高等数学第六版上下册(同济大学出版社)
最新同济大学第六版高等数学上下册课后习题答案8-6

同济大学第六版高等数学上下册课后习题答案8-6仅供学习与交流,如有侵权请联系网站删除 谢谢2习题8-61. 求曲线x =t -sin t , y =1-cos t , 2sin 4t z =在点)22 ,1 ,12(-π处的切线及法平面方程.解 x '(t )=1-cos t , y '(t )=sin t , 2cos 2)(t t z ='. 因为点)22 ,1 ,12 (-π所对应的参数为2 π=t , 故在点)22 ,1 ,12(-π处的切向量为)2 ,1 ,1(=T .因此在点)22 ,1 ,12(-π处, 切线方程为 22211121-=-=-+z y x π, 法平面方程为 0)22(2)1(1)12(1=-+-⋅++-⋅z y x π, 即422+=++πz y x .2. 求曲线t t x +=1, tt y +=1, z =t 2在对应于t =1的点处的切线及法平面方程.解 2)1(1)(t t x +=', 21)(t t y -=', z '(t )=2t . 在t =1所对应的点处, 切向量)2 ,1 ,41(-=T , t =1所对应的点为)1 ,2 ,21(, 所以在t =1所对应的点处, 切线方程为仅供学习与交流,如有侵权请联系网站删除 谢谢3 21124121-=--=-z y x , 即8142121-=--=-z y x ; 法平面方程为 0)1(2)2()21(41=-+---z y x , 即2x -8y +16z -1=0. 3. 求曲线y 2=2mx , z 2=m -x 在点(x 0, y 0, z 0)处的切线及法平面方程. 解 设曲线的参数方程的参数为x , 将方程y 2=2mx 和z 2=m -x 的两边对x 求导, 得m dx dy y 22=, 12-=dxdz z , 所以y m dx dy =, z dxdz 21-=. 曲线在点(x 0, y 0, z 0,)的切向量为)21,,1(00z y m -=T , 所求的切线方程为0000211z z z y m y y x x --=-=-, 法平面方程为0)(21)()(00000=---+-z z z y y y m x x . 4. 求曲线⎩⎨⎧=-+-=-++0453203222z y x x z y x 在点(1, 1, 1)处的切线及法平面方程. 解 设曲线的参数方程的参数为x , 对x 求导得,仅供学习与交流,如有侵权请联系网站删除 谢谢4⎪⎩⎪⎨⎧=+-=-++053203222dx dz dx dy dx dz z dx dy y x , 即⎪⎩⎪⎨⎧=-+-=+2533222dxdz dx dy x dx dz z dx dy y . 解此方程组得z y z x dx dy 61015410----=, zy y x dx dz 610946---+=. 因为169)1,1,1(=dx dy , 161)1,1,1(-=dx dz , 所以)161 ,169 ,1(=T . 所求切线方程为1611169111--=-=-z y x , 即1191161--=-=-z y x ; 法平面方程为0)1(161)1(169)1(=---+-z y x , 即16x +9y -z -24=0. 5. 求出曲线x =t , y =t 2, z =t 3上的点, 使在该点的切线平行于平面x +2y +z =4.解 已知平面的法线向量为n =(1, 2, 1).因为x '=1, y '=2t , z '=3t 2, 所以参数t 对应的点处的切向量为T =(1, 2t , 3t 2). 又因为切线与已知平面平行, 所以T ⋅n =0, 即1+4t +3t 2=0,解得t =-1, 31-=t . 于是所求点的坐标为(-1, 1, -1)和)271 ,91 ,31(--. 6. 求曲面e z -z +xy =3在点(2,1,0)处的切平面及法线方程.解 令F (x , y , z )=e z -z +xy -3, 则仅供学习与交流,如有侵权请联系网站删除 谢谢5n =(F x , F y , F z )|(2, 1, 0)=(y , x , e z -1)|(2, 1, 0)=(1, 2, 0),点(2,1, 0)处的切平面方程为1⋅(x -2)+2(y -1)+0⋅(z -0)=0, 即x +2y -4=0,法线方程为02112-=-=-z y x . 7. 求曲面ax 2+by 2+cz 2=1在点(x 0, y 0, z 0)处的切平面及法线方程. 解 令F (x , y , z )=ax 2+by 2+cz 2-1, 则n =(F x , F y , F z )=(2ax , 2by , 2cz )=(ax , by , cz ).在点(x 0, y 0, z 0)处, 法向量为(ax 0, by 0, cz 0), 故切平面方程为ax 0(x -x 0)+by 0(y -y 0)+cz 0(z -z 0)=0,即 202020000cz by ax z cz y by x ax ++=++, 法线方程为 000000cz z z by y y ax x x -=-=-.仅供学习与交流,如有侵权请联系网站删除 谢谢68. 求椭球面x 2+2y 2+z 2=1上平行于平面x -y +2z =0的切平面方程. 解 设F (x , y , z )=x 2+2y 2+z 2-1, 则n =(F x , F y , F z )=(2x , 4y , 2z )=2(x , 2y , z ).已知切平面的法向量为(1, -1, 2). 因为已知平面与所求切平面平行, 所以2121z y x =-=, 即z x 21=, z y 41-=, 代入椭球面方程得1)4(2)2(222=+-+z z z , 解得1122±=z , 则1122±=x , 11221 =y . 所以切点坐标为)1122,11221,112(±± . 所求切平面方程为0)1122(2)11221()112(=±+-±z y x , 即 2112±=+-z y x . 9. 求旋转椭球面3x 2+y 2+z 2=16上点(-1, -2, 3)处的切平面与xOy 面的夹角的余弦.解 x O y 面的法向为n 1=(0, 0, 1).令F (x , y , z )=3x 2+y 2 +z 2-16, 则点(-1, -2, 3)处的法向量为n 2=(F x , F y , F z )|(-1, -2, 3)=(6x , 2y , 2z )|(-1, -2, 3)=(-6, -4, 6).仅供学习与交流,如有侵权请联系网站删除 谢谢7 点(-1, -2, 3)处的切平面与xOy 面的夹角的余弦为22364616||||cos 2222121=++⋅=⋅⋅=n n n n θ.10. 试证曲面a z y x =++(a >0)上任何点处的切平面在各坐标轴上的截距之和等于a .证明 设a z y x z y x F -++=),,(, 则)21,21,21(zy x =n . 在曲面上任取一点M (x 0, y 0, z 0), 则在点M 处的切平面方程为 0)(1)(1)(1000000=-+-+-z z z y y y x x x , 即 a z y x z z y y x x =++=++000000. 化为截距式, 得1000=++az z ay y ax x , 所以截距之和为 a z y x a az ay ax =++=++)(000000.。
高等数学-同济大学第六版--高等数学课件第一章函数与极限

函数与极限
x
4
{x a x b} 称为半开区间, 记作 [a,b)
{x a x b} 称为半开区间, 记作 (a,b]
有限区间
[a,) {x a x} (,b) {x x b}
无限区间
oa
x
ob
x
区间长度的定义:
两端点间的距离(线段的长度)称为区间的长度.
2024/7/17
函数与极限
一、基本概念
1.集合: 具有某种特定性质的事物的总体.
组成这个集合的事物称为该集合的元素.
aM, aM, A {a1 , a2 ,, an }
有限集
M { x x所具有的特征} 无限集
若x A,则必x B,就说A是B的子集. 记作 A B.
2024/7/17
函数与极限
2
数集分类: N----自然数集 Z----整数集
2024/7/17
函数与极限
47
注意:1.不是任何两个函数都可以复合成一个复 合函数的;
例如 y arcsin u, u 2 x2; y arcsin(2 x2 )
(通常说周期函数的周期是指其最小正周期).
3l
l
2
2
l 2
3l 2
2024/7/17
函数与极限
25
四、反函数
y 反函数y ( x)
Q(b, a )
直接函数y f ( x)
o
P(a, b)
x
直接函数与反函数的图形关于直线 y x对称.
2024/7/17
函数与极限
26
五、小结
基本概念 集合, 区间, 邻域, 常量与变量, 绝对值. 函数的概念 函数的特性 有界性,单调性,奇偶性,周期性. 反函数
同济大学第六版高等数学上下册课后习题答案5-2

同济大学第六版高等数学上下册课后习题答案5-2 1. 试求函数⎰=xtdt y 0sin 当x =0及4π=x 时的导数. 解 x tdt dx d y x sin sin 0=='⎰, 当x =0时, y '=sin0=0; 当4π=x 时, 224sin =='πy . 2. 求由参数表示式⎰=t udu x 0sin , ⎰=tudu y 0cos 所给定的函数y 对x 的导数.解 x '(t )=sin t , y '(t )=cos t , t t x t y dx dy cos )()(=''=. 3. 求由⎰⎰=+x y ttdt dt e 000cos 所决定的隐函数y 对x 的导数dxdy . 解 方程两对x 求导得0cos =+'x y e y ,于是 ye x dx dy cos-=. 4. 当x 为何值时, 函数⎰-=x t dt te x I 02)(有极值? 解 2)(x xe x I -=', 令I '(x )=0, 得x =0. 因为当x <0时, I '(x )<0; 当x >0时, I '(x )>0,所以x =0是函数I (x )的极小值点.5. 计算下列各导数:(1)⎰+2021x dt t dx d ; (2)⎰+32411x x dt tdx d ; (3)⎰x xdt t dx d cos sin 2)cos(π. 解 (1)dxdu dt t du d u x dt t dx d u x ⋅+=+⎰⎰02202112令 421221x x x u +=⋅+=.(2)⎰⎰⎰+++=+323204044111111x x x x dt tdx d dt t dx d dt t dx d ⎰⎰+++-=3204041111x x dt t dx d dt t dx d )()(11)()(11343242'⋅++'⋅+-=x x x x 12281312xx x x +++-=. (3)⎰⎰⎰+-=x x x x dt t dx d dt t dx d dt t dx d cos 02sin 02cos sin 2)cos()cos()cos(πππ ))(cos cos cos())(sin sin cos(22'+'-=x x x x ππ)cos cos(sin )sin cos(cos 22x x x x ππ⋅-⋅-=)sin cos(sin )sin cos(cos 22x x x x πππ-⋅-⋅-=)sin cos(sin )sin cos(cos 22x x x x ππ⋅+⋅-=)sin cos()cos (sin 2x x x π-=.6. 计算下列各定积分:(1)⎰+-adx x x 02)13(; 解 a a a x x x dx x x a a+-=+-=+-⎰230230221|)21()13(. (2)⎰+2142)1(dx xx ; 解 852)11(31)22(31|)3131()1(333321332142=---=-=+---⎰x x dx x x . (3)⎰+94)1(dx x x ; 解 94223942194|)2132()()1(x x dx x x dx x x +=+=+⎰⎰ 6145)421432()921932(223223=+-+=. (4)⎰+33121x dx ; 解 66331arctan 3arctan arctan 13313312πππ=-=-==+⎰x x dx . (5)⎰--212121x dx ; 解 3)6(6)21arcsin(21arcsin arcsin 1212121212πππ=--=--==---⎰x x dx .(6)⎰+a x a dx 3022; 解 a a a a xa x a dx aa 30arctan 13arctan 1arctan 1303022π=-==+⎰. (7)⎰-1024x dx ; 解 60arcsin 21arcsin 2arcsin 410102π=-==-⎰x x dx . (8)dx x x x ⎰-+++012241133; 解 013012201224|)arctan ()113(1133---+=++=+++⎰⎰x x dx x x dx x x x 41)1arctan()1(3π+=----=. (9)⎰---+211e x dx ; 解 1ln 1ln ||1|ln 12121-=-=+=+------⎰e x x dx e e . (10)⎰402tan πθθd ; 解 4144tan )(tan )1(sec tan 40402402πππθθθθθθπππ-=-=-=-=⎰⎰d d . (11)dx x ⎰π20|sin |; 解 ⎰⎰⎰-=ππππ2020sin sin |sin |xdx xdx dx x πππ20cos cos x x +-==-cos π +cos0+cos2π-cos π=4.(12)⎰20)(dx x f , 其中⎪⎩⎪⎨⎧>≤+=1 211 1)(2x x x x x f . 解 38|)61(|)21(21)1()(2131022121020=++=++=⎰⎰⎰x x x dx x dx x dx x f . 7. 设k 为正整数. 试证下列各题: (1)⎰-=ππ0cos kxdx ; (2)⎰-=ππ0sin kxdx ; (3)⎰-=πππkxdx 2cos ; (4)⎰-=πππkxdx 2sin . 证明 (1)⎰--=-=--==ππππππ000)(sin 1sin 1|sin 1cos k k k k kx k kxdx . (2))(cos 1cos 1cos 1sin ππππππ-+-=-=--⎰k k k k x k k kxdx 0cos 1cos 1=+-=ππk kk k . (3)πππππππππ=+=+=+=---⎰⎰22|)2sin 21(21)2cos 1(21cos 2kx k x dx kx kxdx . (4)πππππππππ=+=-=-=---⎰⎰22|)2sin 21(21)2cos 1(21sin 2kx k x dx kx kxdx . 8. 设k 及l 为正整数, 且k ≠l . 试证下列各题:(1)⎰-=ππ0sin cos lxdx kx ; (2)⎰-=ππ0cos cos lxdx kx ;(3)⎰-=ππ0sin sin lxdx kx . 证明 (1)⎰⎰----+=ππππdx x l k x l k lxdx kx ])sin()[sin(21sin cos 0])cos()(21[])cos()(21[=----++-=--ππππx l k l k x l k l k . (2)⎰⎰---++=ππππdx x l k x l k lxdx kx ])cos()[cos(21cos cos 0])sin()(21[])sin()(21[=--+++=--ππππx l k l k x l k l k . (3)⎰⎰----+-=ππππdx x l k x l k lxdx kx ])cos()[cos(21sin sin . 0])sin()(21[])sin()(21[=--+++-=--ππππx l k l k x l k l k . 9. 求下列极限:(1)x dt t x x ⎰→020cos lim;(2)⎰⎰→x t x t x dt te dt e 0220022)(lim .解 (1)11cos lim cos lim 20020==→→⎰x x dt t x x x . (2)22222200002200)(2lim )(lim x xt x t x xt x t x xe dt e dt e dtte dt e '⋅=⎰⎰⎰⎰→→ 22222002002lim 2lim x x t x x x xt x xe dt e xe edt e ⎰⎰→→=⋅=2212lim 22lim 2020222=+=+=→→x e x e e x x x x x . 10. 设⎩⎨⎧∈∈=]2 ,1[ ]1 ,0[ )(2x x x x x f . 求⎰=x dt t f x 0)()(ϕ在[0, 2]上的表达式, 并讨论ϕ(x )在(0, 2)内的连续性.解 当0≤x ≤1时, 302031)()(x dt t dt t f x xx ===⎰⎰ϕ; 当1<x ≤2时, 6121212131)()(2211020-=-+=+==⎰⎰⎰x x tdt dt t dt t f x xx ϕ. 因此 ⎪⎩⎪⎨⎧≤<-≤≤=21 612110 31)(23x x x x x ϕ. 因为31)1(=ϕ, 3131lim )(lim 30101==-→-→x x x x ϕ, 316121)6121(lim )(lim 20101=-=-=+→+→x x x x ϕ, 所以ϕ(x )在x =1处连续, 从而在(0, 2)内连续.11. 设⎪⎩⎪⎨⎧><≤≤=ππx x x x x f 或0 00 sin 21)(. 求⎰=x dt t f x 0)()(ϕ在(-∞, +∞)内的表达式.解 当x <0时,00)()(00===⎰⎰xx dt dt t f x ϕ; 当0≤x ≤π时,21cos 21|cos 21sin 21)()(000+-=-===⎰⎰x t tdt dt t f x x xx ϕ; 当x >π时,πππϕ000|cos 210sin 21)()(t dt tdt dt t f x x x -=+==⎰⎰⎰ 10cos 21cos 21=+-=π. 因此 ⎪⎩⎪⎨⎧≥≤≤-<=ππϕx x x x x 10 )cos 1(210 0)(. 12. 设f (x )在[a , b ]上连续, 在(a , b )内可导且f '(x )≤0,⎰-=x adt t f a x x F )(1)(. 证明在(a , b )内有F '(x )≤0.证明 根据积分中值定理, 存在ξ∈[a , x ], 使))(()(a x f dt t f x a -=⎰ξ. 于是有)(1)()(1)(2x f ax dt t f a x x F x a -+--='⎰ ))(()(1)(12a x f a x x f a x ----=ξ )]()([1ξf x f ax --=. 由 f '(x )≤0可知f (x )在[a , b ]上是单调减少的, 而a ≤ξ≤x , 所以f (x )-f (ξ)≤0. 又在(a , b )内, x -a >0, 所以在(a , b )内 0)]()([1)(≤--='ξf x f ax x F .。
同济大学高等数学第六版上第一章第五节 极限运算法则

