2012年全国初中数学联赛试题答案
2012年全国初中数学竞赛试题及参考答案
—
1
=
么
+
c 口+a b的 ÷一 + 值为— — . +
7 甲) 图 4 ( .如 ,正 方 形 A C 的 边 BD ,E、F分 别 是 A B、B 的 C
( A)3 / 、2
4 甲) ( .小倩 和小玲每人都有若干面值为整数元的人民币. 小
题均给 出了代 号为 A,B,c ,D的 四个选项 ,其 中有且只有 一 倩对小 玲说 :“ 若给我 2元 ,我 的钱数将 是你 的 n倍” 你 ;小玲
个 选 项 是 正 确 的 .请 将 正 确 选 项 的 代 号 填 入 题 后 的 括 号 里 , 不 对小倩说 :“ 你若给我 n元 ,我的钱数将是你 的 2倍” .其 中 n为 填 、 多填 或错 填都 得 0分 )
( B)4
长为 2
曰 C
( C)2 / 、5
( D)45 .
中 点 ,AF与 D E、D 分 别 交 于 点 、 B N, ̄ AD MN的面积是
图2
3 5
舞
7 乙 ) 如 图 5 60 的半 径 为 2 , ( . , 3 0 C 点 E在 O D. D上 ,且 DC=D E,B E的 延 长 线 与 6 0 交 于点 F 3.
( )P B 。
( D)P 3
1
,
…
2 甲) ( .如果 正 比例 函数 Y=一( ≠0 与反 比例 函数 Y Ⅱ ) = ( ≠0 的图象有两个交点 ,其 中一个交点 的坐标为( 3 2 ,那 b ) 一 ,一 ) 么另一个交点的坐标为 (
( ( ,3 A) 2 ) ( C)( 2
-2012全国初中数学竞赛试题及答案(安徽赛区)
中国教育学会中学数学教学专业委员会 2012年全国初中数学竞赛试题【安徽赛区】一、选择题(共5小题,每小题7分,共35分. 每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分) 1、如果2a =-11123a+++的值为【 】(A)(B(C )2 (D)解:B ∵213+=+a ∴1231-=+a ,12312+=++a,123121-=++a因此原式=22、 在平面直角坐标系xOy 中,满足不等式y x y x 2222+≤+的整数点坐标(x ,y )的个数为【 】 (A )10 (B )9 (C )7 (D )5 解:B 解法一:y x y x 2222+≤+化为()()21122≤-+-y x因为x 、y 均为整数,因此()()01122=-+-y x 或()()11122=-+-y x 或()()21122=-+-y x分别解得⎩⎨⎧==11y x 或⎩⎨⎧==10y x ⎩⎨⎧==12y x ⎩⎨⎧==01y x ⎩⎨⎧==21y x 或⎩⎨⎧==20y x ⎩⎨⎧==22y x ⎩⎨⎧==00y x ⎩⎨⎧==02y x 所以共有9个整点 解法二:y x y x 2222+≤+化为()()21122≤-+-y x 它表示以点(1,1)为圆心,2为半径的圆内,画图可知,这个圆内有9个(0,2)、(0,1)(0,0),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)3、如图,四边形ABCD 中,AC ,BD 是对角线,△ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD = 5,则CD 的长为【 】(A )23 (B )4 (C )52 (D )4.5解:图,以CD 为边作等边△CDE ,连接AE . 由于AC = BC ,CD = CE ,BCD BCA ACD DCE ACD ACE ∠=∠+∠=∠+∠=∠.所以 △BCD ≌△ACE , BD = AE .又因为30ADC ∠=︒,所以90ADE ∠=︒.在Rt △ADE 中,53AE AD ==,,于是4=,所以CD = DE = 4.4、如果关于x 的方程20x px q p q --=(,是正整数)的正根小于3,那么这样的方程的个数是【 】 (A ) 5 (B ) 6 (C ) 7 (D ) 8解:C ∵p 、q 是正整数∴042>+=∆q p ,021<-=⋅q x x ∴正根为3242<++q p p解得p q 39-<∴⎩⎨⎧==11q p ,⎩⎨⎧==21q p ,⎩⎨⎧==31q p ,⎩⎨⎧==41q p ,⎩⎨⎧==51q p ,⎩⎨⎧==12q p ,⎩⎨⎧==22q p 5、黑板上写有1,12,13,…,1100共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是【 】 (A )2012 (B )101 (C )100 (D )99 解:C 1)1)(1(-++=++b a ab b a ∵计算结果与顺序无关∴顺次计算得:21)121)(11(=-++,31)131)(12(=-++,41)141)(13(=-++,…… 1001)11001)(199(=-++二、填空题(共5小题,每小题7分,共35分) 6、如果a ,b ,c 是正数,且满足9a b c ++=,111109a b b c c a ++=+++,那么a b c b c c a a b+++++的值为 .解:7在910111=+++++a c c b b a 两边乘以9=++c b a 得103=++++++ac bc b a b a c 即7=+++++ac bc b a b a c 7、如图,⊙O 的半径为20,A 是⊙O 上一点.以OA 为对角线作矩形OBAC ,且12OC =.延长BC ,与⊙O 分别交于D E ,两点,则CE BD -的值等于 285 .解:如图,设DE 的中点为M ,连接OM ,则OM DE ⊥.因为16OB ==,所以161248205OB OC OM BC ⋅⨯===,366455CM BM ===,. CE BD EM CM DM BM -=---()()643655BM CM =-=-285=. 8、设n 为整数,且1≤n ≤2012. 若22(3)(3)n n n n -+++能被5整除,则所有n 的个数为 . 解:1600()()()953332422222++=-+=+++-n n n n n n n n因此9|54+n ,所以)5(mod 14≡n ,因此25k ,15±±=或k n 240252012⋯⋯=÷所以共有2012-402=1600个数9、如果正数x ,y ,z 可以是一个三角形的三边长,那么称x y z (,,)是三角形数.若a b c (,,)和111a b c(,,)均为三角形数,且a ≤b ≤c ,则ac的取值范围是 . 解:1253≤<-ca依题意得:⎪⎩⎪⎨⎧>+>+a c b cb a 111,所以ac b ->,代入(2)得ca c cb a 11111+-<+<,两边乘以a 得c a a c a +-<1即ac ac a c -<-化简得0322<+-c ac a ,两边除以2c 得 0132<+-⎪⎭⎫⎝⎛c a c a 所以253253+<<-c a 另一方面:a ≤b ≤c ,所以1≤c a 综合得1253≤<-c a 10、已知n 是偶数,且1≤n ≤100.若有唯一的正整数对a b (,)使得22a b n =+成立,则这样的n 的个数为 .解:依题意得()()b a b a b a n -+=-=22 由于n 是偶数,a+b 、a-b 同奇偶,所以n 是4的倍数当1≤n ≤100时,4的倍数共有25个 但是224⨯=,6412224⨯=⨯=,8416232⨯=⨯=,10420240⨯=⨯=,8612424248⨯=⨯=⨯=,14428256⨯=⨯=,10630260⨯=⨯=,16432264⨯=⨯= 12618436272⨯=⨯=⨯=,10820440280⨯=⨯=⨯=,22444288⨯=⨯= 12816624448296⨯=⨯=⨯=⨯=这些不符合要求,因此这样的n 有25-12=13个 三、解答题(共4题,每题20分,共80分)11、如图,在平面直角坐标系xOy 中,8AO =,AB AC =,4sin 5ABC ∠=.CD 与y 轴交于点E ,且COE ADE S S =△△.已知经过B ,C ,E 三点的图象是一条抛物线,求这条抛物线对应的二次函数的解析式.解:因为sin ∠ABC =45AO AB =,8AO =,所以AB = 10.由勾股定理,得6BO ==.易知ABO ACO △≌△, 因此 CO = BO = 6.于是(08)A -,,(60)B ,,(60)C -,.设点D 的坐标为()m n ,.由C O E A D E S S =△△,得C D B A O B S S =△△.所以1122BC n AO BO ⋅=⋅,1112()8622n ⨯-=⨯⨯.解得 4n =-. 因此D 为AB 的中点,点 D 的坐标为(34)-,.因此CD ,AO 分别为AB ,BC 的两条中线,点E 为△ABC 的重心,所以点E 的坐标为8(0)3-,. 设经过B ,C ,E 三点的抛物线对应的二次函数的解析式为(6)(6)y a x x =-+.将点E 的坐标代入,解得a =272. 故经过B ,C ,E 三点的抛物线对应的二次函数的解析式为228273y x =-. 12、如图,⊙O 的内接四边形ABCD 中,AC ,BD 是它的对角线,AC 的中点I 是△ABD 的内心. 求证: (1)OI 是△IBD 的外接圆的切线;(2)AB +AD =2BD.(1)如图,根据三角形内心的性质和同弧上圆周角的性质知CID IAD IDA ∠=∠+∠,CDI CDB BDI BAC IDA IAD IDA ∠=∠+∠=∠+∠=∠+∠.