC中,cos2错误!=错误!,其中a,b,c分别是角A,B,C的对边,则△ABC的形状为( )A.直角三角形B.等腰三角形或直角三角形C.等腰直角三角形D.正三角形答案 A解析方法一在△ABC中,由已知得\f(1+cosB,2)=\f(1,2)+错误!,∴cosB=ac=错误!,化简得c2=a2+b2。

人教A版高中数学必修五优秀教案示范教案余弦定理

人教A版高中数学必修五优秀教案示范教案余弦定理

1.1.2余弦定理从容说课课本在引入余弦定理内容时,首先提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题”.这样,用联系的观点,从新的角度看过去的问题,使学生对过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,使学生能够形成良好的知识结构.设置这样的问题,是为了更好地加强数学思想方法的教学.比如对于余弦定理的证明,常用的方法是借助于三角的方法,需要对三角形进行讨论,方法不够简洁,通过向量知识给予证明,引起学生对向量知识的学习兴趣,同时感受向量法证明余弦定理的简便之处.教科书就是用了向量的方法,发挥了向量方法在解决问题中的威力.在证明了余弦定理及其推论以后,教科书从余弦定理与勾股定理的比较中,提出了一个思考问题“勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?”并进而指出,“从余弦定理以及余弦函数的性质可知,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.由上可知,余弦定理是勾股定理的推广”.还要启发引导学生注意余弦定理的各种变形式,并总结余弦定理的适用题型的特点,在解题时正确选用余弦定理达到求解、求证目的.启发学生在证明余弦定理时能与向量数量积的知识产生联系,在应用向量知识的同时,注意使学生体会三角函数、正弦定理、向量数量积等多处知识之间的联系.教学重点余弦定理的发现和证明过程及其基本应用.教学难点1.向量知识在证明余弦定理时的应用,与向量知识的联系过程;2.余弦定理在解三角形时的应用思路;3.勾股定理在余弦定理的发现和证明过程中的作用.教具准备投影仪、幻灯片两张第一张:课题引入图片(记作1.1.2A)如图(1),在Rt△ABC中,有A2+B2=C2问题:在图(2)、(3)中,能否用b、c、A求解a?第二张:余弦定理(记作1.1.2B)余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.形式一: a2=b2+c2-2bcco s A,b2=c2+a2-2caco s B,c2=a2+b2-2abco s C,形式二:co s A=bc ac b22 22-+,co s B=ca ba c22 22-+,co s C=ab cb a22 22-+.三维目标一、知识与技能1.掌握余弦定理的两种表示形式及证明余弦定理的向量方法;2.会利用余弦定理解决两类基本的解三角形问题;3.能利用计算器进行运算.二、过程与方法1.利用向量的数量积推出余弦定理及其推论;2.通过实践演算掌握运用余弦定理解决两类基本的解三角形问题.三、情感态度与价值观1.培养学生在方程思想指导下处理解三角形问题的运算能力;2.通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一.教学过程导入新课师上一节,我们一起研究了正弦定理及其应用,在体会向量应用的同时,解决了在三角形已知两角、一边和已知两边与其中一边对角这两类解三角形问题.当时对于已知两边夹角求第三边问题未能解决,下面我们来看幻灯片1.1.2A,如图(1),在直角三角形中,根据两直角边及直角可表示斜边,即勾股定理,那么对于任意三角形,能否根据已知两边及夹角来表示第三边呢?下面我们根据初中所学的平面几何的有关知识来研究这一问题.在△ABC中,设BC=A,AC=B,AB=C,试根据B、C、A来表示A.师由于初中平面几何所接触的是解直角三角形问题,所以应添加辅助线构成直角三角形,在直角三角形内通过边角关系作进一步的转化工作,故作CD垂直于AB于D,那么在Rt△BDC中,边A可利用勾股定理用CD、DB表示,而CD可在Rt△ADC中利用边角关系表示,DB可利用AB-AD转化为AD,进而在Rt△ADC内求解.