有理数经典培优训练含答案
初一数学培优经典试题及答案
初一数学培优经典试题及答案试题一:有理数的加减法题目:计算下列有理数的和:\[ 3 + (-2) + 4 + (-1) \]答案:首先,我们可以将正数和负数分别相加:\[ 3 + 4 = 7 \]\[ -2 + (-1) = -3 \]然后,将两个结果相加:\[ 7 + (-3) = 4 \]所以,最终结果是4。
试题二:绝对值的计算题目:求下列数的绝对值:\[ |-5|, |-(-3)|, |0| \]答案:绝对值表示一个数距离0的距离,不考虑正负号。
因此:\[ |-5| = 5 \]\[ |-(-3)| = |3| = 3 \]\[ |0| = 0 \]所以,这三个数的绝对值分别是5, 3, 和0。
试题三:一元一次方程的解法题目:解下列方程:\[ 2x - 3 = 7 \]答案:首先,将方程中的常数项移到等号的另一边:\[ 2x = 7 + 3 \]\[ 2x = 10 \]然后,将等式两边同时除以2,得到x的值:\[ x = \frac{10}{2} \]\[ x = 5 \]所以,方程的解是x = 5。
试题四:代数式的值题目:当a=3,b=-2时,求代数式\( ab + a - b \)的值。
答案:将给定的a和b的值代入代数式中:\[ ab + a - b = 3 \times (-2) + 3 - (-2) \]\[ = -6 + 3 + 2 \]\[ = -1 \]所以,代数式的值是-1。
试题五:几何图形的周长和面积题目:一个长方形的长是10厘米,宽是5厘米,求这个长方形的周长和面积。
答案:长方形的周长是长和宽的两倍之和:\[ 周长 = 2 \times (长 + 宽) \]\[ 周长 = 2 \times (10 + 5) \]\[ 周长 = 2 \times 15 \]\[ 周长 = 30 \] 厘米长方形的面积是长乘以宽:\[ 面积 = 长 \times 宽 \]\[ 面积 = 10 \times 5 \]\[ 面积 = 50 \] 平方厘米结束语:以上是初一数学培优的经典试题及答案,希望同学们能够通过这些题目加深对数学概念的理解和应用。
专题2.21有理数运算精选100题(专项练习)2(培优练)「含答案」
(2)
-12
+
3´ -23
-
-6
¸
æ çè
-
1 3
ö2 ÷ø
.
48.简便计算:
(1)
æ çè
1 3
-
5 7
-
2 5
ö ÷ø
´105
;
(2) -24´ 0.125 + 24´ 3 + -24´ 1 .
8
4
49.计算:
(1) 33.1-10.7 - -22.9 - - 23
10
(2) 4 - -2 ¸ 1 ´ -3
(1)
éë3
-
-2 2
ù û
´
-6
¸
2 3
;
(2)
æ çè
5 6
-
1 2
-
7 12
ö ÷ø
¸
æ çè
-
1 24
ö ÷ø
.
28.计算:
(1) -1´ -4 + 22 ¸ 7 - 5 ;
(2) 25´ 3 - -25´ 1 - 25´ 1 (简便计算).
4
2
4
29.计算:
(1)
-52
´
éê
êë
-15
+
【详解】(1)解: -9 + 5 - +11 - -16
= -9 + 5 -11+16 = -9 -11+ 5 +16 = -20 + 21
=1
(2)解: -23 + éë-42 - 1- 32 ´ 3ùû
= -8 + éë16 - 1- 9´ 3ùû = -8 + éë16 - -8´ 3ùû = -8 + éë16 - -24ùû
七年级数学上册《有理数》培优测试题(含答案)
B. (3) (2)
C. (3)2 (2)2
D.
(3)2 (2)
10.几个同学在日历纵列上圈出了三个数,算出它们的和,其中错误的一个是(
)
A.28
B.33
C.45
D.57
二、填空题(每小题 3 分,共 24 分)
11.绝对值小于 n ( n 是正整数)的整数共有___________个。
12.当 a b 0 时, 1 _______ 1 (填“>”“=”或“<”)。
D.不能确定正负
3.当 a 、 b 互为相反数时,下列各式一定成立的是( )
A. b 1 a
B. b 1 a
C. a b 0
D. ab 0
4. 3.14 的计算结果是( )
A.0
B. 3.14
C. 3.14
5. a 为有理数,则下列各式成立的是(
)
D. 3.14
A. a 2 0
七年级数学上册《有理数》培优测试题
一、选择题(每小题 3 分,共 30 分)
1.下列说法正确的是(
)
A.任何负数都小于它的相反数
B.零除以任何数都等于零
C.若 a b ,则 a 2 b2
D.两个负数比较大小,大的反而小
2.如果一个数的绝对值等于它的相反数,那么这个数(
)
A.必为正数
B.必为负数
C.一定不是正数
(2) 第 n 行与第 n 列的交叉点上的数应为____________。(用含正整数 n 的式子表
示) (3) 计算左上角 2×2 的正方形里所有数字之和,即:
1
-2
-2
3
在数表中任取几个 2×2 的正方形,计算其中所有数字之和,归纳你得出的结论。
浙教版(2024)七年级上册第二章 有理数的运算 培优(含答案)
浙教版七年级上册第二章有理数的运算培优一、选择题1.2024年4月25号,我国神舟十八号载人飞船发射取得圆满成功,在发射过程中,飞船的速度约为每小时29000千米,数据29000用科学记数法表示为()A.2.9×106B.2.9×105C.2.9×104D.29×1052.根据有理数加法法则,计算2+(﹣3)过程正确的是( )A.+(3+2)B.+(3﹣2)C.﹣(3+2)D.﹣(3﹣2)3.有一只蜗牛从数轴的原点出发,先向左(负方向)爬行9个单位长度,再向右爬行3个单位长度,用算式表示上述过程与结果,正确的是( )A.−9+3=−6B.−9−3=−12C.9−3=6D.9+3=124.实数a,b,c在数轴上的位置如图所示,下列结论正确的是( )A.b+c>3B.a﹣c<0C.|a|>|c|D.﹣2a<﹣2b5.若式子x−2+(y+3)2=0,则(x+y)2025等于( )A.−1B.1C.−32025D.320256.计算:(−517)2023×(−325)2024=( )A.−1B.1C.−517D.−1757.22023个位上的数字是( )A.2B.4C.8D.68.求1+2+22+23+⋯+22018的值,可令S=1+2+22+23+⋯+22018,则2S=2+22+23+⋯+ 22019,因此2S−S=22019−1,仿照以上推理,计算出1+5+52+53+⋯+52018的值为( )A.52018−1B.52019−1C.52019−14D.52018−149.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此下去,第六次后剩下的绳子长度为( )A.(12)3米B.(12)5米C.(12)6米D.(12)12米10.方程(x2+x﹣1)x+3=1的所有整数解的个数是( )A.5个B.4个C.3个D.2个二、填空题11.用四舍五入法对0.618取近似数(精确到0.1)是 .12.小明在电脑中设置了一个有理数运算程序:输入数a,加*键,再输入数b,就可以得到运算a*b=3a+2b,请照此程序运算(−4)*3= .13.定义一种新的运算“(a,b)”,若a c=b,则(a,b)=c,如:(2,16)=4.已知(3,9)=x,(3,y)=4,则x−y= .14.已知|3a+b+5|+(2a−2b−2)2=0,那么2a2−3ab的值为 .15.“转化”是一种解决数学问题的常用方法,有时借助几何图形可以帮助我们找到转化的方法.例如,借助图(1)可以把算式1+3+5+7+9+11转化为62=36.这是将数字求和问题转化为面积求和问题,从而建立数与形的联系,使问题易于解决.利用这样的方法,请观察图(2)计算12+14+18+116+132+164= .16.《算法统宗》是我国明代数学著作,它记载了多位数相乘的方法,如图1给出了34×25=850的步骤:①将34,25分别写在方格的上边和右边;②把上述各数字乘积的十位(不足写0)与个位分别填入小方格中斜线两侧;③沿斜线方向将数字相加,记录在方格左边和下边;④将所得数字从左上到右下依次排列(满十进一).若图2中a,b,c,d均为正整数,且c,d都不大于8,则b的值为 ,该图表示的乘积结果为 .三、解答题17.(1)计算:(−34−59+712)÷(−136).(2)计算:−12022−|12−1|÷3×[2−(−3)2].18.把下列各数在数轴上表示出来,并用“<”号把它们连接起来.−3,|−3|,32,(−2)2,−(−2)19.我们知道,|a|可以理解为|a−0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a−b|,反过来,式子|a−b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数−1的点和表示数−3的点之间的距离是_________.(2)数轴上点A用数a表示,则①若|a−3|=5,那么a的值是_________.②|a−3|+|a+6|有最小值,最小值是_________;③求|a+1|+|a+2|+|a+3|+⋯+|a+2021|+|a+2022|+|a+2023|的最小值.20.用“※”定义一种新运算,规定a※b=b2−a,如1※3=32−1=8,(1)求1※2的值;(2)求(1※2)※(−5)的值.21.老师设计了一个有理数运算的游戏.规则如下:(1)若黑板上的有理数为“−4”,求应写在纸条上的有理数;(2)学习委员发现:若正确计算后写在纸条上的结果为正数,则老师在黑板上写的最大整数是多少?22.为了增强市民的节约用水意识,自来水公司实行阶梯收费,具体情况如表:每月用水量收费不超过10吨的部分水费1.6元/吨10吨以上至20吨的部分水费2元/吨20吨以上的部分水费2.4元/吨(1)若小刚家6月份用水15吨,则小刚家6月份应缴水费_____ 元.(直接写出结果)(2)若小刚家7月份的平均水费为1.75元/吨,则小刚家7月份的用水量为多少吨?(3)若小刚家8月、9月共用水40吨,9月底共缴水费79.6元,其中含2元滞金(水费为每月底缴纳.因8月份的水费未按时缴,所以收取了滞纳金),已知9月份用水比8月份少,求小明算8、9月各用多少吨水?四、综合题23.阅读理解:计算(1+12+13)(12+13+14)−(1+12+13+14)(12+13)时,若把分别(12+13)与(12+13+14)看作一个整体,再利用乘法分配律进行计算,可以大大简化难度,过程如下:解:令12+13=x,12+13+14=y,则原式=.(1+x)y−(1+y)x=y+xy−x−xy=y−x=1 4(1)上述过程使用了什么数学方法? ;体现了什么数学思想? ;(填一个即可)(2)用上述方法计算:①(1+12+13+14)(12+13+14+15)−(1+12+13+14+15)(12+13+14);②(1+12+13+…+1n−1)(12+13+14+…+1n)−(1+12+13+…+1n)(12+13+14…+1n−1);③计算:1×2×3+2×4×6+3×6×9+4×8×12+5×10×151×3×5+2×6×10+3×9×15+4×12×20+5×15×25.答案解析部分1.【答案】C2.【答案】D3.【答案】A4.【答案】B5.【答案】A6.【答案】D7.【答案】C8.【答案】C9.【答案】C10.【答案】B11.【答案】0.612.【答案】−613.【答案】−7914.【答案】−415.【答案】636416.【答案】3;72817.【答案】(1)26;(2)1618.【答案】图见解答,−3<3<−(−2)<|−3|<(−2)2219.【答案】(1)5,2(2)①8或−2;②9;③102313220.【答案】(1)3(2)2221.【答案】(1)4(2)322.【答案】(1)解:∵小刚家6月份用水15吨,∴小刚家6月份应缴水费为10×1.6+(15-10)×2=26(元),故答案为:26.(2)解:由题意知小刚家7月份的用水量超过10吨而不超过20吨,设小刚家7月份用水量为x吨,依题意得:1.6×10+2(x-10)=1.75x ,解得:x =16,答:小刚家7月份的用水量为16吨.(3)解:因小刚家8月、9月共用水40吨,9月份用水比8月份少,所以8月份的用水量超过了20吨.设小刚家9月份的用水量为x 吨,则8月份的用水量为(40-x )吨,①当x≤10时,依题意可得方程:1.6x+16+20+2.4(40-x-20)+2=79.6解得:x =8,②当10<x <20时,依题意得:16+2(x-10)+16+20+2.4(40-x-20)+2=79.6解得:x =6不符合题意,舍去.综上:小刚家8月份用水32吨,9月份用水8吨.23.【答案】(1)换元法;整体思想(转化思想)(2)解:①令12+13+14=a ,12+13+14+15=b ,∴b-a=15,∴原式=(1+a )b-(1+b )a=b+ab-a-ab=b-a=15;②令12+13+…+1n−1=m ,12+13+14+1n =t ,∴t-m=1n,∴原式=(1+m )t-(1+t )m=t+mt-m-mt=t-m=1n;③令1×2×3=x ,1×3×5=y ,∴x y =615=25∴原式=x +2x +3x +4x +5x y +2y +3y +4y +5y =15x 15y =x y =25.。
七年级上册数学有理数培优50题含详细答案
(七年级上册数学有理数培优50题一.填空题(共5小题)1.=2.若|a|+|b|=2,则满足条件的整数a、b的值有组.3.已知a,b,c,d分别是一个四位数的千位,百位,十位,个位上的数字,且低位上的数字不小于高位上的数字,当|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|取得最大值时,这个四位数的最小值是.4.如图,若数轴上a的绝对值是b的绝对值的3倍,则数轴的原点在点或点.(填“A”、“B”“C”或“D”)5.|x+1|+|x﹣2|+|x﹣3|的值为.二.解答题(共45小题)6.在一个3×3的方格中填写了9个数字,使得每行、每列、每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.(1)在图1中空格处填上合适的数字,使它构成一个三阶幻方;(2)如图2的方格中填写了一些数和字母,当x+y的值为多少时,它能构成一个三阶幻方.7.阅读下面解题过程:计算:解:原式=(第一步)=(﹣15)÷(﹣25)(第二步)=(第三步)回答:1)上面解题过程中有两个错误,第一处是第步,错误的原因是,第二处是第步,错误的原因是;( (2)正确的结果是.8.如图,已知数轴上的点A 表示的数为 6,点 B 表示的数为﹣4,点 C 是 AB 的中点,动点P 从点 B 出发,以每秒 2 个单位长度的速度沿数轴向右匀速运动,设运动时间为 x 秒(x>0).(1)当 x =秒时,点 P 到达点 A .(2)运动过程中点 P 表示的数是(用含 x 的代数式表示);(3)当 P ,C 之间的距离为 2 个单位长度时,求 x 的值.9.观察下列两个等式:3+2=3×2﹣1,4+﹣1,给出定义如下:我们称使等式 a +b =ab ﹣1 成立的一对有理数 a ,b 为“椒江有理数对”,记为(a ,b ),如:数对(3,2),(4, )都是“椒江有理数对”.(1)数对(﹣2,1),(5,)中是“椒江有理数对”的是 ;(2)若(a ,3)是“椒江有理数对”,求 a 的值;(3)若(m ,n )是“椒江有理数对”,则(﹣n ,﹣m )“椒江有理数对” 填“是”、“不是”或“不确定”).(4)请再写出一对符合条件的“椒江有理数对”(注意:不能与题目中已有的“椒江有理数对”重复)10.计算:(﹣+1 ﹣ )÷(﹣ )×|﹣110﹣(﹣3)2|11.已知 a 、b 互为相反数,c 、d 互为倒数,并且 x 的绝对值等于 2.试求:x 2﹣(a +b +cd )+2(a +b )的值.12.如图,A 、B 分别为数轴上的两点,A 点对应的数为﹣20,B 点对应的数为 100.(1)请写出与 A 、B 两点距离相等的点 M 所对应的数;(2)现有一只电子蚂蚁 P 从 B 点出发,以 6 个单位/秒的速度向左运动,同时另一只电子蚂蚁 Q 恰好从 A 点出发,以 4 个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C 点相遇,你知道 C 点对应的数是多少吗?(3)若当电子蚂蚁 P 从 B 点出发时,以 6 个单位/秒的速度向左运动,同时另一只电子蚂蚁 Q 恰好从 A 点出发,以 4 个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?13.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.14.若“三角”表示运算:a﹣b+c,若“方框”,表示运算:x﹣y+z+w,求的值,列出算式并计算结果.15.对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.16.乐乐的爸爸投资股票,有一次乐乐发现爸爸持有股票的情况如表格所示:请你帮助分析:乐乐爸爸究竟是赚了还是赔了,赚或赔了多少元?股票名称每股净赚(元)股数天河北斗白马海湖﹣22+1.5﹣4﹣(﹣2)5001000100050017.阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫❈(加乘)运算.”然后他写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(+4)❈(+2)=+6;(﹣4)❈(﹣3)=+7;(﹣5)❈(+3)=﹣8;(+6)❈(﹣7)=﹣13;(+8)❈0=8;0❈(﹣9)=9.小亮看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,.(2)计算:[(﹣2)❈(+3)]❈[(﹣12)❈0](括号的作用与它在有理数运算中的作用一致)(3)我们知道加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个运算律,判断它在❈(加乘)运算中是否适用,并举例验证.举一个例子即可)”18.已知在纸面上有一数轴(如图),折叠纸面.例如:若数轴上数2表示的点与数﹣2表示的点重合,则数轴上数﹣4表示的点与数4表示的点重合,根据你对例题的理解,解答下列问题:若数轴上数﹣3表示的点与数1表示的点重合.(根据此情境解决下列问题)①则数轴上数3表示的点与数表示的点重合.②若点A到原点的距离是5个单位长度,并且A、B两点经折叠后重合,则B点表示的数是.③若数轴上M、N两点之间的距离为2018,并且M、N两点经折叠后重合,如果M点表示的数比N点表示的数大,则M点表示的数是.则N点表示的数是.19.现定义新运算“※”,对任意有理数a、b,规定a※b=ab+a﹣b,例如:1※2=1×2+1﹣2=1,(1)求3※(﹣5)的值;(2)若(﹣3)※b与b互为相反数,求b的值.20.已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,表示有理数dB , 的点到原点的距离为 4,求 a ﹣b ﹣c +d 的值.21.阅读下列材料:点 A 、B 在数轴上分别表示两个数 a 、b ,A 、B 两点间的距离记为|AB|,O 表示原点.当A 、B 两点中有一点在原点时,不妨设点 A 为原点,如图 1,则|AB|=|OB|=|b |=|a ﹣b |;当 A 、B 两点都不在原点时,①如图 2,若点 A 、B 都在原点的右边时,|AB|=|OB|﹣|OA|=|b |﹣|a|=b ﹣a =|a ﹣b |;②如图 3,若点 A 、B 都在原点的左边时,|AB|=|OB|﹣|OA|=|b |﹣|a|=﹣b ﹣(﹣a )=|a﹣b |;③如图 4,若点 A 、B 在原点的两边时,|AB|=|OB|+|OA|=|b |+|a|=﹣b +a =|a ﹣b |.回答下列问题:(1)综上所述,数轴上 A 、B 两点间的距离为|AB|=.(2)若数轴上的点 A 表示的数为 3,点 B 表示的数为﹣4,则 A 、 两点间的距离为 ;(3)若数轴上的点 A 表示的数为 x ,点 B 表示的数为﹣2,则|AB|= ,若|AB|=3,则 x 的值为.22.已知数轴上 A ,B 两点对应数分别为﹣2 和 5,P 为数轴上一点,对应数为 x .(1)若 P 为线段 AB 的三等分点(把一条线段平均分成相等的三部分的两个点) 求 P点对应的数.(2)数轴上是否存在点 P ,使 P 点到 A 点,B 点距离和为 10?若存在,求出 x 值;若不存在,请说明理由.(3)若点 A ,点 B 和点 P (P 点在原点)同时向左运动,它们的速度分别为 1,6,3 个长度单位/分,则第几分钟时,A ,B ,P 三点中,其中一点是另外两点连成的线段的中点?23.已知|x|=5,|y|=3.(1)若 x ﹣y >0,求 x +y 的值;(2)若 xy <0,求|x ﹣y|的值;(3)求 x ﹣y 的值.24.解答下列问题::(1)计算:6÷(﹣ + )方方同学的计算过程如下:原式=6÷(﹣ )+6÷ =﹣12+18=6.请你判断方方同学的计算过程是否正确,若不正确,请你写出正确的计算过程.(2)请你参考黑板中老师的讲解,用运算律简便计算(请写出具体的解题过程)①999×(﹣15);②999×118 +333×(﹣ )﹣999×18 .25.阅读材料,解答下列问题:例:当 a =5,则|a|=|5|=5,故此时 a 的绝对值是它本身;当 a =0 时,|a|=0,故此时 a的绝对值是 0;当 a <0 时,如 a =﹣5,则|a|=|5|=﹣(5)=5,故此时 a 的绝对值是它的相反数.综上所述,一个数的绝对值要分三种情况,即|a|=这种分析方法涌透了数学中的分类讨论思想.请仿照图例中的分类讨论,解决下面的问题:(1)|﹣4+5|=;|﹣ ﹣3|= ;(2)如果|x+1|=2,求 x 的值;(3)若数轴上表示数 a 的点位于﹣3 与 5 之间,求|a +3|+|a ﹣5|的值;(4)当 a =时,|a ﹣1|+|a +5|+|a ﹣4|的值最小,最小值是 .26.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米),﹣3,﹣4,+7,﹣5,+8,+3,﹣8.(1)最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为 0.3 升/千米,这天下午汽车共耗油多少升?27.定义一种新运算:a ⊕b =a ﹣b +ab .(1)求(﹣2)⊕(﹣3)的值;(2)求 5⊕[1⊕(﹣2)]的值.28.在学习绝对值后,我们知道,a|表示数a在数轴上的对应点与原点的距离.如:|5|表示|5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离.类似的,有:|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B 在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)数轴上表示2和3的两点之间的距离是;数轴上P、Q两点的距离为3,点P表示的数是2,则点Q表示的数是.