所以CID CDI ∠=∠, CI = CD . 同理,CI = CB .故点C 是△IBD 的外心.连接OA ,OC ,因为I 是AC 的中点,且OA = OC ,所以OI ⊥AC ,即OI ⊥CI .故OI 是△IBD 外接圆的切线.(2)如图,过点I 作IE ⊥AD 于点E ,设OC 与BD 交于点F .由 BCCD =,知OC ⊥BD . 因为∠CBF =∠IAE ,BC = CI = AI ,所以Rt BCF Rt AIE △≌△.所以BF = AE . 又因为I 是△ABD 的内心,所以22AB AD BD AE BD BD BF BD +-=+-==.故2AB AD BD +=. 13、给定一个正整数n ,凸n 边形中最多有多少个内角等于150︒?并说明理由. 解:14、将2,3,…,n (n ≥2)任意分成两组,如果总可以在其中一组中找到数a b c ,,(可以相同)使得b a c =,求n 的最小值.解:当1621n =-时,把23n , , ,分成如下两个数组:{}88162322121+- , , , , , 和{}84521- , , , . 在数组{}88162322121+- , , , , , 中,由于38821632221<>-(,),所以其中不存在数a b c ,,,使得ba c =.在数组{}84521- , , , 中,由于48421>-, 所以其中不存在数a b c ,,,使得ba c =. 所以,162n ≥. 下面证明当162n =时,满足题设条件.不妨设2在第一组,若224=也在第一组,则结论已经成立.故不妨设224=在第二组. 同理可设4842=在第一组,8216(2)2=在第二组.此时考虑数8.如果8在第一组,我们取8282a b c ===,,,此时ba c =;如果8在第二组,我们取16482a b c ===,,,此时b a c =.综上,162n =满足题设条件. 所以,n 的最小值为162.注:也可以通过考虑2,4,16,256,65536的分组情况得到n 最小值为65536.。
2012年全国初中数学联赛试题(含答案)
2012年全国初中数学联合竞赛试题第一试一、选择题:(本题满分42分,每小题7分)1.已知1a =,b =2c =,那么,,a b c 的大小关系是 ( C )A. a b c <<B. a c b <<C. b a c <<D.b c a <<2.方程222334x xy y ++=的整数解(,)x y 的组数为 ( B ) A .3. B .4. C .5. D .6.3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与CD 交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为 ( D )A .3 B .3C .3D .34.已知实数,a b 满足221a b +=,则44a ab b ++的最小值为 ( B ) A .18-. B .0. C .1. D .98.5.若方程22320x px p +--=的两个不相等的实数根12,x x 满足232311224()x x x x +=-+,则实数p 的所有可能的值之和为 ( B )A .0.B .34-. C .1-. D .54-. 6.由1,2,3,4这四个数字组成四位数abcd (数字可重复使用),要求满足a c b d +=+.这样的四位数共有 ( C )A .36个.B .40个.C .44个.D .48个. 二、填空题:(本题满分28分,每小题7分)1.已知互不相等的实数,,a b c 满足111a b c t b c a+=+=+=,则t =1±.2.使得521m⨯+是完全平方数的整数m 的个数为 1 .3.在△ABC 中,已知AB =AC ,∠A =40°,P 为AB 上一点,∠ACP =20°,则BCAP=. 4.已知实数,,a b c 满足1abc =-,4a b c ++=,22243131319a b c a a b b c c ++=------,则222a b c ++=332.第二试 (A )一、(本题满分20分)已知直角三角形的边长均为整数,周长为30,求它的外接圆的面积. 解 设直角三角形的三边长分别为,,a b c (a b c ≤<),则30a b c ++=. 显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值. 由a b c ≤<及30a b c ++=得303a b c c =++<,所以10c >. 由a b c +>及30a b c ++=得302a b c c =++>,所以15c <. 又因为c 为整数,所以1114c ≤≤.根据勾股定理可得222a b c +=,把30c a b =--代入,化简得30()4500ab a b -++=,所以22(30)(30)450235a b --==⨯⨯,因为,a b 均为整数且a b ≤,所以只可能是22305,3023,a b ⎧-=⎪⎨-=⨯⎪⎩解得5,12.a b =⎧⎨=⎩ 所以,直角三角形的斜边长13c =,三角形的外接圆的面积为1694π. 二.(本题满分25分)如图,P A 为⊙O 的切线,PBC 为⊙O 的割线,AD ⊥OP 于点D .证明:2AD BD CD =⋅.证明:连接OA ,OB ,OC .∵OA ⊥AP ,AD ⊥OP ,∴由射影定理可得2PA PD PO =⋅,2AD PD OD =⋅.又由切割线定理可得2PA PB PC =⋅,∴P B P C PD PO ⋅=⋅,∴D 、B 、C 、O 四点共圆, ∴∠PDB =∠PCO =∠OBC =∠ODC ,∠PBD =∠COD ,∴△PBD ∽△COD ,∴PD BD CD OD=,∴2AD PD OD BD CD =⋅=⋅. 三.(本题满分25分)已知抛物线216y x bx c =-++的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x <)两点,与y 轴交于点C ,P A 是△ABC 的外接圆的切线.设M 3(0,)2-,若AM //BC ,求抛物线的解析式.解 易求得点P 23(3,)2b bc +,点C (0,)c .设△ABC 的外接圆的圆心为D ,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3,)b m .显然,12,x x 是一元二次方程2106x b x c -++=的两根,所以13x b c =,23x b =+AB 的中点E 的坐标为(3,0)b ,所以AE.因为P A 为⊙D 的切线,所以P A ⊥AD ,又AE ⊥PD ,所以由射影定理可得2AE PE DE =⋅,即223)()||2b c m =+⋅,又易知0m <,所以可得6m =-. 又由DA =DC 得22DA DC =,即2222(30)()m b m c +=-+-,把6m =-代入后可解得6c =-(另一解0c =舍去).又因为AM //BC ,所以OA OMOB OC =3||2|6|-=-. 把6c =-代入解得52b =(另一解52b =-舍去). 因此,抛物线的解析式为215662y x x =-+-.第二试 (B )一.(本题满分20分)已知直角三角形的边长均为整数,周长为60,求它的外接圆的面积. 解 设直角三角形的三边长分别为,,a b c (a b c ≤<),则60a b c ++=. 显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值.由a b c ≤<及60a b c ++=得603a b c c =++<,所以20c >. 由a b c +>及60a b c ++=得602a b c c =++>,所以30c <. 又因为c 为整数,所以2129c ≤≤.根据勾股定理可得222a b c +=,把60c a b =--代入,化简得60()18000ab a b -++=,所以322(60)(60)1800235a b --==⨯⨯,因为,a b 均为整数且a b ≤,所以只可能是326025,6035,a b ⎧-=⨯⎪⎨-=⨯⎪⎩或2226025,6023,a b ⎧-=⨯⎪⎨-=⨯⎪⎩ 解得20,15,a b =⎧⎨=⎩或10,24.a b =⎧⎨=⎩当20,15a b ==时,25c =,三角形的外接圆的面积为6254π; 当10,24a b ==时,26c =,三角形的外接圆的面积为169π.二.(本题满分25分)如图,P A 为⊙O 的切线,PBC 为⊙O 的割线,AD ⊥OP 于点D ,△ADC 的外接圆与BC 的另一个交点为E .证明:∠BAE =∠ACB .证明:连接OA ,OB ,OC ,BD . ∵OA ⊥AP ,AD ⊥OP ,∴由射影定理可得2PA PD PO =⋅,2AD PD OD =⋅.又由切割线定理可得2PA PB PC =⋅,∴P B P C PD PO ⋅=⋅,∴D 、B 、C 、O 四点共圆, ∴∠PDB =∠PCO =∠OBC =∠ODC ,∠PBD =∠COD ,∴△PBD ∽△COD , ∴PD BDCD OD =, ∴2BD CD PD OD AD ⋅=⋅=,∴BD AD AD CD=. 又∠BDA =∠BDP +90°=∠ODC +90°=∠ADC ,∴△BDA ∽△ADC , ∴∠BAD =∠ACD ,∴AB 是△ADC 的外接圆的切线,∴∠BAE =∠ACB . 三.(本题满分25分)题目和解答与(A )卷第三题相同.第二试 (C )一.