3.无穷小的运算性质:
定理2 在同一过程中,有限个无穷小的代数和 仍是无穷小. 证 设及 是当x 时的两个无穷小,
0, N 1 0, N 2 0, 使得
当 x N 1时恒有 ; 当 x N 2时恒有 ; 2 2 取 N max{ N 1 , N 2 }, 当 x N时, 恒有 , 2 2 0 ( x )
证 必要性 设 lim f ( x ) A, 令 ( x ) f ( x ) A, x x
0
则有 lim ( x ) 0,
x x0
f ( x ) A ( x ).
充分性 设 f ( x ) A ( x ),
其中 ( x )是当x x 0时的无穷小,
又设是当x x 0时的无穷小,
0, 2 0, 使得当0 x x 0 2时 恒有 . M
取 min{ 1 , 2 }, 则当 0 x x 0 时, 恒有 u u M , M
当x x Байду номын сангаас时, u 为无穷小.
lim P ( x )
若Q( x 0 ) 0, 则商的法则不能应用.
4x 1 . 例2 求 lim 2 x 1 x 2 x 3
解 lim( x 2 2 x 3) 0,
x 1
商的法则不能用
又 lim(4 x 1) 3 0,
x 1
x 2x 3 0 lim 0. x 1 4x 1 3
1 1 例如, 当x 0时, y sin x x 是一个无界变量, 但不是无穷大.
(1) 取 x 0 1 ( k 0,1,2,3,)
第六版同济大学高等数学上下课后答案详解

|sin x | | x | 3 求 ( ) ( ) ( ) (2) 并作出函数 y(x) 8 设 ( x) 4 6 4 | x | 0 3
的图形 解 ( ) |sin | 1 ( ) |sin | 2 ( ) |sin( )| 2 (2) 0 6 6 2 4 4 2 4 4 2 9 试证下列函数在指定区间内的单调性 (1) y x ( 1) 1 x (2)yxln x (0 ) 证明 (1)对于任意的 x1 x2( 1) 有 1x10 1x20 因为当 x1x2 时
对于映射 g YX 因为对每个 yY 有 g(y)xX 且满足 f(x)f[g(y)]Iy yy 按逆映射的定义 g 是 f 的逆映射 5 设映射 f XY AX 证明 (1)f 1(f(A))A (2)当 f 是单射时 有 f 1(f(A))A 证明 (1)因为 xA f(x)yf(A) f 1(y)xf 1(f(A)) f 1(f(A))A 所以 (2)由(1)知 f 1(f(A))A 另一方面 对于任意的 xf 1(f(A))存在 yf(A) 使 f 1(y)xf(x)y 因为 yf(A)且 f 是单射 所以 xA 这就证明了 f 1(f(A))A 因此 f 1(f(A))A 6 求下列函数的自然定义域 (1) y 3x 2 解 由 3x20 得 x 2 函数的定义域为 [ 2 , ) 3 3 (2) y 1 2 1 x 解 由 1x20 得 x1 函数的定义域为( 1)(1 1)(1 ) (3) y 1 1 x 2 x 解 由 x0 且 1x20 得函数的定义域 D[1 0)(0 1] (4) y
y1 y2
x1 x x1 x2 2 0 1 x1 1 x2 (1 x1)(1 x2 )
考研高等数学教材

高等数学:同济大学编写的高等数学第6版高等教育出版社(绿色)最好别用第5版的,因为第6版的总复习题和考研题很接近,有的就是考研的真题,所以对你的前期复习有帮助。
线性代数:同济大学编写的线性代数第4版或第5版高等教育出版社(紫色)或清华大学居于马编写的线性代数第2版清华大学出版社(黄色)这两本都是教育部推荐的,同济的比较薄,内容紧凑;清华的比较厚,内容完整。
建议你水平高的选同济的,水平一般的选清华的。
另外线代的书,同济4版和5版都无所谓。
概率论与数理统计:浙江大学盛骤编写的概率论与数理统计第4版浙江大学出版社(蓝色)还有一本是经济数学吴传生的概率论,虽说是经济数学但内容也不错,你可以实地考察一下,一般的书店都有。
主要是吴传生这本书的习题,曾经有考题根据它改编过。
另外复习中还需要全书和题目,这个建议你去一些考研论坛看看别人的经验贴,我这里帮你把所有的辅导书列出来也没意思是吧,你根据自身的情况选一些适合自己的就可以了。
数学主要用李永乐的书,陈文灯的可以辅助一下。
高等数学:同济五版线性代数:同济六版概率论与数理统计:浙大三版推荐资料:1、李永乐考研数学3--数学复习全书+习题全解(经济类)2、李永乐《经典400题》3、《李永乐考研数学历年试题解析(数学三)真题》考研数学规划:课本+复习指导书+习题集+模拟题+真题= KO复习资料来说:李永乐的不错,注重基础;陈文灯的要难一些。
经济类一般都用李永乐的(经济类数学重基础不重难度),基础好的话可以考虑下陈文灯的书。
李永乐的线性代数很不错陈文灯的高等数学很不错文都考研《高等数学》(上下册)第六版,同济大学数学系编,高等教育出版社出版;《高等数学过关与提高》(上下册),原子能出版社出版,适合理工类考生使用。
《微积分》吴传生主编,高等教育出版社出版;《微积分过关与提高》(上下册),原子能出版社出版,适合经济类考生使用。
《线性代数》第四版,同济大学数学系编,高等教育出版社出版;《线性代数过关与提高》,原子能出版社出版,适合所有考生使用。
同济大学第六版高等数学上下册课后习题答案5-7

同济大学第六版高等数学上下册课后习题答案5-71. 判别下列各反常积分的收敛性, 如果收敛, 计算反常积分的值:(1)⎰+∞14xdx; 解 因为3131)31(lim 3131314=+-=-=-+∞→+∞-+∞⎰x x x dx x , 所以反常积分⎰+∞14x dx收敛, 且3114=⎰∞+x dx . (2)⎰+∞1xdx ;解 因为+∞=-==+∞→+∞∞+⎰22lim 211x xxdx x , 所以反常积分⎰+∞1xdx 发散.(3)dx e ax ⎰+∞-0(a >0); 解 因为aa e a e adx e ax x ax ax 11)1(lim 100=+-=-=-+∞→+∞-+∞-⎰, 所以反常积分dx e ax ⎰+∞-0收敛, 且adx e ax 10=⎰+∞-.(4)⎰+∞-0ch tdt e pt (p >1); 解 因为1]1111[21][21ch 20)1()1(0)1()1(0-=+--=+=+∞+--∞++--∞+-⎰⎰p p e pe p dt e e tdt e tp t p t p tp pt ,所以反常积分⎰+∞-0ch tdt e pt 收敛, 且1ch 20-=⎰∞+-p p tdt e pt .(5)⎰+∞-0sin tdt e pt ω(p >0, ω>0); 解⎰⎰+∞-+∞--=0cos 1sin t d e tdt ept ptωωω⎰⎰+∞-+∞-+∞--=-⋅+-=020sin 1)(cos 1cos 1t d e pdt pe t te pt pt pt ωωωωωωω⎰+∞-+∞--⋅+-=0202)(sin sin 1dt pe t pte p ptpt ωωωωω⎰+∞--=022sin 1tdt e p pt ωωω,所以 22sin w p tdt e pt +=⎰+∞-ωω.(6)⎰+∞∞-++222x x dx;解 πππ=--=+=++=++⎰⎰+∞∞-+∞∞-+∞∞-)2(2)1arctan()1(12222x x dxx x dx . (7)dx xx ⎰-121;解 这是无界函数的反常积分, x =1是被积函数的瑕点.11)1(lim 112110212=+--=--=--→⎰x x dx x x x .(8)⎰-22)1(x dx;解 这是无界函数的反常积分, x =1是被积函数的瑕点. 因为⎰⎰⎰-+-=-212102202)1()1()1(x dxx dx x dx , 而 +∞=--=-=--→⎰111lim 11)1(110102x x x dx x ,所以反常积分⎰-202)1(x dx发散.(9)⎰-211x xdx ;解 这是无界函数的反常积分, x =1是被积函数的瑕点.21232121]12)1(32[)111(1-+-=-+-=-⎰⎰x x dx x x x xdx322]12)1(32[lim 38231=-+--=+→x x x .(10)⎰-ex x dx 12)(ln 1.解 这是无界函数的反常积分, x =e 是被积函数的瑕点.2)arcsin(ln lim )arcsin(ln ln )(ln 11)(ln 111212π===-=--→⎰⎰x x x d x x x dx ex e ee.2. 当k 为何值时, 反常积分⎰+∞)(ln kx x dx收敛? 当k 为何值时, 这反常积分发散? 又当k 为何值时, 这反常积分取得最小值?解 当k <1时, +∞=-==+∞+-+∞+∞⎰⎰2122)(ln 11ln )(ln 1)(ln k kk x k x d x x x dx ;当k =1时, +∞===+∞+∞+∞⎰⎰222)ln(ln ln ln 1)(ln x x d x x x dxk ; 当k >1时,k k kkk x kx d x x x dx -+∞+-+∞+∞-=-==⎰⎰12122)2(ln 11)(ln 11ln )(ln 1)(ln . 因此当k >1时, 反常积分⎰+∞0)(ln k x x dx 收敛; 当k ≤1时, 反常积分⎰+∞0)(ln k x x dx发散. 当k >1时, 令kk k x x dx k f -∞+-==⎰10)2(ln 11)(ln )(, 则 )2ln ln 11()1(2ln ln )2(ln 2ln ln )2(ln 11)2(ln )1(1)(21112+---=----='---k k k k k f k kk. 令f '(k )=0得唯一驻点2ln ln 11-=k . 因为当2ln ln 111-<<k 时f '(k )<0, 当2ln ln 11->k 时f '(k )>0, 所以2ln ln 11-=k 为极小值点, 同时也是最小值点, 即当2ln ln 11-=k 时, 这反常积分取得最小值 3. 利用递推公式计算反常积分⎰+∞-=0dx e x I x n n . 解 因为101000-+∞--+∞-+∞-+∞-=+-=-==⎰⎰⎰n x n x n x n x n n nI dx e x n e x de x dx e x I ,所以 I n = n ⋅(n -1)⋅(n -2)⋅ ⋅ ⋅2⋅I 1. 又因为 1000001=-=+-=-==+∞-+∞-+∞-+∞-+∞-⎰⎰⎰xx x x x e dx e xe xde dx xe I ,所以 I n = n ⋅(n -1)⋅(n -2)⋅ ⋅ ⋅2⋅I 1=n !.。
最新同济大学第六版高等数学上下册课后习题答案9-2