(2)点A、B、C在数轴上分别表示有理数x、﹣3、1,那么A到B的距离与A到C的距离之和可表示为(用含绝对值的式子表示);满足|x﹣3|+|x+2|=7的x的值为.(3)试求|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣100|的最小值.29.夫子庙派出所巡警骑摩托车在东西大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向东方向为正,当天行驶记录如下(单位:千米)+11,﹣9,7,﹣14,+8,﹣13,+4.①该巡警巡逻时离岗亭最远是千米.②在岗亭东面6千米处有个加油站,该巡警巡逻时经过加油站次.③A在岗亭何方?距岗亭多远?④若摩托车每行1千米耗油0.06升,那么该摩托车这天巡逻共耗油多少升?30.邮递员骑车从邮局出发,先向南骑行3km到达A村,继续向南骑行2km到达B村,然后向北骑行8km到达C村,最后回到邮局,以邮局为原点,以向南方向为正方向,用1cm 表示1km,画出数轴如图.(1)在该数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有km;(3)邮递员一共骑行了km;(4)如果邮递员骑行的速度为10千米/小时,在每个村庄停留10分钟,那么邮递员从出发到回到邮局一共用了多少小时?31.已知数轴上有A、B、C三点,分别表示有理数﹣26,﹣10,10,动点P从A出发,沿(AC 方向,以每秒 1 个单位的速度向终点 C 运动,设点 P 运动时间为 t 秒.(1)用含 t 的代数式表示点 P 到点 A 、C 的距离,PA =;PC = .(2)当点 P 运动到点 B 时,点 Q 从 C 点出发,沿 CA 方向,以每秒 3 个单位的速度向 A点运动,当其中一点到达目的地时,另一点也停止运动.①当 t =,点 P 、Q 相遇,此时点 Q 运动了 秒.②请用含 t 的代数式表示出在 P 、Q 同时运动的过程中 PQ 的长.32.如图 A 在数轴上所对应的数为﹣2.(1)点 B 在点 A 右边距 A 点 4 个单位长度,求点 B 所对应的数;(2)在(1)的条件下,点 A 以每秒 2 个单位长度沿数轴向左运动,点 B 以每秒 2 个单位长度沿数轴向右运动,当点 A 运动到﹣6 所在的点处时,求 A ,B 两点间距离.(3)在(2)的条件下,现 A 点静止不动,B 点沿数轴向左运动时,经过多长时间 A ,B两点相距 4 个单位长度.33.随着手机的普及,微信(一种聊天软件)的兴起,许多人抓住这种机会,做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上,他原计划每天卖 100 斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期与计划量一+4二﹣3 三﹣5 四+14五﹣8 六+21鈤﹣6的差值(1)根据记录的数据可知前三天共卖出斤;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售 斤;(3)本周实际销售总量达到了计划数量没有?(4)若冬季每斤按 8 元出售,每斤冬枣的运费平均 3 元,那么小明本周一共收入多少元?34.如图,半径为 1 个单位的圆片上有一点 A 与数轴上的原点重合,AB 是圆片的直径. 注:结果保留 π )(1)把圆片沿数轴向右滚动半周,点 B 到达数轴上点 C 的位置,点 C 表示的数是数(填“无理”或“有理”),这个数是;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3.①第次滚动后,A点距离原点最近,第次滚动后,A点距离原点最远.②当圆片结束运动时,A点运动的路程共有,此时点A所表示的数是.35.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(,),B→C(,),C→(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N →A应记为什么?36.某公路检修组乘汽车沿公路检修,约定前进为正,后退为负,某天自A地出发到收工时所走的路程(单位:千米)为+10,﹣3,+4,﹣2,﹣8,+13,﹣2,﹣11,+7,+5.(1)问收工时相对A地是前进了还是后退了?距A地多远?(2)若检修组最后回到了A地且每千米耗油0.2升,问共耗油多少升?37.我们定义一种新运算:△a b=a﹣b+ab.3 2)(1)求 △2 (﹣)的值;(2)求(﹣△5) △[1 (﹣ ]的值.38.学校图书馆平均每天借出图书 50 册,如果某天借出 53 册,就记作+3;如果某天借出40 册,就记作﹣10.上星期图书馆借出图书记录如表:星期一0 星期二+8 星期三+6星期四﹣2 星期五﹣7(1)上期五借出图书多少册?(2)上星期二比上星期五多借出图书多少册?(3)上星期平均每天借出图书多少册?39.已知,如图 A 、B 分别为数轴上的两点,A 点对应的数为﹣10,B 点对应的数为 70(1)请写出 AB 的中点 M 对应的数(2)现在有一只电子蚂蚁 P 从 A 点出发,以 3 个单位/秒的速度向右运动,同时另一只电子蚂蚁 Q 恰好从 B 点出发,以 2 个单位/秒的速度向左运动,设两只电子蚂蚁在数轴上的 C 点相遇,请你求出 C 点对应的数(3)若当电子蚂蚁 P 从 A 点出发,以 3 个单位/秒的速度向右运动,同时另一只电子蚂蚁 Q 恰好从 B 点出发,以 2 单位/秒的速度向左运动,经过多长时间两只电子蚂蚁在数轴上相距 35 个单位长度,并写出此时 P 点对应的数.40.一辆交通巡逻车在南北公路上巡视,某天早上从 A 地出发,中午到达 B 地,行驶记录如下(规定向北为正方向,单位:千米):+15,﹣8,+6,+12,﹣8,+5,﹣10.回答下列问题:(1)B 地在 A 地的什么方向?与 A 地相距多远?(2)巡逻车在巡逻中,离开 A 地最远多少千米?(3)巡逻车行驶每千米耗油 a 升,这半天共耗油多少升?41.【概念学习】规定:求若干个相同的有理数(均不等于 0)的除法运算叫做除方,如 2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把 2÷2÷2 记作 2③,读作“2 的圈 3 次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3 的圈 4 次方”,一般地,把 (a ≠0)记作 a ,读作“a 的圈 n 次方”.+,【初步探究】(1)直接写出计算结果:2③=,(﹣ )⑤= ;(2)关于除方,下列说法错误的是A .任何非零数的圈 2 次方都等于 1;B .对于任何正整数 n ,1 =1;C .3④=4③;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=;5⑥= ;(﹣ )⑩= .(2)想一想:将一个非零有理数 a 的圈 n 次方写成幂的形式等于;(3)算一算:122÷(﹣ )④×(﹣2)⑤﹣(﹣ )⑥÷33.42.若|a|=5,|b |=2,且 a <b ,求 a ﹣b 的值.43.观察下列等式: =1﹣ , = ﹣ , = ﹣ ,把以上三个等式两边分别相加得: + + =1﹣ + ﹣ + ﹣(1)猜想并写出:=.(2)规律应用:计算: + +++ +(3)拓展提高:计算:+ +…+.44.操作探究:已知在纸面上有一数轴(如图所示)操作一:(1)折叠纸面,使表示的1 点与﹣1 表示的点重合,则﹣3 表示的点与表示的点重合;操作二:(2)折叠纸面,使﹣1 表示的点与 3 表示的点重合,回答以下问题:①5 表示的点与数表示的点重合;b :② 若数轴上 A 、B 两点之间距离为 11,(A 在 B 的左侧),且 A 、B 两点经折叠后重合,求 A 、B 两点表示的数是多少.45.阅读下面材料:点 A 、B 在数轴上分别表示实数 a 、 ,A 、B 两点之间的距离表示为|AB|.当 A 、B 两点中有一点在原点时,不妨设点 A 在原点,如图 1,|AB|=|OB|=|b |=|a ﹣b |;当 A 、B 两点都不在原点时,如图 2,点 A 、B 都在原点的右边|AB|=|OB|﹣|OA|=|b |﹣|a|=b ﹣a =|a ﹣b |;如图 3,点 A 、B 都在原点的左边,|AB|=|OB|﹣|OA|=|b |﹣|a|=﹣b ﹣(﹣a )=|a ﹣b |;如图 4,点 A 、B 在原点的两边,|AB|=|OB|+|OA|=|a|+|b |=a +(﹣b )=|a ﹣b |;回答下列问题:(1)数轴上表示 2 和 5 的两点之间的距离是,数轴上表示﹣2 和﹣5 的两点之间的距离是,数轴上表示 1 和﹣3 的两点之间的距离是.(2)数轴上表示 x 和﹣1 的两点 A 和 B 之间的距离是 ,如果|AB|=2,那么 x为;(3)当代数式|x +1|+|x ﹣2|取最小值时,相应的 x 的取值范围是.46.某淘宝商家计划平均每天销售某品牌儿童滑板车 100 辆,但由于种种原因,实际每天的销售量与计划量相比有出入.下表是某周的销售情况(超额记为正、不足记为负)星期与计划量的差值一+4二﹣3 三﹣5 四+14五﹣8 六+21 日﹣6(1)根据记录的数据可知该店前三天共销售该品牌儿童滑板车辆;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售辆;( (3)本周实际销售总量达到了计划数量没有?(4)该店实行每日计件工资制,每销售一辆车可得 40 元,若超额完成任务,则超过部分每辆另奖 15 元;少销售一辆扣 20 元,那么该店铺的销售人员这一周的工资总额是多少元?47.求若干个相同的不为零的有理数的除法运算叫做除方,如 2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把 2÷2÷2 记作 2③,读作“2 的圈 3次方”, ﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3 的圈 4 次方”.一般地,把(a ≠0)记作 ,读作“a 的圈 n 次方”.(1)直接写出计算结果:2③=,(﹣3)④=,(﹣ )⑤=;(2)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,请尝试把有理数的除方运算转化为乘方运算,归纳如下:一个非零有理数的圈 n 次方等于;(3)计算 24÷23+(﹣8)×2③.48.已知 a ,b 互为相反数,c ,d 互为倒数,且 a ≠0,那么 3a +3b + ﹣cd 的值是多少?49.已知(|x +1|+|x ﹣2|)(|y ﹣2)|+|y+1|)(|z ﹣3|+|z+1|)=36,求 2016x+2017y+2018z 的最大值和最小值50.已知 a 2=9,|b |=5,且 a <b ,求 a ﹣b 的值.(七年级上册数学有理数培优 50 题参考答案与试题解析一.填空题(共 5 小题)1.【解答】解:====,故答案为:=.2.若|a|+|b |=2,则满足条件的整数 a 、b 的值有8 组.【解答】解:∵|a|+|b |=2,∴|a|=0,|b |=2 或|a|=1|b |=1,或|a|=2,|b |=0,∴a =0,b =2;a =0,b =﹣2;a =1,b =1;a =1,b =﹣1;a =﹣1,b =1;a =﹣1,b=﹣1;a =﹣2,b =0;a =2,b =0,故答案为:8.3.已知 a ,b ,c ,d 分别是一个四位数的千位,百位,十位,个位上的数字,且低位上的数字不小于高位上的数字,当|a ﹣b |+|b ﹣c|+|c ﹣d |+|d ﹣a|取得最大值时,这个四位数的最小值是 1119 .【解答】解:若使|a ﹣b |+|b ﹣c|+|c ﹣d |+|d ﹣a|的值最大,则最低位数字最大 d =9,最高位数字最小 a =1 即可,同时为使|c ﹣d |最大,则 c 应最小,且使低位上的数字不小于高位上的数字,故 c 为 1,此时 b 只能为 1.所以此数为 1119.故答案为 1119.4.如图,若数轴上 a 的绝对值是 b 的绝对值的 3 倍,则数轴的原点在点C 或点D .填“A ”、“B ”“C ”或“D ”)|【解答】解:由图示知,b ﹣a =4,①当 a >0,b >0 时,由题意可得|a|=3|b |,即 a =3b ,解得 a =﹣6,b =﹣2,舍去;②当 a <0,b <0 时,由题意可得|a|=3|b |,即 a =3b ,解得 a =﹣6,b =﹣2,故数轴的原点在 D 点;③当 a <0,b >0 时,由题意可得 a |=3|b |,即﹣a =3b ,解得 a =﹣3,b =1,故数轴的原点在 C 点;综上可得,数轴的原点在 C 点或 D 点.故填 C 、D .5.|x +1|+|x ﹣2|+|x ﹣3|的值为.【解答】解:当 x ≤﹣1 时,|x +1|+|x ﹣2|+|x ﹣3|=﹣x ﹣1﹣x +2﹣x +3=﹣3x +4;当﹣1<x ≤2 时,|x +1|+|x ﹣2|+|x ﹣3|=x +1﹣x +2﹣x +3=﹣x +6;当 2<x ≤3 时,|x +1|+|x ﹣2|+|x ﹣3|=x +1+x ﹣2﹣x +3=x +2;当 x >3 时,|x +1|+|x ﹣2|+|x ﹣3|=x +1+x ﹣2+x ﹣3=3x ﹣4.综上所述,|x +1|+|x ﹣2|+|x ﹣3|的值为.故答案为: .二.解答题(共 45 小题)6.在一个 3×3 的方格中填写了 9 个数字,使得每行、每列、每条对角线上的三个数之和相等,得到的 3×3 的方格称为一个三阶幻方.(1)在图 1 中空格处填上合适的数字,使它构成一个三阶幻方;(2)如图 2 的方格中填写了一些数和字母,当 x +y 的值为多少时,它能构成一个三阶幻方.【解答】解:(1)2+3+4=9,9﹣6﹣4=﹣1,9﹣6﹣2=1,9﹣2﹣7=0,9﹣4﹣0=5,如图所示:(2)﹣3+1﹣4=﹣6,﹣6+1﹣(﹣3)=﹣2,﹣2+1+4=3,如图所示:x=3﹣4﹣(﹣6)=5,y=3﹣1﹣(﹣6)=8,x+y=5+8=13.7.阅读下面解题过程:计算:解:原式=(第一步)=(﹣15)÷(﹣25)(第二步)=(第三步)回答:(1)上面解题过程中有两个错误,第一处是第一步,错误的原因是在同级运算中,没有按从左到右的顺序进行,第二处是第三步,错误的原因是同号两数相除,结果为正(事实上结果应为正数);(2)正确的结果是.【解答】解:正确做法:原式=(第一步)=15××6(第二步)=(第三步).故答案为:(1)一,在同级运算中,没有按从左到右的顺序进行,二,同号两数相除,结果为正(事实上结果应为正数);(2).8.如图,已知数轴上的点A表示的数为6,点B表示的数为﹣4,点C是AB的中点,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为x秒(x >0).(1)当x=5秒时,点P到达点A.(2)运动过程中点P表示的数是2x﹣4(用含x的代数式表示);(3)当P,C之间的距离为2个单位长度时,求x的值.【解答】解:(1)∵数轴上的点A表示的数为6,点B表示的数为﹣4,∴AB=10,∵动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴运动时间为10÷2=5(秒),故答案为:5;(2)∵动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴运动过程中点P表示的数是:2x﹣4;故答案为:2x﹣4;(3)点C表示的数为:[6+(﹣4)]÷2=1,当点P运动到点C左侧2个单位长度时,2x﹣4=1﹣2解得:x=1.5,当点P运动到点C右侧2个单位长度时,2x﹣4=1+2解得:x=3.5综上所述,x=1.5或3.5.9.观察下列两个等式:3+2=3×2﹣1,4+﹣1,给出定义如下:我们称使等式a+b=ab﹣1成立的一对有理数a,b为“椒江有理数对”,记为(a,b),如:数对(3,2),(4,)都是“椒江有理数对”.(1)数对(﹣2,1),(5,)中是“椒江有理数对”的是(5,);(2)若(a,3)是“椒江有理数对”,求a的值;(3)若(m,n)是“椒江有理数对”,则(﹣n,﹣m)不是“椒江有理数对”(填“是”、“不是”或“不确定”).(4)请再写出一对符合条件的“椒江有理数对”(6,1.4)(注意:不能与题目中已有的“椒江有理数对”重复)【解答】解:(1)﹣2+1=﹣1,﹣2×1﹣1=﹣3,∴﹣2+1≠﹣2×1﹣1,∴(﹣2,1)不是“共生有理数对”,∵5+=,5×﹣1=,∴5+=5×﹣1,∴(5,)中是“椒江有理数对”;(2)由题意得:a+3=3a﹣1,解得a=2.(3)不是.理由:﹣n+(﹣m)=﹣n﹣m,﹣n•(﹣m)﹣1=mn﹣1∵(m,n)是“椒江有理数对”∴m+n=mn﹣1∴﹣n﹣m=﹣(mn﹣1)=﹣(﹣n)×(﹣m)+1=﹣[(﹣n)×(﹣m)﹣1],∴(﹣n,﹣m)不是“椒江有理数对”,(4)(6,1.4)等.故答案为:(5,);不是;(6,1.4).10.计算:(﹣+1﹣)÷(﹣)×|﹣110﹣(﹣3)2|【解答】解:原式=(﹣+﹣)×(﹣42)+×|﹣1﹣9|=27﹣54+10+×10=﹣17+15=﹣2.11.已知a、b互为相反数,c、d互为倒数,并且x的绝对值等于2.试求:x2﹣(a+b+cd)+2(a+b)的值.【解答】解:∵a、b互为相反数,c、d互为倒数,x的绝对值等于2,∴a+b=0,cd=1,x=±2,∴原式=4﹣(0+1)+2×0=4﹣1+0=3.12.如图,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?【解答】解:(1)M点对应的数是(﹣20+100)÷2=40;(2)它们的相遇时间是120÷(6+4)=12(秒),即相同时间Q点运动路程为:12×4=48(个单位),即从数﹣20向右运动48个单位到数28;(3)相遇前:(100+20﹣20)÷(6﹣4)=50(秒),相遇后:(100+20+20)÷(6﹣4)=70(秒).故当它们运动50秒或70秒时间时,两只蚂蚁间的距离为20个单位长度.13.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是﹣4;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是0;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.【解答】解:(1)点B表示的数是﹣4;(2)2秒后点B表示的数是﹣4+2×2=0;(3)①当点O是线段AB的中点时,OB=OA,4﹣3t=2+t,解得t=0.5;②当点B是线段OA的中点时,OA=2OB,2+t=2(3t﹣4),解得t=2;③当点A是线段OB的中点时,OB=2OA,3t﹣4=2(2+t),解得t=8.综上所述,符合条件的t的值是0.5,2或8.故答案为:﹣4;0.14.若“三角”表示运算:a﹣b+c,若“方框”,表示运算:x﹣y+z+w,求的值,列出算式并计算结果.【解答】解:根据题意得:原式=(﹣+)×(﹣2﹣1.5+1.5﹣6)=(﹣(﹣8)=.15.对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.)×【解答】解:(1)2⊙(﹣4)=|2﹣4|+|2+4|=2+6=8;(2)由数轴知a<0<b,且|a|>|b|,则a+b<0、a﹣b<0,所以原式=﹣(a+b)﹣(a﹣b)=﹣a﹣b﹣a+b=﹣2a.16.乐乐的爸爸投资股票,有一次乐乐发现爸爸持有股票的情况如表格所示:请你帮助分析:乐乐爸爸究竟是赚了还是赔了,赚或赔了多少元?股票名称每股净赚(元)股数天河北斗白马海湖﹣22+1.5﹣4﹣(﹣2)50010001000500【解答】解:﹣22×500+1.5×1000﹣4×1000﹣(﹣2)×500=﹣2000+1500﹣4000+1000=﹣3500,答:乐乐的爸爸赔了,赔了3500元.17.阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫❈(加乘)运算.”然后他写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(+4)❈(+2)=+6;(﹣4)❈(﹣3)=+7;(﹣5)❈(+3)=﹣8;(+6)❈(﹣7)=﹣13;(+8)❈0=8;0❈(﹣9)=9.小亮看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,同号得正、异号得负,并把绝对值相加.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,都得这个数的绝对值.(2)计算:[(﹣2)❈(+3)]❈[(﹣12)❈0](括号的作用与它在有理数运算中的作用一致)(3)我们知道加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个运算律,判断它在❈(加乘)运算中是否适用,并举例验证.举一个例子即可)”【解答】解:(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,同号得正、异号得负,并把绝对值相加.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,都得这个数的绝对值,故答案为:同号得正、异号得负,并把绝对值相加;都得这个数的绝对值.(2)原式=(﹣5)❈12=﹣17;(3)加法的交换律仍然适用,例如:(﹣3)❈(﹣5)=8,(﹣5)❈(﹣3)=8,所以(﹣3)❈(﹣5)=(﹣5)❈(﹣3),。
人教版七年级数学上册第一章 有理数培优综合训练(含答案)