(本题满分20分)题目和解答与(B )卷第一题相同. 二.(本题满分25分)题目和解答与(B )卷第二题相同. 三.(本题满分25分)已知抛物线216y x bx c =-++的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x <)两点,与y 轴交于点C ,P A 是△ABC 的外接圆的切线.将抛物线向左平移1)个单位,得到的新抛物线与原抛物线交于点Q ,且∠QBO =∠OBC .求抛物线的解析式.解 抛物线的方程即2213(3)62b y x bc =--++,所以点P 23(3,)2b b c +,点C (0,)c . 设△ABC 的外接圆的圆心为D ,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3,)b m .显然,12,x x 是一元二次方程2106x b x c -++=的两根,所以13x b =,23x b =+AB 的中点E 的坐标为(3,0)b ,所以AE .因为P A 为⊙D 的切线,所以P A ⊥AD ,又AE ⊥PD ,所以由射影定理可得2AE PE DE =⋅,即223)()||2b c m =+⋅,又易知0m <,所以可得6m =-.又由DA =DC 得22DA DC =,即2222(30)()m b m c +=-+-,把6m =-代入后可解得6c =-(另一解0c =舍去).将抛物线2213(3)662b y x b =--+-向左平移1)个单位后,得到的新抛物线为2213(324)662by x b=--++-.易求得两抛物线的交点为Q23(312102)2bb+-+.由∠QBO=∠OBC可得tan∠QBO=tan∠OBC.作QN⊥AB,垂足为N,则N(312b+-,又233(x b b=+=,所以tan∠QBO=QNBN2310212b+=12=22111)]22==⋅.又tan∠OBC=OCOB1(2b==⋅,所以111)](22b⋅=⋅-.解得4b=(另一解45)03b=<,舍去).因此,抛物线的解析式为21466y x x=-+-.。
2012年全国初中数学联赛试题详解
2012年全国初中数学联合竞赛试题参考答案第一试一、选择题:(本题满分42分,每小题7分) 1.已知1a =,b =2c =,那么,,a b c 的大小关系是 ( C )A. a b c <<B. a c b <<C. b a c <<D.b c a <<解答:1a ===b ==,2c ===1显然:b a c <<2.方程222334x xy y ++=的整数解(,)x y 的组数为 ( B ) A .3. B .4. C .5. D .6. 解答:222222223232()234x xy y x xy y y x y y ++=+++=++=由0、1、2、3、4、5、6的平分别是0、1、4、9、16、25、36知唯有16+2⨯9=34故5555544444x y x y x y x y x y y y y y y +=-+=+=+=-⎧⎧⎧⎧+=±=±⎨⎨⎨⎨===-=-⎩⎩⎩⎩、,由、、、得 4444=9=1=9=1y y y y x x x x ===-=-⎧⎧⎧⎧⎨⎨⎨⎨--⎩⎩⎩⎩、、、共4组解。
3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与CD 交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为 ( D )A.3 B.3 C.3 D.3EBD解答:如图,做G H ⊥BE 于H ,易证Rt △AB E ∽Rt △GHB ,设GH=a ,则HE=a ,BH=2-a , 由GH BH a 2-a 2==a=AB BE 123得解得,故BG=3。
4.已知实数,a b 满足221a b +=,则44a ab b ++的最小值为 ( B )A .18-. B .0. C .1. D .98. 解答:44222222219=2=21=2()48a ab b a b a b ab a b ab ab +++-+-++--+2() 考查以ab 整体为自变量的函数的图像为抛物线219y=2()48ab --+其对称轴为14ab = 由22222020a b ab a b ab +-≥++≥和知1122ab -≤≤ 又1111()4242-->-,故当12ab =-时,函数取最小值0。
2012全国初中数学竞赛试题及答案(安徽赛区)
2012全国初中数学竞赛试题附答案(安徽赛区)说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.一、选择题(共5小题,每小题7分,共35分. 每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分) 1、如果2a =-11123a+++的值为【 】(A)(B(C )2 (D)2、 在平面直角坐标系xOy 中,满足不等式y x y x 2222+≤+的整数点坐标(x ,y )的个数为【 】 (A )10 (B )9 (C )7 (D )53、如图,四边形ABCD 中,AC ,BD 是对角线,△ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD = 5,则CD 的长为【 】(A )23 (B )4 (C )52 (D )4.54、如果关于x 的方程20x px q p q --=(,是正整数)的正根小于3,那么这样的方程的个数是【 】 (A ) 5 (B ) 6 (C ) 7 (D ) 85、黑板上写有1,12,13,…,1100共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是【 】 (A )2012 (B )101 (C )100 (D )99 二、填空题(共5小题,每小题7分,共35分)6、如果a ,b ,c 是正数,且满足9a b c ++=,111109a b b c c a ++=+++,那么a b cb c c a a b+++++的值为 .7、如图,⊙O 的半径为20,A 是⊙O 上一点.以OA 为对角线作矩形OBAC ,且12OC =.延长BC ,与⊙O 分别交于D E ,两点,则CE BD -的值等于 285 ..8、设n 为整数,且1≤n ≤2012. 若22(3)(3)n n n n -+++能被5整除,则所有n 的个数为 .9、如果正数x ,y ,z 可以是一个三角形的三边长,那么称x y z (,,)是三角形数.若a b c (,,)和111a b c(,,)均为三角形数,且a ≤b ≤c ,则ac的取值范围是 .10、已知n 是偶数,且1≤n ≤100.若有唯一的正整数对a b (,)使得22a b n =+成立,则这样的n 的个数为 .三、解答题(共4题,每题20分,共80分)11、如图,在平面直角坐标系xOy 中,8AO =,AB AC =,4sin 5ABC ∠=.CD 与y 轴交于点E ,且COE ADE S S =△△.已知经过B ,C ,E 三点的图象是一条抛物线,求这条抛物线对应的二次函数的解析式.12、如图,⊙O 的内接四边形ABCD 中,AC ,BD 是它的对角线,AC 的中点I 是△ABD 的内心. 求证:(1)OI是△IBD的外接圆的切线;(2)AB+AD=2BD.13、给定一个正整数n,凸n边形中最多有多少个内角等于150︒?并说明理由.,,(可以相同)使14、将2,3,…,n(n≥2)任意分成两组,如果总可以在其中一组中找到数a b c=,求n的最小值.得b a c2012全国初中数学竞赛答案(安徽赛区)1. 解:B ∵213+=+a ∴1231-=+a ,12312+=++a,123121-=++a因此原式=22. 解:B 解法一:y x y x 2222+≤+化为()()21122≤-+-y x3. 4解:图,以CD 为边作等边△CDE ,连接AE . 由于AC = BC ,CD = CE ,4. 解:C ∵p 、q 是正整数∴042>+=∆q p ,021<-=⋅q x x ∴正根为3242<++qp p解得p q 39-<∴⎩⎨⎧==11q p ,⎩⎨⎧==21q p ,⎩⎨⎧==31q p ,⎩⎨⎧==41q p ,⎩⎨⎧==51q p ,⎩⎨⎧==12q p ,⎩⎨⎧==22q p5.解:C 1)1)(1(-++=++b a ab b a ∵计算结果与顺序无关∴顺次计算得:21)121)(11(=-++,31)131)(12(=-++,41)141)(13(=-++,…… 1001)11001)(199(=-++6. 解:7在910111=+++++a c c b b a 两边乘以9=++c b a 得103=++++++ac bc b a b a c 即7=+++++ac b c b a b a c 7. 解:如图,设DE 的中点为M ,连接OM ,则OM DE ⊥.因为16OB ==,所以161248205OB OC OM BC ⋅⨯===,366455CM BM ===,. CE BD EM CM DM BM -=---()()643655BM CM =-=-285= 8. 解:1600()()()953332422222++=-+=+++-n n n n n n n n因此9|54+n ,所以)5(mod 14≡n ,因此25k ,15±±=或k n 240252012⋯⋯=÷所以共有2012-402=1600个数9. 