同济大学第六版高等数学上下册课后习题答案9-2仅供学习与交流,如有侵权请联系网站删除 谢谢13 习题9-21. 计算下列二重积分:(1)⎰⎰+Dd y x σ)(22, 其中D ={(x , y )| |x |≤1, |y |≤1};解 积分区域可表示为D : -1≤x ≤1, -1≤y ≤1. 于是⎰⎰+D d y x σ)(22y d y x dx ⎰⎰--+=111122)(x d y y x ⎰--+=111132]31[ x d x ⎰-+=112)312(113]3232[-+=x x 38=. (2)⎰⎰+Dd y x σ)23(, 其中D 是由两坐标轴及直线x +y =2所围成的闭区域: 解 积分区域可表示为D : 0≤x ≤2, 0≤y ≤2-x . 于是⎰⎰+D d y x σ)23(y d y x dx x ⎰⎰-+=2020)23(dx y xy x ⎰-+=20022]3[ dx x x ⎰-+=202)224(0232]324[x x x -+=320=. (3)⎰⎰++Dd y y x x σ)3(223, 其中D ={(x , y )| 0≤x ≤1, 0≤y ≤1};解 ⎰⎰++D d y y x x σ)3(323⎰⎰++=1032310)3(dx y y x x dy ⎰++=1001334]4[dy x y y x x ⎰++=103)41(dy y y 0142]424[y y y ++=1412141=++=. (4)⎰⎰+Dd y x x σ)cos(, 其中D 是顶点分别为(0, 0), (π, 0), 和(π, π)的三角形闭区域.解 积分区域可表示为D : 0≤x ≤π, 0≤y ≤x . 于是,⎰⎰+D d y x x σ)cos(⎰⎰+=x dy y x xdx 00)cos(π⎰+=π0)][sin(dx y x x x ⎰-=π0)sin 2(sin dx x x x ⎰--=π0)cos 2cos 21(x x xd仅供学习与交流,如有侵权请联系网站删除 谢谢13+--=0|)cos 2cos 21(πx x x dx x x ⎰-π0)cos 2cos 21(π23-=. . 2. 画出积分区域, 并计算下列二重积分: (1)⎰⎰Dd y x σ, 其中D 是由两条抛物线x y =, 2x y =所围成的闭区域;解 积分区域图如, 并且D ={(x , y )| 0≤x ≤1, x y x ≤≤2}. 于是 ⎰⎰D d y x σ⎰⎰=102dy y x dx x x ⎰=10223]32[dx y x x x 556)3232(10447=-=⎰dx x x . (2)⎰⎰Dd xy σ2, 其中D 是由圆周x 2+y 2=4及y 轴所围成的右半闭区域;解 积分区域图如, 并且D ={(x , y )| -2≤y ≤2, 240y x -≤≤}. 于是 ⎰⎰⎰⎰⎰----=22402240222222]21[dy y x dx xy dy d xy y y D σ 1564]10132[)212(22225342=-=-=--⎰y y dy y y . (3)⎰⎰+Dy x d e σ, 其中D ={(x , y )| |x |+|y |≤1};解 积分区域图如, 并且D ={(x , y )| -1≤x ≤0, -x -1≤y ≤x +1}⋃{(x , y )| 0≤x ≤1, x -1≤y ≤-x +1}.于是⎰⎰⎰⎰⎰⎰+--+---++=11101101x x y x x x y x D y x dy e dx e dy e dx e d eσ ⎰⎰+---+--+=10110111][][dy e e dx e e x x y x x x y x ⎰⎰---+-+-=101201112)()(dx e e dx e e x x 101201112]21[]21[---+-+-=x x e ex x e e =e -e -1. (4)⎰⎰-+Dd x y x σ)(22, 其中D 是由直线y =2, y =x 及y =2x 轴所围成的闭区域.仅供学习与交流,如有侵权请联系网站删除 谢谢13解 积分区域图如, 并且D ={(x , y )| 0≤y ≤2, y x y ≤≤21}. 于是 ⎰⎰⎰⎰⎰-+=-+=-+2022232222022]2131[)()(dy x x y x dx x y x dy d x y x y y y y D σ 613)832419(2023=-=⎰dy y y . 3. 如果二重积分⎰⎰Ddxdy y x f ),(的被积函数f (x , y )是两个函数f 1(x )及f 2(y )的乘积,即f (x , y )= f 1(x )⋅f 2(y ), 积分区域D ={(x , y )| a ≤x ≤b , c ≤ y ≤d }, 证明这个二重积分等于两个单积分的乘积, 即])([])([)()(2121dy y f dx x f dxdy y f x f dc b a D ⎰⎰⎰⎰⋅=⋅证明 dx dy y f x f dy y f x f dx dxdy y f x f d c b a d c b a D⎰⎰⎰⎰⎰⎰⋅=⋅=⋅])()([)()()()(212121,而 ⎰⎰=⋅dc d c dy y f x f dy y f x f )()()()(2121, 故 dx dy y f x f dxdy y f x f b a dc D ⎰⎰⎰⎰=⋅])()([)()(2121.由于⎰dc dy y f )(2的值是一常数, 因而可提到积分号的外面, 于是得 ])([])([)()(2121dy y f dx x f dxdy y f x f dc b a D ⎰⎰⎰⎰⋅=⋅4. 化二重积分⎰⎰=Dd y x f I σ),(为二次积分(分别列出对两个变量先后次序不同的两个二次积分), 其中积分区域D 是:(1)由直线y =x 及抛物线y 2=4x 所围成的闭区域;仅供学习与交流,如有侵权请联系网站删除 谢谢13 解积分区域如图所示, 并且D ={(x , y )|x y x x 2 ,40≤≤≤≤}, 或D ={(x , y )| y x y y ≤≤≤≤241 ,40}, 所以 ⎰⎰=x x dy y x f dx I 240),(或⎰⎰=yy dx y x f dy I 4402),(. (2)由x 轴及半圆周x 2+y 2=r 2(y ≥0)所围成的闭区域;解积分区域如图所示, 并且D ={(x , y )|220 ,x r y r x r -≤≤≤≤-},或D ={(x , y )| 2222 ,0y r x y r r y -≤≤--≤≤},所以 ⎰⎰--=220),(x r r r dy y x f dx I , 或⎰⎰---=2222),(0y r y r r dx y x f dy I .(3)由直线y =x , x =2及双曲线xy 1=(x >0)所围成的闭区域; 解积分区域如图所示, 并且D ={(x , y )|x y xx ≤≤≤≤1 ,21}, 或D ={(x , y )| 21 ,121≤≤-≤≤x yy }⋃{(x , y )|2 ,21≤≤≤≤x y y }, 所以 ⎰⎰=x x dy y x f dx I 1),(21, 或⎰⎰⎰⎰+=22121121),(),(y ydx y x f dy dx y x f dy I .仅供学习与交流,如有侵权请联系网站删除 谢谢13 (4)环形闭区域{(x , y )| 1≤x 2+y 2≤4}.解 如图所示, 用直线x =-1和x =1可将积分区域D 分成四部分, 分别记做D 1, D 2, D 3, D 4. 于是⎰⎰⎰⎰⎰⎰⎰⎰+++=4321),(),(),(),(D D D D d y x f d y x f d y x f d y x f I σσσσ ⎰⎰⎰⎰--------+=222244411112),(),(x x x x dy y x f dx dy y x f dx ⎰⎰⎰⎰--------++222214442111),(),(x x x x dy y x f dx dy y x f dx用直线y =1, 和y =-1可将积分区域D 分成四部分, 分别记做D 1, D 2, D 3, D 4, 如图所示. 于是⎰⎰⎰⎰⎰⎰⎰⎰+++=4321),(),(),(),(D D D D d y x f d y x f d y x f d y x f I σσσσ ⎰⎰⎰⎰--------+=222244141121),(),(y y y y dx y x f dy dx y x f dy ⎰⎰⎰⎰--------++222241441211),(),(y y y y dx y x f dy dx y x f dy5. 设f (x , y )在D 上连续, 其中D 是由直线y =x 、y =a 及x =b (b >a )围成的闭区域, 证明:⎰⎰⎰⎰=byb a x a b a dx y x f dy dy y x f dx ),(),(.仅供学习与交流,如有侵权请联系网站删除 谢谢13证明 积分区域如图所示, 并且积分区域可表示为D ={(x , y )|a ≤x ≤b , a ≤y ≤x }, 或D ={(x , y )|a ≤y ≤b , y ≤x ≤b }.于是 ⎰⎰D d y x f σ),(⎰⎰=x a b a dy y x f dx ),(, 或⎰⎰D d y x f σ),(⎰⎰=b yb a dx y x f dy ),(.因此 ⎰⎰⎰⎰=by b a x a b a dx y x f dy dy y x f dx ),(),(. 6. 改换下列二次积分的积分次序:(1)⎰⎰ydx y x f dy 010),(; 解 由根据积分限可得积分区域D ={(x , y )|0≤y ≤1, 0≤x ≤y }, 如图.因为积分区域还可以表示为D ={(x , y )|0≤x ≤1, x ≤y ≤1}, 所以⎰⎰⎰⎰=110010),(),(x y dy y x f dx dx y x f dy . (2)⎰⎰yy dx y x f dy 2202),(; 解 由根据积分限可得积分区域D ={(x , y )|0≤y ≤2, y 2≤x ≤2y }, 如图.因为积分区域还可以表示为D ={(x , y )|0≤x ≤4, x y x ≤≤2}, 所以 ⎰⎰y y dx y x f dy 2202),(⎰⎰=402),(xx dy y x f dx . (3)⎰⎰---221110),(y y dx y x f dy ;解 由根据积分限可得积分区域}11 ,10|),{(22y x y y y x D -≤≤--≤≤=, 如图. 因为积分区域还可以表示为}10 ,11|),{(2x y x y x D -≤≤≤≤-=, 所以仅供学习与交流,如有侵权请联系网站删除 谢谢13 ⎰⎰⎰⎰-----=22210111110),(),(x y y dy y x f dx dx y x f dy (4)⎰⎰--21222),(x x x dy y x f dx ;解 由根据积分限可得积分区域}22 ,21|),{(2x x y x x y x D -≤≤-≤≤=, 如图. 因为积分区域还可以表示为}112 ,10|),{(2y x y y y x D -+≤≤-≤≤=, 所以 ⎰⎰--21222),(x x x dy y x f dx ⎰⎰-+-=101122),(y y dx y x f dy . (5)⎰⎰e x dy y x f dx 1ln 0),(;解 由根据积分限可得积分区域D ={(x , y )|1≤x ≤e , 0≤y ≤ln x }, 如图.因为积分区域还可以表示为D ={(x , y )|0≤y ≤1, e y ≤x ≤ e }, 所以⎰⎰e x dy y x f dx 1ln 0),(⎰⎰=10),(ee y dx y xf dy (6)⎰⎰-x xdy y x f dx sin 2sin 0),(π(其中a ≥0).解 由根据积分限可得积分区域}sin 2sin ,0|),{(x y x x y x D ≤≤-≤≤=π, 如图. 因为积分区域还可以表示为}arcsin 2 ,01|),{(π≤≤-≤≤-=x y y y x D}arcsin arcsin ,10|),{(y x y y y x -≤≤≤≤⋃π,所以 ⎰⎰⎰⎰⎰⎰----+=y y y x xdx y x f dy dx y x f dy dy y x f dx arcsin arcsin 10arcsin 201sin 2sin 0),(),(),(πππ.7. 设平面薄片所占的闭区域D 由直线x +y =2, y =x 和x 轴所围成, 它的面密度为μ(x , y )=x 2+y 2, 求该薄片的质量.仅供学习与交流,如有侵权请联系网站删除 谢谢13解 如图, 该薄片的质量为⎰⎰=D d y x M σμ),(⎰⎰+=D d y x σ)(22⎰⎰-+=10222)(y y dx y x dy ⎰-+-=10323]372)2(31[dy y y y 34=. 8. 计算由四个平面x =0, y =0, x =1, y =1所围成的柱体被平面z =0及2x +3y +z =6截得的立体的体积.解 四个平面所围成的立体如图, 所求体积为⎰⎰--=D dxdy y x V )326(⎰⎰--=1010)326(dy y x dx ⎰--=10102]2326[dx y xy y ⎰=-=1027)229(dx x .9. 求由平面x =0, y =0, x +y =1所围成的柱体被平面z =0及抛物面x 2+y 2=6-z 截得的立体的体积.解 立体在xOy 面上的投影区域为D ={(x , y )|0≤x ≤1, 0≤y ≤1-x }, 所求立体的体积为以曲面z =6-x 2-y 2为顶, 以区域D 为底的曲顶柱体的体积, 即⎰⎰--=D d y x V σ)6(22⎰⎰---=101022)6(x dy y x dx 617=. 10. 求由曲面z =x 2+2y 2及z =6-2x 2-y 2所围成的立体的体积.解 由⎩⎨⎧--=+=2222262yx z y x z 消去z , 得x 2+2y 2=6-2x 2-y 2, 即x 2+y 2=2, 故立体在x O y 面上的投影区域为x 2+y 2≤2, 因为积分区域关于x 及y 轴均对称, 并且被积函数关于x , y 都是偶函数, 所以仅供学习与交流,如有侵权请联系网站删除 谢谢13 ⎰⎰+---=D d y x y x V σ)]2()26[(2222⎰⎰--=Dd y x σ)336(22⎰⎰---=2202220)2(12x dy y x dx π6)2(82032=-=⎰dx x . 11. 画出积分区域, 把积分⎰⎰D dxdy y x f ),(表示为极坐标形式的二次积分, 其中积分区域D 是:(1){(x , y )| x 2+y 2≤a 2}(a >0);解积分区域D 如图. 因为D ={(ρ, θ)|0≤θ≤2π, 0≤ρ≤a }, 所以⎰⎰⎰⎰=DD d d f dxdy y x f θρρθρθρ)sin ,cos (),(⎰⎰=πρρθρθρθ200)sin ,cos (d f d a. (2){(x , y )|x 2+y 2≤2x };解 积分区域D 如图. 因为}cos 20 ,22|),{(θρπθπθρ≤≤≤≤-=D , 所以⎰⎰⎰⎰=DD d d f dxdy y x f θρρθρθρ)sin ,cos (),(⎰⎰-=22cos 20)sin ,cos (ππθρρθρθρθd f d .(3){(x , y )| a 2≤x 2+y 2≤b 2}, 其中0<a <b ;解 积分区域D 如图. 因为D ={(ρ, θ)|0≤θ≤2π, a ≤ρ≤b }, 所以⎰⎰⎰⎰=DD d d f dxdy y x f θρρθρθρ)sin ,cos (),(⎰⎰=πρρθρθρθ20)sin ,cos (ba d f d . (4){(x , y )| 0≤y ≤1-x , 0≤x ≤1}.解 积分区域D 如图. 因为}sin cos 10 ,20|),{(θθρπθθρ+≤≤≤≤=D , 所以 ⎰⎰⎰⎰=DD d d f dxdy y x f θρρθρθρ)sin ,cos (),(⎰⎰+=θθρρθρθρθπsin cos 1020)sin ,cos (d f d .12. 化下列二次积分为极坐标形式的二次积分: (1)⎰⎰101),(dy y x f dx ;解 积分区域D 如图所示. 因为}csc 0 ,24|),{(}sec 0 ,40|),{(θρπθπθρθρπθθρ≤≤≤≤⋃≤≤≤≤=D ,所以 ⎰⎰⎰⎰⎰⎰==DDd d f d y x f dy y x f dx θρρθρθρσ)sin ,cos (),(),(101⎰⎰=40sec 0)sin ,cos (πθρρθρθρθd f d ⎰⎰+24csc 0)sin ,cos (ππθρρθρθρθd f d .(2)⎰⎰+xxdy y x f dx 3222)(;解 积分区域D 如图所示, 并且 }sec 20 ,34|),{(θρπθπθρ≤≤≤≤=D , 所示 ⎰⎰⎰⎰⎰⎰=+=+xxDDd d f d y x f dy y x f dx 3222220)()()(θρρρσ⎰⎰=34sec 20)(ππθρρρθd f d .(3)⎰⎰--21110),(x xdy y x f dx ;解 积分区域D 如图所示, 并且}1sin cos 1 ,20|),{(≤≤+≤≤=ρθθπθθρD ,所以 ⎰⎰⎰⎰⎰⎰--==10112)sin ,cos (),(),(x xDDd d f d y x f dy y x f dx θρρθρθρσ⎰⎰+=2sin cos 101)sin ,cos (πθθρρθρθρθd f d(4)⎰⎰21),(x dy y x f dx .解 积分区域D 如图所示, 并且}sec tan sec ,40|),{(θρθθπθθρ≤≤≤≤=D ,所以 ⎰⎰210),(x dy y x f dx ⎰⎰⎰⎰==DDd d f d y x f θρρθρθρσ)sin ,cos (),(⎰⎰=40sec tan sec )sin ,cos (πθθθρρθρθρθd f d13. 把下列积分化为极坐标形式, 并计算积分值: (1)⎰⎰-+2202220)(x ax ady y x dx ;解 积分区域D 如图所示. 因为}cos 20 ,20|),{(θρπθθρa D ≤≤≤≤=, 所以⎰⎰-+2202220)(x ax ady y x dx ⎰⎰⋅=Dd d θρρρ2⎰⎰⋅=20cos 202πθρρρθa d d ⎰=2044cos 4πθθd a 443a π=. (2)⎰⎰+xa dy y x dx 0220;解 积分区域D 如图所示. 因为}sec 0 ,40|),{(θρπθθρa D ≤≤≤≤=, 所以⎰⎰⎰⎰⋅=+Dxa d d dy y x dx θρρρ0220⎰⎰⋅=40sec 0πθρρρθa d d ⎰=4033sec 3πθθd a )]12ln(2[63++=a . (3)⎰⎰-+xxdy y xdx 221221)(;解 积分区域D 如图所示. 因为}tan sec 0 ,40|),{(θθρπθθρ≤≤≤≤=D , 所以⎰⎰⎰⎰⋅=+--Dxx d d dy y xdx θρρρ21212212)(12tan sec 40tan sec 02140-==⋅=⎰⎰⎰-πθθπθθθρρρθd d d .(4)⎰⎰-+220220)(y a a dx y x dy .解 积分区域D 如图所示. 因为}0 ,20|),{(a D ≤≤≤≤=ρπθθρ, 所以⎰⎰⎰⎰⋅=+-Dy a ad d dx y x dy θρρρ2022022)(420028a d d aπρρρθπ=⋅=⎰⎰.14. 利用极坐标计算下列各题: (1)⎰⎰+Dy xd e σ22,其中D 是由圆周x 2+y 2=4所围成的闭区域;解 在极坐标下D ={(ρ, θ)|0≤θ≤2π, 0≤ρ≤2}, 所以 ⎰⎰⎰⎰=+DDy xd de d e θρρσρ222)1()1(2124420202-=-⋅==⎰⎰e e d e d ππρρθπρ.(2)⎰⎰++Dd y x σ)1ln(22,其中D 是由圆周x 2+y 2=1及坐标轴所围成的在第一象限内的闭区域;解 在极坐标下}10 ,20|),{(≤≤≤≤=ρπθθρD , 所以⎰⎰⎰⎰+=++DDd d d y x θρρρσ)1ln()1ln(222)12ln 2(41)12ln 2(212)1ln(20102-=-⋅=+=⎰⎰πρρρθπd d .(3)σd xyDarctan⎰⎰, 其中D 是由圆周x 2+y 2=4, x 2+y 2=1及直线y =0, y =x 所围成的第一象限内的闭区域.解 在极坐标下}21 ,40|),{(≤≤≤≤=ρπθθρD , 所以⎰⎰⎰⎰⎰⎰⋅=⋅=DDDd d d d d xyθρρθθρρθσ)arctan(tan arctan⎰⎰⋅=4021πρρθθd d ⎰⎰==40321643ππρρθθd d .15. 选用适当的坐标计算下列各题: (1)dxdy y x D22⎰⎰,其中D 是由直线x =2,y =x 及曲线xy =1所围成的闭区域. 解 因为积分区域可表示为}1 ,21|),{(x y x x y x D ≤≤≤≤=, 所以dxdy y x D22⎰⎰dy y dx x x x ⎰⎰=211221⎰-=213)(dx x x 49=. (2)⎰⎰++--Dd yx y x σ222211, 其中D 是由圆周x 2+y 2=1及坐标轴所围成的在第一象限内的闭区域;解 在极坐标下}10 ,20|),{(≤≤≤≤=ρπθθρD , 所以⎰⎰⎰⎰⋅+-=++--DDd d d y x y x θρρρρσ2222221111)2(811102220-=+-=⎰⎰ππρρρρθπd d .(3)⎰⎰+Dd y x σ)(22, 其中D 是由直线y =x , y =x +a , y =a , y =3a (a >0)所围成的闭区域;解 因为积分区域可表示为D ={(x , y )|a ≤y ≤3a , y -a ≤x ≤y }, 所以⎰⎰+Dd y x σ)(22⎰⎰-+=aaya y dx y x dy 322)(4332214)312(a dy a y a ay aa =+-=⎰. (4)σd y x D22+⎰⎰, 其中D 是圆环形闭区域{(x , y )| a 2≤x 2+y 2≤b 2}.解 在极坐标下D ={(ρ, θ)|0≤θ≤2π, a ≤ρ≤b }, 所以 σd y x D22+⎰⎰)(3233202a b dr r d ba -==⎰⎰πθπ. 16. 设平面薄片所占的闭区域D 由螺线ρ=2θ上一段弧(20πθ≤≤)与直线2πθ=所围成, 它的面密度为μ(x , y )=x 2+y 2. 求这薄片的质量.解 区域如图所示. 在极坐标下}20 ,20|),{(θρπθθρ≤≤≤≤=D , 所以所求质量⎰⎰⎰⎰⋅==Dd d d y x M 20202),(πθρρρθσμ⎰==254404ππθθd .17. 求由平面y =0, y =kx (k >0), z =0以及球心在原点、半径为R 的上半球面所围成的在第一卦限内的立体的体积.解 此立体在xOy 面上的投影区域D ={(x , y )|0≤θ≤arctan k , 0≤ρ≤R }. ⎰⎰--=Ddxdy y x R V 222k R d R d kRarctan 313arctan 022=-=⎰⎰ρρρθ.18. 计算以xOy 平面上圆域x 2+y 2=ax 围成的闭区域为底, 而以曲面z =x 2+y 2为顶的曲顶柱体的体积.解 曲顶柱体在xOy 面上的投影区域为D ={(x , y )|x 2+y 2≤ax }. 在极坐标下}cos 0 ,22|),{(θρπθπθρa D ≤≤≤≤-=, 所以⎰⎰≤++=axy x dxdy y xV 22)(22πθθρρρθππθππ422cos 022442323cos 4a d a d d a ==⋅=⎰⎰⎰--.。
高等数学第六版上下册(全)(同济大学出版社)