人教版七年级数学上册第一章 有理数培优综合训练(含答案)一、单选题1.在115,0,3,0.5,, 3.245+-+-中,正数的个数是( ) A .3B .4C .5D .62.如果把向东走3km 记作+3km ,那么﹣2km 表示的实际意义是( ) A .向东走2kmB .向西走2kmC .向南走2kmD .向北走2km3.下列说法正确的个数是( )①一个有理数不是整数就是分数;②一个有理数不是正数就是负数;③一个整数不是正的就是负的;④一个分数不是正的,就是负的. A .1B .2C .3D .44.有理数m ,n 在数轴上对应点的位置如图所示,则m ,﹣m ,n ,﹣n ,0的大小关系是( )A .n <﹣n <0<﹣m <mB .n <﹣m <0<﹣n <mC .n <﹣m <0<m <﹣nD .n <0<﹣m <m <﹣n5.若8a =,5b =,且a b >,则+a b 的值是( ) A .13或3B .13C .3D .-13或-36.如图,数轴表示的是5个城市的国际标准时间(单位:时),如果北京的时间是2020年1月9日上午9时,下列说法正确的是( )A .伦敦的时间是2020年1月9日凌晨1时B .纽约的时间是2020年1月9日晚上20时C .多伦多的时间是2020年1月8日晚上19时D .汉城的时间是2020年1月9日上午8时7.对任意四个有理数a,b,c,d 定义新运算:a bad bc c d =-,则1243的值为( ) A .-2B .-4C .5D .-58.下列运算正确的是( )A .()22-2-21÷=B .311-2-8327⎛⎫= ⎪⎝⎭C .1352535-÷⨯=- D .133( 3.25)6 3.2532.544⨯--⨯=-9.字母a 表示一个有理数,不论a 取任意有理数,下列式子的值总是正数的是( ) A .2020a +B .0.1a +C .2aD .()22020a +10.如图,点A 、B 、C 在数轴上表示的数分别为a 、b 、c ,且OA OB OC +=,则下列结论中①0abc <;②()0a b c -->;③a c b -=;④1a cb a b c++=.其中错误的个数有( )A .1个B .2个C .3个D .4个二、填空题11.如果50m 表示向东走50m ,那么60m -表示________; 12.-(+5)表示________的相反数,即-(+5(=________( -(-5)表示________的相反数,即-(-5(=________(13.a b c 、、在数轴上的位置如图所示,化简a c a b c b --++-=__________.14.今年“五一”期间,某市旅游营收达31.75亿元,数值31.75亿用科学记数法可表示为________.三、解答题15.把下列各数填在相应的括号里: 5-,10,273-,0,1123, 2.15-,0.01,66+,16-.正数:{}; 整数:{}; 负数:{};正分数:{}.16.计算(1)()()()()8 1.20.6 2.4-+-+-+-(2)()9190.59.7522⎛⎫⎛⎫-++-+⎪ ⎪⎝⎭⎝⎭(3)()31252544⎛⎫⨯+-⨯- ⎪⎝⎭(4)()12112234⎛⎫--+⨯- ⎪⎝⎭(5)()()147922949-÷+⨯-17.某商贩每日要到小龙虾基地购进500千克小龙虾,下表是该商贩记录的本周小龙虾购进价格(单位:元)浮动情况:注:正号表示价格比前一天上涨,负号表示价格比前一天下降.已知小龙虾上周末的进价为每千克23元,这周四的进价为每千克24元.(1)m=______.(2)这周购进小龙虾的最高价是每千克多少元?最低价是每千克多少元?(3)若该商贩周五将购进的小龙虾以每千克25元全部售出,且出售时小龙虾有4%的损耗,那么该商贩在本周星期五的收益情况如何?18.在纸面上有一数轴如图所示.尝试:折叠纸面,使表示1的点与表示1-的点重合,则表示3-的点与表示_________的点重合.发现:折叠纸面,使表示1-的点与表示3的点重合,则表示5的点与表示____________的点重合.应用:若数轴上A 、B 两点之间的距离为11(A 在B 左侧),且经过折叠后,表示1-的点与表示3的点重合,点A 与点B 重合,分别求A 、B 两点表示的数答案 1.A 2.B 3.B 4.C 5.A 6.A 7.D 8.D 9.B 10.B11.向西走60m .12.5 -5 -5 5 13.2b 14.3.175×10915.110,12,0.01,66,3⎧⎫+⎨⎬⎩⎭,{}5,10,0,66,16,-+-,25,7, 2.15,16,3⎧⎫----⎨⎬⎩⎭,112,0.01,3⎧⎫⎨⎬⎩⎭16.(1)12.2-;(2)4.25;(3)25;(4)11;(5)48- 17.(1)1.5;(2)25,21;(3)1500.18.尝试:3;发现:3-;应用:点A 表示的数为92-,点B 表示的数为132。
七年级数学上册第一单元《有理数》-解答题专项经典练习(培优练)(1)
一、解答题1.计算:(﹣1)2014+15×(﹣5)+8 解析:8【分析】先算乘方,再算乘法,最后算加法,由此顺序计算即可.【详解】原式=1+15×(﹣5)+8=1﹣1+8=8. 【点睛】此题考查有理数的混合运算,注意运算的顺序与符号的判定.2.计算:(1)412115(2)5⎡⎤⎛⎫----⨯-÷- ⎪⎢⎥⎝⎭⎣⎦(2)1111243812⎛⎫÷-+- ⎪⎝⎭(要求简便方法计算) 解析:(1)-21;(2)17-【分析】(1)先进行幂的运算,再算括号里面的,去括号应注意括号前的负号,再算加减. (2)除数和被除数同时乘24可得1111243812⎡⎤⎛⎫÷⨯-+- ⎪⎢⎥⎝⎭⎣⎦再算括号里的可得出答案. 【详解】解:(1)原式=﹣16﹣[-11+1]÷(-2)=﹣16-5=-21;(2)原式=1111243812⎡⎤⎛⎫÷⨯-+- ⎪⎢⎥⎝⎭⎣⎦ =[]1832÷-+-1(7)=÷- =17- 【点睛】本题考查的是有理数的加减、乘除以及乘方的运算,熟练掌握运算法则是解题的关键. 3.计算题:(1)()()121876---+-+;(2)()231513221428⎫⎛---⨯-+ ⎪⎝⎭; (3)2111(3)[]()63⨯--÷-. 解析:(1)29;(2)5-;(3)4【分析】(1)根据有理数的加减法即可解答本题;(2)根据有理数的乘方和乘法分配律即可解答本题;(3)根据有理数的乘方、有理数的乘除法和减法可以解答本题.【详解】解:(1)|-12|-(-18)+(-7)+6=12+18+(-7)+6=30+(-7)+6=23+6=29;(2)23151(32)(21)428---⨯-+ =3513132()428-+⨯-+ =35131323232428-+⨯-⨯+⨯ =-1+24-80+52=-5;(3)16×[1-(-3)2]÷(−13) =16×(1-9)×(-3) =16×(-8)×(-3) =4.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 4.如图,将一根木棒放在数轴(单位长度为1cm )上,木棒左端与数轴上的点A 重合,右端与数轴上的点B 重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B 时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A 时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为________cm ;(2)图中点A 所表示的数是_______,点B 所表示的数是_______;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?解析:(1)8;(2)14,22;(3)奶奶现在的年龄为67岁.【分析】(1)由观察数轴可知三根这样长的木棒的长度,即可求出这根木棒的长;(2)由所求出的这根木棒的长,结合图中的已知条件即可求得A 和B 所表示的数; (3)根据题意,设数轴上小木棒的A 端表示妙妙的年龄,小木棒的B 端表示奶奶的年龄,则小木棒的长表示二人的年龄差,由此参照(1)中的方法结合已知条件分析解答即可.【详解】(1)观察数轴可知三根这样长的木棒长为30624cm -=,则这根木棒的长为2438cm ÷=;(2)由这根木棒的长为8cm ,所以A 点表示为6+8=14,B 点表示为6+8+8=22;(3)借助数轴,把妙妙和奶奶的年龄差看做木棒AB ,奶奶像妙妙这样大时,可看做点B 移动到点A ,此时点A 向左移后所对应的数为37-,可知奶奶比妙妙大()11937352⎡⎤⎣÷⎦--=,则奶奶现在的年龄为1195267-=(岁). 【点睛】此题考查认识数轴及用数轴表示有理数和有理数的加减法,难度一般,读懂题干要求是关键.5.计算(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦解析:(1)-6;(2)52-【分析】(1)根据加法运算律计算即可;(2)先算括号里面,再算括号外面的即可;【详解】(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭, ()1140363177⎛⎫=-++-+ ⎪⎝⎭,42=--,=-6;(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦, 111923=--⨯⨯, 312=--, 52=-. 【点睛】本题主要考查了有理数的混合运算,准确应用加法运算律解题的关键.6.已知数轴上的点A ,B ,C ,D 所表示的数分别是a ,b ,c ,d ,且()()22141268+++=----a b c d .(1)求a ,b ,c ,d 的值; (2)点A ,C 沿数轴同时出发相向匀速运动,103秒后两点相遇,点A 的速度为每秒4个单位长度,求点C 的运动速度;(3)A ,C 两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,D 点以每秒1个单位长度的速度向数轴正方向开始运动,在t 秒时有2BD AC =,求t 的值;(4)A ,C 两点以(2)中的速度从起始位置同时出发相向匀速运动,当点A 运动到点C 起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点C 起始位置方向运动;当点C 运动到点A 起始位置时马上停止运动.当点C 停止运动时,点A 也停止运动.在此运动过程中,A ,C 两点相遇,求点A ,C 相遇时在数轴上对应的数(请直接写出答案).解析:(1)14a =-,12b =-,6c =,8d =;(2)点C 的运动速度为每秒2个单位;(3)4t =或20;(4)23-,223-,10-. 【分析】(1)根据平方数和绝对值的非负性计算即可;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==,即可得解; (3)根据题意分别表示出AC ,BD ,在进行分类讨论计算即可;(4)根据点A ,C 相遇的时间不同进行分类讨论并计算即可;【详解】(1)∵()()22141268+++=----a b c d ,∴()()221412+6+80+++--=a b c d , ∴14a =-,12b =-,6c =,8d =;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==, 解得:2x =,∴点C 的运动速度为每秒2个单位;(3)t 秒时,点A 数为144t -+,点B 数为-12,点C 数为62t +,点D 数为8t +,∴()62144202AC t t t =+--+=-,()81220BD t t =+--=+,∵2BD AC =, ∴①2020t -≥时,()2022202t t +=-,解得:4t =; ②20-2t <0时,即t >10,()202220t t +=-,解得:20t =; ∴4t =或20.(4)C 点运动到A 点所需时间为()614102s --=,所以A ,C 相遇时间10t ≤,由(2)得103t =时,A ,C 相遇点为102144-33-+⨯=,A 到C 再从C 返回到A ,用时()()()6146147.548s ----+=; ①第一次从点C 出发时,若与C 相遇,根据题意得()852t t ⨯-=,203t =<10,此时相遇数为20226233-⨯=-;②第二次与C 点相遇,得()()87.52614t t ⨯-+=--,解得8t =<10,此时相遇点为68210-⨯=-; ∴A ,C 相遇时对应的数为:23-,223-,10-. 【点睛】本题主要考查了数轴的动点问题,准确分析计算是解题的关键.7.计算(1))()()(2108243-+÷---⨯-;(2))()(22000112376⎡⎤--⨯--÷-⎥⎢⎦⎣. 解析:(1)20-;(2)116-. 【分析】(1)先计算有理数的乘方与乘法,再计算有理数的除法,然后计算有理数的加减法即可得;(2)先计算有理数的乘方,再计算有理数的加减乘除法即可得.【详解】(1)原式108412=-+÷-,10212=-+-,20=-;(2)原式())(112976=--⨯-÷-, ())(11776=--⨯-÷-, )(7176=-+÷-, 116=--, 116=-. 【点睛】本题考查了含乘方的有理数混合运算,熟练掌握有理数的运算法则是解题关键. 8.计算:(1)()()30122021π--+---;(2)()41151123618⎛⎫---+÷ ⎪⎝⎭. 解析:(1)18-;(2)-17.【分析】(1)原式第一项利用绝对值代数意义进行化简,第二项利用负整数指数幂的运算法则进行计算,第三项利用零指数幂的运算法则进行化简,最后进行加减运算即可得到答案;(2)原式先计算有理数的乘方,再把除法转化为乘法去括号进行乘法运算,最后进行加减运算即可得到答案.【详解】解:(1)()()30122021π--+--- =1118-- =18-;(2)()41151123618⎛⎫---+÷ ⎪⎝⎭=115118 236⎛⎫--+⨯⎪⎝⎭=115 118+1818 236-⨯⨯-⨯=1-9+6-15=-17.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.9.如图,在数轴上有三个点,,A B C,回答下列问题:(1)若将点B向右移动5个单位长度后,三个点所表示的数中最小的数是多少?(2)在数轴上找一点D,使点D到,A C两点的距离相等,写出点D表示的数;(3)在数轴上找出点E,使点E到点A的距离等于点E到点B的距离的2倍,写出点E 表示的数.解析:(1)1-(2)0.5(3)3-或7-【分析】(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点D是线段AC的中点;(3)在点B左侧找一点E,点E到点A的距离是到点B的距离的2倍,依此即可求解.【详解】解:(1)点B表示的数为-4+5=1,∵-1<1<2,∴三个点所表示的数最小的数是-1;(2)点D表示的数为(-1+2)÷2=1÷2=0.5;(3)点E在点B的左侧时,根据题意可知点B是AE的中点,AB=|-1+4|=3则点E表示的数是-4-3=-7.点E在点B的右侧时,即点E在AB上,则点E表示的数为-3.【点睛】本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键.10.小李坚持跑步锻炼身体,他以30分钟为基准,将连续七天的跑步时间(单位:分钟)记录如下:10,-8,12,-6,11,14,-3(超过30分钟的部分记为“+”,不足30分钟的部分记为“-”)(1)小李跑步时间最长的一天比最短的一天多跑几分钟?(2)若小李跑步的平均速度为每分钟0.1千米,请你计算这七天他共跑了多少千米?解析:(1)22分钟;(2)24千米.【分析】(1)时间差=标准差的最大值-标准差的最小值;(2)先计算出一周的总运动时间,利用路程,速度,时间的关系计算即可.【详解】(1)()14822--=(分钟).故小李跑步时间最长的一天比最短的一天多跑22分钟.(2)()30710812611143240⨯+-+-++-=(分钟),0.124024⨯=(千米).故这七天他共跑了24千米.【点睛】本题考查了有理数的混合运算,熟练运用标准差计算时间差,标准时间计算总时间是解题的关键.11.某农户家准备出售10袋大米,称得质量如下:(单位:千克)182,180,175,173,182,185,183,181,180,183(1)填空:以180千克作为基准数,可用正、负数表示这10袋大米的质量与180的差为 ;(2)试计算这10袋大米的总质量是多少千克?解析:(1)+2,0,−5,-7,+2,+5,+3,+1,0,+3;(2)1804千克【分析】(1)规定超出基准数为正数,则不足部分用负数表示,即可;(2)把第(1)题10个数相加,再加上180×10,即可.【详解】(1)以180千克为基准数,超过180千克的记作正数,低于180千克的记作负数,那么各袋大米的质量分别为:+2,0,−5,-7,+2,+5,+3,+1,0,+3,故答案是:+2,0,−5,-7,+2,+5,+3,+1,0,+3;(2)(+2+0−5-7+2+5+3+1+0+3)+ 180×10=1804(千克),答:这10袋大米的总质量是1804千克.【点睛】本题主要考查正负数的意义以及有理数的加减法的实际应用,熟练掌握有理数的加减法运算法则,是解题的关键.12.计算:(1)14-25+13(2)42111|23|()823---+-⨯÷ 解析:(1)2;(2)4【分析】 (1)根据有理数的加减运算,即可求出答案;(2)先计算乘方、绝对值、然后计算乘除,再计算加减运算,即可得到答案.【详解】解:(1)14251311132-+=-+=;(2)42111|23|()823---+-⨯÷=111834--+⨯⨯ =26-+=4.【点睛】本题考查了有理数的混合运算,解题的关键是掌握运算法则进行解题.13.计算(1)(-1)2019+0.25×(-2)3+4÷23 (2)21233()12323-÷+-⨯+解析:(1)3;(2)-2【分析】(1)先计算乘方,然后计算乘除,再计算加减运算,即可得到答案;(2)先计算乘方,然后计算乘除,再计算加减运算,即可得到答案;【详解】解:(1)原式=-1+0.25×(-8)+6=-1-2+6=3;(2)原式=12931212323-÷+⨯-⨯+ =-3+6-8+3=-2;【点睛】本题考查了有理数的加减乘除混合运算,解题的关键是熟练掌握运算法则,正确的进行计算.14.计算:(1)22123()0.8(5)35⎡⎤-⨯--÷-⎢⎥⎣⎦(2)5233(2)4()(12)1234⨯-+-+--⨯- 解析:(1)13;(2)10. 【分析】(1)依据有理数的混合运算的运算顺序和法则依次运算即可;(2)分别计算乘法、绝对值和后面用乘法分配律计算,再将结果相加、减.【详解】解:(1)原式=12790.8()95⎡⎤-⨯-÷-⎢⎥⎣⎦ =95()()527-⨯-=13; (2)原式=52364[(12)(12)(12)]1234-++⨯--⨯--⨯- =64(589)-++-++ =6412-++=10.【点睛】本题考查有理数的混合运算.解决此题的关键是正确把握运算顺序和每一步的运算法则.注意运算律的运用.15.设0a >,x ,y 为有理数,定义新运算:||a x a x =⨯※.如323|2|6=⨯=※,()414|1|a a -=⨯-※.(1)计算20210※和()20212-※的值. (2)若0y <,化简()23y -※.(3)请直接写出一组,,a x y 的具体值,说明()a x y a x a y +=+※※※不成立. 解析:(1)0;4042;(2)6y -;(3)1a =,2x =,3y =-(答案不唯一)【分析】(1)根据题意※表示前面的数与后面数的绝对值的积,直接代入数据求解计算;(2)有y<0,得到y 为负数,进而得到-3y 为正数,去绝对值后等于本身-3y ,再代入数据求解即可;(3)按照题意要求写一组具体的,,a x y 的值再验算即可.【详解】解:(1)根据题意得:202102021|0|0=⨯=※; ()202122021|2|4042-=⨯-=※;(2)因为0y <,所以30y ->,所以()()232|3|236y y y y -=⨯-=⨯-=-※;(3)由题意,当,,a x y 分别取1a =,2x =,3y =-时,此时()2311※※(-1)=1-=,而11※2※(-3)=2+3=5+,所以,()a x y a x a y +=+※※※不成立. 【点睛】本题是新定义题型,按照题目中给定的运算要求和顺序进行求解即可. 16.计算: (1)()11270.754⎛⎫--+-+ ⎪⎝⎭; (2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭; 解析:(1)6;(2)11. 【分析】(1)先变成省略括号和形式,同时把小数化分数,把分数相加,同号相加,最后异号相加即可;(2)先算乘方,去绝对值和带分数化假分数,再计算乘法,最后计算加减法即可. 【详解】 解:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭, =1312744+-+, =1217+-, =13-7, =6;(2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭, =()351124444⎛⎫++⨯--⨯- ⎪⎝⎭=11235++- =11. 【点睛】本题考查含有乘方的有理数混合,掌握有理数混合运算的法则,解答的关键是熟练掌握运算法则和运算顺序. 17.计算: (1)157(36)2612⎛⎫--⨯-⎪⎝⎭ (2)2138(2)3⎛⎫⨯-+÷- ⎪⎝⎭解析:(1)33;(2)1. 【分析】(1)根据乘法分配律可以解答本题;(1)根据有理数的乘方、有理数的乘除法和加减法可以解答本题. 【详解】解:(1)原式=157(36)(36)(36)2612⨯--⨯--⨯-= -18+30+21=33; (2)原式= -1+2=1. 【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化. 18.(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭;(2)431(2)2(3)----⨯-解析:(1)-29;(2)13. 【分析】(1)利用乘法分配律进行简便运算,即可得出结果; (2)先计算有理数的乘方与乘法,再进行加减运算即可. 【详解】解:(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭37(1242424)812=-⨯-⨯+⨯(24914)=--+29=-;(2)431(2)2(3)----⨯- 1(8)(6)=----- 186=-++13=.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序、运算法则及乘法运算律是解题的关键. 19.计算 (1)442293⎛⎫-÷⨯- ⎪⎝⎭2; (2)313242⎛⎫⨯⨯- ⎪⎝⎭3()32490.5234-⨯-÷+-. 解析:(1)16-;(2)34【分析】(1)按照有理数的四则运算进行运算即可求解;(2)按照有理数的四则运算法则进行运算即可,先算乘方,注意符号. 【详解】解:(1)原式944163616499=-⨯⨯=-⨯=-,(2)原式1139 24()(8)8444 =⨯--⨯-⨯+ 39324=-++34=,【点睛】本题考查有理数的加减乘除乘方运算法则,先算乘方,再算乘除,最后算加减,有括号先算括号内的,计算过程中细心即可.20.计算(1)2125824(3)3 -+-+÷-⨯(2)71113 ()24 61224-+-⨯解析:(1)113-;(2)-19【分析】(1)有理数的混合运算,先算乘方,然后算乘除,最后算加减,如果有小括号先算小括号里面的;(2)使用乘法分配律使得计算简便.【详解】解:(1)2125824(3)3 -+-+÷-⨯=11 4324()33 -++⨯-⨯=8 433 -+-=11 3 -(2)71113 ()24 61224-+-⨯=71113242424 61224-⨯+⨯-⨯=-28+22-13=-19【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.21.计算:2202013(1)(2)4(1)2-÷-⨯---+-.解析:33 【分析】有理数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的. 