解:过C作CD⊥AB,垂足为D,则在Rt△CDB中,根据勾股定理可得A2=CD2+BD2.∵在Rt△ADC中,CD2=B2-AD2,又∵BD2=(C-AD)2=C2-2C·AD+AD2,∴A2=B2-AD2+C2-2C·AD+AD2=B2+C2-2C·AD.又∵在Rt△ADC中,AD=B·CO s A,∴a2=b2+c2-2ab c os A.类似地可以证明b2=c2+a2-2caco s B.c2=a2+b2-2ab c os C.另外,当A为钝角时也可证得上述结论,当A为直角时,a2+b2=c2也符合上述结论,这也正是我们这一节将要研究的余弦定理,下面我们给出余弦定理的具体内容.(给出幻灯片1.1.2B)推进新课1.余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.在幻灯片1.1.2B中我们可以看到它的两种表示形式:形式一:a2=b2+c2-2bcco s A,b2=c+a2-2caco s B,c2=a2+b2-2abco s C.形式二:bcacbA2cos222-+=,cabacB2cos222-+=,abcbaC2cos222-+=.师在余弦定理中,令C =90°时,这时co s C=0,所以c2=a2+b2,由此可知余弦定理是勾股定理的推广.另外,对于余弦定理的证明,我们也可以仿照正弦定理的证明方法二采用向量法证明,以进一步体会向量知识的工具性作用.[合作探究]2.向量法证明余弦定理(1)证明思路分析师联系已经学过的知识和方法,可用什么途径来解决这个问题?用正弦定理试求,发现因A、B均未知,所以较难求边C.由于余弦定理中涉及到的角是以余弦形式出现,从而可以考虑用向量来研究这个问题.由于涉及边长问题,那么可以与哪些向量知识产生联系呢?生向量数量积的定义式a·b=|a||b|co sθ,其中θ为A、B的夹角.师在这一点联系上与向量法证明正弦定理有相似之处,但又有所区别.首先因为无须进行正、余弦形式的转换,也就少去添加辅助向量的麻烦.当然,在各边所在向量的联系上仍然通过向量加法的三角形法则,而在数量积的构造上则以两向量夹角为引导,比如证明形式中含有角C,则构造CACB•这一数量积以使出现CO s C.同样在证明过程中应注意两向量夹角是以同起点为前提.(2)向量法证明余弦定理过程:如图,在△ABC中,设AB、BC、CA的长分别是c、a、b.由向量加法的三角形法则,可得BCABAC+=,∴,cos2)180cos(22)()(222222aBaccBCBBCABABBCBCABABBCABBCABACAC+-=+-︒+=+•+=+•+=•即B2=C2+A2-2AC CO s B.由向量减法的三角形法则,可得AB AC BC -=,∴222222cos 2cos 22)()(c A bc b AB A AB AC AC AB AB AC AC AB AC AB AC BC BC +-=+•-=+•-=-•-=•即a 2=b 2+c 2-2bcco s A . 由向量加法的三角形法则,可得BC AC CB AC AB -=+=,∴,cos 2cos 22)()(222222a C bab BC C BC AC AC BC BC AC AC BC AC BC AC AB AB +-=+•-=+•-=-•-=•即c 2=a 2+b 2-2abco s C . [方法引导](1)上述证明过程中应注意正确运用向量加法(减法)的三角形法则. (2)在证明过程中应强调学生注意的是两向量夹角的确定,AC与AB 属于同起点向量,则夹角为A ;AB 与BC 是首尾相接,则夹角为角B 的补角180°-B ;AC 与BC 是同终点,则夹角仍是角C . [合作探究]师 思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?生(留点时间让学生自己动手推出)从余弦定理,又可得到以下推论:bac a b C ac b c a B bc a c b A 2cos ,2cos ,2cos 222222222-+=-+=-+=.师 思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系? 生(学生思考片刻后会总结出)若△ABC 中,C =90°,则co s C =0,这时c 2=a 2+b 2.由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例.