它们都单调递增, 其图形关于直线 y x 对称 .
目录 上页 下页 返回 结束
(2) 复合函数 设有函数链
xg D
u
f
Rg D f
y
y f (u), u Df
①
u g(x), x D, 且 Rg D f
②
则
y f [g(x)] , x D
称为由①, ②确定的复合函数 , u 称为中间变量.
f 1 : f (D) D, 使 y f (D), f 1( y) x , 其中f (x) y, 称此映射 f 1为 f 的反函数 .
习惯上, y f (x), x D 的反函数记成 y f 1(x) , x f (D)
性质: 1) y=f (x) 单调递增 (减) , 其反函数 y f 1(x) 存在,
值域 f (D) [0, ) y 2 x
f
(
1 2
)
2
1 2
2
O
f
(
1 t
)
11 , t
2, t
0t 1 t 1
1
x
目录 上页 下页 返回 结束
2. 函数的几种特性
设函数 y f (x) , x D , 且有区间 I D .
(1) 有界性
x D , M 0, 使 f (x) M , 称 f (x) 为有界函数. x I , M 0, 使 f (x) M , 称 f (x) 在 I 上有界.
目录 上页 下页 返回 结束
(3) 奇偶性
x D, 且有 x D,
若 f (x) f (x), 则称 f (x) 为偶函数;
y
若 f (x) f (x),则称 f (x) 为奇函数.
说明: 若 f (x) 在 x = 0 有定义 , 则当
高等数学第六版上下册(同济大学出版社)课件

不定积分的几何意义
不定积分表示的是一种曲线族 ,每一条曲线都有一个与之对
应的方程。
积分的应用场景
01
物理应用
积分在物理中有广泛的应用,例 如计算物体的质量、重心、转动 惯量等。
工程应用
02
03
经济应用
积分在工程中有广泛的应用,例 如计算曲线的长度、面积、体积 等。
积分在经济中有广泛的应用,例 如计算总成本、总收益、总利润 等。
05
多重积分与向量分析
二重积分的概念与性质
二重积分的定义
二重积分是定积分在二维平面上的推广,表示一个二元函数在某个区域上的累积值。
二重积分的性质
二重积分具有可加性、可减性、可交换性等性质,这些性质使得二重积分在解决实际问题中具有广泛的应用。
三重积分的概念与性质
三重积分的定义
三重积分是定积分在三维空间上的推广 ,表示一个三元函数在某个区域上的累 积值。
03
导数与微分
导数的概念与性质
导数的定义
导数描述了函数在某一点附近的变化率,是函数局部 性质的一种体现。
导数的几何意义
导数在几何上表示函数图像在某一点的切线的斜率。
导数的性质
导数具有一些基本的性质,如线性性质、乘积法则、 商的导数法则等。
微分的概念与性质
微分的定义
01
微分是函数在某一点附近的小变化量,用于近似计算函数的值
求函数的最值
导数可以用于求函数在一定区间内的最大值和最小值,这在优化问题中具有广泛的应用。
04
积分
定积分的概念与性质
01
定积分的定义
定积分是积分的一种,是函数在区间上与区间的乘积在区间的两个端点
同济大学第六版高等数学上下册课后习题答案5-1