解:1253≤<-ca依题意得:⎪⎩⎪⎨⎧>+>+ac b c b a 111,所以a c b ->,代入(2)得ca c cb a 11111+-<+<,两边乘以a 得 c a a c a +-<1即ac ac a c -<-化简得0322<+-c ac a ,两边除以2c 得 0132<+-⎪⎭⎫⎝⎛c a c a 所以253253+<<-c a 另一方面:a ≤b ≤c ,所以1≤c a 综合得1253≤<-c a10.解:依题意得()()b a b a b a n -+=-=22 由于n 是偶数,a+b 、a-b 同奇偶,所以n 是4的倍数当1≤n ≤100时,4的倍数共有25个 但是224⨯=,6412224⨯=⨯=,8416232⨯=⨯=,10420240⨯=⨯=,8612424248⨯=⨯=⨯=,14428256⨯=⨯=,10630260⨯=⨯=,16432264⨯=⨯= 12618436272⨯=⨯=⨯=,10820440280⨯=⨯=⨯=,22444288⨯=⨯= 12816624448296⨯=⨯=⨯=⨯=这些不符合要求,因此这样的n 有25-12=13个 11. 解:因为sin ∠ABC =45AO AB =,8AO =,所以AB = 10.由勾股定理,得6BO ==.易知ABO ACO △≌△, 因此 CO = BO = 6.于是(08)A -,,(60)B ,,(60)C -,.设点D 的坐标为()m n ,.由C O E A D E S S =△△,得C D B A O B S S =△△. 所以1122BC n AO BO ⋅=⋅,1112()8622n ⨯-=⨯⨯.解得 4n =-. 因此D 为AB 的中点,点 D 的坐标为(34)-,.因此CD ,AO 分别为AB ,BC 的两条中线,点E 为△ABC 的重心,所以点E 的坐标为8(0)3-,. 设经过B ,C ,E 三点的抛物线对应的二次函数的解析式为(6)(6)y a x x =-+.将点E 的坐标代入,解得a =272. 故经过B ,C ,E 三点的抛物线对应的二次函数的解析式为228273y x =-. 12. (1)如图,根据三角形内心的性质和同弧上圆周角的性质知CID IAD IDA ∠=∠+∠,CDI CDB BDI BAC IDA IAD IDA ∠=∠+∠=∠+∠=∠+∠.所以CID CDI ∠=∠, CI = CD . 同理,CI = CB .故点C 是△IBD 的外心.连接OA ,OC ,因为I 是AC 的中点,且OA = OC ,所以OI ⊥AC ,即OI ⊥CI .故OI 是△IBD 外接圆的切线.(2)如图,过点I 作IE ⊥AD 于点E ,设OC 与BD 交于点F .由 BCCD =,知OC ⊥BD . 因为∠CBF =∠IAE ,BC = CI = AI ,所以Rt BCF Rt AIE △≌△.所以BF = AE .又因为I 是△ABD 的内心,所以22AB AD BD AE BD BD BF BD +-=+-==.故2A B A D BD +=. 14. 解:当1621n =-时,把23n , , ,分成如下两个数组:{}88162322121+- , , , , , 和{}84521- , , , . 在数组{}88162322121+- , , , , , 中,由于38821632221<>-(,), 所以其中不存在数a b c ,,,使得ba c =.在数组{}84521- , , , 中,由于48421>-, 所以其中不存在数a b c ,,,使得ba c =. 所以,162n ≥. 下面证明当162n =时,满足题设条件.不妨设2在第一组,若224=也在第一组,则结论已经成立.故不妨设224=在第二组. 同理可设4842=在第一组,8216(2)2=在第二组.此时考虑数8.如果8在第一组,我们取8282a b c ===,,,此时ba c =;如果8在第二组,我们取16482abc ===,,,此时b a c =.综上,162n =满足题设条件. 所以,n 的最小值为162.注:也可以通过考虑2,4,16,256,65536的分组情况得到n 最小值为65536.。
2012年全国初中数学联合竞赛试题及解答
又 c a ( 6 2) ( 2 1) 6 ( 2 1) ,而 ( 6) ( 2 1) 3 2 2 0 .所 以 6
2 1 ,故 c a .因此 b a c .
2.方程 x 2 xy 3 y 34 的整数解 ( x, y ) 的组数为(
因为 2 | ab | a b 1 ,所以
2 2
因此 a ab b 的最小值为 0,当 a
4 4
2 2 2 2 或a 时取得. ,b ,b 2 2 2 2
5.若方程 x 2 px 3 p 2 0 的两个不相等的实数根 x1 , x2 满足 x1 x1 4 ( x2 x2 ) ,
2
验证可知: b 因此, t 1 . 方法二:由 a
1 a 1 1 a 1 时 t 1; b 时 t 1 . ,c ,c 1 a a 1 a a
1 1 bc . b 可得 bc b c a b ca a b 同理可得: ca , ab . bc ca
1
) D.
6 3
B.
5 3
C.
2 6 3
2 5 3
易知 BG:GH=2:1,所以 BG =
2 2 5 BH 3 3
A F
D G
H
B
2 2 4
C
4
P
E
)
4.已知实数 a, b 满足 a b 1 ,则 a ab b 的最小值为 ( A. 【答】B.
1 . 8
B.0.
C.1.
D.
m 2
m 2
设 n 2k 1 (其中 k 是正整数) ,则 5 2 4k (k 1) ,即 5 2
【数学竞赛】2012年全国初中数学联赛试题答案
【数学竞赛】2012年全国初中数学联合竞赛试题参考答案第一试一、选择题:(本题满分42分,每小题7分)1.已知1a =-,b =2c =,那么,,a b c 的大小关系是 ( C )A. a b c <<B. a c b <<C. b a c <<D.b c a <<2.方程222334x xy y ++=的整数解(,)x y 的组数为 ( B ) A .3. B .4. C .5. D .6.3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与CD 交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为 ( D )A B C D 4.已知实数,a b 满足221a b +=,则44a ab b ++的最小值为 ( B ) A .18-. B .0. C .1. D .98. 5.若方程22320x px p +--=的两个不相等的实数根12,x x 满足232311224()x x x x +=-+,则实数p的所有可能的值之和为 ( B )A .0.B .34-. C .1-. D .54-. 6.由1,2,3,4这四个数字组成四位数abcd (数字可重复使用),要求满足a c b d +=+.这样的四位数共有 ( C )A .36个.B .40个.C .44个.D .48个. 二、填空题:(本题满分28分,每小题7分)1.已知互不相等的实数,,a b c 满足111a b c t b c a+=+=+=,则t =1±.2.使得521m⨯+是完全平方数的整数m 的个数为 1 .3.在△ABC 中,已知AB =AC ,∠A =40°,P 为AB 上一点,∠ACP =20°,则BCAP=.4.已知实数,,a b c 满足1abc =-,4a b c ++=,22243131319a b c a a b b c c ++=------,则222a b c ++=332.第二试 (A )一、(本题满分20分)已知直角三角形的边长均为整数,周长为30,求它的外接圆的面积. 解 设直角三角形的三边长分别为,,a b c (a b c ≤<),则30a b c ++=.显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值. 由a b c ≤<及30a b c ++=得303a b c c =++<,所以10c >. 由a b c +>及30a b c ++=得302a b c c =++>,所以15c <. 又因为c 为整数,所以1114c ≤≤.根据勾股定理可得222a b c +=,把30c a b =--代入,化简得30()4500ab a b -++=,所以22(30)(30)450235a b --==⨯⨯,因为,a b 均为整数且a b ≤,所以只可能是22305,3023,a b ⎧-=⎪⎨-=⨯⎪⎩解得5,12.a b =⎧⎨=⎩所以,直角三角形的斜边长13c =,三角形的外接圆的面积为1694π. 二.(本题满分25分)如图,PA 为⊙O 的切线,PBC 为⊙O 的割线,A D ⊥OP 于点D .证明:2AD BD CD =⋅.证明:连接OA ,OB ,OC.∵OA ⊥AP ,A D ⊥OP ,∴由射影定理可得2PA PD PO =⋅,2AD PD OD =⋅.又由切割线定理可得2PA P B PC =⋅,∴PB PC PD PO ⋅=⋅,∴D 、B 、C 、O 四点共圆, ∴∠PDB =∠PCO =∠OBC =∠ODC ,∠PBD =∠COD ,∴△PB D ∽△COD ,∴PD BD CD OD=,∴2AD PD OD BD CD =⋅=⋅. 三.(本题满分25分)已知抛物线216y x bx c =-++的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x <)两点,与y 轴交于点C ,PA 是△ABC 的外接圆的切线.设M 3(0,)2-,若AM//BC ,求抛物线的解析式.解 易求得点P 23(3,)2b bc +,点C (0,)c .设△ABC 的外接圆的圆心为D ,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3,)b m . 显然,12,x x 是一元二次方程2106x bx c -++=的两根,所以13x b =,23x b =AB 的中点E 的坐标为(3,0)b ,所以AE因为PA 为⊙D 的切线,所以PA ⊥AD ,又A E ⊥PD ,所以由射影定理可得2AE PE DE =⋅,即。