师 从余弦定理和余弦函数的性质可知,在一个三角形中,如果两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果两边的平方和小于第三边的平方,那么第三边所对的角是钝角,如果两边的平方和大于第三边的平方,那么第三边所对的角是锐角.从上可知,余弦定理可以看作是勾股定理的推广.现在,三角函数把几何中关于三角形的定性结果都变成可定量计算的公式了.师 在证明了余弦定理之后,我们来进一步学习余弦定理的应用(给出幻灯片1.1.2B )通过幻灯片中余弦定理的两种表示形式我们可以得到,利用余弦定理,可以解决以下两类有关三角形的问题:(1)已知三边,求三个角.这类问题由于三边确定,故三角也确定,解唯一,课本P 8例4属这类情况. (2)已知两边和它们的夹角,求第三边和其他两个角.这类问题第三边确定,因而其他两个角唯一,故解唯一,不会产生类似利用正弦定理解三角形所产生的判断取舍等问题.接下来,我们通过例题来进一步体会一下. [例题剖析]【例1】在△ABC 中,已知B =60 c m ,C =34 c m ,A =41°,解三角形(角度精确到1°,边长精确到1 c m ).解:根据余弦定理,a 2=b 2+c 2-2bcco s A =602+342-2·60·34co s41°≈3 600+1 156-4 080×0.754 7≈1 676.82,所以A ≈41 c m.由正弦定理得sin C =4141sin 34sin ︒⨯=a A c ≈41656.034⨯≈0.544 0, 因为C 不是三角形中最大的边,所以C 是锐角.利用计数器可得C ≈33°,B =180°-A -C =180°-41°-33°=106°.【例2】在△ABC 中,已知a =134.6 c m ,b =87.8 c m ,c =161.7 c m ,解三角形. 解:由余弦定理的推论,得co s A =7.1618.8726.1347.1618.872222222⨯⨯-+=-+bc a c b ≈0.554 3,A ≈56°20′;co s B =7.1616.13428.877.1616.1342222222⨯⨯-+=-+ca b a c ≈0.839 8,B ≈32°53′;C =180°-(A +B )=180°-(56°20′+32°53′)=90°47′.[知识拓展] 补充例题:【例1】在△ABC 中,已知a =7,b =10,c =6,求A 、B 和C .(精确到1°)分析:此题属于已知三角形三边求角的问题,可以利用余弦定理,意在使学生熟悉余弦定理的形式二.解:∵725.0610276102cos 222222=⨯⨯-+=-+=bc a c b A , ∴A ≈44°.∵c os C =140113107261072222222=⨯⨯-+=-+ab c b a ≈0.807 1,∴C ≈36°.∴B =180°-(A +C )=180°-(44°+36°)=100°. [教师精讲](1)为保证求解结果符合三角形内角和定理,即三角形内角和为180°,可用余弦定理求出两角,第三角用三角形内角和定理求出.(2)对于较复杂运算,可以利用计算器运算.【例2】在△ABC 中,已知a =2.730,b =3.696,c =82°28′,解这个三角形(边长保留四个有效数字,角度精确到1′).分析:此题属于已知两边及其夹角解三角形的类型,可通过余弦定理形式一先求出第三边,在第三边求出后其余角求解有两种思路:一是利用余弦定理的形式二根据三边求其余角,二是利用两边和一边对角利用正弦定理求解,但根据1.1.1斜三角形求解经验,若用正弦定理需对两种结果进行判断取舍,而在0°~180°之间,余弦有唯一解,故用余弦定理较好. 解:由c 2=a 2+b 2-2abco s C =2.7302+3.6962-2×2.730×3.696×co s82°28′, 得c ≈4.297.∵c os A =297.4696.32730.2297.4696.32222222⨯⨯-+=-+bc a c b ≈0.776 7,∴A ≈39°2′.∴B =180°-(A +C )=180°-(39°2′+82°28′)=58°30′. [教师精讲]通过例2,我们可以体会在解斜三角形时,如果正弦定理与余弦定理都可选用,那么求边用两个定理均可,求角则用余弦定理可免去判断取舍的麻烦. 