同济大学第六版高等数学上下册课后习题答案5-11. 利用定积分定义计算由抛物线y =x 2+1, 两直线x =a 、x =b (b >a )及横轴所围成的图形的面积.解 第一步: 在区间[a , b ]内插入n -1个分点i nab a x i -+=(i =1, 2, ⋅ ⋅ ⋅, n -1), 把区间[a , b ]分成n 个长度相等的小区间, 各个小区间的长度为: nab x i -=∆(i =1, 2, ⋅ ⋅ ⋅, n ). 第二步: 在第i 个小区间[x i -1, x i ] (i =1, 2, ⋅ ⋅ ⋅, n )上取右端点i nab a x i i -+==ξ, 作和 nab i n a b a x f S ni i i ni n -⋅+-+=∆=∑∑==]1)[()(211ξ ∑=+-+-+-=n i i na b i n a b a a n a b 12222]1)()(2[]6)12)(1()(2)1()(2[)(222n n n n na b n n n a b a na n a b +++⋅-++⋅-+-= ]16)12)(1()()1)(()[(222+++-++-+-=nn n a b n n a b a a a b . 第三步: 令λ=max{∆x 1, ∆x 2, ⋅ ⋅ ⋅ , ∆x n }nab -=, 取极限得所求面积 ∑⎰=→∆==ni i i ba x f dx x f S 10)(lim )(ξλ]16)12)(1()()1)(()[(lim 222+++-++-+-=∞→nn n a b n n a b a a a b n a b a b a b a b a a a b -+-=+-+-+-=)(31]1)(31)()[(3322.2. 利用定积分定义计算下列积分:(1)xdx ba ⎰(a <b ); (2)dx e x ⎰10.解 (1)取分点为i n a b a x i -+=(i =1, 2, ⋅ ⋅ ⋅, n -1), 则nab x i -=∆(i =1, 2, ⋅ ⋅ ⋅, n ). 在第i 个小区间上取右端点i nab a x i i -+==ξ (i =1, 2, ⋅ ⋅ ⋅, n ). 于是∑∑⎰=∞→=∞→-⋅-+=∆=ni n n i i i n ba nab i n a b a x xdx 11)(lim lim ξ )(21]2)1()()([lim )(22222a b n n n a b a b a a b n -=+-+--=∞→. (2)取分点为n i x i =(i =1, 2, ⋅ ⋅ ⋅, n -1), 则nx i 1=∆(i =1, 2, ⋅ ⋅ ⋅, n ). 在第i 个小区间上取右端点nix i i ==ξ (i =1, 2, ⋅ ⋅ ⋅, n ). 于是) (1lim 1lim 21110n n n n n n i n i n xe e e nn e dx e +⋅⋅⋅++==∞→=∞→∑⎰1)1(]1[lim1])(1[1lim 11111-=--=--⋅=∞→∞→e e n e e e e e nnn n nn n n n .3. 利用定积分的几何意义 说明下列等式: (1)1210=⎰xdx ; (2)41102π=-⎰dx x ;(3)⎰-=ππ0sin xdx ;(4)⎰⎰=-2022cos 2cos πππxdx xdx .解 (1)⎰102xdx 表示由直线y =2x 、x 轴及直线x =1所围成的面积, 显然面积为1.(2)⎰-1021dx x 表示由曲线21x y -=、x 轴及y 轴所围成的四分之一圆的面积, 即圆x 2+y 2=1的面积的41:41411212ππ=⋅⋅=-⎰dx x . (3)由于y =sin x 为奇函数, 在关于原点的对称区间[-π, π]上与x 轴所夹的面积的代数和为零, 即⎰-=ππ0sin xdx .(4)⎰-22cos ππxdx 表示由曲线y =cos x 与x 轴上]2,2[ππ-一段所围成的图形的面积. 因为cos x为偶函数, 所以此图形关于y 轴对称. 因此图形面积的一半为⎰20cos πxdx , 即⎰⎰=-2022cos 2cos πππxdx xdx .4. 水利工程中要计算拦水闸门所受的水压力, 已知闸门上水的压强p (单位面积上的压力大小)是水深h 的函数, 且有p =9⋅8h (kN/m 2). 若闸门高H =3m , 宽L =2m , 求水面与闸门顶相齐时闸门所受的水压力P .解 建立坐标系如图. 用分点i nHx i =(i =1, 2, ⋅ ⋅ ⋅, n -1)将区间[0, H ]分为n 分个小区间, 各小区间的长为nHx i =∆(i =1, 2, ⋅ ⋅ ⋅, n ). 在第i 个小区间[x i -1, x i ]上, 闸门相应部分所受的水压力近似为 ∆P i =9.8x i l ⋅∆x i . 闸门所受的水压力为22118.42)1(lim 8.9lim 8.98.9lim H L nn n H L n Hi n H L x L x P n ni n ni i i n ⋅=+⋅=⋅=∆⋅⋅=∞→=∞→=∞→∑∑.将L =2, H =3代入上式得P =88.2(千牛).5. 证明定积分性质: (1)⎰⎰=ba ba dx x f k dx x kf )()(; (2)ab dx dx ba ba -==⋅⎰⎰1.证明 (1)⎰∑∑⎰=∆=∆==→=→ba ni i i ni i i ba dx x f k x f k x kf dx x kf )()(lim )(lim )(1010ξξλλ.(2)a b a b x x dx ni i ni i ba -=-=∆=∆⋅=⋅→=→=→∑∑⎰)(lim lim 1lim 101010λλλ.6. 估计下列各积分的值: (1)⎰+412)1(dx x ; (2)⎰+ππ4542)sin 1(dx x ;(3)⎰331arctan xdx x ;(4)⎰-022dx e xx.解 (1)因为当1≤x ≤4时, 2≤x 2+1≤17, 所以 )14(17)1()14(2412-⋅≤+≤-⋅⎰dx x , 即 51)1(6412≤+≤⎰dx x . (2)因为当ππ454≤≤x 时, 1≤1+sin 2x ≤2, 所以 )445(2)sin 1()445(14542ππππππ-⋅≤+≤-⋅⎰dx x ,即 ππππ2)sin1(4542≤+≤⎰dx x .(3)先求函数f (x )=x arctan x 在区间]3 ,31[上的最大值M 与最小值m .21arctan )(x x x x f ++='. 因为当331≤≤x 时, f '(x )>0, 所以函数f (x )=x arctan x 在区间]3 ,31[上单调增加. 于是3631arctan31)31(π===f m , 33arctan 3)3(π===f M .因此)313(3arctan )313(36331-≤≤-⎰ππxdx x ,即32arctan 9331ππ≤≤⎰xdx x . (4)先求函数xx e x f -=2)(在区间[0, 2]上的最大值M 与最小值m .)12()(2-='-x e x f xx , 驻点为21=x .比较f (0)=1, f (2)=e 2,41)21(-=e f ,得41-=e m , M =e 2. 于是)02()02(220412-⋅≤≤-⎰--e dx e e xx,即 41022222---≤≤-⎰e dx dx e e xx .7. 设f (x )及g (x )在[a , b ]上连续, 证明:(1)若在[a , b ]上 f (x )≥0, 且0)(=⎰ba dx x f , 则在[a ,b ]上f (x )≡0; (2)若在[a , b ]上, f (x )≥0, 且f (x )≢0, 则0)(>⎰ba dx x f ;(3)若在[a , b ]上, f (x )≤g (x ), 且⎰⎰=b a ba dx x g dx x f )()(, 则在[ab ]上f (x )≡g (x ).证明 (1)假如f (x )≢0, 则必有f (x )>0. 根据f (x )在[a , b ]上的连续性, 在[a , b ]上存在一点x 0, 使f (x 0)>0, 且f (x 0)为f (x )在[a , b ]上的最大值.再由连续性, 存在[c , d ]⊂[a , b ], 且x 0∈[c , d ], 使当x ∈[c , d ]时, 2)()(0x f x f >. 于是0)(2)()()()()()(0>-≥≥++=⎰⎰⎰⎰⎰c d x f dx x f dx x f dx x f dx x f dx x f dc bd d c c a b a . 这与条件0)(=⎰ba dx x f 相矛盾. 因此在[a ,b ]上f (x )≡0.(2)证法一 因为f (x )在[a , b ]上连续, 所以在[a , b ]上存在一点x 0, 使f (x 0)>0, 且f (x 0)为f (x )在[a , b ]上的最大值.再由连续性, 存在[c , d ]⊂[a , b ], 且x 0∈[c , d ], 使当x ∈[c , d ]时, 2)()(0x f x f >. 于是⎰⎰>-≥≥badcc d x f dx x f dx x f 0)(2)()()(0. 证法二 因为f (x )≥0, 所以0)(≥⎰ba dx x f . 假如0)(>⎰ba dx x f 不成立. 则只有0)(=⎰ba dx x f , 根据结论(1), f (x )≡0, 矛盾. 因此0)(>⎰ba dx x f . (3)令F (x )=g (x )-f (x ), 则在[a ,b ]上F (x )≥0且0)()()]()([)(=-=-=⎰⎰⎰⎰ba b a b a b a dx x f dx x g dx x f x g dx x F ,由结论(1), 在[a , b ]上F (x )≡0, 即f (x )≡g (x ).4. 根据定积分的性质及第7题的结论, 说明下列积分哪一个的值较大: (1)⎰102dx x 还是⎰103dx x ?(2)⎰212dx x 还是⎰213dx x ? (3)⎰21ln xdx 还是⎰212)(ln dx x ? (4)⎰10xdx 还是⎰+10)1ln(dx x ? (5)⎰10dx e x 还是⎰+10)1(dx x ?解 (1)因为当0≤x ≤1时, x 2≥x 3, 所以⎰⎰≥103102dx x dx x . 又当0<x <1时, x 2>x 3, 所以⎰⎰>103102dx x dx x . (2)因为当1≤x ≤2时, x 2≤x 3, 所以⎰⎰≤213212dx x dx x . 又因为当1<x ≤2时, x 2<x 3, 所以⎰⎰<213212dx x dx x .(3)因为当1≤x ≤2时, 0≤ln x <1, ln x ≥(ln x )2, 所以⎰⎰≥21221)(ln ln dx x xdx . 又因为当1<x ≤2时, 0<ln x <1, ln x >(ln x )2, 所以⎰⎰>21221)(ln ln dx x xdx . (4)因为当0≤x ≤1时, x ≥ln(1+x ), 所以⎰⎰+≥1010)1ln(dx x xdx . 又因为当0<x ≤1时, x >ln(1+x ), 所以⎰⎰+>1010)1ln(dx x xdx .(5)设f (x )=e x -1-x , 则当0≤x ≤1时f '(x ) =e x -1>0, f (x )=e x -1-x 是单调增加的. 因此当0≤x ≤1时, f (x )≥f (0)=0, 即e x ≥1+x , 所以⎰⎰+≥1010)1(dx x dx e x . 又因为当0<x ≤1时, e x >1+x , 所以⎰⎰+>1010)1(dx x dx e x .。
高等数学同济大学第六版1-02-数列的极限课件共52页文档

数列收敛的表述——用逻辑符号:
lim
n
xn
a
0,N 0,n N , xn a .
one of all, for every,
exist.
[ ' e p s i l n ]G r e e k a l p h a b e t : E
{(1)n1}
14 n(1)n1
n (1)n1
2, , ,,
,; {
}
23
n
n
2, 22,L, 22L2,L
注意: 数列对应着数轴上一个点列.可看作一动
点在数轴上依次取 x1,x2,,xn,.
x3 x1 x2 x4 xn
问 当 n无限增大时, x n 是否无限接近于某一 题 确定的数值?如果是,如何确定?
例1 证l明 im n(1)n11. n n
证
xn
1
n(1)n1 n
11, n
任给0,要xn1,只要n1,或n1,
所以, 取N1,则当nN时,就有n(1)n11
n
n(1)n1 n
1n 1N 1 11
,即limn(1)n1
n
n
1.
用定义证数列极限存在时,关键是对任意给定
的 0, 寻找N.
例2 证li明 q m n0 ,其q 中 1 . n
(1 )(2 )
6n
n
过剩近
似(橘色
n i1
1 n
i n
2
12
22 L n3
n2
加蓝色 n ( n 1 ) ( 2 n 1 ) 1 1
1
部分)
6n3
(1 )(2 )
同济高数

具体内容一、函数与极限二、导数与微分三、导数的应用四、不定积分五、定积分及其应用六、空间解析几何七、多元函数的微分学八、多元函数积分学九、常微分方程十、无穷级数导数的概念1.图书信息编辑推荐内容简介目录2.图书信息基本信息内容简介目录3.图书信息基本信息内容简介目录4.图书信息基本信息内容简介目录(下册)5.图书信息基本信息内容简介目录最新版图书信息内容简介图书目录5图书信息内容简介高等数学的特点如何学好高等数学具体内容一、函数与极限二、导数与微分三、导数的应用四、不定积分五、定积分及其应用六、空间解析几何七、多元函数的微分学八、多元函数积分学九、常微分方程十、无穷级数导数的概念1.图书信息编辑推荐内容简介目录2.图书信息基本信息内容简介目录3.图书信息基本信息内容简介目录4.图书信息基本信息内容简介目录(下册)5.图书信息基本信息内容简介目录最新版图书信息内容简介图书目录5图书信息内容简介展开编辑本段高等数学的特点初等数学研究的是常量与匀变量,高等数学研究的是不匀变量。
高等数学(它是几门课程的总称)是理、工科院校一门重要的基础学科。
作为一门科学,高等数学有其固有的特点,这就是高度的抽象性、严密的逻辑性和广泛的应用性。
抽象性和计算性是数学最基本、最显著的特点--有了高度抽象和统一,我们才能深入地揭示其本质规律,才能使之得到更广泛的应用。
严密的逻辑性是指在数学理论的归纳和整理中,无论是概念和表述,还是判断和推理,都要运用逻辑的规则,遵循思维的规律。
所以说,数学也是一种思想方法,学习数学的过程就是思维训练的过程。
人类社会的进步,与数学这门科学的广泛应用是分不开的。
尤其是到了现代,电子计算机的出现和普及使得数学的应用领域更加拓宽,现代数学正成为科技发展的强大动力,同时也广泛和深入地渗透到了社会科学领域。
因此,学好高等数学对我们来说相当重要。
编辑本段如何学好高等数学平心而论,高等数学确实是一门比较难的课程。
高等数学教材难度等级排名