【详解】解:2202013(1)(2)4(1)2-÷-⨯---+-=1(2)4192-÷⨯--+ =192(2)4-⨯⨯--+=3641-+ =33. 【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 22.计算:(1)31113+(0.25)(4)3444---+-- (2)31(2)93--÷(3)1125100466()46311-⨯-⨯-⨯ 解析:(1)21;(2)-35;(3)-392 【分析】(1)有理数加减混合运算,从左到右以此计算,有小括号先算小括号里面的,可以使用加减交换律和结合律使得计算简便;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减; (3)有理数的混合运算,可以使用乘法分配律使得计算简便. 【详解】解:(1)31113+(0.25)(4)3444---+-- =311113+434444-+ =3111(13+4)(3)4444+-=183+ =21(2)31(2)93--÷ =893--⨯ =827-- =35-(3)1125100466()46311-⨯-⨯-⨯ =11101004664633⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=11101004466664633+-⨯-⨯-⨯⨯ =40011120+--- =392- 【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 23.计算:|﹣2|﹣32+(﹣4)×(12-)3 解析:162- 【分析】有理数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的. 【详解】解:|﹣2|﹣32+(﹣4)×(12-)3 =2﹣9+(﹣4)×(﹣18) =2+(﹣9)+12=162-. 【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 24.计算: (1)-8+14-9+20(2)-72-5×(-2) 3+10÷(1-2) 10 解析:(1)17;(2)1. 【分析】(1)原式利用加法结合律相加即可求出值;(2)原式先计算乘方运算,再计算乘除法运算,最后算加减运算即可求出值. 【详解】解:(1)814920--++()()=891420--++=17-+34=17(2)2310752+()(1012)--⨯-÷-()1=4958+10--⨯-÷=49+40+10-=1【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.25.某路公交车从起点经过A ,B ,C ,D 站到达终点,一路上下乘客如下表所示.(用正数表示上车的人数,负数表示下车的人数))到终点下车还有多少 人;(2)车行驶在____站至___ 站之间时,车上的乘客最多;(3)若每人乘坐一站需买票0.5元,问该车出车一次能收入多少钱?列式计算. 解析:(1)30;(2)B ,C ;(3)71.5元. 【分析】(1)根据正负数的意义,上车为正数,下车为负数,求出A 、B 、C 、D 站以及终点站的人数,即可得解;(2)根据(1)的计算解答即可;(3)根据各站之间的人数,乘票价0.5元,然后计算即可得解. 【详解】解:(1)根据题意可得:到终点前,车上有16+15-3+12-4+7-10+8-11=30,即30人; 故到终点下车还有30人. 故答案为:30;(2)根据图表:A 站人数为:16+15-3=28(人) B 站人数为:28+12-4=36(人) C 站人数为:36+7-10=33(人) D 站人数为:33+8-11=30(人) 易知B 和C 之间人数最多. 故答案为:B ;C ;(3)根据题意:(16+28+36+33+30)×0.5=71.5(元). 答:该出车一次能收入71.5元. 【点睛】本题考查了正数和负数,有理数的混合运算,读懂图表信息,求出各站点上的人数是解题的关键.26.在数轴上,一只蚂蚁从原点O 出发,它先向左爬了2个单位长度到达点A ,再向右爬了3个单位长度到达点B ,最后向左爬了9个单位长度到达点C . (1)写出A ,B ,C 三点表示的数;(2)根据点C 在数轴上的位置回答,蚂蚁实际上是从原点出发,向什么方向爬了几个单位长度?解析:(1)A ,B ,C 三点表示的数分别是-2,1,-8;(2)向左爬了8个单位. 【分析】(1)向左用减法,向右用加法,列式求解即可写出答案; (2)根据C 点表示的数,向右为正,向左为负,继而得出答案. 【详解】解:(1)A 点表示的数是0-2=-2, B 点表示的数是-2+3=1, C 点表示的数是1-9=-8;(2)∵O 点表示的数是0;C 点表示的数是-8, ∴蚂蚁实际上是从原点出发,向左爬了8个单位. 【点睛】本题考查了数轴的知识及有理数的加减法的应用,属于基础题,比较简单,理解向左用减法,向右用加法,是关键.27.(1)()()()()413597--++---+; (2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭. 解析:(1)-6;(2)715. 【分析】(1)原式根据有理数的加减法法则进行计算即可得到答案; (2)原式把除法转换为乘法,再进行乘法运算即可得到答案. 【详解】解:(1)()()()()413597--++---+ =-4-13-5+9+7 =-22+9+7 =-13+7 =-6;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭ =174435⨯⨯ =715. 【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.28.小明早晨跑步,他从自己家出发,向东跑了2km 到达小彬家,继续向东跑了1.5km 到达小红家,然后又向西跑了4.5km 到达学校,最后又向东跑回到自己家.(1)以小明家为原点,以向东为正方向,用1个单位长度表示1km ,在图中的数轴上,分别用点A 表示出小彬家,用点B 表示出小红家,用点C 表示出学校的位置;(2)求小红家与学校之间的距离;(3)如果小明跑步的速度是250m/min ,那么小明跑步一共用了多长时间? 解析:(1)见解析;(2)4.5km ;(3)36分钟 【分析】(1)根据题意在数轴上标出小彬家和小红家,再标出学校即可; (2)根据数轴上两点距离的计算方法计算即可得出答案;(3)先计算小明总共跑的路程,先向东跑了3.5km ,再向西跑了4.5km ,再向东跑了1km ,用总路程除以跑步速度即可得出答案. 【详解】解:(1)如图所示:(2)3.5(1) 4.5()km --=, 故小红家与学校之间的距离是4.5km ; (3)小明一共跑了(2 1.51)29()km ++⨯=, 跑步用的时间是:900025036÷=(分钟). 答:小明跑步一共用了36分钟. 【点睛】本题主要考查了数轴上两点间的距离,根据题意列式计算式解决本题的关键. 29.体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“-”表示成绩小于14秒. -1.2+0.7-1-0.3+0.20.3+0.5解析:9秒.【分析】根据平均成绩的计算方法,先列式计算表格中所有数据的平均数,再加上标准成绩即可得出结果.【详解】解:1.20.7010.30.20.30.50.18-++--+++=-(秒)140.113.9-=(秒).答:这个小组8名男生的平均成绩是13.9秒.【点睛】此题考查了有理数的混合运算的实际应用,正确理解题目中正数和负数的含义是列式计算的关键.30.计算:-32+2×(-1)3-(-9)÷2 1 3⎛⎫ ⎪⎝⎭解析:70【分析】先计算乘方,然后计算乘除,再计算加减,即可得到答案.【详解】解:原式=92(1)(9)9-+⨯---⨯=9281--+=70.【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算法则进行解题.。
【精选】有理数(培优篇)(Word版 含解析)
一、初一数学有理数解答题压轴题精选(难)1.点A、B在数轴上表示的数如图所示,动点P从点A出发,沿数轴向右以每秒1个单位长度的速度向点B运动到点B停止运动;同时,动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动设点P运动的时间为t秒,P、Q两点的距离为d(d≥0)个单位长度.(1)当t=1时,d=________;(2)当P、Q两点中有一个点恰好运动到线段AB的中点时,求d的值;(3)当点P运动到线段AB的3等分点时,直接写出d的值;(4)当d=5时,直接写出t的值.【答案】(1)3(2)解:线段AB的中点表示的数是:=1.①如果P点恰好运动到线段AB的中点,那么AP=AB=3,t==3,BQ=2×3=6,即Q运动到A点,此时d=PQ=PA=3;②如果Q点恰好运动到线段AB的中点,那么BQ=AB=3,t=,AP=1× =,则d=PQ=AB﹣AP﹣BQ=6﹣﹣3=.故d的值为3或(3)解:当点P运动到线段AB的3等分点时,分两种情况:①如果AP=AB=2,那么t==2,此时BQ=2×2=4,P、Q重合于原点,则d=PQ=0;②如果AP=AB=4,那么t==4,∵动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动,∴此时BQ=6,即Q运动到A点,∴d=PQ=AP=4.故所求d的值为0或4(4)解:当d=5时,分两种情况:①P与Q相遇之前,∵PQ=AB﹣AP﹣BQ,∴6﹣t﹣2t=5,解得t=;②P与Q相遇之后,∵P点运动到线段AB的中点时,t=3,此时Q运动到A点,停止运动,∴d=AP=t=5.故所求t的值为或5.【解析】【分析】(1)当t=1时,求出AP=1,BQ=2,根据PQ=AB﹣AP﹣BQ即可求解;(2)分①P点恰好运动到线段AB的中点;②Q点恰好运动到线段AB的中点两种情况进行讨论;(3)当点P运动到线段AB的3等分点时,分①AP=AB;②AP=AB两种情况进行讨论;(4)当d=5时,分①P与Q相遇之前;②P与Q相遇之后两种情况进行讨论.2.如图,数轴上点A,B分别对应数a,b.其中a<0,b>0.(1)当a=﹣2,b=6时,线段AB的中点对应的数是________;(直接填结果)(2)若该数轴上另有一点M对应着数m.①当m=2,b>2,且AM=2BM时,求代数式a+2b+20的值;②当a=﹣2,且AM=3BM时,小安演算发现代数式3b﹣4m是一个定值.老师点评:你的演算发现还不完整!请通过演算解释:为什么“小安的演算发现”是不完整的?【答案】(1)2(2)解:①当m=2,b>2时,点M在点A,B之间,∵AM=2BM,∴m﹣a=2(b﹣m),∴2﹣a=2(b﹣2),∴a+2b=6,∴a+2b+20=6+20=26;②小安只考虑了一种情况,故老师点评“小安的演算发现”是不完整的.当点M在点A,B之间时,a=﹣2,∵AM=3BM,∴m+2=3(b﹣m),∴m+2=3b﹣3m,∴3b﹣4m=2,∴代数式3b﹣4m是一个定值.当点M在点B右侧时,∵AM=3BM,∴m+2=3(m﹣b),∴m+2=3m﹣3b,∴2m﹣3b=2,∴代数式2m﹣3b也是一个定值.【解析】【解答】解:(1)由题意得出,线段AB的中点对应的数是2,故答案为:2.【分析】(1)首先根据数轴的性质,即可得出中点对应的数值;(2)①首先判定点M 在点A,B之间,然后根据等式列出关系式,即可得解;②根据题意,分两种情况进行求解:点M在点A,B之间和点M在点B右侧时,通过列出等式,即可判定.3.同学们都知道,|3-(-1)∣表示3与-1的差的绝对值,其结果为4,实际上也可以理解为3与-1两数在数轴上所对应的两点之间的距离,其距离同样是4;同理,∣x-5|也可以理解为x与5两数在数轴上所应的两点之间的距离,试利用数轴探索:(1)试用“| |”符号表示:4与-2在数轴上对应的两点之间的距离,并求出其结果;(2)若|x-2|=4,求x的值;(3)同理,|x-3|+|x+2|表示数轴上有理数x所对应的点到3和-2所对应的两点距离之和,请你直接写出所有符合条件的整数x,使得|x-3|+|x+2|=5;试求代数式|x-3|+|x+2|的最小值.【答案】(1)解:|4-(-2)|=6(2)解:x与2的距离是4,在数轴上可以找到x=-2或6(3)解:当-2≤x≤3时,x所对应的点到3和-2所对应的两点距离之和是5,∴符合条件的整数x=-2,-1,0,1,2,3;当x<-2或x>3时,x所对应的点到3和-2所对应的两点距离之和大于5,∴|x-3|+|x+2|的最小值是5【解析】【分析】(1)根据已知列式求解即可;(2)按照已知去绝对值符号即可求解.(3)当-2≤x≤3时,x所对应的点到3和-2所对应的两点距离之和是5;当x<-2或x>3时,x所对应的点到3和-2所对应的两点距离之和大于5,由此即可得出结论.4.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是________;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是________;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O 不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值. 【答案】(1)-4(2)0(3)解:① 当点O是线段AB的中点时,OB=OA4-3t=2+tt=0.5② 当点B是线段OA的中点时, OA = 2 OB2+t=2(3t-4)t=2③ 当点A是线段OB的中点时, OB = 2 OA3t--4=2(2+t)t=8综上所述,符合条件的t的值是0.5,2或8.【解析】【解答】(1)点B表示的数是-4;(2)2秒后点B表示的数是 0 ;【分析】(1)根据数轴上所表示的数的特点即可直接得出答案;(2)用点B开始所表示的数+点B运动的路程=经过t秒后点B表示的数,即可得出结论;(3)找出t秒后点A、B表示的数,分①点O为线段AB的中点,②当点B是线段OA的中点,③点A是线段OB的中点,根据线段中点的数学语言列出方程,求解即可求出此时的t值,综上即可得出结论。
(必考题)七年级数学上册第一单元《有理数》-解答题专项经典习题(培优练)
一、解答题1.计算:(1)()()674-+--;(2)()3232--⨯. 解析:(1)17-;(2)14【分析】(1)根据有理数的加减法即可求出值;(2)原式先计算乘方,再计算乘法运算,最后算加减运算即可求出值;【详解】解:(1)原式134=-17=-(2)原式()86=--14=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.计算:(1)5721()()129336--÷- (2)22115()(3)(12)23-+÷-⨯---⨯ 解析:(1)37;(2)50.【分析】(1)先把除法转化为乘法,然后根据乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】 (1)原式=572()(36)152824371293--⨯-=-++=. (2)原式=15(3)(3)(14)2145650-+⨯-⨯---⨯=-++=. 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 3.把下列各数表示在数轴上,再按从大到小的顺序用大于号把这些数连接起来. |3|-,5-,12,0, 2.5-,22-,(1)--. 解析:见解析,|-3|>-(-1)>12>0>-2.5>-22>-5. 【分析】先在数轴上表示出各数,从右到左用“>”连接起来即可.【详解】解:|3|=3-;224=--,(1)=1--如图所示,,由图可知,|-3|>-(-1)>12>0>-2.5>-22>-5. 【点睛】 本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键. 4.计算 ①()115112236⎛⎫--+--- ⎪⎝⎭ ②()32112114132⎛⎫⎛⎫-÷-⨯--- ⎪ ⎪⎝⎭⎝⎭③524312(4)()12(152)2-÷-⨯-⨯-+④()()213132123242834⎛⎫⎛⎫-÷--+-⨯- ⎪ ⎪⎝⎭⎝⎭ ⑤222019111()22(1)2⎡⎤---÷--⨯-÷-⎢⎥⎣⎦ 解析:①-2;②458-;③-10;④-9;⑤-13. 【分析】 ①先去括号和绝对值,在进行加减运算即可.②先运算乘方,去括号,再将除法改为乘法,最后进行混合运算即可.③先运算乘方,再去括号,最后进行混合运算即可.④先运算乘方,利用乘法分配律去括号,再将除法改为乘法,最后进行混合运算即可. ⑤先运算乘方,再将除法改为乘法,再去括号,去绝对值,最后进行混合运算即可.【详解】①原式14171236=+-- 386176666=+-- 2=-. ②原式3274()(3)()48=-⨯-⨯--- 2798=-+ 458=-.③原式3132(4)12(1516)4=-÷-⨯-⨯-+ 181214=⨯-⨯ 10=-.④原式()()()()1171542242424834=⨯--⨯--⨯-+⨯- 8335690=-++-9=-.⑤原式11(12)2(1)4=---÷-⨯÷- 1(142)2=-+-⨯-⨯1(6)2=-+-⨯112=--13=-.【点睛】本题考查有理数的混合运算,掌握有理数混合运算的顺序是解答本题的关键.5.计算(1)28()5(0.4)5+----;(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭; (3)2336()(2)()(6)575⨯---⨯-+-⨯; (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦; (5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦. 解析:(1)3;(2)3;(3)667-;(4)3-;(5)315.4【分析】 (1)先把运算统一为省略加号的和的形式,再利用加法的运算律,把互为相反数的两数先加,从而可得答案;(2)先把除法转化为乘法,再利用乘法的分配律把运算化为:()()()1573636363612-⨯-+⨯--⨯-,再计算乘法运算,最后计算加减运算即可得到答案;(3)把原式化为:()233662557-⨯+-⨯-⨯,逆用乘法的分配律,同步进行乘法运算,最后计算减法即可得到答案; (4)先计算小括号内的运算与乘方运算,再计算中括号内的运算,再计算乘法运算,最后计算加减运算即可得到答案;(5)先计算乘方运算,同步把除法转化为乘法,再计算小括号内的减法运算,同步进行乘法运算,最后计算加法运算即可得到答案.【详解】解:(1)28()5(0.4)5+---- 2850.45=--+ 3.=(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ ()157363612⎛⎫=-+-⨯- ⎪⎝⎭()()()1573636363612=-⨯-+⨯--⨯- 123021=-+3.=(3)2336()(2)()(6)575⨯---⨯-+-⨯ ()233662557=-⨯+-⨯-⨯ 2366557⎛⎫=-⨯+- ⎪⎝⎭ 667=-- 667=- (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦()()1132212⎡⎤⎛⎫=---+-⨯--- ⎪⎢⎥⎝⎭⎣⎦ ()313212⎛⎫=---+⨯-+ ⎪⎝⎭()31212⎛⎫=---⨯-+ ⎪⎝⎭131=--+3.=-(5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦ ()()1=2.5101632100⨯-⨯-- ()1164=--- 1164=-+ 315.4= 【点睛】本题考查的是含乘方的有理数的混合运算,乘法分配律的应用,掌握运算法则与运算顺序是解题的关键.6.表格记录的是龙岗区图书馆上周借书情况:(规定:超过200册记为正,少于200册记为负).(1)上星期五借出多少册书?(2)上星期四比上星期三多借出几册?(3)上周平均每天借出几册?解析:(1)188册;(2)25册;(3)202册【分析】(1)由题意可知,周五借出的册数少于200册,即可解答.(2)根据正负数的定义分别求出周三、周四的册数,再解答即可.(3)将5天的册数分别求出,再求平均数即可.【详解】解:(1)200-12=188册.(2)(200+8)-(200-17)=208-183=25册.(3)[(200+21)+(200+10)+(200-17)+(200+8)+(200-12)]÷5=202册. 答:上星期五借出188册书,上星期四比上星期三多借出25册,上周平均每天借出202册.【点睛】主要考查正负数在实际生活中的应用,有理数加减乘除混合运算的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.7.给出四个数:3,4--,2,6,计算“24点”,请列出四个符合要求的不同算式.(可运用加、减、乘、除、乘方运算,可用括号;注意:例如4(123)24⨯++=与(213)424++⨯=只是顺序不同,属同一个算式.)算式1:_________________;算式2_______________;算式3:_________________;算式4_______________;解析:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【分析】由241212,=+ 可得()342624,-⨯-+⨯=由()2438=-⨯-,可得()()342624,-⨯-+-=由()24124,=-⨯- 可得()()643224,⨯-⨯-+=由()2446=-⨯-,可得()()()()43624624-⨯--÷=-⨯-=,从而可得答案.【详解】解:算式1:()()3426121224,-⨯-+⨯=+=算式2:()()()()34263824,-⨯-+-=-⨯-=算式3:()()()()643224124,⨯-⨯-+=-⨯-=算式4:()()()()()()43624334624,-⨯--÷=-⨯--=-⨯-=故答案为:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法,注意本题答案不唯一,这是一道开放性的题目,同时考查了学生的逆向思维.8.计算:(1)412115(2)5⎡⎤⎛⎫----⨯-÷- ⎪⎢⎥⎝⎭⎣⎦(2)1111243812⎛⎫÷-+- ⎪⎝⎭(要求简便方法计算) 解析:(1)-21;(2)17-【分析】 (1)先进行幂的运算,再算括号里面的,去括号应注意括号前的负号,再算加减.(2)除数和被除数同时乘24可得1111243812⎡⎤⎛⎫÷⨯-+- ⎪⎢⎥⎝⎭⎣⎦再算括号里的可得出答案. 【详解】解:(1)原式=﹣16﹣[-11+1]÷(-2)=﹣16-5=-21;(2)原式=1111243812⎡⎤⎛⎫÷⨯-+- ⎪⎢⎥⎝⎭⎣⎦=[]1832÷-+-1(7)=÷- =17- 【点睛】本题考查的是有理数的加减、乘除以及乘方的运算,熟练掌握运算法则是解题的关键. 9.