【例3】在△ABC 中,已知A =8,B =7,B =60°,求C 及S △ABC .分析:根据已知条件可以先由正弦定理求出角A ,再结合三角形内角和定理求出角C ,再利用正弦定理求出边C ,而三角形面积由公式S △ABC =21ac sin B 可以求出. 若用余弦定理求C ,表面上缺少C ,但可利用余弦定理b 2=c 2+a 2-2caco s B 建立关于C 的方程,亦能达到求C 的目的. 下面给出两种解法. 解法一:由正弦定理得︒=60sin 7sin 8A , ∴A 1=81.8°,A 2=98.2°, ∴C 1=38.2°,C 2=21.8°.由Ccsin 60sin 7=︒,得c 1=3,c 2=5, ∴S △ABC =36sin 211=B ac 或S △ABC =310sin 212=B ac .解法二:由余弦定理得b 2=c +a 2-2caco s B ,∴72=c +82-2×8×cco s60°, 整理得c 2-8c +15=0, 解之,得c 1=3,c 2=5.∴S △ABC =36sin 211=B ac 或S △ABC = 310sin 212=B ac . [教师精讲]在解法一的思路里,应注意由正弦定理应有两种结果,避免遗漏;而解法二更有耐人寻味之处,体现出余弦定理作为公式而直接应用的另外用处,即可以用之建立方程,从而运用方程的观点去解决,故解法二应引起学生的注意.综合上述例题,要求学生总结余弦定理在求解三角形时的适用范围;已知三边求角或已知两边及其夹角解三角形,同时注意余弦定理在求角时的优势以及利用余弦定理建立方程的解法,即已知两边、一角解三角形可用余弦定理解之. 课堂练习1.在△ABC 中:(1)已知c =8,b =3,b =60°,求A ; (2)已知a =20,b B =29,c =21,求B ; (3)已知a =33,c =2,b =150°,求B ;(4)已知a =2,b =2,c =3+1,求A .解: (1)由a 2=b 2+c 2-2bcco s A ,得a 2=82+32-2×8×3co s60°=49.∴A =7.(2)由ca b a c B 2cos 222-+=,得021202292120cos 222=⨯⨯-+=B .∴B =90°.(3)由b 2=c 2+a 2-2caco s B ,得b 2=(33)2+22-2×33×2co s150°=49.∴b =7.(4)由bc a c b A 2cos 222-+=,得22)13(222)13()2(cos 222=+-++=A .∴A =45°. 评述:此练习目的在于让学生熟悉余弦定理的基本形式,要求学生注意运算的准确性及解题效率.2.根据下列条件解三角形(角度精确到1°). (1)a =31,b =42,c =27; (2)a =9,b =10,c =15.解:(1)由bc a c b A 2cos 222-+=,得27422312742cos 222⨯⨯-+=A ≈0.675 5,∴A ≈48°.由273124227312cos 222222⨯⨯-+=-+=ca b a c B ≈-0.044 2,∴B ≈93°.∴C =180°-(A +B )=180°-(48°+93°)≈39°.(2)由,2222bc a c b -+得1510291510cos 222⨯⨯-+=A ≈0.813 3,∴A ≈36°.由1592109152cos 222222⨯⨯-+=-+=ca b a c B ≈0.763 0,∴B ≈40°.∴C =180°-(A +B )=180°-(36°+40°)≈104°.评述:此练习的目的除了让学生进一步熟悉余弦定理之外,还要求学生能够利用计算器进行较复杂的运算.同时,增强解斜三角形的能力. 课堂小结通过本节学习,我们一起研究了余弦定理的证明方法,同时又进一步了解了向量的工具性作用,并且明确了利用余弦定理所能解决的两类有关三角形问题:(1)余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例;(2)余弦定理的应用范围:①已知三边求三角;②已知两边、一角解三角形. 布置作业课本第8页练习第1(1)、2(1)题.板书设计 余弦定理1.余弦定理2.证明方法:3.余弦定理所能解决的两类问题:(1)平面几何法; (1)已知三边求任意角;(2)向量法(2)已知两边、一角解三角形4.学生练习。