高等数学教材难度等级排名高等数学,作为大学和高中数学课程的一部分,对于学生来说,往往是一门极具挑战性的学科。
然而,正是通过这门学科的学习,学生们能够建立数学思维能力和逻辑推理的能力。
因此,选择一本适合自己的高等数学教材至关重要。
本文将对目前市面上常见的高等数学教材难度进行排名,并为读者提供参考。
1.《高等数学(上册)》- 同济大学出版社作为一本经典的高等数学教材,《高等数学(上册)》由同济大学出版社出版。
该教材以系统完整、难度适中、涵盖全面为特点。
它通过深入浅出的方式介绍了高等数学的基本概念和理论,帮助学生逐步掌握各个知识点。
同时,它还提供了大量的习题和实例,可以帮助学生更好地巩固所学内容。
2.《高等数学(下册)》- 高等教育出版社作为《高等数学(上册)》的续篇,《高等数学(下册)》由高等教育出版社出版。
这本教材延续了上册的优点,但难度相对更高。
它涵盖了更多的高等数学知识,引导学生深入理解和应用各种数学方法。
该教材注重培养学生的数学思维能力和问题解决能力,通过丰富的例题和习题激发学生的学习兴趣。
3.《高等数学导学与习题解析》- 高教出版社《高等数学导学与习题解析》由高教出版社出版,是一本专门针对高等数学习题解析的教材。
该书结合了高等数学的学习导引和高难度习题的解析,为学生提供了循序渐进的学习路径。
通过详细的解题步骤和思路分析,学生可以更好地理解数学问题的解决方法,提高解题能力和思维逻辑。
4.《高等数学教程》- 清华大学出版社《高等数学教程》是由清华大学出版社出版的一本经典的高等数学教材。
该教材具有深入浅出、方法灵活的特点,通过清晰的逻辑结构和丰富的实例,帮助学生理解和掌握高等数学的核心概念和方法。
此外,该教材还融合了一些具体的应用案例,帮助学生将数学理论应用到实际问题中。
5.《高等数学(修订版)》- 北京大学出版社该教材是北京大学出版社出版的一本修订版高等数学教材。
修订版教材结合了学术界的最新研究成果和教学实践经验,内容更加全面和深入。
最新同济大学第六版高等数学上下册课后习题答案6-2

同济大学第六版高等数学上下册课后习题答案6-2仅供学习与交流,如有侵权请联系网站删除谢谢17 习题6-21. 求图6-21 中各画斜线部分的面积:(1)解 画斜线部分在x 轴上的投影区间为[0, 1]. 所求的面积为61]2132[)(1022310=-=-=⎰x x dx x x A . (2)解法一 画斜线部分在x 轴上的投影区间为[0, 1]. 所求的面积为1|)()(1010=-=-=⎰x x e ex dx e e A ,解法二 画斜线部分在y 轴上的投影区间为[1, e ]. 所求的面积为1)1(|ln ln 111=--=-==⎰⎰e e dy y y ydy A e e e . (3)仅供学习与交流,如有侵权请联系网站删除 谢谢17 解画斜线部分在x 轴上的投影区间为[-3, 1]. 所求的面积为332]2)3[(132=--=⎰-dx x x A . (4)解 画斜线部分在x 轴上的投影区间为[-1, 3]. 所求的面积为332|)313()32(3132312=-+=-+=--⎰x x x dx x x A . 2. 求由下列各曲线所围成的图形的面积:(1) 221x y =与x 2+y 2=8(两部分都要计算); 解:388282)218(220220*********--=--=--=⎰⎰⎰⎰dx x dx x dx x dx x x A34238cos1642+=-=⎰ππtdt.346)22(122-=-=ππSA.(2)xy1=与直线y=x及x=2;解:所求的面积为⎰-=-=212ln23)1(dxxxA.(3) y=e x,y=e-x与直线x=1;解:所求的面积为⎰-+=-=-121)(eedxeeA xx.仅供学习与交流,如有侵权请联系网站删除谢谢17仅供学习与交流,如有侵权请联系网站删除 谢谢17(4)y =ln x , y 轴与直线y =ln a , y =ln b (b >a >0).解所求的面积为a b e dy e A b a y ba y -===⎰ln ln ln ln 3. 求抛物线y =-x 2+4x -3及其在点(0, -3)和(3, 0)处的切线所围成的图形的面积. 解:y '=-2 x +4.过点(0, -3)处的切线的斜率为4, 切线方程为y =4(x -3).过点(3, 0)处的切线的斜率为-2, 切线方程为y =-2x +6.两切线的交点为)3 ,23(, 所求的面积为 49]34(62[)]34(34[23023232=-+--+-+-+---=⎰⎰dx x x x x x x A .仅供学习与交流,如有侵权请联系网站删除 谢谢17 4. 求抛物线y 2=2px 及其在点),2(p p 处的法线所围成的图形的面积. 解2y ⋅y '=2p .在点),2(p p 处, 1),2(=='p p y p y , 法线的斜率k =-1, 法线的方程为)2(p x p y --=-, 即y p x -=23. 求得法线与抛物线的两个交点为),2(p p 和)3,29(p p -. 法线与抛物线所围成的图形的面积为233232316)612123()223(p y p y y p dy p y y p A p p pp =--=--=--⎰. 5. 求由下列各曲线 所围成的图形的面积;(1)ρ=2a cos θ ;解:所求的面积为⎰⎰==-2022222cos 4)cos 2(21πππθθθθd a d a A =πa 2.仅供学习与交流,如有侵权请联系网站删除谢谢17 (2)x =a cos 3t , y =a sin 3t ;解所求的面积为⎰⎰⎰===2042202330sin cos 34)cos ()sin (44ππtdt t a t a d t a ydx A a2206204283]sin sin [12a tdt tdt a πππ=-=⎰⎰.(3)ρ=2a (2+cos θ )解所求的面积为仅供学习与交流,如有侵权请联系网站删除谢谢172202220218)cos cos 44(2)]cos 2(2[21a d a d a A πθθθθθππ=++=+=⎰⎰. 6. 求由摆线x =a (t -sin t ), y =a (1-cos t )的一拱(0≤t ≤2π)与横轴 所围成的图形的面积.解:所求的面积为⎰⎰⎰-=--==a a a dt t a dt t a t a ydx A 20222020)cos 1()cos 1()cos 1(ππ22023)2cos 1cos 21(a dt t t a a =++-=⎰. 7. 求对数螺线ρ=ae θ(-π≤θ≤π)及射线θ=π所围成的图形面积.解所求的面积为)(421)(21222222ππππθππθθθ----===⎰⎰e e a d e a d ae A . 8. 求下列各曲线所围成图形的公共部分的面积.(1)ρ=3cos θ 及ρ=1+cos θ解仅供学习与交流,如有侵权请联系网站删除 谢谢17 曲线ρ=3cos θ 与ρ=1+cos θ交点的极坐标为)3,23(πA , )3,23(π-B . 由对称性, 所求的面积为πθθθθπππ45])cos 3(21)cos 1(21[2232302=++=⎰⎰d d A . (2)θρsin 2=及θρ2cos 2=.解曲线θρsin 2=与θρ2cos 2=的交点M 的极坐标为M )6,22(π. 所求的面积为 2316]2cos 21)sin 2(21[246602-+=+=⎰⎰πθθθθπππd d A .9. 求位于曲线y =e x 下方, 该曲线过原点的切线的左方以及x 轴上方仅供学习与交流,如有侵权请联系网站删除 谢谢17 之间的图形的面积. 解 设直线y =kx 与曲线y =e x 相切于A (x 0, y 0)点, 则有⎪⎩⎪⎨⎧=='==k e x y e y kx y x x 00)(0000,求得x 0=1, y 0=e , k =e .所求面积为21ln 21)ln 1(00020e dy y y y y y e dy y y e e e e e=⋅+-=-⎰⎰. 10. 求由抛物线y 2=4ax 与过焦点的弦所围成的图形的面积的最小值. 解 设弦的倾角为α. 由图可以看出, 抛物线与过焦点的弦所围成的图形的面积为10A A A +=.显然当2πα=时, A 1=0; 当2πα<时, A 1>0. 因此, 抛物线与过焦点的弦所围成的图形的面积的最小值为20300383822a x a dx ax A a a ===⎰. 11. 把抛物线y 2=4ax 及直线x =x 0(x 0>0)所围成的图形绕x 轴旋转, 计算所得旋转体的体积.解 所得旋转体的体积为2002002224000x a x a axdx dx y V x x x ππππ====⎰⎰.12. 由y =x 3, x =2, y =0所围成的图形, 分别绕x 轴及y轴旋转, 计算所得两个旋转体的体积.解 绕x 轴旋转所得旋转体的体积为ππππ712871207206202====⎰⎰x dx x dx y V x . 绕y 轴旋转所得旋转体的体积为⎰⎰-=-⋅⋅=803280223282dy y dy x V y ππππ πππ56453328035=-=y . 13. 把星形线3/23/23/2a y x =+所围成的图形, 绕x 轴旋转, 计算所得旋转体的体积.解 由对称性, 所求旋转体的体积为dx x a dx y V a a ⎰⎰-==03323202)(22ππ 30234323234210532)33(2a dx x x a x a a a ππ=-+-=⎰.14. 用积分方法证明图中球缺的体积为)3(2H R H V -=π. 证明 ⎰⎰---==R H R R H R dy y R dy y x V )()(222ππ )3()31(232H R H y y R R H R -=-=-ππ.15. 求下列已知曲线所围成的图形, 按指定的轴旋转所产生的旋转体的体积:(1)2x y =, 2y x =, 绕y 轴;解 ππππ103)5121()(1052102210=-=-=⎰⎰y y dy y ydy V . (2)ax a y ch =, x =0, x =a , y =0, 绕x 轴; 解 ⎰⎰⎰===102302202ch ch )(udu a au x dx a x a dx x y V a a πππ令 1022310223)21221(4)2(4u u u u e u e a du e e a ---+=++=⎰ππ )2sh 2(43+=a π. (3)16)5(22=-+y x , 绕x 轴.解 ⎰⎰------+=44224422)165()165(dx x dx x V ππ 2421601640π⎰=-=dx x .(4)摆线x =a (t -sin t ), y =a (1-cos t )的一拱, y =0, 绕直线y =2a .解 ⎰⎰--=ππππa a dx y a dx a V 202202)2()2(⎰----=πππ20223)sin ()]cos 1(2[8t t da t a a a232023237sin )cos 1(8ππππa tdt t a a =+-=⎰.16. 求圆盘222a y x ≤+绕x =-b (b >a >0)旋转所成旋转体的体积.解 ⎰⎰------+=a a a a dy y a b dy y a b V 222222)()(ππ 2202228ππb a dy y a b a=-=⎰.17. 设有一截锥体, 其高为h , 上、下底均为椭圆, 椭圆的轴长分别为2a 、2b 和2A 、2B , 求这截锥体的体积.解 建立坐标系如图. 过y 轴上y 点作垂直于y轴的平面, 则平面与截锥体的截面为椭圆, 易得其长短半轴分别为y h a A A --, y hb B B --. 截面的面积为π)()(y hb B B y h a A A --⋅--. 于是截锥体的体积为])(2[61)()(0bA aB AB ab h dy y h b B B y h a A A V h+++=--⋅--=⎰ππ.18. 计算底面是半径为R 的圆, 而垂直于底面上一条固定直径的所有截面都是等边三角形的立体体积.解 设过点x 且垂直于x 轴的截面面积为A (x ),由已知条件知, 它是边长为x R -2的等边三角形的面积, 其值为)(3)(22x R x A -=,所以 322334)(3R dx x R V RR =-=⎰-. 19. 证明 由平面图形0≤a ≤x ≤b , 0≤y ≤f (x )绕y 轴旋转所成的旋转体的体积为⎰=ba dx x xf V )(2π. 证明 如图, 在x 处取一宽为dx 的小曲边梯形, 小曲边梯形绕y 轴旋转所得的旋转体的体积近似为2πx ⋅f (x )dx , 这就是体积元素, 即dV =2πx ⋅f (x )dx ,于是平面图形绕y 轴旋转所成的旋转体的体积为⎰⎰==ba b a dx x xf dx x xf V )(2)(2ππ. 20. 利用题19和结论, 计算曲线y =sin x (0≤x ≤π)和x 轴所围成的图形绕y 轴旋转所得旋转体的体积.解 20002)sin cos (2cos 2sin 2πππππππ=+-=-==⎰⎰x x x x xd xdx x V . 21. 计算曲线y =ln x 上相应于83≤≤x 的一段弧的长度.解 ⎰⎰⎰+=+='+=8328328321)1(1)(1dx xx dx x dx x y s , 令t x =+21, 即12-=t x , 则23ln 211111113223232222322+=-+=-=-⋅-=⎰⎰⎰⎰dt t dt dt t t dt t tt t s . 22. 计算曲线)3(3x x y -=上相应于1≤x ≤3的一段弧的长度.解 x x x y 31-=, x x y 2121-=', x x y 4121412+-=', )1(2112xx y +='+, 所求弧长为3432)232(21)1(213131-=+=+=⎰x x x dx xx s . 23. 计算半立方抛物线32)1(32-=x y 被抛物线32x y =截得的一段弧的长度.解 由⎪⎩⎪⎨⎧=-=3)1(32232x y x y 得两曲线的交点的坐标为)36 ,2(, )36 ,2(-.所求弧长为⎰'+=21212dx y s . 因为2)1(22-='x y y , y x y 2)1(-=', )1(23)1(32)1()1(34242-=--=-='x x x y x y . 所以]1)25[(98)13(13232)1(2312232121-=--=-+=⎰⎰x d x dx x s . 24. 计算抛物线y 2=2px 从顶点到这曲线上的一点M (x , y )的弧长. 解 ⎰⎰⎰+=+='+=y y y dy y p p dy p y dy y x s 02202021)(1)(1 y y p y p y p y p 022222])ln(22[1++++= py p y p y p p y 2222ln 22++++=. 25. 计算星形线t a x 3cos =, t a y 3sin =的全长.解 用参数方程的弧长公式.dt t y t x s ⎰'+'=2022)()(4π⎰⋅+-⋅=202222]cos sin 3[)]sin (cos 3[4πdt t t a t t a a tdt t 6cos sin 1220==⎰π.26. 将绕在圆(半径为a )上的细线放开拉直, 使细线与圆周始终相切, 细线端点画出的轨迹叫做圆的渐伸线, 它的方程为)sin (cos t t t a x +=, )cos (sin t t t a y -=.计算这曲线上相应于t 从0变到π的一段弧的长度.解 由参数方程弧长公式⎰⎰+='+'=ππ022022)sin ()cos ()]([)]([dt t at t at dt t y t x s 202ππa tdt a ==⎰. 27. 在摆线x =a (t -sin t ), y =a (1-cos t )上求分摆线第一拱成1: 3的点的坐标.解 设t 从0变化到t 0时摆线第一拱上对应的弧长为s (t 0), 则⎰⎰+-='+'=000220220]sin [)]cos 1([)]([)]([)(t t dt t a t a dt t y t x t s )2cos 1(42sin 2000t a dt t a t -==⎰. 当t 0=2π时, 得第一拱弧长s (2π)=8a . 为求分摆线第一拱为1: 3的点为A (x , y ), 令a t a 2)2cos 1(40=-,解得320π=t , 因而分点的坐标为: 横坐标a a x )2332()32sin 32(-=-=πππ, 纵坐标a a y 23)32cos 1(=-=π, 故所求分点的坐标为)23 ,)2332((a a -π. 28. 求对数螺线θρa e =相应于自θ=0到θ=ϕ的一段弧长. 解 用极坐标的弧长公式. θθθρθρϕθθϕd ae e d s a a ⎰⎰+='+=022022)()()()( )1(11202-+=+=⎰θϕθθa a e a a d e a . 29. 求曲线ρθ=1相应于自43=θ至34=θ的一段弧长. 解 按极坐标公式可得所求的弧长 ⎰⎰-+='+=3443222344322)1()1()()(θθθθθρθρd d s 23ln 12511344322+=+=⎰θθθd . 30. 求心形线ρ=a (1+cos θ )η.解 用极坐标的弧长公式. θθθθθρθρππd a a d s ⎰⎰-++='+=0222022)sin ()cos 1(2)()(2a d a 82cos 40==⎰πθθ.。
(完整版)高等数学第六版(同济大学)上册课后习题答案解析