计算:(1)231+-+;(2)()3202111024⎡⎤-⨯+-÷⎣⎦. 解析:(1)6;(2)12-【分析】 (1)先化简绝对值,再算加法即可求解;(2)先算乘方,再算括号里面的,最后算乘除即可.【详解】(1)原式=2+3+1=6;(2)原式=1(108)4-⨯-÷=124-⨯÷=1124-⨯⨯=12- 【点睛】此题考查有理数的混合运算,掌握运算顺序和运算法则是解答此题的关键.10.计算下列各式的值:(1)1243 3.55-+- (2)131(48)64⎛⎫-+⨯- ⎪⎝⎭(3)22350(5)1--÷--解析:(1)-24.3;(2)-76;(3)-12【分析】(1)先将减法化为加法,再计算加法即可;(2)利用乘法分配律计算即可;(3)先计算乘方,再计算除法,最后计算减法.【详解】解:(1)原式=24 3.2( 3.5)-++-=-24.3;(2)原式=131(48)(48)(48)64⨯--⨯-+⨯-=488(36)-++-=-76;(3)原式=950251--÷-=921---=9(2)(1)-+-+-=-12.【点睛】本题考查有理数的混合运算.熟记运算顺序和每一步的运算法则是解题关键.11.某儿童自行车厂计划一周生产儿童自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天的生产量与计划每天的生产量有出入.实际情况如下表(超产记为正,减产记为负)(2)这周生产量最多的一天比生产量最少的一天多生产多少辆?(3)该厂实行每周计件工资制,每生产一辆可得50元,若超额完成任务,则超出部分每辆另奖12元;少生产一辆扣20元,那么该工厂这周的工资总额是多少元?解析:(1)该厂本周实际生产自行车1409辆;(2)产量最多的一天比产量最少的一天多生产自行车26辆;(3)该厂工人这一周工资总额是70558元.【分析】(1)根据每天的增减量,依次相加,可得答案;(2)根据每天的增减量,用最多的一天减去最少的一天即可;(3)该厂一周工资=实际自行车产量×50+超额自行车产量×12.【详解】解:(1)1400+5-2-4+13-10+16-9=1409(辆),答:该厂本周实际生产自行车1409辆;(2)16-(-10)=26(辆),答:产量最多的一天比产量最少的一天多生产自行车26辆;(3)50×1409+12×9=70558.答:该厂工人这一周工资总额是70558元.【点睛】本题考查有理数加、减运算的应用,用正数和负数表示.明白“+”是比计划多、“-”是比计划少是解题的关键.12.计算:329(1)4(2)34⎛⎫--÷-+-⨯ ⎪⎝⎭. 解析:12-. 【分析】 根据有理数的四则混合运算顺序:“先算乘方,再算乘除,然后算加减”进行计算即可.【详解】 原式311222⎛⎫=-++-=- ⎪⎝⎭. 【点睛】本题考查了有理数的混合运算,掌握运算法则是解题的关键.13.计算:(1)()213433⎛⎫---+-+ ⎪⎝⎭; (2)()()202011232---+-+. 解析:(1)-6;(2)132- 【分析】(1)先化为省略括号的形式,将整数及分数分别相加,再计算加法;(2)先计算乘方,同时计算绝对值及去括号,再计算加减法.【详解】(1)解:原式=213433-+-+ ()213433⎛⎫=--++ ⎪⎝⎭71=-+6=-;(2)解:原式=11232--+ =142- =132-.【点睛】此题考查有理数的混合运算,掌握有理数加减混合运算法则及有理数乘方运算法则是解题的关键.14.某粮仓原有大米132吨,某一周该粮仓大米的进出情况如下表:(运进大米记作“+”,运出大米记作“-”,例如:当天运进大米8吨,记作8+吨;当天运出大米15吨,记作15-吨)若经过这一周,该粮仓存有大米88吨.(1)求星期五粮仓大米的进出情况;(2)若大米进出粮仓的装卸费用为每吨15元,求这一周该粮仓需要支付的装卸总费用. 解析:(1)星期五粮仓当天运出大米20吨;(2)2700元.【分析】(1)根据有理数的加法,可得答案; (2)根据单位费用乘以总量,可得答案.【详解】(1)m =88﹣(132﹣32+26﹣23﹣16+42﹣21)=﹣20,∴星期五粮仓当天运出大米20吨;(2)(|﹣32|+|+26|+|﹣23|+|﹣16|+|﹣20|+|+42|+|﹣21|)×15=2700(元),答:这一周该粮仓需要支付的装卸总费用为2700元.【点睛】本题考查了用正负数表示相反意义的量及有理数加减法的应用,第(2)问利用单位费用乘以总量是解题关键.15.计算:(1)()222112136⎡⎤⎛⎫⎛⎫-+---÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(2)131121346⎛⎫-⨯-+ ⎪⎝⎭解析:(1)1;(2)9-【分析】(1)先算括号里面的,再算括号外面的即可;(2)根据乘法分配律计算即可;【详解】(1)()222112136⎡⎤⎛⎫⎛⎫-+---÷-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 11463⎡⎤=-+-⨯⎢⎥⎣⎦,121=-+=;(2)131121346⎛⎫-⨯-+ ⎪⎝⎭, ()()()431121212346=-⨯--⨯+-⨯, 16929=-+-=-; 【点睛】 本题主要考查了有理数的混合运算,准确计算是解题的关键.16.体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“-”表示成绩小于14秒.解析:9秒. 【分析】根据平均成绩的计算方法,先列式计算表格中所有数据的平均数,再加上标准成绩即可得出结果. 【详解】 解:1.20.7010.30.20.30.50.18-++--+++=-(秒)140.113.9-=(秒).答:这个小组8名男生的平均成绩是13.9秒. 【点睛】此题考查了有理数的混合运算的实际应用,正确理解题目中正数和负数的含义是列式计算的关键.17.赣州享有“世界橙乡”的美誉,中华名果赣南脐橙热销世界各地.刚大学毕业的小明把自家的脐橙产品放到了网上售卖,他原计划每天卖100kg 脐橙,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:kg ).)根据记录的数据可知前三天共卖出 (2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售 kg ;(3)若脐橙按4.5元/kg出售,且小明需为买家支付运费(平均0.5元/kg),则小明本周一共赚了多少元?解析:(1)296;(2)29;(3)2868元【分析】(1)将前三天的销售量相加即可;(2)根据表格销量最多的一天为周六,最少的一天为周五,用周六的销量减去周五的销量即可得到答案;(3)先计算出本周的总销量,再乘以每千克的利润即可.【详解】(1)4-3-5+300=296(kg),故答案为:296;(2)(+21)-(-8)=29(kg),故答案为:29;(3)4-3-5+14-8+21-6=17(kg),17+100×7=717(kg),717×(4.5-0.5)=2868(元),小明本周一共赚了2868元.【点睛】此题考查正负数的实际应用,有理数混合运算的实际应用,正确理解表格意义列式计算是解题的关键.18.计算(1)(-1)2019+0.25×(-2)3+4÷2 3(2)21233()12323-÷+-⨯+解析:(1)3;(2)-2【分析】(1)先计算乘方,然后计算乘除,再计算加减运算,即可得到答案;(2)先计算乘方,然后计算乘除,再计算加减运算,即可得到答案;【详解】解:(1)原式=-1+0.25×(-8)+6=-1-2+6=3;(2)原式=12 931212323-÷+⨯-⨯+=-3+6-8+3=-2;【点睛】本题考查了有理数的加减乘除混合运算,解题的关键是熟练掌握运算法则,正确的进行计算.19.计算:-32+2×(-1)3-(-9)÷213⎛⎫⎪⎝⎭解析:70 【分析】先计算乘方,然后计算乘除,再计算加减,即可得到答案. 【详解】解:原式=92(1)(9)9-+⨯---⨯ =9281--+ =70. 【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算法则进行解题. 20.阅读下面材料:在数轴上6与1-所对的两点之间的距离:6(1)7--=; 在数轴上2-与3所对的两点之间的距离:235--=; 在数轴上8-与4-所对的两点之间的距离:(8)(4)4---=;在数轴上点A 、B 分别表示数a 、b ,则A 、B 两点之间的距离AB a b b a =-=-. 回答下列问题:(1)数轴上表示2-和5-的两点之间的距离是_______; 数轴上表示数x 和3的两点之间的距离表示为_______; 数轴上表示数_______和_______的两点之间的距离表示为2x +;(2)七年级研究性学习小组在数学老师指导下,对式子23x x ++-进行探究: ①请你在草稿纸上画出数轴,当表示数x 的点在2-与3之间移动时,32x x -++的值总是一个固定的值为:_______.②请你在草稿纸上画出数轴,要使327x x -++=,数轴上表示点的数x =_______.解析:(1)3;|x−3|;x ,-2;(2)5;−3或4. 【分析】(1)根据题意找出数轴上任意点间的距离的计算公式,然后进行计算即可; (2)①先化简绝对值,然后合并同类项即可;②分为x >3和x <−2两种情况讨论. 【详解】解:(1)数轴上表示−2和−5的两点之间的距离为:|−2−(−5)|=3; 数轴上表示数x 和3的两点之间的距离为:|x−3|;数轴上表示数x 和−2的两点之间的距离表示为:|x +2|; 故答案为:3,|x−3|,x ,-2;(2)①当x 在-2和3之间移动时,|x +2|+|x−3|=x +2+3−x=5; ②当x >3时,x−3+x +2=7, 解得:x=4,当x <−2时,3−x−x−2=7. 解得x=−3, ∴x=−3或x=4. 故答案为:5;−3或4. 【点睛】本题主要考查的是绝对值的定义和化简,根据题意找出数轴上任意两点之间的距离公式是解题的关键.21.定义:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷等.类比有理数的乘方,我们把222÷÷记作32,读作“2的下3次方”,一般地,把n 个(0)a a ≠相除记作n a ,读作“a 的下n 次方”.理解:(1)直接写出计算结果:32=_______.(2)关于除方,下列说法正确的有_______(把正确的序号都填上); ①21a =(0)a ≠;②对于任何正整数n ,11n =; ③433=4;④负数的下奇数次方结果是负数,负数的下偶数次方结果是正数. 应用:(3)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?例如:241111222222()2222=÷÷÷=⨯⨯⨯=(幂的形式)试一试:将下列除方运算直接写成幂的形式:65=_______;91()2-=________;(4)计算:3341()(2)2(8)24-÷--+-⨯-. 解析:(1)12;(2)①②④;(3)41()5,7(2)-;(4)26-. 【分析】(1)根据a n 表示“a 的下n 次方”的意义进行计算即可; (2)根据a n 表示“a 的下n 次方”的意义计算判断即可;(3)根据a n 表示“a 的下n 次方”的意义,表示出56,91()2-=7(2)-,进而得出答案;(4)按照有理数的运算法则进行计算即可. 【详解】(1)23=2÷2÷2=2×12×12=12, 故答案为:12; (2)当a≠0时,a 2=a÷a =1,因此①正确;对于任何正整数n ,1n =1÷1÷1÷…÷1=1,因此②正确;因为34=3÷3÷3÷3=19,而43=4÷4÷4=14,因此③不正确; 根据有理数除法的法则可得,④正确; 故答案为:①②④;(3)56=5÷5÷5÷5÷5÷5=5×15×15×15×15×15=(15)4, 同理可得,91()2-==(−2)7, 故答案为:(15)4,(−2)7; (4)3341()(2)2(8)24-÷--+-⨯-=16×(-18)-8+(-8)×2 =-2-8-16 =−26. 【点睛】本题考查有理数的混合运算,理解“a n ,表示a 的下n 次方”的意义是正确计算的前提. 22.计算:(﹣1)2014+15×(﹣5)+8 解析:8 【分析】先算乘方,再算乘法,最后算加法,由此顺序计算即可. 【详解】 原式=1+15×(﹣5)+8=1﹣1+8=8. 【点睛】此题考查有理数的混合运算,注意运算的顺序与符号的判定.23.某粮库6天内粮食进、出库的吨数如下(“+”表示进库,“-”表示出库) +25,-22,-14,+35,-38,-20(1)经过这6天,仓库里的粮食是增加了还是减少了?)(2)经过这6天,仓库管理员结算时发现库里还存280吨粮,那么6天前仓库里存粮多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少装卸费? 解析:(1)减少了34吨;(2)314吨;(3)770元 【分析】(1)求出6天的数据的和即可判断; (2)根据(1)中结果计算即可; (3)求出数据的绝对值的和,再乘5即可; 【详解】解:(1)25−22−14+35−38−20=−34<0, 答:经过6天,粮库里的粮食减少了34吨; (2)280+34=314(吨), 答:6天前粮库里的存量314吨;(3)(25+22+14+35+38+20)×5=770(元), 答:这6天要付出770元装卸费. 【点睛】本题考查有理数混合运算的实际应用,正确理解题意,列出算式是解题的关键. 24.计算:(1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦(2)6÷(-2)3-|-22×3|+3÷2×12+1; 解析:(1)23-;(2)-11 【分析】(1)先计算乘方及括号,再计算乘法,最后计算加减法; (2)先计算乘方和绝对值,再计算乘除法,最后计算加减法. 【详解】(1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦=111(2)23--⨯⨯- =113-+ =23-; (2)6÷(-2)3-|-22×3|+3÷2×12+1=116(8)123122÷--+⨯⨯+=33121 44--++=-11.【点睛】此题考查含乘方的有理数的混合运算,掌握运算顺序及运算法则是解题的关键.25.将n个互不相同的整数置于一排,构成一个数组.在这n个数字前任意添加“+”或“-”号,可以得到一个算式.若运算结果可以为0,我们就将这个数组称为“运算平衡”数组.(1)数组1,2,3,4是否是“运算平衡”数组?若是,请在以下数组中填上相应的符号,并完成运算;1 2 3 4 =(2)若数组1,4,6,m是“运算平衡”数组,则m的值可以是多少?(3)若某“运算平衡”数组中共含有n个整数,则这n个整数需要具备什么样的规律?解析:(1)是,+1-2-3+4=0;(2)m=±1,±3,±9,±11;(3)这n个整数互不相同,在这n个数字前任意添加“+”或“-”号后运算结果为0.【分析】(1)根据“运算平衡”数组的定义即可求解;(2)根据“运算平衡”数组的定义得到关于m的方程,解方程即可;(3)根据“运算平衡”数组的定义可以得到n个数的规律.【详解】解:(1)数组1,2,3,4是“运算平衡”数组,+1-2-3+4=0;(2)要使数组1,4,6,m是“运算平衡”数组,有以下情况:1+4+6+m=0;-1+4+6+m=0;1-4+6+m=0;1+4-6+m=0;1+4+6-m=0;-1-4+6+m=0;-1+4-6+m=0;-1+4+6-m=0;1-4-6+m=0;1-4+6-m=0;1+4-6-m=0;-1-4-6+m=0;-1-4+6-m=0,-1+4-6-m=0,1-4-6-m=0;-1-4-6-m=0;共16中情况,经计算得m=±1,±3,±9,±11;(3)这n个整数互不相同,在这n个数字前任意添加“+”或“-”号后运算结果为0.【点睛】本题考查了新定义问题,理解“运算平衡”数组的定义是解题关键.26.计算:(1)311 13+(0.25)(4)3 444 ---+--(2)31(2)93 --÷(3)1125 100466() 46311 -⨯-⨯-⨯解析:(1)21;(2)-35;(3)-392【分析】(1)有理数加减混合运算,从左到右以此计算,有小括号先算小括号里面的,可以使用加减交换律和结合律使得计算简便;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减; (3)有理数的混合运算,可以使用乘法分配律使得计算简便. 【详解】 解:(1)31113+(0.25)(4)3444---+-- =311113+434444-+ =3111(13+4)(3)4444+-=183+ =21(2)31(2)93--÷=893--⨯ =827-- =35-(3)1125100466()46311-⨯-⨯-⨯ =11101004664633⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=11101004466664633+-⨯-⨯-⨯⨯ =40011120+--- =392- 【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 27.计算下列各题: (1)(14﹣13﹣1)×(﹣12); (2)(﹣2)3+(﹣3)×[(﹣4)2﹣6]. 解析:(1)13;(2)-38 【分析】(1)根据乘法分配律可以解答本题;(2)根据有理数的乘方、有理数的乘法和加减法可以解答本题. 【详解】 解:(1)(14﹣13﹣1)×(﹣12)=14×(﹣12)﹣13×(﹣12)﹣1×(﹣12) =(﹣3)+4+12 =13;(2)(﹣2)3+(﹣3)×[(﹣4)2﹣6] =(﹣8)+(﹣3)×(16﹣6) =(﹣8)+(﹣3)×10 =(﹣8)+(﹣30) =﹣38. 【点睛】本题考查有理数的混合计算,掌握有理数混合运算的顺序,会利用简便运算简化运算是解题关键.28.(1)()()()()413597--++---+; (2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭. 解析:(1)-6;(2)715. 【分析】(1)原式根据有理数的加减法法则进行计算即可得到答案; (2)原式把除法转换为乘法,再进行乘法运算即可得到答案. 【详解】解:(1)()()()()413597--++---+ =-4-13-5+9+7 =-22+9+7 =-13+7 =-6;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭ =174435⨯⨯ =715. 【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.29.阅读下列材料:(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,即当0x <时,1x x x x ==--.用这个结论可以解决下面问题:(1)已知a ,b 是有理数,当0ab ≠时,求a ba b+的值; (2)已知a ,b ,c 是有理数,0a b c ++=,0abc <,求b c a c a ba b c+++++的值. 解析:(1)2或2-或0;(2)-1. 【分析】(1)分三种情况讨论,①0,0a b >>,②0,0a b <<,③0ab <,分别根据题意化简即可;(2)由0a b c ++=整理出,,a b c b c a a c b +=-+=-+=-,判断a b c ,,中有两正一负,再整体代入,结合题意计算即可. 【详解】 (1)0ab ≠∴①0,0a b >>,==1+1=2a b a ba b a b++;②0,0a b <<,==11=2a b a ba b a b+-----; ③0ab <,=1+1=0a ba b+-, 综上所述,当0ab ≠时,a ba b+的值为:2或2-或0; (2)0a b c ++=,0abc <,,a b c b c a a c b ∴+=-+=-+=-即a b c ,,中有两正一负,∴==()1b c a c a b a b c a b ca b c a b c a b c+++---++++-++=-. 【点睛】本题考查绝对值的非负性以及有理数的运算等知识,是重要考点,难度一般,掌握相关知识是解题关键.30.某市质量监督局从某公司生产的婴幼儿奶粉中,随意抽取了20袋进行检查,超过标准质量的部分记为正数,不足的部分记为负数,抽查的结果如下表:(2)若每袋奶粉的标准质量为480克,则抽样检测的这些奶粉的总质量是多少克? 解析:(1)多1.75克;(2)9635克 【分析】(1)先计算出平均质量,若正则比标准质量多,若负则比标准质量少;(2)抽样总质量等于标准总质量加上超出的质量,或等于平均每袋质量乘以抽取的袋数.【详解】解:(1)()()15505551035110203520 1.571-÷=÷=⎡⨯+-⨯+⎤⎣⨯++⨯++⎦⨯⨯(克).所以这批样品每袋的平均质量比标准质量多1.75克.(2)()5428001.56793+⨯=(克)所以抽样检测的这些奶粉的总质量为9635克.【点睛】本题考查了有理数的混合运算和正负数的意义.有理数混合运算的顺序:先算乘除再算加减,有括号的先算括号里面的.。
七年级《有理数》培优练习题(有答案)