河南省安阳县高二数学新人教A版必修5学案第1章第5课时《余弦定理》(2)(教师版)

河南省安阳县高二数学新人教A版必修5学案第1章第5课时《余弦定理》(2)(教师版)

第5课时 余弦定理(2)【学习导航】知识网络⎩⎨⎧判断三角形的形状航运问题中的应用余弦定理 学习要求1.能把一些简单的实际问题转化为数学问题;2.余弦定理的教学要达到“记熟公式”和“运算正确”这两个目标;3.初步利用定理判断三角形的形状。

【课堂互动】自学评价1.余弦定理:(1)A cos bc 2c b a 222⋅-+=,B ac c a b cos 2222⋅-+=,C cos ab 2b a c 222⋅-+=.(2) 变形:bc 2a c b A cos 222-+=,ac 2b c a B cos 222-+=,ab2c b a C cos 222-+= 2.利用余弦定理,可以解决以下两类解斜三角形的问题: (1)已知三边,求三个角; (2)已知两边和它们的夹角,求第三边和其他两个角.【精典范例】【例1】在长江某渡口处,江水以5/km h 的速度向东流,一渡船在江南岸的A 码头出发,预定要在0.1h 后到达江北岸B 码头,设AN 为正北方向,已知B 码头在A 码头的北偏东015,并与A 码头相距1.2km .该渡船应按什么方向航行?速度是多少(角度精确到00.1,速度精确到0.1/km h )?【解】如图,船按AD 方向开出,AC 方向为水流方向,以AC 为一边、AB 为对角线作平行四边形ABCD ,其中 1.2(),50.10.5()AB km AC km ==⨯=.在ABC∆中,由余弦定理,得 )1590cos(5.02.125.02.100222-⋅⋅⋅-+=BC 所1.17()AD BC km =≈. 以速度为1.170.111.7(/)km h ÷=. 因此,船的航行在ABC ∆中,由正弦定理,得sin 0.5sin 75sin 0.41281.17AC BAC ABC BC ∠∠==≈所以 024.4ABC ∠≈所以 00159.4DAN DAB NAB ABC ∠=∠-∠=∠-≈答:渡船应按北偏西09.4的方向,并以11.7/km h 的速度航行.【例2】在ABC ∆中,已知sin 2sin cos A B C =,试判断该三角形的形状.【解】由正弦定理及余弦定理,得222sin ,cos sin 2A a a b c C B b ab+-==, 所以 22222a a b c b ab+-=,整理得 22b c = 因为0,0b c >>,所以b c =.因此,ABC ∆为等腰三角形.【例3】如图,AM 是ABC ∆中BC 边上的中线,求证:AM =. 【证明】0180AMC α∠=-.在ABM ∆中,由余弦定理,设AMB α∠=,则得 2222cos AB AM BM AM BM α=+-.在ACM ∆中,由余弦定理,得22202cos(180)AC AM MC AM MC α=+--因为 01cos(180)cos ,2BM MC BC αα-=-==, 所以2222122AB AC AM BC +=+,因此, AM =. 追踪训练一1. 在△ABC中,如果C B A sin :sin :sin =2∶3∶4,那么cosC等于( D ). A.32 B.32- C.31- D.41- 2.如图,长7m的梯子BC靠在斜壁上,梯脚与壁基相距1.5m,梯顶在沿着壁向上6m的地方,求壁面和地面所成的角α(精确到0.1°).略解:5972.0cos -≈α 07.126≈∴α3. 在△ABC中,已知a=2,b=3,C=60°,试证明此三角形为锐角三角形.【选修延伸】 【例4】在△ABC 中,设3332a b c c a b c +-=+-,且3sin sin 4A B =,请判断三角形的形状。

人教A版高中数学必修五学案余弦定理(2)

人教A版高中数学必修五学案余弦定理(2)

1.1.2 余弦定理1. 掌握余弦定理的两种表示形式;2. 证明余弦定理的向量方法;3. 运用余弦定理解决两类基本的解三角形问题.:在一个三角形中,各 和它所对角的 的 相等,即 = = .复习2:在△ABC 中,已知10c =,A =45︒,C =30︒,解此三角形.思考:已知两边及夹角,如何解此三角形呢?二、新课导学 ※ 探究新知问题:在ABC ∆中,AB 、BC 、CA 的长分别为c 、a 、b .∵AC = ,∴AC AC ∙=同理可得: 2222cos a b c bc A =+-, 2222cos c a b ab C =+-.新知:余弦定理:三角形中任何一边的 等于其他两边的 的和减去这两边与它们的夹角的 的积的两倍.思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角? 从余弦定理,又可得到以下推论:222cos 2b c a A bc+-=, ,. [理解定理](1)若C =90︒,则cos C = ,这时222c a b =+由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例. (2)余弦定理及其推论的基本作用为:①已知三角形的任意两边及它们的夹角就可以求出第三边; ②已知三角形的三条边就可以求出其它角.试试:(1)△ABC 中,a =2c =,150B =,求b .(2)△ABC 中,2a =,b =,1c =+,求A .※ 典型例题例1.在∆ABC 中,已知=a ,c ,060=B ,求b 及A变式1:在△ABC 中,若,3))((bc a c b c b a =-+++则A = ( ) A .090 B .060 C .0135 D .0150例2. 在△ABC 中,已知()()3a b c a b c ab +++-=,且2cos sin sin A B C ⋅=,试确定三角形的形状。