(整理)全国初中数学联赛试题参考答案和评分标准
2012年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准•第一试,选择题和填空题只设7分和0分两档;第二试各题, 请按照本评分标准规定的评分档次给分•如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数•第一试一、选择题:(本题满分42分,每小题7分)1.已知2012 , b:=,3- .2 , c:=,6- 2,那么a,b,c的大小关系是( )A. a< b< cB. a < c< bC. b< a< cD.b< c< a 【答】C.1 _因为一二\ 2 + 1,=3 +、、2 ,1 1 l所以0 ,故b a .又c-a = (、.-2) -1)―飞a b a b(、,2 1),而(、.6)2 -(.2 1)2=3 -0,所以,6.21,故c a.因此b ::a : c.2 22.方程x 2xy 3y =34的整数解(x, y)的组数为()A . 3.B . 4. C. 5. D . 6.【答】B.方程即(x y)2 2y2 =34 ,显然x y必须是偶数,所以可设x,y=2t,则原方程变为2 2I t = 2,2t2 y2 =17 ,它的整数解为'从而可求得原方程的整数解为(x,y)= (-7,3), (1,3), (7,-3),ly v,3.已知正方形ABCD勺边长为1, E为BC边的延长线上一点, BF 并延长与线段DE交于点G,贝U BG的长为A .迈3【答】D.过点C作CP//BG,交DE于点P.因为BC= CE= 1,所以CP是△ BEG 的中位线,所以P为EG的中点.又因为AD= CE= 1 , AD//CE,所以△ ADF^A ECF,所以CF= DF,又CP//FG ,所以FG是厶DCP的中位线,所以G为DP的中点.1 寸2因此DG = GP= PE= — DE =——3 3连接BD,易知/ BDC=Z EDC= 45°,所以/ BDE= 90 °又BD= J2,所以BG= J BD 2+ DG 2= ^2^~ ¥934.已知实数a, b满足a2 b2 =1,则a4 ab b4的最小值为CE= 1,连接AE,与CD交于点F,连接()C.19A ..B . 0.C . 1.D .—.8 8【答】B.4422222221 2 9 a 4ab b 4=(a 2 b 2)-2a 2b 2 - ab =1 -2a 2b 2ab 二-2(ab_—)2—.4 8”221 1 3 1 1 1 29因为2|ab^a b =1,所以ab ,从而 ab,故0乞(ab ),因此2 244 44 161?99 亦 44 90 _ -2(ab ),即 0 _ a ab b 488 8因此a 4ab b 4的最小值为0,当a2,b2或a 2, b 2时取得.2 2 2 22323X 1,X 2 满足 X 1 X 1 =4-(X 2 - X 2),则实数 p的所有可能的值之和为3 A . 0.B ..4【答】B.2 2 2 2x-i x 2 = (x , x 2) _2片 x 2 = 4 p 6p 4 , x ; x ; =(x 「x 2)[(x 1 - x 2)2-3捲 x 2] = -2p(4 p 29p ■ 6).2323223322又由 X 1 X 1 =4-(X 2 X 2)得 X 1 X 2 =4 -(X 1 X 2),所以 4p 2 6p 4 = 4 2p(4p 2 9 p 6),3所以 p(4p 3)( p 1)=0,所以 5 =0, p 2 二一3, p 3=—1.43代入检验可知:p 1 =0, p 2均满足题意,p 3 =-1不满足题意.433因此,实数p 的所有可能的值之和为p 1 p^ 0 ().44abcd (数字可重复使用),要求满足a ^b d .这样的四5.若方程x 2 • 2px -3p -2 =0的两个不相等的实数根 C . -1.由一元二次方程的根与系数的关系可得 X 1 X 2 = -2p ,论 x 2 = -3 p - 2,所以6.由1 , 2, 3, 4这四个数字组成四位数 位数共有A . 36 个.B . 40 个.【答】C.根据使用的不同数字的个数分类考虑: (1) 只用1个数字,组成的四位数可以是 (2) 使用2个不同的数字,使用的数字有( )C . 44 个.D . 48 个. 1111, 2222, 3333, 4444,共有 4 个.6 种可能(1、2, 1、3, 1、4, 2、3, 2、4, 3、4).如果使用的数字是1、2,组成的四位数可以是1122, 1221, 2112, 2211,共有4个;同样地,如果使用的数字是另外5种情况,组成的四位数也各有4个.因此,这样的四位数共有6X 4= 24个.(3)使用3个不同的数字,只能是1、2、2、3或2、3、3、4,组成的四位数可以是1232 , 2123,2321 , 3212, 2343, 3234, 3432, 4323,共有8 个.(4)使用4个不同的数字1 , 2, 3, 4,组成的四位数可以是1243, 1342, 2134 , 2431 , 3124 , 3421 , 4213 , 4312 ,共有8 个.因此,满足要求的四位数共有 4 + 24+ 8+ 8= 44个. 二、填空题:(本题满分28分,每小题7分)1 1 1 1. ___________________________________________________________________ 已知互不相等的实数 a,b,c 满足a +—= b +—= c +—= t ,贝U t= _________________________________ .bca【答】_1.1 1 1 11 由a t 得b ,代入b t 得 t ,整理得ct 2-(ac T )t • (a-c ) =0①b t -ac t -a c 1 2 2 2又由c t 可得ac •仁at ,代入①式得ct -at ・(a -c )=:0,即(c-a )(t -1)=0,又c = a ,a所以t 2 -1 =0,所以t验证可知:b 匚山二口 时t -1; b J,c = -L 时t =-1.因此,t =T .1-a a 1 +a a2. 使得5 2m 1是完全平方数的整数 m 的个数为 ____________ . 【答】1.设5 2m ,1= n 2 (其中n 为正整数),则5 2m = n 2-1=(n ,1)(n-1),显然n 为奇数,设n = 2k-1 (其中 k 是正整数),则 5 2m =4k (k -1),即 5 2m ,=k (k -1).因此,满足要求的整数 m 只有1个.因为 a 2 —3a -1 =a 2 —3a abc =a(bc a - 3) = a(bc — b — c 1) = a(b —1)(c-1),所以显然k 1,此时k 和k -1互质,所以L 严或L m.k-1=1, k-1=2「k = 2m_2或 ’解得k =5,m = 4.k-1=5,3.在厶 ABC 中,已知 AB = AC ,/ A = 40 P 为 AB 上一点,/ ACP = 20°,则匹AP【答】、、3 .设D 为BC 的中点,在△ ABC 外作/ CAE = 20°,则/ BAE = 60° . 1 作 CEL AE, PF 丄 AE,则易证△ ACE^A ACD 所以 CE= CD= - BC.2J31又 PF = PA sin / BAE = PA S in 60°= AP, PF = CE 所以AP = BC2 2 2因此匕BC =丿3 .AP4.已知实数 a,b,c 满足 abc - -1 , a b 4 ,a b — a - 3a -1 b - 3b -1 c - 3c -1c 2【答3322a -3a -1 (b-1)(c-1)1c1,~2=(a -1)(c-1) c -3c-1 (a-1)(b-1)4所以—(a -1)(b -1)(c -1) =(a -1) (b -1) (c-1).91 结合 abc = -1, a b c = 4,可得 ab bc ac . 4 222 233 因此,a b c = (a ■ b c) -2(ab bc ac) .21 1实际上,满足条件的 a,b,c 可以分别为 ,一,4.2 2第二试 (A )一、(本题满分20分)已知直角三角形的边长均为整数,周长为 解 设直角三角形的三边长分别为a,b,c ( aEbcc ),贝U a + b + c = 30.显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值.由 a _b : c 及 a b c =30得 30 二a b c : 3c ,所以 c 10. 由 a b c 及a b c =30得 30 = a b c 2c ,所以 c :: 15. 又因为c 为整数,所以11乞C 乞14........................... 5分根据勾股定理可得 a 2 b^c 2,把c =30-a -b 代入,化简得ab-30(a b) 45^ 0 ,所以2 2(30 -a)(30-b) =450 =2 3 5 ,........................ 10分30 - a = 52,1 a = 5,因为a,b 均为整数且a 兰b ,所以只可能是2解得彳............... 15分[30 —b = 2汽32,lb = 12. 169所以,直角三角形的斜边长 C =13,三角形的外接圆的面积为 竺二................ 20分4.. 2•(本题满分25分)如图,PA 为。