1.计算:1﹣(+2)+3﹣(+4)+5﹣(+6)…+2015﹣(+2016)= .2.已知a、b、c的位置如图:则化简|﹣a|﹣|c﹣b|﹣|a﹣c|= .3.有理数a、b在数轴上的位置如图所示化简:|a+2|﹣|a|+|b﹣1|+|a+b|可得到.4.在数轴上,点P表示的数是a,点P′表示的数是,我们称点P′是点P的“相关点”,已知数轴上A1的相关点为A2,点A2的相关点为A3,点A3的相关点为A4…,这样依次得到点A1、A2、A3、A4,…,A n.若点A1在数轴表示的数是,则点A2016在数轴上表示的数是.5.如果x、y都是不为0的有理数,则代数式的最大值是.6.|x+2|+|x﹣2|+|x﹣1|的最小值是.7.当式子|x+1|+|x﹣2|取最小值时,相应的x的取值范围是,最小值是.8.如图,方格表中的格子填上了数,每一行每一列及两条对角线中所填数的和均相等,则x的值.16 x11 15129.先观察:1﹣=×,1﹣=×,1﹣=×,…(1)探究规律填空:1﹣= ×;(2)计算:(1﹣)•(1﹣)•(1﹣)…(1﹣)10.阅读下列各式:(a•b)2=a2b2,(a•b)3=a3b3,(a•b)4=a4b4…回答下列三个问题:(1)验证:(2×)100= ,2100×()100= ;(2)通过上述验证,归纳得出:(a•b)n= ;(abc)n= .(3)请应用上述性质计算:(﹣0.125)2017×22016×42015.11.数轴上的点M对应的数是2,一只蚂蚁从点M出发沿着数轴以每秒2个单位的速度向左或向右爬行,当它到达数轴上的点N后,立即返回到原点,共用6秒.(1)蚂蚁爬行的路程是多少?(2)点N对应的数是多少?(3)点M和点N之间的距离是多少?12.我们已经学习过“乘方”和“开方”运算,下面给同学们介绍一种新的运算,即对数运算.定义:如果a b=N(a>0,a≠1,N>0),则b叫做以a为底N的对数,记作log a N=b.例如:因为53=125,所以log5125=3;因为112=121,所以log11121=2.(1)填空:log66= ,log381= .(2)如果log2(m﹣2)=3,求m的值.13.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(单位:千米):14,﹣9,+8,﹣7,13,﹣6,+12,﹣5.(1)请你帮忙确定B地位于A地的什么方向,距离A地多少千米?(2)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?(3)救灾过程中,冲锋舟离出发点A最远处有多远?14.已知:数轴上点A表示的数是8,点B表示的数是﹣4.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左运动,动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左运动.P,Q两点同时出发.(1)经过多长时间,点P位于点Q左侧2个单位长度?(2)在点P运动的过程中,若点M是AP的中点,点N是BP的中点,求线段MN的长度.15.已知数轴上的点A和点B之间的距离为32个单位长度,点A在原点的左边,距离原点5个单位长度,点B在原点的右边.(1)点A所对应的数是,点B对应的数是;(2)若已知在数轴上的点E从点A出发向左运动,速度为每秒2个单位长度,同时点F 从点B出发向左运动,速度为每秒4个单位长度,在点C处点F追上了点E,求点C对应的数.16.如图,点A、B都在数轴上,且AB=6(1)点B表示的数是;(2)若点B以每秒2个单位的速度沿数轴向右运动,则2秒后点B表示的数是;(3)若点A、B都以每秒2个单位沿数轴向右运动,而点O不动,t秒后有一个点是一条线段的中点,求t.17.已知如图,在数轴上有A,B两点,所表示的数分别为﹣10,﹣4,点A以每秒5个单位长度的速度向右运动,同时点B以每秒3个单位长度的速度也向右运动,如果设运动时间为t秒,解答下列问题:(1)运动前线段AB的长为;运动1秒后线段AB的长为;(2)运动t秒后,点A,点B运动的距离分别为和;(3)求t为何值时,点A与点B恰好重合;(4)在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为5,若存在,求t 的值;若不存在,请说明理由.18.如图,在数轴上,点A表示﹣10,点B表示11,点C表示18.动点P从点A出发,沿数轴正方向以每秒2个单位的速度匀速运动;同时,动点Q从点C出发,沿数轴负方向以每秒1个单位的速度匀速运动.设运动时间为t秒.(1)当t为何值时,P、Q两点相遇?相遇点M所对应的数是多少?(2)在点Q出发后到达点B之前,求t为何值时,点P到点O的距离与点Q到点B的距离相等;(3)在点P向右运动的过程中,N是AP的中点,在点P到达点C之前,求2CN﹣PC的值.19.已知点A在数轴上对应的有理数为a,将点A向左移动6个单位长度,再向右移动2个单位长度与点B重合,点B对应的有理数为﹣24.(1)求a;(2)如果数轴上的点C在数轴上移动3个单位长度后,距B点8个单位长度,那么移动前的点C距离原点有几个单位长度?20.已知数轴上A、B两点对应的数分别为﹣1和3,数轴上的一个动点P,其对应的数为x.(1)若点P到A、B两点的距离相等,求点P对应的数x的值;(2)数轴上是否存在点P,使点P到A、B两点的距离之和为5:若存在,请求出求x的值;若不存在,请说明理由.21.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发.求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?22.如图,点A、B在数轴上表示的数分别为﹣12和8,两只蚂蚁M、N分别从A、B两点同时出发,相向而行.M的速度为2个单位长度/秒,N的速度为3个单位长度/秒.(1)运动秒钟时,两只蚂蚁相遇在点P;点P在数轴上表示的数是;(2)若运动t秒钟时,两只蚂蚁的距离为10,求出t的值(写出解题过程).23.看数轴,化简:|a|﹣|b|+|a﹣2|.24.在一条不完整的数轴上从左到右有点A,B,C,其中点A到点B的距离为3,点C到点B的距离为7,如图所示:设点A,B,C所对应的数的和是m.(1)若以B为原点,则点C所对应的数是;若以C为原点,则m的值是.(2)若原点O在图中数轴上,且点C到原点O的距离为4,求m的值.(3)动点P从A点出发,以每秒2个单位长度的速度向终点C移动,动点Q同时从B点出发,以每秒1个单位的速度向终点C移动,当几秒后,P、Q两点间的距离为2?请直接写出答案.参考答案与试题解析一.填空题(共8小题)1.﹣1008 . 2.b﹣2c . 3.﹣2b﹣a﹣1 . 4.﹣1 .【解答】解:∵点A1在数轴表示的数是,∴A2==2,A3==﹣1,A4==,A5==2,A6=﹣1,…,2016÷3=672,所有点A2016在数轴上表示的数是﹣1,故答案为:﹣1.5.如果x、y都是不为0的有理数,则代数式的最大值是 1 .【解答】解:①当x,y中有二正,=1+1﹣1=1;②当x,y中有一负一正,=1﹣1+1=1;③当x,y中有二负,=﹣1﹣1﹣1=﹣3.故代数式的最大值是1.6.|x+2|+|x﹣2|+|x﹣1|的最小值是 4 .【解答】解:|x+2|+|x ﹣2|+|x ﹣1|表示:数轴上一点到﹣2,2和1距离的和, 当x 在﹣2和2之间的1时距离的和最小,是4. 7.﹣1≤x ≤2 ,最小值是 3 . 【解答】解:由数形结合得,若|x+1|+|x ﹣2|取最小值,那么表示x 的点在﹣1和2之间的线段上, 所以﹣1≤x ≤2,最小值是3.8.如图,方格表中的格子填上了数,每一行每一列及两条对角线中所填数的和均相等,则x 的值 9 .【解答】解:16+11+12=39, 39﹣11﹣15=13, 39﹣12﹣13=14,x=39﹣16﹣14=9. 故答案为:9.二.解答题(共16小题) 9.先观察:1﹣=×,1﹣=×,1﹣=×,… (1)探究规律填空:1﹣=× ; (2)计算:(1﹣)•(1﹣)•(1﹣) (1))【解答】解:(1)原式=×;(2)原式=(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+)=××××…××=,故答案为:(1);10.阅读下列各式:(a•b)2=a 2b 2,(a•b)3=a 3b 3,(a•b)4=a 4b 4…16 x111512回答下列三个问题:(1)验证:(2×)100= 1 ,2100×()100= 1 ;(2)通过上述验证,归纳得出:(a•b)n= a n b n;(abc)n= a n b n c n.(3)请应用上述性质计算:(﹣0.125)2017×22016×42015.【解答】解:(1)(2×)100=1,2100×()100=1;②(a•b)n=a n b n,(abc)n=a n b n c n,③原式=(﹣0.125)2015×22015×42015×[(﹣0.125)×(﹣0.125)×2]=(﹣0.125×2×4)2015×=(﹣1)2015×=﹣1×=﹣.11.【解答】解:(1)2×6=12(个单位长度).故蚂蚁爬行的路程是12个单位长度;(2)①当点M在点N左侧时:a﹣2+a=12,a=7;②当点M在点N右侧时:﹣a+2﹣a=12,a=﹣5;(3)若向左爬MN=2﹣(﹣5)=7若向右爬MN=7﹣2=5.12.(1)填空:log66= 1 ,log381= 4 .(2)如果log2(m﹣2)=3,求m的值.解:(1)∵61=6,34=81,∴log66=1,log381=4,故答案为:1、4;(2)∵log2(m﹣2)=3,∴m﹣2=23,解得:m=10;13.解:(1)∵14﹣9+8﹣7+13﹣6+12﹣5=20,答:B地在A地的东边20千米;(2)这一天走的总路程为:14+|﹣9|+8+|﹣7|+13+|﹣6|+12|+|﹣5|=74千米,应耗油74×0.5=37(升),故还需补充的油量为:37﹣28=9(升),答:冲锋舟当天救灾过程中至少还需补充9升油;(3)∵路程记录中各点离出发点的距离分别为:14千米;14﹣9=5(千米);14﹣9+8=13(千米);14﹣9+8﹣7=6(千米);14﹣9+8﹣7+13=19(千米);14﹣9+8﹣7+13﹣6=13(千米);14﹣9+8﹣7+13﹣6+12=25(千米);14﹣9+8﹣7+13﹣6+12﹣5=20(千米),25>20>19>14>13>>6>5,∴最远处离出发点25千米;(每小题2分)14.解:(1)设经过t秒,点P位于点Q左侧2个单位长度,6t﹣[4t+8﹣(﹣4)]=2,解得,t=7答:经过7秒,点P位于点Q左侧2个单位长度;(2)由题意可得,经过时间t,点P表示的数为:8﹣6t,∵点M是AP的中点,点N是BP的中点,∴点M表示的数是:,点N表示的数是:,∴MN=|(8﹣3t)﹣(2﹣3t)|=|8﹣3t﹣2+3t|=6,即线段MN的长度是6.15.(1)点A所对应的数是﹣5 ,点B对应的数是27 ;解:(1)根据题意得:A点所对应的数是﹣5;B对应的数是27;(2)设经过x秒F追上点E,根据题意得:2x+32=4x,解得:x=16,则点C对应的数为﹣5﹣2×16=﹣37.故答案为:﹣5;27.16.如图,点A、B都在数轴上,且AB=6(1)点B表示的数是﹣4 ;(2)若点B以每秒2个单位的速度沿数轴向右运动,则2秒后点B表示的数是0 ;解:(1)点B表示的数是﹣4;(2)﹣4+2×2=﹣4+4=0.故2秒后点B表示的数是0,(3)由题意可知:①O为BA的中点,(﹣4+2t)+(2+2t)=0,解得t=;②B为OA的中点,2+2t=2(﹣4+2t),解得t=5.故答案为:﹣4;0.17.(1)运动前线段AB的长为 6 ;运动1秒后线段AB的长为 4 ;(2)运动t秒后,点A,点B运动的距离分别为5t 和3t ;(3)求t为何值时,点A与点B恰好重合;(4)在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为5,若存在,求t 的值;若不存在,请说明理由.解:(1)AB=﹣4﹣(﹣10)=6,运动1秒后,A表示﹣5,B表示﹣1,∴AB=﹣1+5=4.故答案为6,4.(2)运动t秒后,点A,点B运动的距离分别为5t,3t,故答案为5t,3t.(3)由题意:(5﹣3)t=6,∴t=3.(4)由题意:6+3t﹣5t=5或5t﹣(6+3t)=5,解得t=或,∴t的值为或秒时,线段AB的长为5.18.解:(1)根据题意得2t+t=28,解得t=,∴AM=>10,∴M在O的右侧,且OM=﹣10=,∴当t=时,P、Q两点相遇,相遇点M所对应的数是;(2)由题意得,t的值大于0且小于7.若点P在点O的左边,则10﹣2t=7﹣t,解得t=3.若点P在点O的右边,则2t﹣10=7﹣t,解得t=.综上所述,t的值为3或时,点P到点O的距离与点Q到点B的距离相等;(3)∵N是AP的中点,∴AN=PN=AP=t,∴CN=AC﹣AN=28﹣t,PC=28﹣AP=28﹣2t,2CN﹣PC=2(28﹣t)﹣(28﹣2t)=28.19.解:(1)依题意有a﹣6+2=﹣24,解得a=﹣20.(2)点C在数轴上向左移动3个单位长度是﹣24﹣8+3=﹣29或﹣24+8+3=﹣13;点C在数轴上向右移动3个单位长度是﹣24﹣8﹣3=﹣35或﹣24+8﹣3=﹣19.故移动前的点C距离原点有29或13或35或19个单位长度.20.解:(1)由题意,得PA=PB,∴x﹣(﹣1)=3﹣x,解得x=1.(2)∵3﹣(﹣1)=4<5,∴点P不在线段AB上.当点P落在点B右侧时,有PB+PA=5,∴(x﹣3)+(x+1)=5,解得x=3.5.当点P落在点A左侧时,有BP+AP=5,∴(﹣1﹣x)+(3﹣x)=5,解得x=﹣1.5.∴x的值是3.5或﹣1.5.21.解:(1)∵数轴上点A表示的数为6,∴OA=6,则OB=AB﹣OA=4,点B在原点左边,∴数轴上点B所表示的数为﹣4;点P运动t秒的长度为6t,∵动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,∴P所表示的数为:6﹣6t;(2)①点P运动t秒时追上点R,根据题意得6t=10+4t,解得t=5,答:当点P运动5秒时,点P与点Q相遇;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P不超过Q,则10+4a﹣6a=8,解得a=1;当P超过Q,则10+4a+8=6a,解得a=9;答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.22.解:(1)设运动x秒时,两只蚂蚁相遇在点P,根据题意可得:2x+3x=8﹣(﹣12),解得:x=4,﹣12+2×4=﹣4.答:运动4秒钟时,两只蚂蚁相遇在点P;点P在数轴上表示的数为:﹣4;(2)运动t秒钟,蚂蚁M向右移动了2t,蚂蚁N向左移动了3t,若在相遇之前距离为10,则有2t+3t+10=20,解得:t=2.若在相遇之后距离为10,则有2t+3t﹣10=20,解得:t=6.综上所述:t的值为2或6.故答案为:4;﹣4.24.(1)若以B为原点,则点C所对应的数是7 ;若以C为原点,则m的值是﹣17 .解:(1)当B为原点时,点C对应的数是7;当以C为原点时,A、B对应的数分别为﹣7,﹣10,m=﹣10+(﹣7)+0=﹣17,故答案为:7,﹣17;(2)当O在C的左边时,A、B、C三点在数轴上所对应的数分别为﹣6、﹣3、4,则 m=﹣6﹣3+4=﹣5,当O在C的右边时,A、B、C三点在数轴上所对应的数分别为﹣14、﹣11、﹣4,则m=﹣14﹣11﹣4=﹣29,综上所述:m=﹣5或﹣29;(3)假如以C为原点,则A、B、C对应的数为﹣10,﹣7,0,Q对应的数是﹣(7﹣t),P 对应的数是﹣(10﹣2t),当P在Q的左边时,[﹣(7﹣t)]﹣[﹣(10﹣2t)]=2,解得:t=1当P在Q的左边时,[﹣(10﹣2t)]﹣[﹣(7﹣t)]=2,解得:t=5,即当1秒或5秒后,P、Q两点间的距离为2.。
人教版 七年级数学 第1章 有理数 综合培优训练(含答案)
人教版 七年级数学 第1章 有理数 综合培优训练一、选择题(本大题共12道小题)1. 有理数-13的相反数为( ) A .-3 B .-13 C.13D .32. 下列说法错误的是( )A .-2是负有理数B .0不是整数 C.125是正有理数 D .-0.35是负分数3. 下列四个数中,最大的数是( )A. -2B. 13C. 0D. 64. 下列两数互为倒数的是( )A. 4和-4B. -3和13C. -2和-12D. 0和05. 计算-2×3×(-4)的结果是( )A .24B .12C .-12D .-24 6. 计算-3-(-2)的结果是() A .-1B .1C .5D .-57. 如图,数轴上有A ,B ,C ,D 四个点,其中绝对值最小的数对应的点是( )A .点AB .点BC .点CD .点D8. 在跳远测验中,合格的标准是4.00 m ,王非跳了4.12 m ,记作+0.12 m ,何叶跳了3.95 m ,记作( )A .+0.05 mB .-0.05 mC .+3.95 mD .-3.95 m9. 质检员抽查4袋方便面,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的产品是()A.-3 B.-1 C.2 D.410. 下列说法错误的是()A.一个数同0相乘,得0B.一个数同1相乘,仍得这个数C.一个数同-1相乘,得这个数的相反数D.一个数同它的相反数相乘,积为负11. 若a,b互为倒数,则-4ab的值为()A.-4 B.-1 C.1 D.012. 若a=-2×32,b=(-2×3)2,c=-(2×3)2,则下列大小关系正确的是()A.a>b>cB.b>c>aC.b>a>cD.c>a>b二、填空题(本大题共12道小题)13. 如果节约用水30吨,记为+30吨,那么浪费水20吨,记为________吨.14. (1)-5.4的相反数是________;(2)-(-8)的相反数是________;(3)若a=-a,则a=________.15. 绝对值小于3的所有整数的和为______,绝对值不大于2020的所有整数的和为______.16. 化简下列各数:(1)-(+3)=________;(2)-(-3)=________;(3)+(+3)=________;(4)+(-3)=________;(5)-[-(+3)]=________;(6)-[-(-3)]=________.17. 用“>”“<”或“=”填空:(1)-31×(-58)×(-4)×(-7)________0;(2)(-32.75)×(-1)×101×⎝ ⎛⎭⎪⎫-9918×0________0; (3)-|-3|×(-5)×(-11)×51________0.18. 一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离为4个单位长度,则这个数为________.19. 一只蜗牛从地面开始爬高为6米的墙,先向上爬3米,然后向下滑1米,接着又向上爬3米,然后又向下滑1米,则此时蜗牛离地面的距离为________米.20. 如图所示,数轴上点A 表示的数为a ,点B 表示的数为b ,则a -b =________.21. 将下列各数填在相应的横线上:-15,-0.02,67,-171,4,-213,1.3,0,3.14,π.正数:_______________________________________________________________________;负数:______________________________________________________________________.22. 如果实验室标准温度为10 ℃,高于标准温度的记为正,那么+5 ℃表示实验室内的温度为__________℃;-5 ℃表示实验室内的温度为________℃.23. 你吃过“手拉面”吗?如果把一个面团拉开,然后对折,再拉开,再对折……如此反复下去,对折8次,能拉出________根面条.24. 定义学习观察一列数:1,2,4,8,…,我们发现,从这一列数的第二项起,每一项与它前面一项的比都是2.一般地,如果一列数从第二项起,每一项与它前面一项的比都等于一个常数,那么我们就把这样的一列数叫做等比数列,这个常数叫做等比数列的公比.(1)等比数列5,-15,45,…的第四项为______;(2)一个等比数列的第二项是10,第三项是-20,则它的第一项是________,第四项是________.三、解答题(本大题共6道小题)25. 某次数学期末考试,成绩80分以上为优秀,老师以80分为基准,将某一小组五名同学的成绩(单位:分)简记为+12,-5,0,+7,-2.这里的正数、负数分别表示什么意义?这五名同学的实际成绩分别为多少?26. 观察与分类如图,已知有A,B,C三个数集,每个数集中所含的数都在各自的大括号内,请把这些数填入图中相应的部分.A.{-5,2.7,-9,7,2.1};B.{-8.1,2.1,-5,9.2,-1 7};C.{2.1,-8.1,10,7}.27. 计算:(1)1.2×(-145)×(-2.5)×(-37); (2)-157×⎝ ⎛⎭⎪⎫-34×56×⎪⎪⎪⎪⎪⎪-512; (3)(-112)×(-113)×(-114)×(-115)×(-116)×(-117).28. 分类讨论在数轴上,点A 到原点的距离为3,点B 到原点的距离为5,如果点A 表示的有理数为a ,点B 表示的有理数为b ,求a 与b 的乘积.29. 在学习了有理数的乘法后,老师给同学们出了这样一道题目:“计算492425×(-5),看谁算得又快又对.”有两名同学的解法如下:小明:原式=-124925×5=-12495=-24945;小军:原式=(49+2425)×(-5)=49×(-5)+2425×(-5)=-24945.(1)对于以上两种解法,你认为谁的解法较好?(2)思考上面的解法,你认为还有更好的解法吗?如果有,请把它写出来;(3)用你认为最合适的方法计算:191516×(-8);(4)简便地计算出57×5556+27×2728的值.30. 规律探究已知: 1-12×2=(1-12)×(1+12)=12×32,1-13×3=(1-13)×(1+13)=23×43,1-14×4=(1-14)×(1+14)=34×54,…(1)猜想:1-12020×2020=________________=______________;(2)计算:(1-12×2)×(1-13×3)×(1-14×4)×…×(1-12020×2020).人教版七年级数学第1章有理数综合培优训练-答案一、选择题(本大题共12道小题)1. 【答案】C2. 【答案】B3. 【答案】D【解析】四个数中选择最大的数可直接在正数中选,比较13<6,故最大的数为6.4. 【答案】C【解析】因为-2×(-12)=1,故选C.5. 【答案】A6. 【答案】A7. 【答案】B8. 【答案】B9. 【答案】B10. 【答案】D11. 【答案】A12. 【答案】C[解析] 因为a=-2×32=-18,b=(-2×3)2=36,c=-(2×3)2=-36,所以b>a>c.二、填空题(本大题共12道小题)13. 【答案】-2014. 【答案】(1)5.4(2)-8(3)015. 【答案】0 0 [解析] 绝对值小于3的整数有±2,±1,0,其和为2+(-2)+1+(-1)+0=0.绝对值不大于2020的整数有±2020,±2019,±2018,…,±1,0,其和为0.16. 【答案】(1)-3 (2)3 (3)3 (4)-3 (5)3 (6)-3[解析] “-”号不仅是运算符号、性质符号,还可理解为“相反”的意义,如-(+3)表示+3的相反数.17. 【答案】(1)> (2)= (3)<18. 【答案】2或-2 [解析] 由题意知这个数到原点的距离为2,所以这个数为2或-2.19. 【答案】420. 【答案】-3 [解析] 由图可知a =-4,b =-1,所以a -b =-4-(-1)=-4+1=-3.21. 【答案】67,4,1.3,3.14,π -15,-0.02,-171,-21322. 【答案】15523. 【答案】25624. 【答案】35[答案] (1)-135 (2)-5 40 [解析] (1)公比为-3,故第四项为45×(-3);(2)公比为-20÷10=-2,由第二项除以-2求得第一项为10÷(-2)=-5,由第三项乘-2求得第四项为-20×(-2)=40.三、解答题(本大题共6道小题)25. 【答案】解:这里的正数表示实际成绩比基准高,负数表示实际成绩比基准低,所以“+12”表示比80分高12分,“-5”表示比80分低5分,“0”表示80分,“+7”表示比80分高7分,“-2”表示比80分低2分.所以这五名同学的实际成绩分别为92分,75分,80分,87分,78分.26. 【答案】43解:通过观察,发现A ,B ,C 三个数集都含有2.1,A ,B 数集都含有-5,A ,C 数集都含有7,B ,C 数集都含有-8.1.如图所示:27. 【答案】[解析] 几个不为0的有理数相乘,积的符号由负因数的个数决定.解:(1)原式=-65×95×52×37=-8135.(2)原式=-127×(-34)×56×512=127×34×56×512=2556.(3)原式=32×43×54×65×76×87=4.28. 【答案】解:由题意易知a =3或a =-3,b =5或b =-5.若点A 与点B 位于原点同侧,则a ,b 的符号相同,所以ab =3×5=15或ab =(-3)×(-5)=15;若点A 与点B 位于原点异侧,则a ,b 的符号相反,所以ab =3×(-5)=-15或ab =(-3)×5=-15.综上所述,a 与b 的乘积为15或-15.29. 【答案】解:(1)小军的解法较好.(2)还有更好的解法.492425×(-5)=(50-125)×(-5)=50×(-5)-125×(-5)=-250+15=-24945.(3)191516×(-8)=(20-116)×(-8)=20×(-8)-116×(-8)=-160+12=-15912.(4)57×5556+27×2728=(56+1)×5556+(28-1)×2728=56×5556+5556+28×2728-1×2728=55+27+5556-2728=82+156=82156.30. 【答案】解:(1)(1-12020)×(1+12020) 20192020×20212020(2)原式=(12×32)×(23×43)×(34×54)×…×(20192020×20212020)=12×20212020=20214040.。