变式2:在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么?三、总结提升 ※ 学习小结1. 余弦定理是任何三角形中边角之间存在的共同规律,勾股定理是余弦定理的特例;2. 余弦定理的应用范围: ① 已知三边,求三角;② 已知两边及它们的夹角,求第三边.※ 知识拓展 在△ABC 中,若222a b c +=,则角C 是直角; 若222a b c +<,则角C 是钝角; 222C 是锐角.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分:1. 已知三角形的三边长分别为3、5、7,则最大角为( ). A .60 B .75 C .120 D .1502. 已知锐角三角形的边长分别为2、3、x ,则x 的取值范围是( ).A x <<B <x <5C . 2<xD <x <53.在△ABC 中,AB=5,BC=6,AC=8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C . 钝角三角形D .非钝角三角形 4. 在△ABC 中,|AB |=3,|AC |=2,AB 与AC 的夹角为60°,则|AB -AC |=________.5. 在△ABC 中,已知三边a 、b 、c 满足222b a c ab +-=,则∠C 等于 .1.. 已知在ABC ∆中,︒=∠45A ,2=a ,6=c 解此三角形。

人教新课标版数学高二-2015年人教A版数学必修5教案2 余弦定理

人教新课标版数学高二-2015年人教A版数学必修5教案2 余弦定理

高二数学 教·学案
课题:1.1.2 余弦定理 主备人:
执教者:
【学习目标】
1.掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本
的解三角形问题。

2.利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题
【学习重点】余弦定理的发现和证明过程及其基本应用; 【学习难点】勾股定理在余弦定理的发现和证明过程中的作用。

【授课类型】新授课 【教 具】课件、电子白板 【学习方法】
【学习过程】
一、引入:
1.什么是正弦定理?什么是解三角
形?
2.思考:如图1.1-4,在∆ABC 中,设BC=a,AC=b,AB=c, 已知a,b 和∠C ,求边c
二、新课学习:
联系已经学过的知识和方法,可用什么途径来解决这个问题?
用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。

由于涉及边长问题,从而可以考虑用向量来研究这个问题。

如图1.1-5,设CB a =,CA b =,AB c =,那么c a b =-,则
()()
2
22
2 2c c c a b a b
a a
b b a b
a b a b
=⋅=--=⋅+⋅-⋅=+-⋅
个性设计
课后反思:。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.2 余弦定理
1. 掌握余弦定理的两种表示形式;
2. 证明余弦定理的向量方法;
3. 运用余弦定理解决两类基本的解三角形问题.
一、课前准备
复习1:在一个三角形中,各 和它所对角的 的 相等,即 = = .
复习2:在△ABC 中,已知10c =,A =45 ,C =30 ,解此三角形.
思考:已知两边及夹角,如何解此三角形呢?
二、新课导学
※ 探究新知
问题:在ABC ∆中,AB 、BC 、CA 的长分别为c 、a 、b .
∵AC = , ∴AC AC •=
同理可得: 2222cos a b c bc A =+-, 2222cos c a b ab C =+-.
新知:余弦定理:三角形中任何一边的 等于其他两边的 的和减去这两边与它们的夹角的 的积的两倍.
思考:这个式子中有几个量?
从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角? 从余弦定理,又可得到以下推论:
222
cos 2b c a A bc
+-=
, , . [理解定理]
(1)若C =90︒,则cos C = ,这时222c a b =+
由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例. (2)余弦定理及其推论的基本作用为:
①已知三角形的任意两边及它们的夹角就可以求出第三边; ②已知三角形的三条边就可以求出其它角.
试试:
(1)△ABC 中,a =2c =,150B =,求b .
(2)△ABC 中,2a =,b ,1c ,求A .
※ 典型例题
例1.在∆ABC 中,已知=a c 060=B ,求b 及A
变式1:在△ABC 中,若,3))((bc a c b c b a =-+++则A = ( )
A .090
B .060
C .0135
D .0
150
例2. 在△ABC 中,已知()()3a b c a b c ab +++-=,且2cos sin sin A B C ⋅=,试确定三角形的形状。

变式2:在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么?
三、总结提升

学习小结
1. 余弦定理是任何三角形中边角之间存在的共同规律,勾股定理是余弦定理的特例;
2. 余弦定理的应用范围: ① 已知三边,求三角;
② 已知两边及它们的夹角,求第三边.
※ 知识拓展
在△ABC 中,
若222a b c +=,则角C 是直角; 若222a b c +<,则角C 是钝角; 222是锐角.