高等数学第六版上册课后习题答案及解析第一章习题1—11. 设A=(-, —5)(5, +),B=[-10, 3), 写出A B,A B, A\B及A\(A\B)的表达式。
解A B=(-, 3)(5, +),A B=[-10,—5),A\B=(—, -10)(5, +),A\(A\B)=[-10, -5).2. 设A、B是任意两个集合,证明对偶律: (A B)C=A C B C。
证明因为x(A B)C x A B x A或x B x A C或x B C x A C B C,所以(A B)C=A C B C。
3. 设映射f : X Y, A X, B X。
证明(1)f(A B)=f(A)f(B);(2)f(A B)f(A)f(B).证明因为y f(A B)x A B, 使f(x)=y(因为x A或x B) y f(A)或y f(B)y f(A)f(B),所以f(A B)=f(A)f(B).(2)因为y f(A B)x A B, 使f(x)=y(因为x A且x B) y f(A)且y f(B)yf (A )f (B ),所以 f (A B )f (A )f (B )。
4。
设映射f : XY , 若存在一个映射g : Y X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个xX , 有I X x =x ; 对于每一个y Y , 有I Y y =y 。
证明:f 是双射, 且g 是f 的逆映射: g =f —1.证明 因为对于任意的yY , 有x =g (y )X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射. 又因为对于任意的x 1x 2, 必有f (x 1)f (x 2), 否则若f (x 1)=f (x 2)g [ f (x 1)]=g [f (x 2)]x 1=x 2。
《高等数学》第六版同济大学应用数学系主编高等教育出版社