七年级数学《有理数》经典培优(含答案)
1.数轴上,点A的初始位置表示的数为2,现点A做如下移动:第1次点A向左移动1个单位长度至点A1,第2次从点A1向右移动2个单位长度至点A2,第3次从点A2向左移动3个单位长度至点A3,按照这种移动方式进行下去,点A2019表示的数是_______.2.如图,数轴上,点A的初始位置表示的数为1,现点A做如下移动:第1次点A向左移动3个单位长度至点A1,第2次从点A1向右移动6个单位长度至点A2,第3次从点A2向左移动9个单位长度至点A3,…,按照这种移动方式进行下去,如果点An与原点的距离不小于26,那么n的最小值是________.3.在一条可以折叠的数轴上,A,B表示的数分别是﹣9,4,如图,以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=1,则C点表示的数是.4.数轴上的点A、B、C、O、D、E分别表示3,﹣1.5,﹣3,﹣4,0,2.5,(1)在图所示的数轴上画出点A、B、C、O、D、E;(2)比较这六点所表示的数的大小,用“<”号连接起来;_____ <_____ < ______ <______<_________ <______(3)有同学说:“这六个点中,其中有两个点之间的距离恰好与另外两个点之间的距离相等”,你觉得这位同学的说法正确吗?请你作出判断,并说明理由.5.【阅读理解】如果点M,N在数轴上分别表示实数m,n,在数轴上M,N两点之间的距离表示为MN=m﹣n(m>n)或MN=n﹣m(n>m)或|m﹣n|.利用数形结合思想解决下列问题:已知数轴上点A与点B的距离为12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B在点A的右侧,点C表示的数与点B 表示的数互为相反数,动点P从A出发,以每秒2个单位的速度向终点C移动,设移动时间为t秒.(1)点A表示的数为____,点B表示的数为_______.(2)用含t的代数式表示P到点A和点C的距离:PA=_______,PC=________.(3)当点P运动到B点时,点Q从A点出发,以每秒4个单位的速度向C点运动,Q点到达C点后,立即以同样的速度返回,运动到终点A,在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.6.【阅读理解】点A、B、C为数轴上三点,如果点C在A、B之间且到A的距离是点C到B的距离3倍,那么我们就称点C是{A,B}的奇点.例如,如图1,点A表示的数为﹣3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C是{A,B}的奇点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B}的奇点,但点D是{B,A}的奇点.【知识运用】如图2,M、N为数轴上两点,点M所表示的数为﹣3,点N所表示的数为5.(1)数______所表示的点是{M,N}的奇点;数_______所表示的点是{N,M}的奇点;(2)如图3,A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30.现有一动点P从点B出发向左运动,到达点A停止.P点运动到数轴上的什么位置时,P、A和B中恰有一个点为其余两点的奇点?7.阅读下面材料在数轴上4与﹣1所对的两点之间的距离:|4﹣(﹣1)|=5在数轴上﹣2与3所对的两点之间的距离|(﹣2)﹣3|=5;在数轴上﹣7与﹣5所对的两点之间的距离:|(﹣7)﹣(﹣5)|=2在数轴上点A、B 分别表示数a、b,则A、B两点之间的距离AB=|a﹣b|=|b﹣a|依据材料知识解答下列问题(1)数轴上表示﹣3和﹣5的两点之间的距离是_______,数轴上表示数x和3的两点之间的距离表示为_________;(2)七年级研究性学习小组进行如下探究:①请你在草稿纸上面出数轴当表示数x的点在﹣3与2之间移动时,|x+3|+|x﹣2|的值总是一个固定的值为:________,式子|x+3|+|x+2|的最小值是.②请你在草稿纸上画出数轴,当x等于_________时,|x﹣4|+|x+3|+|x﹣2|的值最小,且最小值是__________.8.研究下列算式,你会发现什么规律?1×3+1=4=222×4+1=9=323×5+1=16=424×6+1=25=52…(1)请你找出规律井计算7×9+1=_____=(_______)2(2)用含有n的式子表示上面的规律:______.9.如图,数轴上每相邻两刻度线间的距离为1个单位长度,请回答下列问题:(1)如果点A、B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C表示的数是多少?图中5个点表示的数的乘积是多少?(3)求|x+1.5|+|x﹣0.5|+|x﹣4.5|的最小值10.我们知道数轴上两点间的距离等于这两点所对应的数的差的绝对值,例:点A、B 在数轴上分别对应的数为a、b,则A、B两点间的距离表示为AB=|a﹣b|根据以上知识解题:(1)若数轴上两点A、B表示的数为x、﹣1,①A、B之间的距离可用含x的式子表示为__________;②若两点之间的距离为2,那么x值为________;(2)在(1)的条件下,是否存在点P,使得点P到点A的距离等于点P到点B的距离的三倍.。
人教版七年级数学上册《有理数的加减法》培优提升训练【含答案】
人教版七年级数学上册《1.3有理数的加减法》培优提升训练1.计算:﹣2+5的结果是( )A.﹣7B.﹣3C.3D.72.数6,﹣1,15,﹣3中,任取三个不同的数相加,其中和最小的是( )A.﹣3B.﹣1C.3D.23.5﹣3+7﹣9+12=(5+7+12)+(﹣3﹣9)是应用了( )A.加法交换律B.加法结合律C.分配律D.加法的交换律与结合律4.桂林去年冬天的某天气温变化范围是﹣2℃~6℃,那么最高温度与最低温度相差( )A.﹣8℃B.8℃C.4℃D.﹣4℃5.下列各式中正确的是( )A.﹣4﹣3=﹣1B.5﹣(﹣5)=0C.10+(﹣7)=﹣3D.﹣5﹣4﹣(﹣4)=﹣56.时代超市出售的三种品牌月饼袋上,分别标有质量为:(500±5)g、(500±10)g、(500±20)g的字样,从中任意拿出两袋,它们的质量最多相差( )A.10g B.20g C.30g D.40g7.如图,现有3×3的方格,每个小方格内均有不同的数字(1﹣10),要求方格内每一行、每一列以及每一条对角线上的三个数字之和均相等,图中给出了部分数字,则P处对应的数字是( )A.7B.5C.4D.18.若|x﹣2|=5,|y|=4,且x<y,则x+y的值为 9.绝对值不大于5的所有整数的和是 .10.计算:(+8)+(﹣10)﹣(﹣2)﹣(﹣1).11.计算:(﹣1.5)﹣(+2.5)﹣(﹣0.75)+(+0.25).12.计算:﹣5+(+2)+(﹣1)﹣(﹣)13.计算:(1)12﹣(﹣18)+(﹣7)﹣15;(2)﹣0.5+(﹣3)+(﹣2.75)+(+7).14.计算:.15.计算:(1)(+9)﹣(+10)+(﹣2)﹣(﹣8)+3;(2)﹣5.13+4.62+(﹣8.47)﹣(﹣2.3);(3)(+4)﹣(+)﹣8;(4)﹣+(﹣)﹣(﹣)﹣1.16.计算:(﹣7.3)﹣(﹣6)+|﹣3.3|+1.17.计算:(1)(﹣7)+(+15)﹣(﹣25);(2)(﹣13)+(﹣7)﹣(+20)﹣(﹣40)+(+16);(3)(+)+(﹣)+(+1)+(﹣);(4)(+1.9)+3.6﹣(﹣10.1)+1.4;(5)1+2﹣3+﹣4.25;(6)3+(﹣1)+(﹣3)+1+(﹣4).18.计算(1)(2).19.计算:.20.某股民上星期五买进某公司股票1000股,每股20元,下表为本周内每日该股票的涨跌情况(“+”号表示与前一天相比涨,“一”号表示与前一天相比跌).星期一二三四五每股涨跌(元)+1.2+0.4﹣1﹣0.5+0.9(1)星期三收盘时,每股是多少元?(2)本周内最高收盘价是每股多少元?收盘价最低是每股多少元?(3)已知此股民买进和卖出股票时都要付0.15%的手续费和卖出时0.1%的交易税,如果他在星期五以收盘价将股票全部卖出,他的收益情况如何?21.出租车司机小王某天下午的一段时间内营运全是在南北走向的北海路上进行的.如果向南记作“+”,向北记作“﹣”.他这段时间内行车情况如下:﹣4,+7,﹣2,﹣3,﹣8,+8(单位:千米;每次行车都有乘客).请解答下列问题:(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若规定每次乘坐出租车的起步价是8元,且3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米还需收1.8元钱.那么小王这段时间内收到的乘客所给车费共多少元?(3)若小王的出租车每千米耗油0.1升,每升汽油5元.不计汽车的损耗的情况下,除去汽油钱,请你帮小王计算一下这段时间他赚了多少钱?答案1.解:﹣2+5=3.故选:C.2.解:∵三个不同的数相加,使其中和最小,∴三个较小的数相加即可,因此取﹣1+(﹣3)+6=2.故选:D.3.解:根据意义得:5﹣3+7﹣9+12=(5+7+12)+(﹣3﹣9),故用了加法的交换律与结合律.故选:D.4.解:根据题意得:6﹣(﹣2)=6+2=8,则最高温度与最低温度相差8℃,故选:B.5.解:A、﹣4﹣3=﹣7,故本选项错误;B、5﹣(﹣5)=5+5=10,故本选项错误;C、10+(﹣7)=3,故本选项错误;D、﹣5﹣4﹣(﹣4)=﹣5﹣4+4=﹣5,故本选项正确.故选:D.6.解:由题意知:任意拿出两袋,最重的是520g,最轻的是480g,所以质量相差520﹣480=40(g).故选:D.7.解:设下面中间的数为x,则三个数字之和为8+x,8﹣3=5,8+x﹣3﹣6=x﹣1,8+x﹣2﹣(x﹣1)=7,5+6+7﹣7﹣3=8,如图所示:P+6+8=7+6+5,解得P=4.故选:C.8.解:∵|x﹣2|=5,|y|=4,∴x﹣2=±5,y=±4,∴x1=7,x2=﹣3,∵x<y,∴x=﹣3,y=4,∴x+y=﹣3+4=1,故1.9.解:绝对值不大于5的所有整数为﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,它们的和为0.故0.10.解:(+8)+(﹣10)﹣(﹣2)﹣(﹣1)=8﹣10+2+1=﹣2+2+1=111.解:(﹣1.5)﹣(+2.5)﹣(﹣0.75)+(+0.25)=﹣1.5﹣2.5+0.75+0.25=﹣4+1=﹣3.12.解:﹣5+(+2)+(﹣1)﹣(﹣)=(﹣5﹣1)+(2+)=﹣7+3=﹣4.13.解:(1)12﹣(﹣18)+(﹣7)﹣15=30﹣7﹣15=8.(2)﹣0.5+(﹣3)+(﹣2.75)+(+7)=[﹣0.5+(+7)]+[(﹣3)+(﹣2.75)]=7+(﹣6)=1.14.解:原式====.15.解:(1)(+9)﹣(+10)+(﹣2)﹣(﹣8)+3=﹣1﹣2+8+3=8.(2)﹣5.13+4.62+(﹣8.47)﹣(﹣2.3)=[﹣5.13+(﹣8.47)]+[4.62﹣(﹣2.3)]=﹣13.6+6.92=﹣6.68.(3)(+4)﹣(+)﹣8=4﹣8=﹣3.(4)﹣+(﹣)﹣(﹣)﹣1=﹣+﹣1=﹣.16.解:原式=(﹣7.3)﹣(﹣6)+3.3+1=[(﹣7.3)+3.3]+[6+1]=﹣4+8=4.17.解:(1)(﹣7)+(+15)﹣(﹣25)=﹣7+15+25=33;(2)(﹣13)+(﹣7)﹣(+20)﹣(﹣40)+(+16)=﹣13﹣7﹣20+40+16=16;(3)(+)+(﹣)+(+1)+(﹣)=(++1)+(﹣﹣)=2﹣1=1;(4)(+1.9)+3.6﹣(﹣10.1)+1.4=(+1.9+10.1)+(3.6+1.4)=12+5=17;(5)1+2﹣3+﹣4.25=(1+)+2+(﹣3﹣4.25)=2+2﹣8=﹣3;(6)3+(﹣1)+(﹣3)+1+(﹣4)=(3﹣3)+(﹣1+1)+(﹣4)=0+0+(﹣4)=﹣4.18.解:(1)原式=﹣6.62+2.62+3﹣=﹣4+2=﹣1;(2)原式=12+2﹣1.75﹣7.25+5﹣2.5=15﹣9+3=9.19.解:原式=4﹣﹣3+6﹣5=+1=1.20.解:(1)周三收盘时,股价为20+1.2+0.4﹣1=20.6(元);(2)本周内最高收盘价是每股20+1.2+0.4=21.6元;最低20+1.2+0.4﹣1﹣0.5=20.1(元);(3)星期五以收盘价将股票全部卖出的价格是1000×(20+1.2+0.4﹣1﹣0.5+0.9)=21000(元),手续费和交易税为1000×20×0.15%+21000×0.15%+21000×0.1%=82.5(元).他的最后收益是21000﹣20000﹣82.5=917.5(元).21.解:(1)﹣4+7﹣2﹣8+8=﹣2,故小王在下午出车的出发地的北方,距离出发地2km处;(2)8×6+1.8+1.8×(7﹣3)+1.8×2×(8﹣3)=75(元),所以小王这天下午收到乘客所给的车费共75元;(3)|﹣4|+|7|+|﹣2|+|﹣3|+|﹣8|+|8|=4+7+2+3+8+8=32(km),32×0.1×5=16(元),75﹣16=59(元),所以小王这天下午赚了59元.。
有理数运算培优训练含答案
有理数运算培优训练一.选择题:1.从数6, 1-, 15, 3-中,任取三个不同的数相加,所得到的结果中最小的是( ) A. 3- B. 1- C. 3 D. 22.算式:22222222+++可化为( )A. 42 B. 28 C. 82 D. 162 3.如图所示是一个数值转换机,若输入的a 值为4-,则输出的结果为( )A. 30B. 30-C. 34-D. 344.已知b a ,两数在数轴上对应的位置如图所示,下列结论正确的是( )A. b a >B. 0<abC. 0>-a bD. 0>+b a 5.下列说法中正确的是( )A. 两数的和必大于每一个加数B. 互为相反数的两个数的和为0C. 零除以任何数都为零D. 零减去一个数结果等于这个数 6.下列各组数中,相等的一组是( )A. ()2222--和 B. 443)3(--和 C. ()3344--和 D. ()()4433---和7.用四舍五入法把0.7096精确到千分位,则正确的是( )A. 700.0B. 71.0C. 710.0D. 7100.0 8.算式(121-21-31)×24的值为( ) A.-16 B.-18 C.16 D.-249.计算:=⨯++⨯+⨯+⨯+⨯201520141...541431321211( ) A. 20152012 B. 20152013 C. 20152014 D. 2015201610.小华和小丽最近测了自己的身高,小华量得自己约1.6m ,小丽测得自己的身高约为 1.60m ,下列关于她俩身高的说法正确的是( )A.小华和小丽一样高B.小华比小丽高C.小华比小丽低D.无法确定谁高二.填空题:11. 已知0144.012.02=, 44.12.12=, 144122= 则____012.02=_______12002=13.1223______3535⎛⎫⎛⎫⎛⎫---+-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭14.下列实际问题中出现的数据:①月球与地球之间的平均距离大约是38万公里;②一本书的定价是50.4元;③小明的身高为m 57.1;④我国有56个民族。
第1章 有理数培优训练试题(含解析)
浙教版七上数学第一章:有理数培优训练答案一.选择题:1.答案:B解析:∵053=-++b a ,∴,3,03-=∴=+a a 5,05=∴=-b b ,故选择B2.答案:D解析:∵ab <0, ∴a 、b 异号, ∵a+b <0,∴负数的绝对值大于正数的绝对值. 故选:D .3.答案:B解析:∵01≥-x ,即当1=x 时,|x ﹣1|+2的最小值为2,故选择B4.答案:B解析:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256, 我们发现四次一循环,因为2......50442018=÷,故未位数为4,故选择B5.答案:A解析:∵0是有理数中的其中一个数,它可以表示很多种不同的意义,故①错误; ∵整数包括正整数、负整数和零,故②错误; ∵正数和负数中有不是有理数的数,故③错误; ∵没有最小的整数,故④错误;∵负分数是有理数,故⑤正确。
故选择A 6.答案:A解析:01<<-a ,01,01,0>+>-<∴a a a ,()()011<+-∴a a a ,故选择A7.答案:D解析:如果m 是一个有理数,当0>m 时,0<-m ;当0=m 时,0=-m ; 当0<m 时,0>-m ,故选择D8.答案:D解析:试题分析:0<a <1,取21=a ,所以21-=-a ,21=a ,21-=-a ,所以a a a a 11->->>,故本题选D.9.答案:B解析:∵0,0><b a 且b a >, ∴a b b a -<<-<,故选择B10.答案:A解析:因为102601710=, 98604930=, 92602315=, 99603320=, 95601912= 又10299989592<<<<,故中间一个数应是4930,故选择A二.填空题:11.答案:2解析:P 表示的数为1-,向右平移3个单位后P '表示的数为212.答案:5解析:∵212-的相反数为212,这两个数中间的整数为2,1,0,1,2--共5个。
有理数经典培优训练含答案
专训一:有理数的比较大小的方法名师点金:有理数大小的比较需要根据有理数的特征灵活地选择适当的方法,除了常规的比较大小的方法外,还有几种特殊的方法:作差法、作商法、找中间量法、倒数法、变形法、数轴法、特殊值法、分类讨论法等.)利用作差法比较大小1.比较1731和5293的大小.利用作商法比较大小2.比较-172 016和-344 071的大小.利用找中间量法比较大小3.比较1 0072 016与1 0092 017的大小. 利用倒数法比较大小4.比较1111 111和1 11111 111的大小.利用变形法比较大小5.比较-2 0142 015,-1415,-2 0152 016,-1516的大小.6.比较-623,-417,-311,-1247的大小.利用数轴法比较大小7.已知a>0,b<0,且|b|<a,试比较a,-a,b,-b的大小.利用特殊值法比较大小8.已知a,b是有理数,且a,b异号,则|a+b|,|a-b|,|a|+|b|的大小关系为_______________________________________________.利用分类讨论法比较大小9.比较a 与a 3的大小.专训二:有理数中6种易错类型对有理数有关概念理解不清造成错误1.下列说法正确的是( )A .最小的正整数是0B .-a 是负数C .符号不同的两个数互为相反数D .-a 的相反数是a2.已知|a|=7,则a = W.误认为|a|=a ,忽略对字母a 分情况讨论3.如果一个数的绝对值等于它本身,那么这个数一定是() A .负数 B .负数或零C .正数或零D .正数4.已知a =8,|a|=|b|,则b 的值等于( )A .8B .-8C .0D .±8对括号使用不当导致错误5.计算:-7-5.6.计算:2-⎝ ⎛⎭⎪⎫-15+14-12.忽略或不清楚运算顺序7.计算:-81÷94×49÷(-16).8.计算:(-5)-(-5)×110÷110×(-5).乘法运算中确定符号与加法运算中的符号规律相混淆9.计算:⎝ ⎛⎭⎪⎫-214×⎝ ⎛⎭⎪⎫-345.10.计算:-36×⎝ ⎛⎭⎪⎫712-56-1.除法没有分配律11.计算:24÷⎝ ⎛⎭⎪⎫13-18-16.专训三:有理数中几种热门考点 名师点金:本章主要学习了有理数的定义及其相关概念,有理数的运算,科学记数法与近似数等.本章内容是中考的基本考查内容之一,命题形式多以选择题和简单的计算题为主,注重对基础知识和基本技能的考查.有理数的定义、分类1.在下列各数中:+6,-8.25,-0.49,-23,-18,负有理数有( )A .1个B .2个C .3个D .4个相反数、倒数、绝对值2.(1)化简下列各式:⎪⎪⎪⎪⎪⎪-12= ;|+(-3)|= ;-⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫-35= W.(2)-5的相反数是 ;-13的绝对值是 ;54的倒数是 W.3.式子|m -3|+5的值随m 的变化而变化,当m = 时,|m -3|+5有最小值,最小值是 .4.已知a ,b 分别是两个不同的点A ,B 所表示的有理数,且|a|=5,|b|=2,它们在数轴上的位置如图所示.(1)试确定数a,b;(2)表示a,b两数的点相距多远?(3)若C点在数轴上,C点到B点的距离是C点到A点距离的13,求C点表示的数.(第4题)有理数的大小比较5.(中考·莱芜)在-12,-13,-2,-1这四个数中,最大的数是()A.-12B.-13C.-2D.-16.如图,数轴上A,B两点分别表示有理数a,b,则下列结论正确的是()(第6题)A.a<bB.a+b<0C.a-b>0D.ab>0有理数的运算7.下列各式成立的是()A.|-2|=2B.-(-1)=-1C.1÷(-3)=13D.-2×3=68.若四个有理数之和的14是3,其中三个数分别是-10,+8,-6,则第四个数是()A.+8B.-8C.+20D.+119.计算下列各题:(1)17-23÷(-2)×3;(2)2×(-5)+23-3÷12;(3)10+8÷(-2)2-(-4)×(-3);(4)(-24)÷⎝ ⎛⎭⎪⎫2232+512×⎝ ⎛⎭⎪⎫-16-0.52.非负数性质的应用10.已知a 为有理数,下列说法中正确的是( )A .⎝ ⎛⎭⎪⎫a +12 0162为正数 B .-⎝ ⎛⎭⎪⎫a -12 0162为负数 C .a +⎝ ⎛⎭⎪⎫12 0162为正数 D .a 2+12 016为正数11.