自我评价
你完成本节导学案的情况为( ).
A. 很好
B. 较好
C. 一般
D. 较差
※ 当堂检测(时量:5分钟 满分:10分)计分:
1. 已知三角形的三边长分别为3、5、7,则最大角为( ). A .60 B .75 C .120 D .150
2. 已知锐角三角形的边长分别为2、3、x ,则x 的取值范围是( ).
A x <<
B x <5
C . 2<x
D <x <5
3.在△ABC 中,AB=5,BC=6,AC=8,则△ABC 的形状是( )
A .锐角三角形
B .直角三角形
C . 钝角三角形
D .非钝角三角形 4. 在△ABC 中,|AB |=3,|AC |=2,AB 与AC 的夹角为60°,则|AB -AC |=________. 5. 在△ABC 中,已知三边a 、b 、c 满足222b a c ab +-=,则∠C 等于 .
1.. 已知在ABC ∆中,︒=∠45A ,2=a ,6=c 解此三角形。

2.. 如图,在四边形ABCD 中,已知AD CD ⊥,10AD =, 14AB =, 60BDA ∠=,
135BCD ∠=,求BC 的长.
A
D
1.1.2 余弦定理参考答案
※ 典型例题
例1.⑴解:∵2222cos =+-b a c ac B
=222+-⋅cos 045
=2121)+- =8
∴=b
求A 可以利用余弦定理,也可以利用正弦定理:
⑵解法一:∵cos 2221
,22+-=
b c a A bc
∴0
60.=A
解法二:∵sin 0sin sin45,=a A B b
又 2.4 1.4 3.8,+=
21.8 3.6,⨯=
∴a <c ,即00<A <090,∴0
60.=A
变式1: D 01
2sin ,sin 2sin sin ,sin ,302
b a B B A B A A ===
=或0150 例2.解:因为2cos sin sin A B C ⋅=,由正弦定理得 sin cos 2sin 2C c
A B b
==。

由余弦定理,222cos 2b c a A bc
+-=,得2222
,c b c a a b =+-∴=。

又因为()()3a b c a b c ab +++-=,所以2
2
()3,a b c ab +-=
∴2
2
2
43b c b -= 得b c = ,∴a b c ==.因此△ABC 为等边三角形。

变式2:在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么? 解:cos cos cos ,sin cos sin cos sin cos a A b B c C A A B B C C +=+=
sin 2sin 2sin 2,2sin()cos()2sin cos A B C A B A B C C +=+-= cos()cos(),2cos cos 0A B A B A B -=-+=
cos 0A =或cos 0B =,得2
A π
=
或2
B π
=
. 所以△ABC 是直角三角形。


当堂检测(时量:5分钟 满分:10分)计分:
4.7 5. 60︒
1. 解:由余弦定理得:
445cos 62)6(22=︒⋅-+b b ∴
02322
=+-b b ∴ 13±=b 又
C b b cos 222)6(222⨯-+= ∴2
1cos ±=C ,︒=∠60C 或︒=∠120C ∴ ︒=∠75B 或︒=∠15B ∴ 13+=
b ,︒=∠60C ,︒=∠75B 或13-=b ,︒=∠120C ,︒=∠15B
2. 解:在ABD ∆中,设BD x =,
则BDA AD BD AD BD BA ∠⋅⋅-+=cos 22
22,

60cos 1021014222⋅⋅-+=x x , ∴096102
=--x x ,
∴161=x ,62-=x (舍去),
由正弦定理:BCD BD
CDB BC ∠=
∠sin sin ,

2830sin 135sin 16=⋅=
BC .
A
B
C
D。

相关文档
最新文档