2010-2012年全国初中数学联赛试题参考答案和评分标准
2010年全国初中数学联合竞赛试题参考答案第一试一、选择题:(本题满分42分,每小题7分)1. 若,,a b c 均为整数且满足1010()()1a b a c -+-=,则||||||a b b c c a -+-+-=( B )A .1.B .2.C .3.D .4.2.若实数,,a b c 满足等式23||6a b +=,49||6a b c -=,则c 可能取的最大值为 ( C ) A .0. B .1. C .2. D .3.3.若b a ,是两个正数,且,0111=+-+-ab b a 则 ( C ) A .103a b <+≤. B .113a b <+≤. C .413a b <+≤. D .423a b <+≤. 4.若方程2310x x --=的两根也是方程420x ax bx c +++=的根,则2a b c +-的值为 ( A ) A .-13. B .-9. C .6. D . 0.5.在△ABC 中,已知︒=∠60CAB ,D ,E 分别是边AB ,AC 上的点,且︒=∠60AED ,CE DB ED =+,CDE CDB ∠=∠2,则=∠DCB ( B )A .15°.B .20°.C .25°.D .30°.6.对于自然数n ,将其各位数字之和记为n a ,如2009200911a =+++=,201020103a =+++=,则12320092010a a a a a +++++=( D )A .28062.B .28065.C .28067.D .28068.二、填空题:(本题满分28分,每小题7分) 1.已知实数,x y 满足方程组3319,1,x y x y ⎧+=⎨+=⎩则22x y += 13 .2.二次函数c bx x y ++=2的图象与x 轴正方向交于A ,B 两点,与y 轴正方向交于点C .已知AC AB 3=,︒=∠30CAO ,则c = 19. 3.在等腰直角△ABC 中,AB =BC =5,P 是△ABC 内一点,且PA =5,PC =5,则PB =___10___.4.将若干个红、黑两种颜色的球摆成一行,要求两种颜色的球都要出现,且任意中间夹有5个或10个球的两个球必为同一种颜色的球.按这种要求摆放,最多可以摆放____15___个球.第二试 (A )一.(本题满分20分)设整数,,a b c (a b c ≥≥)为三角形的三边长,满足22213a b c ab ac bc ++---=,求符合条件且周长不超过30的三角形的个数.解 由已知等式可得222()()()26a b b c a c -+-+-= ①令,a b m b c n -=-=,则a c m n -=+,其中,m n 均为自然数.于是,等式①变为222()26m n m n +++=,即2213m n mn ++= ②由于,m n 均为自然数,判断易知,使得等式②成立的,m n 只有两组:3,1m n =⎧⎨=⎩和1,3.m n =⎧⎨=⎩ (1)当3,1m n ==时,1b c =+,34a b c =+=+.又,,a b c 为三角形的三边长,所以b c a +>,即(1)4c c c ++>+,解得3c >.又因为三角形的周长不超过30,即(4)(1)30a b c c c c ++=++++≤,解得253c ≤.因此2533c <≤,所以c 可以取值4,5,6,7,8,对应可得到5个符合条件的三角形. (2)当1,3m n ==时,3b c =+,14a b c =+=+.又,,a b c 为三角形的三边长,所以b c a +>,即(3)4c c c ++>+,解得1c >.又因为三角形的周长不超过30,即(4)(3)30a b c c c c ++=++++≤,解得233c ≤.因此2313c <≤,所以c 可以取值2,3,4,5,6,7,对应可得到6个符合条件的三角形. 综合可知:符合条件且周长不超过30的三角形的个数为5+6=11.二.(本题满分25分)已知等腰三角形△ABC 中,AB =AC ,∠C 的平分线与AB 边交于点P ,M 为△ABC 的内切圆⊙I 与BC 边的切点,作MD//AC ,交⊙I 于点D.证明:PD 是⊙I 的切线. 证明 过点P 作⊙I 的切线PQ (切点为Q )并延长,交BC 于点N. 因为CP 为∠ACB 的平分线,所以∠ACP =∠BCP. 又因为PA 、PQ 均为⊙I 的切线,所以∠APC =∠NPC. 又CP 公共,所以△ACP ≌△NCP ,所以∠PAC =∠PNC.由NM =QN ,BA =BC ,所以△QNM ∽△BAC ,故∠NMQ =∠ACB ,所以MQ//AC.又因为MD//AC ,所以MD 和MQ 为同一条直线.又点Q 、D 均在⊙I 上,所以点Q 和点D 重合,故PD 是⊙I 的切线.三.(本题满分25分)已知二次函数2y x bx c =+-错误!未找到引用源。
2012年全国初中数学竞赛试卷及答案(福建赛区)
2012年全国初中数学竞赛试卷(福建赛区)(考试时间:120分钟,总分:150分)一、选择题(每小题7分,共35分)1.如果实数a ,b ,ca b b c ++可以化简为( )A .2c a -B .22a b -C .a -D .a2.在平面直角坐标系xOy 中,满足不等式2222x y x y +≤+的整数点坐标()x y ,的个数为( )A .10B .9C .7D .53.如图,四边形ABCD 中,AC ,BD 是对角线,△ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD = 5,则CD 的长为( )A .23B .4C .52D .4.54.小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( )A .1B .2C .3D .45.黑板上写有111123100, , ,, 共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是( )A .2012B .101C .100D .99二、填空题(每小题7分,共35分)6.按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487?”为一次操作.如果操作进行四次才停止,那么x 的取值范围是 . 7.如图,⊙O 的半径为20,A 是⊙O 上一点.以OA 为对角线作矩形OBAC ,且12OC =.延长BC ,与⊙O 分别交于D E ,两点,则CE BD -的值等于 .8.如果关于x 的方程22393042x kx k k ++-+=的两个实数根分别为1x ,2x ,那么2012220111x x 的值为.9.2位八年级同学和m 位九年级同学一起参加象棋比赛,比赛为单循环,即所有参赛者彼此恰好比赛一场.记分规则是:每场比赛胜者得3分,负者得0分;平局各得1分.比赛结束后,所有同学的得分总和为130分,而且平局数不超过比赛局数的一半,则m 的值为 .10.如图,四边形ABCD 内接于⊙O ,AB 是直径,AD DC =.分别延长BA ,CD ,交点为E .作BF EC ⊥,并与EC 的延长线交于点F .若AE AO =,6BC =,则CF 的长为 .三、解答题(每题20分,共80分)11.如图,在平面直角坐标系xOy 中,8AO =,AB AC =,4sin 5ABC ∠=.CD 与y 轴交于点E ,且COE ADE S S =△△.已知经过B ,C ,E 三点的图象是一条抛物线,求这条抛物线对应的二次函数的解析式.12.如图,⊙O 的内接四边形ABCD 中,AC ,BD 是它的对角线,AC 的中点I 是△ABD 的内心.求证:(1)OI 是△IBD 的外接圆的切线;(2)2AB AD BD +=.13.已知整数a ,b 满足:a b -是素数,且ab 是完全平方数.当2012a ≥时,求a 的最小值.14.将23n , , ,(2n ≥)任意分成两组,如果总可以在其中一组中找到数a b c ,,(可以相同)使得ba c =,求n 的最小值.2012年全国初中数学竞赛试卷答案(福建赛区)(考试时间:120分钟,总分:150分)一、选择题(每小题7分,共35分)1.如果实数a ,b ,c a b b c ++可以化简为( C )A .2c a -B .22a b -C .a -D .a解:由实数a ,b ,c 在数轴上的位置可知0b a c <<<,且b c >,所以()()()a b b c a a b c a b c a ++=-+++--+=-2.在平面直角坐标系xOy 中,满足不等式2222x y x y +≤+的整数点坐标()x y ,的个数为( B )A .10B .9C .7D .5解:由题设2222x y x y +≤+,得220(1)(1)2x y ≤-+-≤.