若|a +1|+(b -2)2=0,求(a +b )9+a 6的值.科学记数法、近似数的应用12.(2015·成都)今年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相.新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的城市,按照规划,新机场将建的4个航站楼的总面积约为126万平方米.用科学记数法表示126万为( )A .126×104B .1.26×105C .1.26×106D .1.26×10713.若一个数等于5.8×1021,则这个数的整数位数是( )A .20B .21C .22D .2314.把390 000用科学记数法表示为 ,用科学记数法表示的数5.16×104的原数是 ,近似数2.236×108精确到的数位是 W.15.(2015·资阳)太阳的半径约为696 000千米,用科学记数法表示为 千米.数学思想方法的应用a.数形结合思想16.如图,数轴上的A ,B ,C 三点所表示的数分别为a ,b ,c.根据图中各点位置,下列式子正确的是( )(第16题)A .(a -1)(b -1)>0B .(b -1)(c -1)>0C .(a +1)(b +1)<0D .(b +1)(c +1)<0b.转化思想17.下列各式可以写成a -b +c 的是( )A .a -(+b )-(+c )B .a -(+b )-(-c )C .a +(-b )+(-c )D .a +(-b )-(+c )18.计算:⎣⎢⎡⎦⎥⎤113-⎝ ⎛⎭⎪⎫-234÷⎝ ⎛⎭⎪⎫-712.c.分类讨论思想19.比较2a 与-2a 的大小.有理数中的探究与创新20.(2015·德州)一组数1,1,2,x ,5,y ,…,满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y 表示的数为( )A .8B .9C .13D .1521.(2015·荆州)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现有等式A m =(i ,j )表示正奇数m 是第i 组第j 个数(从左往右数),如A 7=(2,3),则A 2 015=( )A .(31,50)B .(32,47)C .(33,46)D .(34,42)22.(2015·广东)观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是 W.23.(2015·绥化)填在下面各正方形(如图)中的四个数之间都有一定的规律,据此规律得出a +b +c = W.(第23题)24.如图是某种细胞分裂示意图,这种细胞每过30分钟便由1个分裂成2个.(第24题)根据此规律求:(1)这样的一个细胞经过第四个30分钟后可分裂成多少个细胞?(2)这样的一个细胞经过3小时后可分裂成多少个细胞?(3)这样的一个细胞经过n(n为正整数)小时后可分裂成多少个细胞?答案专训一1.解:因为5293-1731=5293-5193=193>0,所以5293>1731.点拨:当比较的两个数的大小非常接近,无法直接比较大小时,作差比较是常采用的方法.2.解:因为172 016÷344 071=172 016×4 07134=1 3571 344>1,所以172 016>344 071.所以-172 016<-344 071.点拨:作商比较法是比较两个数大小的常用方法,当比较的两个正分数作商易约分时,作商比较往往能起到事半功倍的效果;当这两个数是负数时,可先分别求出它们的绝对值,再作商比较它们绝对值的大小,最后根据绝对值大的反而小下结论.3.解:因为1 0072 016<12,1 0092 017>12,所以1 0072 016<1 0092 017.点拨:对于类似的两数的大小比较,我们可以引入一个中间量,分别比较它们与中间量的大小,从而得出问题的答案.4.解:1111 111的倒数是101111,1 11111 111的倒数是1011 111.因为101111>1011 111,所以1111 111<1 11111 111.点拨:利用倒数法比较两个正数的大小时,需先求出其倒数,再根据倒数大的反而小,从而确定这两个数的大小.5.解:每个分数都加1,分别得12 015,115,12 016,116.因为12 016<12 015<116<115,所以-2 0152 016<-2 0142 015<-1516<-1415.点拨:本题直接比较很困难,但通过把这些数适当变形,再进行比较就简单多了.6.解:因为-623=-1246,-417=-1251,-311=-1244,-1244<-1246<-1247<-1251,所以-311<-623<-1247<-417.点拨:此题如果通分,计算量太大,可以把分子变为相同的,再进行比较.7.解:把a ,-a ,b ,-b 在数轴上表示出来,如图所示,根据数轴可得-a <b <-b <a.(第7题)点拨:本题运用了数轴法比较有理数的大小,在数轴上找出这几个数对应的点的大致位置,即可作出判断.8.|a +b|<|a -b|=|a|+|b|点拨:已知a ,b 异号,不妨取a =2,b =-1或a =-1,b =2.当a =2,b =-1时,|a +b|=|2+(-1)|=1,|a -b|=|2-(-1)|=3,|a|+|b|=|2|+|-1|=3;当a =-1,b =2时,|a +b|=|(-1)+2|=1,|a -b|=|-1-2|=3,|a|+|b|=|-1|+|2|=3.所以|a +b|<|a -b|=|a|+|b|.方法总结:本题运用特殊值法解题,取特殊值时要注意所取的值既要符合题目条件,又要考虑可能出现的多种情况.以本题为例,可以分为a 正、b 负和a 负、b 正两种情况.9.解:分三种情况讨论:①当a >0时,a >a 3;②当a =0时,a =a 3;③当a <0时,|a|>⎪⎪⎪⎪⎪⎪a 3,则a <a 3.专训二1.D 2.±7 3.C4.D 点拨:因为|a|=|b|=8,所以b =±8.5.解:原式=-7+(-5)=-12.6.解:原式=2+15-14+12=2920.7.解:原式=-81×49×49×(-116)=1.点拨:本题易出现“原式=-81÷1÷(-16)=8116”的错误.8.解:原式=(-5)-(-5)×110×10×(-5) =(-5)-25=-30.9.解:原式=⎝ ⎛⎭⎪⎫-94×⎝ ⎛⎭⎪⎫-195 =17120.点拨:解本题时常常会出现乘法运算中积的符号的确定与加法运算中和的符号的确定相混淆的错误.如:(-214)×(-345)=-(94×195)=-17120.10.解:原式=-36×712-(-36)×56-(-36)×1=-21+30+36=45.11.解:原式=24÷⎝ ⎛⎭⎪⎫824-324-424 =24÷124=576.点拨:解本题时往往会出现将乘法分配律运用到除法运算中,从而出现“原式=24÷13-24÷18-24÷16=72-192-144=-264”这样的错误.专训三1.D 2.(1)12;3;-35(2)5;13;453.3;54.解:(1)因为|a|=5,|b|=2,所以a=±5,b=±2.由数轴可知a<b<0,所以a=-5,b=-2.(2)相距3.(3)C点表示的数为-0.5或-2.75.5.B 6.C7.A8.C9.解:(1)原式=17-8÷(-2)×3=17-(-12)=29.(2)原式=-10+8-6=-8.(3)原式=10+8÷4-12=0.(4)原式=(-16)×964+112×(-16)-14=⎝⎛⎭⎪⎫-94+(-1112)-14=-4112.10.D11.解:由题意得a+1=0,b-2=0,所以a=-1,b=2. 所以(a+b)9+a6=[(-1)+2]9+(-1)6=2.12.C13.C14.3.9×105;51 600;十万位15.6.96×10516.D17.B18.解:原式=113÷⎝⎛⎭⎪⎫-712-⎝⎛⎭⎪⎫-234÷⎝⎛⎭⎪⎫-712=-167-337=-7.19.解:当a<0时,2a<-2a;当a=0时,2a=-2a;当a>0时,2a>-2a.20.A点拨:根据从第三个数起,每个数都等于它前面的两个数之和,可得x=1+2=3,y=x+5=3+5=8,故选A.21.B点拨:第1个正奇数是1,第2个正奇数是3,第3个正奇数是5,…,第n个正奇数是2n-1,由2 015=2n-1,得n=1 008,即2 015是从1开始的第1 008个正奇数.由题意知,第1组有1个正奇数,第2组有3个正奇数,第3组有5个正奇数,…,第i组有(2i-1)个正奇数,第31组有31×2-1=61(个)正奇数.因为前31组正奇数的总个数为1+3+5+7+…+57+59+61=961,前32组正奇数的总个数为961+63=1 024,所以第1 008个正奇数应在第32组内.又因为1 008-961=47,所以2 015是第32组的第47个正奇数,故选B.22.1021 点拨:从这组数可以看出,这组数的分子是从1开始,逐次增加1的自然数,分母是分子的2倍加1,即第n 个数是n 2n +1,所以第10个数是102×10+1=1021.23.110 点拨:根据前三个正方形中数的规律可知:c 所处的位置上的数是连续的奇数,所以c =9;a 所处的位置上的数是连续的偶数,所以a =10;而b =ac +1=10×9+1=91,所以a +b +c =10+91+9=110.24.解:(1)一个细胞经过第四个30分钟后可分裂成16个细胞.(2)一个细胞经过3小时后可分裂成64个细胞.(3)一个细胞经过n(n 为正整数)小时后可分裂成22n 个细胞.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专训一:有理数的比较大小的方法 名师点金:有理数大小的比较需要根据有理数的特征灵活地选择适当的方法,除了常规的比较大小的方法外,还有几种特殊的方法:作差法、作商法、找中间量法、倒数法、变形法、数轴法、特殊值法、分类讨论法等.)利用作差法比较大小1.比较1731和5293的大小.*利用作商法比较大小;2.比较-172 016和-344 071的大小.;利用找中间量法比较大小3.比较1 0072 016与1 0092 017的大小.[利用倒数法比较大小· 4.比较1111 111和1 11111 111的大小.)利用变形法比较大小5.比较-2 0142 015,-1415,-2 0152 016,-1516的大小.]6.比较-623,-417,-311,-1247的大小.}、利用数轴法比较大小7.已知a >0,b <0,且|b|<a ,试比较a ,-a ,b ,-b 的大小.%利用特殊值法比较大小8.已知a,b是有理数,且a,b异号,则|a+b|,|a-b|,|a|+|b|的大小关系为_______________________________________________.【利用分类讨论法比较大小9.比较a与a3的大小.专训二:有理数中6种易错类型-对有理数有关概念理解不清造成错误1.下列说法正确的是()A.最小的正整数是0B.-a是负数\C.符号不同的两个数互为相反数D.-a的相反数是a2.已知|a|=7,则a=W.误认为|a|=a,忽略对字母a分情况讨论3.如果一个数的绝对值等于它本身,那么这个数一定是()·A.负数B.负数或零C.正数或零D.正数4.已知a=8,|a|=|b|,则b的值等于()B.-8D.±8对括号使用不当导致错误!5.计算:-7-5.[6.计算:2-⎝ ⎛⎭⎪⎫-15+14-12.}忽略或不清楚运算顺序[7.计算:-81÷94×49÷(-16).。
8.计算:(-5)-(-5)×110÷110×(-5).:乘法运算中确定符号与加法运算中的符号规律相混淆<9.计算:⎝ ⎛⎭⎪⎫-214×⎝ ⎛⎭⎪⎫-345.:10.计算:-36×⎝ ⎛⎭⎪⎫712-56-1. >*除法没有分配律11.计算:24÷⎝ ⎛⎭⎪⎫13-18-16. ,,~ 专训三:有理数中几种热门考点 名师点金:本章主要学习了有理数的定义及其相关概念,有理数的运算,科学记数法与近似数等.本章内容是中考的基本考查内容之一,命题形式多以选择题和简单的计算题为主,注重对基础知识和基本技能的考查.有理数的定义、分类1.在下列各数中:+6,-,-,-23,-18,负有理数有( )个 个 个 个;相反数、倒数、绝对值2.(1)化简下列各式:⎪⎪⎪⎪⎪⎪-12= ;|+(-3)|= ;-⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫-35= W.(2)-5的相反数是 ;-13的绝对值是 ;54的倒数是 W.3.式子|m -3|+5的值随m 的变化而变化,当m = 时,|m -3|+5有最小值,最小值是 .4.已知a ,b 分别是两个不同的点A ,B 所表示的有理数,且|a|=5,|b|=2,它们在数轴上的位置如图所示.)(1)试确定数a ,b ;(2)表示a ,b 两数的点相距多远(3)若C 点在数轴上,C 点到B 点的距离是C 点到A 点距离的13,求C 点表示的数.(第4题)》有理数的大小比较5.(中考·莱芜)在-12,-13,-2,-1这四个数中,最大的数是( ); A .-12 B .-13 C .-2 D .-16.如图,数轴上A ,B 两点分别表示有理数a ,b ,则下列结论正确的是( )(第6题)《<b +b <0-b >0 >0有理数的运算7.下列各式成立的是( )A .|-2|=2B .-(-1)=-1,÷(-3)=13 D .-2×3=68.若四个有理数之和的14是3,其中三个数分别是-10,+8,-6,则第四个数是( )A .+8B .-8C .+20D .+119.计算下列各题:(1)17-23÷(-2)×3;>(2)2×(-5)+23-3÷12;~(3)10+8÷(-2)2-(-4)×(-3);(4)(-24)÷⎝ ⎛⎭⎪⎫2232+512×⎝ ⎛⎭⎪⎫-16-.《非负数性质的应用10.已知a 为有理数,下列说法中正确的是( )`016)))2为正数B .-⎝ ⎛⎭⎪⎫a -12 0162为负数 +⎝ ⎛⎭⎪⎫12 0162为正数 +12 016为正数11.若|a +1|+(b -2)2=0,求(a +b )9+a 6的值.}科学记数法、近似数的应用12.(2015·成都)今年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相.新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的城市,按照规划,新机场将建的4个航站楼的总面积约为126万平方米.用科学记数法表示126万为( )×104 若一个数等于×1021,则这个数的整数位数是( )—14.把390 000用科学记数法表示为 ,用科学记数法表示的数×104的原数是 ,近似数×108精确到的数位是 W.15.(2015·资阳)太阳的半径约为696 000千米,用科学记数法表示为 千米.数学思想方法的应用a.数形结合思想[16.如图,数轴上的A ,B ,C 三点所表示的数分别为a ,b ,c.根据图中各点位置,下列式子正确的是( )(第16题)A .(a -1)(b -1)>0B .(b -1)(c -1)>0%C .(a +1)(b +1)<0D .(b +1)(c +1)<0b.转化思想17.下列各式可以写成a -b +c 的是( )-(+b )-(+c ) -(+b )-(-c )+(-b )+(-c ) +(-b )-(+c )…18.计算:⎣⎢⎡⎦⎥⎤113-⎝ ⎛⎭⎪⎫-234÷⎝ ⎛⎭⎪⎫-712.;c.分类讨论思想19.比较2a与-2a的大小.>有理数中的探究与创新|20.(2015·德州)一组数1,1,2,x,5,y,…,满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y表示的数为()21.(2015·荆州)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现有等式A m=(i,j)表示正奇数m是第i组第j个数(从左往右数),如A7=(2,3),则A2 015=()A.(31,50)B.(32,47)C.(33,46)D.(34,42)'22.(2015·广东)观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是W.23.(2015·绥化)填在下面各正方形(如图)中的四个数之间都有一定的规律,据此规律得出a+b+c=W.(第23题)】24.如图是某种细胞分裂示意图,这种细胞每过30分钟便由1个分裂成2个.(第24题)根据此规律求:!(1)这样的一个细胞经过第四个30分钟后可分裂成多少个细胞(2)这样的一个细胞经过3小时后可分裂成多少个细胞(3)这样的一个细胞经过n(n为正整数)小时后可分裂成多少个细胞答案—专训一1.解:因为5293-1731=5293-5193=193>0,所以5293>1731.]点拨:当比较的两个数的大小非常接近,无法直接比较大小时,作差比较是常采用的方法.2.解:因为172 016÷344 071=172 016×4 07134=1 3571 344>1,所以172 016>344 071.所以-172 016<-344 071.点拨:作商比较法是比较两个数大小的常用方法,当比较的两个正分数作商易约分时,作商比较往往能起到事半功倍的效果;当这两个数是负数时,可先分别求出它们的绝对值,再作商比较它们绝对值的大小,最后根据绝对值大的反而小下结论.3.解:因为1 0072 016<12,1 0092 017>12,所以1 0072 016<1 0092 017.点拨:对于类似的两数的大小比较,我们可以引入一个中间量,分别比较它们与中间量的大小,从而得出问题的答案./4.解:1111 111的倒数是101111,1 11111 111的倒数是1011 111.因为101111>1011 111, 所以1111 111<1 11111 111. 点拨:利用倒数法比较两个正数的大小时,需先求出其倒数,再根据倒数大的反而小,从而确定这两个数的大小. 5.解:每个分数都加1,分别得12 015,115,12 016,116.!因为12 016<12 015<116<115,所以-2 0152 016<-2 0142 015<-1516<-1415.点拨:本题直接比较很困难,但通过把这些数适当变形,再进行比较就简单多了.6.解:因为-623=-1246,-417=-1251,-311=-1244,-1244<-1246<-1247<-1251,所以-311<-623<-1247<-417..点拨:此题如果通分,计算量太大,可以把分子变为相同的,再进行比较.7.解:把a ,-a ,b ,-b 在数轴上表示出来,如图所示,根据数轴可得-a <b <-b <a.(第7题);点拨:本题运用了数轴法比较有理数的大小,在数轴上找出这几个数对应的点的大致位置,即可作出判断.8.|a +b|<|a -b|=|a|+|b|点拨:已知a ,b 异号,不妨取a =2,b =-1或a =-1,b =2.当a =2,b =-1时,|a +b|=|2+(-1)|=1,|a -b|=|2-(-1)|=3,|a|+|b|=|2|+|-1|=3;当a =-1,b =2时,|a +b|=|(-1)+2|=1,|a -b|=|-1-2|=3,|a|+|b|=|-1|+|2|=3.所以|a +b|<|a -b|=|a|+|b|.方法总结:本题运用特殊值法解题,取特殊值时要注意所取的值既要符合题目条件,又要考虑可能出现的多种情况.以本题为例,可以分为a 正、b 负和a 负、b 正两种情况.9.解:分三种情况讨论:(①当a >0时,a >a 3;②当a =0时,a =a 3;③当a <0时,|a|>⎪⎪⎪⎪⎪⎪a 3,则a <a 3.—专训二|1.D 2.±74.D 点拨:因为|a|=|b|=8,所以b =±8.5.解:原式=-7+(-5)=-12.6.解:原式=2+15-14+12=2920.7.解:原式=-81×49×49×(-116)=1.点拨:本题易出现“原式=-81÷1÷(-16)=8116”的错误.8.解:原式=(-5)-(-5)×110×10×(-5)=(-5)-25=-30.9.解:原式=⎝ ⎛⎭⎪⎫-94×⎝ ⎛⎭⎪⎫-195 =17120.点拨:解本题时常常会出现乘法运算中积的符号的确定与加法运算中和的符号的确定相混淆的错误.如:(-214)×(-345)=-(94×195)=-17120.10.解:原式=-36×712-(-36)×56-(-36)×1=-21+30+36=45.11.解:原式=24÷⎝ ⎛⎭⎪⎫824-324-424 =24÷124=576.点拨:解本题时往往会出现将乘法分配律运用到除法运算中,从而出现“原式=24÷13-24÷18-24÷16=72-192-144=-264”这样的错误.专训三1.D 2.(1)12;3;-35 (2)5;13;453.3;54.解:(1)因为|a|=5,|b|=2,所以a =±5,b =±2.由数轴可知a <b <0,所以a =-5,b =-2.(2)相距3.(3)C 点表示的数为-或-.5.B9.解:(1)原式=17-8÷(-2)×3=17-(-12)=29.(2)原式=-10+8-6=-8.(3)原式=10+8÷4-12=0.(4)原式=(-16)×964+112×(-16)-14=⎝ ⎛⎭⎪⎫-94+(-1112)-14=-4112. 10.D11.解:由题意得a +1=0,b -2=0,所以a =-1,b =2.所以(a +b)9+a 6=[(-1)+2]9+(-1)6=2.12.C14.×105;51 600;十万位15.×10516.D18.解:原式=113÷⎝ ⎛⎭⎪⎫-712-⎝ ⎛⎭⎪⎫-234÷⎝ ⎛⎭⎪⎫-712=-167-337=-7.19.解:当a<0时,2a<-2a;当a=0时,2a=-2a;当a>0时,2a>-2a.20.A点拨:根据从第三个数起,每个数都等于它前面的两个数之和,可得x=1+2=3,y=x+5=3+5=8,故选A.21.B点拨:第1个正奇数是1,第2个正奇数是3,第3个正奇数是5,…,第n个正奇数是2n-1,由2 015=2n-1,得n=1 008,即2 015是从1开始的第1 008个正奇数.由题意知,第1组有1个正奇数,第2组有3个正奇数,第3组有5个正奇数,…,第i组有(2i-1)个正奇数,第31组有31×2-1=61(个)正奇数.因为前31组正奇数的总个数为1+3+5+7+…+57+59+61=961,前32组正奇数的总个数为961+63=1 024,所以第1 008个正奇数应在第32组内.又因为1 008-961=47,所以2 015是第32组的第47个正奇数,故选B.点拨:从这组数可以看出,这组数的分子是从1开始,逐次增加1的自然数,分母是分子的2倍加1,即第n个数是n2n+1,所以第10个数是102×10+1=10 21.23.110点拨:根据前三个正方形中数的规律可知:c所处的位置上的数是连续的奇数,所以c=9;a所处的位置上的数是连续的偶数,所以a=10;而b=ac+1=10×9+1=91,所以a+b+c=10+91+9=110.24.解:(1)一个细胞经过第四个30分钟后可分裂成16个细胞.(2)一个细胞经过3小时后可分裂成64个细胞.(3)一个细胞经过n(n为正整数)小时后可分裂成22n个细胞.。