《高等数学》第六版同济大学应用数学系主编高等教育出书社第一周学习任务第一章第1 节习题1-14(3)(6) (8),5(3),9(2),15(4),17函数的概念函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数初等函数具体概念和形式,函数关系的成立第2 节习题1-21(2) (5) (8)数列极限的定义数列极限的性质(独一性、有界性、保号性)第3 节习题1-32,4函数极限的概念函数的左极限、右极限与极限的存在性函数极限的根本性质〔独一性、局部有界性、局部保号性、不等式性质,函数极限与数列极限的关系等〕第4 节习题1-44,6无穷小与无穷大的定义无穷小与无穷大之间的关系第5 节习题1-51(5)(11)(13),3,5 极限的运算法那么(6 个定理以及一些推论)第6 节习题1-61(2)(6),2(1)(4),4(1)(3)函数极限存在的两个准那么〔夹逼定理、单调有界数列必有极限〕两个重要极限〔注意极限成立的条件,熟悉等价表达式〕操纵函数极限求数列极限第7 节习题1-71,2,3(1),4(3)(4)无穷小阶的概念〔同阶无穷小、等价无穷小、高阶无穷小、低阶无穷小、k 阶无穷小〕及其应用一些重要的等价无穷小以及它们的性质和确定方法第8 节习题1-83(4),4,5函数的持续性,函数的间断点的定义与分类〔第一类间断点与第二类间断点〕判断函数的持续性和间断点的类型第9 节习题1-93(4)(6)(7),4(4) (6),6持续函数的、和、差、积、商的持续性反函数与复合函数的持续性初等函数的持续性第10 节习题1-101,3有界性与最大值最小值定理零点定理与介值定理(零点定理对于证明根的存在长短常重要的一种方法)总复习题一总复习题一3(2),9(2)(4)(6),10,13总结归纳本章的根本概念、根本定理、根本公式、根本方法第二周学习任务在进行第二周学习任务前,先用一天的时间总结归纳第一周中复习的常识点,整理并创立本章中的难题、错题题库第二章第1 节习题2-12,6,7,8,13,16(2),17导数的定义、几何意义、物理意义单侧与双侧可导的关系可导与持续之间的关系函数的可导性,导函数,奇偶函数与周期函数的导数的性质按照定义求导及其适用的情形,操纵导数定义求极限会求平面曲线的切线方程和法线方程第2 节习题2-22(9),3(2),4,7(8),8(5),11(6)(9)导数的四那么运算公式〔和、差、积、商〕反函数的求导公式复合函数的求导法那么根本初等函数的导数公式分段函数的求导第3 节习题2-31(3), 3(2),4(1),8,10(2),高阶导数n 阶导数的求法〔归纳法,莱布尼兹公式〕第4 节习题2-41(1),2,3(4),4(1),5(2),10隐函数的求导方法,对数求导法由参数方程确定的函数的求导方法第5 节习题2-52,6函数微分的定义,几何意义根本初等函数的微分公式微分运算法那么,微分形式不变性一元函数微分在函数近似计算中的应用总复习题二总复习题二1,3,6(1),7,11,13,14总结归纳本章的根本概念、根本定理、根本公式、根本方法第三周学习任务在进行第三周学习任务前,先用一天的时间总结归纳第二周中复习的常识点,整理并创立本章中的难题、错题题库章学习内容习题章节操练标题问题大纲常识点第三章第1 节习题3-16,8,11(1),12,15费马定理、罗尔定理、拉格朗日定理、柯西定理及其几何意义构造辅助函数第2 节习题3-21(10)(13)(15),4 洛必达法那么及其应用第3 节习题3-35,7,10(2) (3)泰勒中值定理麦克劳林展开式第4 节习题3-43(6) ,5(4),6,9(5) ,10(3),12函数的单调区间,极值点函数的凹凸区间,拐点第5 节习题3—51(8),4(3),10,11函数极值的存在性:一个必要条件,两个充实条件最大值最小值问题函数类的最值问题和应用类的最值问题第6 节习题3-61,4操纵导数作函数图形〔一般出选择题〕:函数f (x)的间断点、f '(x)和f ''(x)的零点和不存在的点,渐近线由各个区间内f '(x)和f ''(x)的符号确定图形的升降性、凹凸性,极值点、拐点第四周学习任务在进行第四周学习任务前,先用一天的时间总结归纳第三周中复习的常识点,整理并创立本章中的难题、错题题库第三章第7 节习题3-75弧微分曲率的定义,曲率的计算公式,曲率圆、曲率半径总复习题三总复习题三1,2(2),6,7,9,10(4),11(3),12,17总结归纳本章的根本概念、根本定理、根本公式、根本方法第四章第1 节习题4-11(1),2(1)(6)(8)(13)(17)(19)(21)(25),5原函数和不定积分的概念与根本性质〔之间的关系,求不定积分与求微分或求导数的关系〕根本的积分公式原函数的存在性、几何意义和力学意义第2 节习题4-22(1)(3)(6)(9)(13)(15)(16)(17)(19)(21)(30)(32)(34)(36) (37)第一类换元积分法〔凑微分法〕第二类换元积分法第3 节习题4-32,5,6,9,14,17,18,19,22,24 分部积分法第4 节习题4-42,4,8,20,23 有理函数积分法,可化为有理函数的积分总复习题四总复习题四1,2,5,9,10,12,14,16,21,23,33,35,38 总结归纳本章的根本概念、根本定理、根本公式、根本方法第五周学习任务在进行第五周学习任务前,先用一天的时间总结归纳第四周中复习的常识点,整理并创立本章中的难题、错题题库章学习内容习题章节操练标题问题大纲常识点第五章第1 节习题5—12(1),3(2)(3),11,12(2),13(5)定积分的定义与性质(7 个性质)函数可积的两个充实条件第2 节习题5—25(2),6(5)(8)(11)(12),9(2),10,12,13积分上限函数及其导数牛顿-莱布尼兹公式第3 节习题5—31(2)(4)(6)(10)(12)(19)(21)(24)(26) ,5,6,7(11)定积分的换元法定积分的分部积分法第4 节习题5—41(4)(8)(10),2无穷限的反常积分无界函数的反常积分总复习题五总复习题五1(1) (2) (4) ,3(2),4(2),10(7) (9)(10),11,12,13,14总结归纳本章的根本概念、根本定理、根本公式、根本方法第六章第1 节————元素法第2 节习题6—21(1)(4),2(1),4,5(1),9,12,15(1)(3) ,16,19,21求平面图形的面积〔直角坐标情形、极坐标情形〕旋转体的体积及侧面积平行截面面积为的立体的体积、平面曲线的弧长第3 节习题6—35,11 用定积分求功、水压力、引力总复习题六总复习题六2,3,5 总结归纳本章的根本概念、根本定理、根本公式、根本方法第六周学习任务在进行第六周学习任务前,先拿出两天的时间对前五周学习的内容进行简单的复习.首先用一天的时间总结归纳第五周中复习的常识点,整理并创立本章中的难题、错题题库;其次用一天对前五周的常识点、难题及错题进行复习章学习内容习题章节操练标题问题备注第七章第1 节习题7—11(1)(4) ,2(2)(4),4(2),5(2)微分方程的根本概念:微分方程,微分方程的阶、解、通解、初始条件、特解第2 节习题7—21(1)(3)(4)(7),2(3),4,6可别离变量的微分方程的概念及其解法第3 节习题7—31(1)(4),2(1),3一阶齐次微分方程的形式及其解法可化为齐次的方程第4 节习题7—41(2)(3)(7)(10),2(1)(4),3,4,7(3),8(5)一阶线性微分方程的形式和解法伯努利方程的形式和解法第5 节习题7—51(1)(4)(7),2(2),3用降阶法解以下微分方程:y(n) = f ( x),y'' = f ( x,y')和y'' = f ( y, y')第6 节习题7—61(1)(3)(6),4(2),n 阶线性微分方程的形式线性微分方程的解的布局:齐次线性微分方程和非齐次线性微分方程的解的性质第7 节习题7—71(1)(4)(5),2(2)(3),特征方程特征方程的根与微分方程通解中的对应项微分方程的通解第8 节习题7—81(1)(3)(7)(9),2(2),6二阶常系数非齐次线性微分方程,此中自由项为:多项式、指数函数、正弦函数、余弦函数,以及它们的和与积第9 节习题7—96 欧拉方程的形式和通解总复习题七总复习题七1(1)(2)(3)(4), 2,3(1)(2)(7),4(4) ,7总结归纳本章的根本概念、根本定理、根本公式、根本方法第七周学习任务在进行第七周学习任务前,先用一天的时间总结归纳第六周中复习的常识点,整理并创立本章中的难题、错题题库第八章第1 节习题8—113,15向量概念和线性运算,空间直角坐标系操纵坐标作向量的线性运算向量的模、标的目的角、投影第2 节习题8—23,7,9(1)(2)(3),10向量积、数量积、混合积的概念、性质、运算律、物理意义两向量平行、垂直的充要条件第3 节习题8—32,7,10(1)(4),11(3)曲面方程的概念旋转曲面的概念,旋转轴为坐标轴的旋转曲面的方程柱面的概念及二次曲面的概念与常用二次曲面〔锥面、椭球面、双曲面、抛物面〕的方程及其图形第4 节习题8—4 3,5(1),8 空间曲线的一般方程、参数方程、空间曲线在坐标面上的投影曲线方程第5 节习题8—5 1,3,5,9平面的点法度方程、一般方程两平面的夹角,两平面垂直、平行或重合的充要条件第6 节习题8—6 1 ,3,4,5,8,14空间直线的一般方程、对称式方程、参数方程两直线的夹角,两直线垂直、平行或重合的充要条件直线与平面的夹角,直线与平面垂直、平行的充要条件平面束总复习题八总复习题八1(1)(2)(3)(4),7,10,12,13,14(1)(2),15,17,20 总结归纳本章的根本概念、根本定理、根本公式、根本方法第九章第1 节习题9—1 2,5(1)(2),6(1)(4),7(1),8 二元函数的极限、持续性、有界性与最大值最小值定理、介值定理第2 节习题9—2 1(4)(5)(6),4,6(2),8,9(2) 偏导数的概念,高阶偏导数的求解第3 节习题9—3 1(1) (4),2,3,5 全微分的定义,可微分的必要条件和充实条件第4 节习题9—4 2,4,6,8(1),10,12(1)多元复合函数求导法那么〔共3 个定理〕全导数全微分形式不变性第5 节习题9—5 1,4,6,8,10(1)一个方程的情形〔定理1,定理2〕方程组的情形〔定理3〕第八周学习任务在进行第八周学习任务前,先用一天的时间总结归纳第七周中复习的常识点,整理并创立本章中的难题、错题题库章学习内容习题章节操练标题问题大纲常识点第九章第6 节习题9—6 3,6,8空间曲线的切线与法平面,曲线在一点处的切向量曲面的切平面与法线,曲面在一点处的法向量第7 节习题9—7 2,5,8标的目的导数的概念,标的目的余弦标的目的导数与可微的关系梯度的概念与计算公式第8 节习题9—8 1,2,6,9,11多元函数极值、极值点的概念多元函数极值的必要条件、充实条件条件极值,拉格朗日乘数法第9 节习题9—9 二元函数的二阶泰勒公式总复习题九总复习题九1,2,5,6(2) ,8,9,11,15,18 总结归纳本章的根本概念、根本定理、根本公式、根本方法第十章第1 节习题10—1 2,4(1)(2)(3),5(1)(4)二重积分的定义、几何意义二重积分的性质〔6 个〕二重积分的中值定理第2 节习题10—21(1)(4),2(1)(3),4(1)(3),6(1)(2)(6),11(1)(3),12(1)(3),13(1 )(3),14(1) (3)操纵直角坐标计算二重积分操纵极坐标计算二重积分第九周学习任务在进行第九周学习任务前,先用一天的时间总结归纳第八周中复习的常识点,整理并创立本章中的难题、错题题库天数学习内容习题章节操练标题问题大纲常识点第十章第3 节习题10-31(2),4,5,6,7,9(1)(2), 10(1)(2),11(1)(2)(3)(4),12(1)(3)三重积分的定义和性质、操纵直角坐标计算三重积分、操纵柱面坐标计算三重积分、操纵球面坐标计算三重积分第4 节习题10—4 1,2,3,4(1),5,7,(1)(3) ,14 曲面的面积、质心、动弹惯量、引力总复习题十总复习题十1(1),2(1)(3),3(1),6,8(1),10,11,12 总结归纳本章的根本概念、根本定理、根本公式、根本方法第十一章第1 节习题11—1 1,3(1)(3)(5)(7) 对弧长的曲线积分的概念、性质、计算方法第2 节习题11—2 1,3(1)(3)(5)(7),4(1) (3),7(1)(2)对坐标的曲线积分的概念、性质、计算方法两类曲线积分之间的联系第3 节习题11—31(1)(2),2(1),3,4(1)(2),5(1)(3), 6(1)(3)格林公式操纵格林公式计算曲线积分平面上曲线积分与路径无关的条件二元函数的全微分求积第4 节习题11—4 4(1)(2),5(1) (2),6 (1) (3) 对面积的曲面积分的概念、性质、计算方法第5 节习题11—5 3(1)(3) (4),4(1)对坐标的曲面积分的概念、性质、计算方法两类曲面积分之间的联系第十周学习任务在进行第十周学习任务前,先用一天的时间总结归纳第九周中复习的常识点,整理并创立本章中的难题、错题题库章学习内容习题章节操练标题问题大纲常识点第十一章第6 节习题11—61(1)(3),2(1),3(1)高斯公式操纵高斯公式计算曲面积分散度的概念与计算第7 节习题11—72(1)(2),3(1)斯托克斯公式操纵斯托克斯公式计算曲线积分旋度的概念与计算总复习题十一总复习题十一1,2,3(1)(3),3(6),4(1)(3),5,7 总结归纳本章的根本概念、根本定理、根本公式、根本方法第十二章第1 节习题12—12(3)(4),3(1)(2)4(1)(2)(5)常数项级数的概念收敛级数的根本性质等比级数〔几何级数〕敛散性的判别级数收敛的必要条件第2 节习题12—21(1)(4)(5),2(1)(4),3(1)(3),4(1) (3)(5),5(2)(3)(5正项级数及其审敛法〔正项级数收敛的充要条件,比拟审敛法及其推论、比较审敛法的极限形式,比值审敛法、根值审敛法,极限审敛法〕p 级数敛散性的判别交错级数及其审敛法〔莱布尼茨定理〕绝对收敛与条件收敛第3 节习题12—31(1)(2)(3) (6),2(1) (2)函数项级数的概念幂级数及其收敛性〔阿贝尔定理及其推论,幂级数的收敛半径〕幂级数的运算〔幂级数的和函数的性质〕第4 节习题12—42(1)(2)(4) ,4,5,6泰勒级数、麦克劳林级数把函数展开成幂级数的步调e x、sin x 、cos x、ln(1+ x)、(1 x)α + 的麦克劳林展开式用间接法把函数展开成幂级数第十一周学习任务在进行第十一周学习任务前,先用一天的时间总结归纳第十周中复习的常识点,整理并创立本章中的难题、错题题库章学习内容习题章节操练标题问题大纲常识点第十二章第7 节习题12—71(1)(2),2(1)(3),6三角级数三角函数系的正交性函数展开成傅里叶级数〔收敛定理,狄利克雷充实条件〕正弦级数和余弦级数第8 节习题12—81(1),2(1) 周期为2l的周期函数的傅里叶级数总复习题十二总复习题十二1,2(1)(5),4,5(1),5(2),6(1),7(1)(4),8(1)(3),9(1),10(1),11 总结归纳本章的根本概念、根本定理、根本公式、根本方法备注以上第十二章的内容用两天的时间完成,用两天的时间将高等数学的上册做系统的复习,用两天的时间将高等数学的下册做系统的复习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对映射
若 f ( X ) Y , 则称 f 为满射; 引例2, 3
X
f Y f (X)
若
有
X
Y
则称 f 为单射; 引例2 若 f 既是满射又是单射, 则称 f 为双射 或一一映射.
引例2
例1.
海伦公式 (满射)
例2. 如图所示,
2
例如, 反正弦主值 定义域
又如, 绝对值函数
值域
1 O 1x
2
定义域
值域
例4.
已知函数
y
f
(
x)
2 1
x, x,
0 x 1 x 1
写出 f (x) 的定义域及值域, 并求
f
(
1 2
)
及
f
(
1 t
).
解: f (x) 的定义域D [0, ) y
y 1 x
值域 f (D) [0, ) y 2 x
例如,
,
,
显然有下列关系 :
定义 3 .
B,
给定两个集合 A,定义下列运算:
并集 A B x
或
A B
交集 A B x
且
B A
差集 A \ B x
且 xB
A\B AB
余集 BAc A \ B (其中B A)
直积 A B (x , y) x A, y B
特例: R R 记 R2
元素 a 不属于集合 M , 记作 a M ( 或 a M ) .
注: M 为数集
M *表示 M 中排除 0 的集 ;
M 表示 M 中排除 0 与负数的集 .
表示法:
(1) 列举法: 按某种方式列出集合中的全体元素 .
例: 有限集合
A
a1
,
a2
,,
an
ai
n i 1
自然数集 N 0, 1 , 2 , , n, n
无限区间
点的 邻域
a
(
a
a
)
去心 邻域
其中, a 称为邻域中心 , 称为邻域半径 .
左 邻域 :
右 邻域 :
2. 集合之间的关系及运算
定义2 . 设有集合 A, B , 若 x A 必有 x B , 则称 A
是 B 的子集 , 或称 B 包含 A , 记作 A B.
若
且
则称 A 与 B 相等, 记作 A B .
2
记
ch x
双曲余弦
偶函数
y ex ex
y ch x
O
Hale Waihona Puke x又如 ,y
f (x) ex ex 2
记
sh x 双曲正弦
再如,
y
sh ch
x x
ex ex ex ex
无单界调.减函数
I x上的D, 使
.
O
f
(xx)1
xM2 ,
x
(3) 奇偶性
x D, 且有 x D,
若
则称 f (x) 为偶函数;
y
若
则称 f (x) 为奇函数.
说明: 若 f (x) 在 x = 0 有定义 ,则当
x O x x
f (x) 为奇函数时, 必有 f (0) 0.
例如,
y f (x) ex ex
说明: 还可定义有上界、有下界、无界 . (见 P11 )
(2) 单调性
x1, x2, f (Ix, )x当1Mx2,时称,为有上界
y
若
f
(x1) ,
f( M
x2
), 称 f (x),
f称(x)为为有下I 界上的
单调增函数 ;
若
若对任意正数 M , 均存在
f 则(x称1)
f
f
(
(xx2))
, 称 f (x)为
第一章 函数与极限
分析基础
函数 — 研究对象 极限 — 研究方法 连续 — 研究桥梁
第一章
第一节 映射与函数
一、集合 二、映射 三、函数
一、 集合
1. 定义及表示法
简称集
定义 1. 具有某种特定性质的事物的总体称为集合.
组成集合的事物称为元素.
简称元
不含任何元素的集合称为空集 , 记作 .
元素 a 属于集合 M , 记作 a M .
对应阴影部分的面积
则在数集
自身之间定义了一种映射
例3. 如图所示, 则有
(满射)
r
(满射)
说明:
映射又称为算子. 在不同数学分支中有不同的惯用
名称. 例如,
X (≠ ) f Y (数集) X (≠ ) f X X (数集 或点集 ) f R
f 称为X 上的泛函 f 称为X 上的变换
f 称为定义在 X 上的函数
为平面上的全体点集
B ABAc
y
B AB
OA x
二、 映射
引例1.
某校学生的集合 按一定规则查号
学号的集合
某班学生的集合
按一定规则入座
某教室座位 的集合
引例2.
引例3.
向 y 轴投影
(点集) (点集)
定义4. 设 X , Y 是两个非空集合, 若存在一个对应规
则 f ,使得
有唯一确定的
与之对应, 则称
x
D f (D)
x D f y Rf f (D) y y f (x), x D
(定义域) (对应规则) (值域)
• 定义域
使表达式或实际问题有意义的自变量集合.
对实际问题, 书写函数时必须写出定义域;
对无实际背景的函数, 书写时可以省略定义域.
y
• 对应规律的表示方法:
解析法 、图像法 、列表法
f
(
1 2
)
2
1 2
2
O
f
(
1 t
)
11 , t
2, t
0t 1 t 1
1
x
2. 函数的几种特性
设函数 y f (x) , x D , 且有区间 I D .
(1) 有界性
x D , M 0, 使 f (x) M , 称 f (x)为有界函数. x I , M 0, 使 f (x) M , 称 f (x) 在 I 上有界.
f 为从 X 到 Y 的映射,记作 f : X Y.
X
f
Y
元素 y 称为元素 x 在映射 f 下的像, 记作 y f (x).
元素 x 称为元素 y 在映射 f 下的原像 . 集合 X 称为映射 f 的定义域 ;
Y 的子集 Rf f ( X ) f (x) x X 称为 f 的 值域 .
注意: 1) 映射的三要素— 定义域 , 对应规则, 值域.
三、函数
1. 函数的概念
定义5. 设数集 D R , 则称映射
为定义在
D 上的函数 , 记为
定义域
y f (x), x D
因变量
自变量
Rf f (D) y y f (x), x D
y y
称为值域
函数图形:
C (x , y) y f (x) , x D O
ax b ( D [a,b])
(2) 描述法:M x x 所具有的特征
例: 整数集合 Z x x N 或 x N
有理数集
Q
p q
pZ, qN,
p 与 q 互质
实数集合 R x x 为有理数或无理数
开区间 ( a , b ) x a x b
闭区间 [ a , b ] x a x b
半开区间