因为x ,y 均为整数,所以有22(1)0(1)0x y ⎧-=⎪⎨-=⎪⎩,22(1)0(1)1x y ⎧-=⎪⎨-=⎪⎩,22(1)1(1)0x y ⎧-=⎪⎨-=⎪⎩,22(1)1(1)1x y ⎧-=⎪⎨-=⎪⎩解得11x y =⎧⎨=⎩,12x y =⎧⎨=⎩,10x y =⎧⎨=⎩,01x y =⎧⎨=⎩,21x y =⎧⎨=⎩,00x y =⎧⎨=⎩,02x y =⎧⎨=⎩,20x y =⎧⎨=⎩,22x y =⎧⎨=⎩,以上共计9对()x y ,3.如图,四边形ABCD 中,AC ,BD 是对角线,△ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD = 5,则CD 的长为( B )A .23B .4C .52D .4.5解:如图,以CD 为边作等边△CDE ,连接AE .由于AC = BC ,CD = CE , BCD BCA ACD DCE ACD ACE ∠=∠+∠=∠+∠=∠.所以 △BCD ≌△ACE , BD = AE .又因为30ADC ∠=︒,所以90ADE ∠=︒.在Rt △ADE 中,53AE AD ==,,于是DE 4=,所以CD = DE = 4.4.小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( D )A .1B .2C .3D .4解:设小倩所有的钱数为x 元、小玲所有的钱数为y 元,x y ,均为非负整数. 由题设可得 2(2)2()x n y y n x n +=-⎧⎨+=-⎩.消去x 得,(27)4y n y -=+,(27)1515212727y n y y -+==+--.因为1527y -为正整数,所以27y -的值分别为1,3,5,15.y 的值只能为4,5,6,11.从而n 的值分别为8,3,2,1.所以 x 的值分别为14,7,6,7.5.黑板上写有111123100, , ,, 共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是( C ) A .2012 B .101 C .100 D .99解:因为1(1)(1)a b ab a b +++=++,所以每次操作前和操作后,黑板上的每个数加1后的乘积不变.设经过99次操作后黑板上剩下的数为x ,则1111(11)(1)(1)...(1)23100x +=+++⋅⋅+, 解得,1101x +=,100x =.二、填空题(每小题7分,共35分)6.按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487?”为一次操作.如果操作进行四次才停止,那么x 的取值范围是 719x <≤ .解:前四次操作的结果分别为32x -,3(32)298x x --=-,3(98)22726x x --=-,3(2726)28180x x --=-.由已知得,27264878180487x x -≤⎧⎨->⎩.解得719x <≤. 容易验证,当719x <≤,32487x -≤,98487x -≤,故x 的取值范围是719x <≤. 7.如图,⊙O 的半径为20,A 是⊙O 上一点.以OA 为对角线作矩形OBAC ,且12OC =.延长BC ,与⊙O 分别交于D E ,两点,则CE BD -的值等于 285 .解:如图,设DE 的中点为M ,连接OM ,则OM DE ⊥.因为16OB ==,所以161248205OB OC OM BC ⋅⨯===,366455CM BM ===,. CE BD EM CM DM BM -=---()()643655BM CM =-=-285=. 8.如果关于x 的方程22393042x kx k k ++-+=的两个实数根分别为1x ,2x ,那么2012220111x x 的值为32-.解:根据题意,关于x 的方程有22394(3)042k k k ∆=--+≥,由此得2(3)0k -≤.又2(3)0k -≥,所以2(3)0k -= ,3k =.此时方程为29304x x ++=,解得1232x x ==-.故20111201222123x x x ==-9.2位八年级同学和m 位九年级同学一起参加象棋比赛,比赛为单循环,即所有参赛者彼此恰好比赛一场.记分规则是:每场比赛胜者得3分,负者得0分;平局各得1分.比赛结束后,所有同学的得分总和为130分,而且平局数不超过比赛局数的一半,则m 的值为 8 .解:设平局数为a ,胜(负)局数为b ,由题设知 23130a b +=.由此得043b ≤≤.又(1)(2)2m m a b +++=,所以22(1)(2)a b m m +=++.于是0130(1)(2)43b m m ≤=-++≤,87(1)(2)130m m ≤++≤. 由此得8m =或9m =.当8m =时,40b =,5a =;当9m =时,20b =,35a =,5522a b a +>=.不合题设.故8m =. 10.如图,四边形ABCD 内接于⊙O ,AB 是直径,AD DC =.分别延长BA ,CD ,交点为E.作BF EC ⊥,并与EC 的延长线交于点F .若AE AO =,6BC =,则CF 的长为 223 .解:如图,连接AC ,BD ,OD . 由AB 是⊙O 的直径知90BCA BDA ∠=∠=︒. 依题设90BFC ∠=︒,四边形ABCD 是⊙O 的内接四边形,所以BCF BAD ∠=∠.所以Rt BCF Rt BAD △∽△,因此 BC BACF AD=. 因为OD 是⊙O 的半径,AD CD =,所以OD 垂直平分AC ,OD BC ∥,于是 2DE OEDC OB==.因此223DE CD AD CE AD ===,.由AED CEB △∽△,知DE EC AE BE ⋅=⋅.因为322BA AE BE BA ==,,所以 32322BA AD AD BA ⋅=⋅,BA =.故2AD CF BC BA =⋅==. 三、解答题(每题20分,共80分)11.如图,在平面直角坐标系xOy 中,8AO =,AB AC =,4sin 5ABC ∠=.CD 与y 轴交于点E ,且COE ADE S S =△△.已知经过B ,C ,E 三点的图象是一条抛物线,求这条抛物线对应的二次函数的解析式.解:因为sin ∠ABC =45AO AB =,8AO =,所以AB = 10.由勾股定理,得6BO ==.易知ABO ACO △≌△,因此 CO = BO = 6. 于是(08)A -,,(60)B ,,(60)C -,.设点D 的坐标为()m n ,.由COE ADE S S =△△,得CDB AOB S S =△△. 所以 1122BC n AO BO ⋅=⋅,1112()8622n ⨯-=⨯⨯.解得 4n =-.因此D 为AB 的中点,点 D 的坐标为(34)-,.因此CD ,AO 分别为AB ,BC 的两条中线, 点E 为△A BC 的重心,所以点E 的坐标为8(0)3-,. 设经过B ,C ,E 三点的抛物线对应的二次函数的解析式为(6)(6)y a x x =-+.将点E 的坐标代入,解得a =272. 故经过B ,C ,E 三点的抛物线对应的二次函数的解析式为228273y x =-. 12.如图,⊙O 的内接四边形ABCD 中,AC ,BD 是它的对角线,AC 的中点I 是△ABD 的内心.求证:(1)OI 是△IBD 的外接圆的切线;(2)2AB AD BD +=.解:(1)如图,根据三角形内心的性质和同弧上圆周角的性质知CID IAD IDA ∠=∠+∠,CDI CDB BDI BAC IDA IAD IDA ∠=∠+∠=∠+∠=∠+∠. 所以CID CDI ∠=∠, CI = CD .同理,CI = CB .故点C 是△IBD 的外心.连接OA ,OC ,因为I 是AC 的中点,且OA = OC ,所以OI ⊥AC ,即OI ⊥CI .故OI 是△IBD 外接圆的切线. (2)如图,过点I 作IE ⊥AD 于点E ,设OC 与BD 交于点F .由BC CD =,知OC ⊥BD .因为∠CBF =∠IAE ,BC = CI = AI ,所以Rt BCF Rt AIE △≌△.所以BF = AE .又因为I 是△ABD 的内心,所以22AB AD BD AE BD BD BF BD +-=+-==. 故2AB AD BD +=.13.已知整数a ,b 满足:a b -是素数,且ab 是完全平方数.当2012a ≥时,求a 的最小值.【解答1】设a b m -=(m 是素数),2ab n =(n 是正整数).因为 22()4()a b ab a b +-=-,所以 222(2)4a m n m --=,2(22)(22)a m n a m n m -+--=. 因为22a m n -+与22a m n --都是正整数,且2222a m n a m n -+>--(m 为素数), 所以 222a m n m -+=,221a m n --=.解得2(1)4m a +=, 214m n -=. 于是214m b a m -=-=().又2012a ≥,即2(1)20124m +≥. 又因为m 是素数,解得89m ≥. 此时,2(891)4a +≥=2025. 当2025a =时,89m =,1936b =,1980n =.因此,a 的最小值为2025.【解答2】设a b m -=(m 是素数),2ab n =(n 是非负整数)。
-2012年全国初中数学联赛试卷
2012年全国初中数学联赛试卷一、选择题:(本题满分42分,每小题7分)223.(7分)已知正方形ABCD的边长为1,E为BC边的延长线上一点,CE=1,连接AE,与CD交于点F,连接.C D.2244..5.(7分)若方程x2+2px﹣3p﹣2=0的两个不相等的实数根x1,x2满足,则实数p的所C.6.(7分)由1,2,3,4这四个数字组成四位数(数字可重复使用),要求满足a+c=b+d.这样的四位数共有二、填空题:(本题满分28分,每小题7分)7.(7分)已知互不相等的实数a,b,c满足,则t=_________.8.(7分)使得5×2m+1是完全平方数的整数m的个数为_________.9.(7分)在△ABC中,已知AB=AC,∠A=40°,P为AB上一点,∠ACP=20°,则=_________.10.(7分)已知实数a,b,c满足abc=﹣1,a+b+c=4,,则a2+b2+c2= _________.三、解答题(共3小题)11.(20分)已知直角三角形的边长均为整数,周长为60,求它的外接圆的面积.12.(25分)如图,PA为⊙O的切线,PBC为⊙O的割线,AD⊥OP于点D,△ADC的外接圆与BC的另一个交点为E.证明:∠BAE=∠ACB.13.(25分)已知抛物线的顶点为P,与x轴的正半轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于点C,PA是△ABC的外接圆的切线.设M(0,),若AM∥BC,求抛物线的解析式.2012年全国初中数学联赛试卷参考答案与试题解析一、选择题:(本题满分42分,每小题7分)﹣b=﹣﹣=,=+,=+1=<<,<<,22,3.(7分)已知正方形ABCD的边长为1,E为BC边的延长线上一点,CE=1,连接AE,与CD交于点F,连接.C D.DE=DE=.,=.2244..≤,﹣+≤时,时,﹣(﹣)+×+﹣,,或a=﹣5.(7分)若方程x2+2px﹣3p﹣2=0的两个不相等的实数根x1,x2满足,则实数p的所C.然后利用得到有关+﹣=[+﹣(+)得=4﹣(),﹣(﹣.6.(7分)由1,2,3,4这四个数字组成四位数(数字可重复使用),要求满足a+c=b+d.这样的四位数共有二、填空题:(本题满分28分,每小题7分)7.(7分)已知互不相等的实数a,b,c满足,则t=±1.=t,代入b+c+=t,=t,得:=t=t,时,,时,8.(7分)使得5×2m+1是完全平方数的整数m的个数为1.或9.(7分)在△ABC中,已知AB=AC,∠A=40°,P为AB上一点,∠ACP=20°,则=.BCBAE=PAsin60=AP==故答案为:10.(7分)已知实数a,b,c满足abc=﹣1,a+b+c=4,,则a2+b2+c2=.,同理可得:,=+,+=,=,即整理得:,=故答案为:三、解答题(共3小题)11.(20分)已知直角三角形的边长均为整数,周长为60,求它的外接圆的面积.∴只可能是或或,三角形的外接圆的面积为12.(25分)如图,PA为⊙O的切线,PBC为⊙O的割线,AD⊥OP于点D,△ADC的外接圆与BC的另一个交点为E.证明:∠BAE=∠ACB.13.(25分)已知抛物线的顶点为P,与x轴的正半轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于点C,PA是△ABC的外接圆的切线.设M(0,),若AM∥BC,求抛物线的解析式.中,﹣的横坐标为:﹣=3b,纵坐标为:b的坐标为是一元二次方程的两根,,.,即,.代入,解得(另一解舍去)∴抛物线的解析式为。
2012年全国初中数学 竞赛试题
2012年全国初中数学竞赛预赛试题及参考答案一、选择题(共6小题,每小题6分,共36分. 以下每道小题均给出了代号为A,B,C,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号字母填入题后的括号里,不填、多填或错填都得0分)1.在1,3,6,9四个数中,完全平方数、奇数、质数的个数分别是【 】 (A )2,3,1 (B )2,2,1 (C )1,2,1 (D )2,3,2 【答】A .解.完全平方数有1,9;奇数有1,3,9;质数有3.2.已知一次函数(1)(1)y m x m =++-的图象经过一、二、三象限,则下列判断正确的是【 】(A )1m >- (B )1m <- (C )1m > (D )1m < 【答】C .解.一次函数(1)(1)y m x m =++-的图象经过一、二、三象限,说明其图象与y 轴的交点位于y 轴的正半轴,且y 随x 的增大而增大,所以10,10.m m ->⎧⎨+>⎩解得1m >.3.如图,在⊙O 中,CD DA AB ==,给出下列三个 结论.(1)DC =AB ;(2)AO ⊥BD ;(3)当∠BDC =30° 时,∠DAB =80°.其中正确的个数是【 】(A )0 (B )1 (C )2 (D )3 【答】D .解.因为CD AB =,所以DC =AB ;因为AD AB =,AO 是半径,所以AO ⊥BD ;设∠DAB =x 度,则由△DAB 的内角和为180°得.2(30)180x x -︒+=︒,解得80x =︒.4. 有4张全新的扑克牌,其中黑桃、红桃各2张,它们的背面都一样,将它们洗匀后,背面朝上放到桌面上,从中任意摸出2张牌,摸出的花色不一样的概率是【 】(A )34 (B )23 (C )13 (D )21【答】B .解.从4张牌中任意摸出2张牌有6种可能,摸出的2张牌花色不一样的有4种可能,所以摸出花色不一样的概率是3264=. 5.在平面直角坐标系中,点A 的坐标是(1,0),点B 的坐标是(3,3)--,点C 是y 轴上一动点,要使△A B C 为等腰三角形,则符合要求的点C 的位置共第3题图O DCBA有【 】(A )2个 (B )3个 (C )4个 (D )5个 【答】D .解.由题意可求出AB =5,如图,以点A 为圆心AB 的长为半径画弧,交y 轴于C 1和C 2,利用勾股定理可求出OC 1=OC 2=225126-=,可得)62,0(),62,0(21-C C , 以点B 为圆心BA 的长为半径画弧,交y 轴于点C 3和C 4, 可得34(0,1),(0,7)C C -,AB 的中垂线交y 轴于点C 5,利用 三角形相似或一次函数的知识可求出)617,0(5-C . 6.已知二次函数221y x bx =++(b 为常数),当b 取不同的值时,其图象构成一个“抛物线系”,图中的实线型抛物线分别是b 取三个不同的值时二次函数的图象,它们的顶点在一条抛物线上(图中虚线型抛物线),这条抛物线的解析式是【 】(A )221y x =-+ (B )2112y x =-+ (C )241y x =-+ (D )2114y x =-+【答】A .解.221y x bx =++的顶点坐标是⎪⎪⎭⎫ ⎝⎛--88,42b b ,设4b x -=,882b y -=,由4b x -=得x b 4-=,所以222218)4(888x x b y -=--=-=. 二、填空题(共6小题,每小题6分,共36分)7.若2=-n m ,则124222-+-n mn m 的值为 . 【答】7.解.71221)(212422222=-⨯=--=-+-n m n mn m .8.方程112(1)(2)(2)(3)3x x x x +=++++的解是 .【答】120,4x x ==-.yxO 第6题图xyOABC 1C 2C 3C 4C 5 第5题图解.11(1)(2)(2)(3)x x x x +++++11111223x x x x =-+-++++11213(1)(3)x x x x =-=++++. ∴22(1)(3)3x x =++,解得 120,4x x ==-.9.如图,在平面直角坐标系中,点B 的坐标是(1,0), 若点A 的坐标为(a ,b ),将线段BA 绕点B 顺时针旋转 90°得到线段BA ',则点A '的坐标是 . 【答】(1,1)b a +-+.解.分别过点A 、A '作x 轴的垂线,垂足分别 为C 、D .显然Rt △ABC ≌Rt △B A 'D . 由于点A 的坐标是(,)a b ,所以OD OB BD =+1OB AC b =+=+,1A D BC a '==-,所以点的A '坐标是(1,1)b a +-+.10.如图,矩形ABCD 中,AD =2,AB =3,AM =1,DE 是以点A 为圆心2为半径的41圆弧,NB 是以点M 为圆心2为半径的41圆弧,【答】2.解.连接MN ,显然将扇形AED 向右平移 可与扇形MBN 重合,图中阴影部分的面积等于 矩形AMND 的面积,等于221=⨯.11.已知α、β是方程2210x x +-=的两根,则3510αβ++的值为 .【答】2-.解.∵α是方程2210x x +-=的根,∴212αα=-.∴ 322(12)22(12)52αααααααααα=⋅=-=-=--=-, 又 ∵2,αβ+=-M第10题图E 第9题图∴ 3510(52)5105()8αβαβαβ++=-++=++=5(2)82⨯-+=-.12.现有145颗棒棒糖,分给若干小朋友,不管怎样分,都至少有1个小朋友分到5颗或5颗以上,这些小朋友的人数最多有 个. 【答】36.解.利用抽屉原理分析,设最多有x 个小朋友,这相当于x 个抽屉,问题变为把145颗糖放进x 个抽屉,至少有1个抽屉放了5颗或5颗以上,则41x +≤145,解得x ≤36,所以小朋友的人数最多有36个.三、解答题(第13题15分,第14题15分,第15题18分,共48分)13.王亮的爷爷今年(2012年)80周岁了,今年王亮的年龄恰好是他出生年份的各位数字之和,问王亮今年可能是多少周岁?解.设王亮出生年份的十位数字为x ,个位数字为y (x 、y 均为0 ~ 9的整数).∵王亮的爷爷今年80周岁了,∴王亮出生年份可能在2000年后,也可能是2000年前.故应分两种情况. …………………2分(1)若王亮出生年份为2000年后,则王亮的出生年份为200010x y ++,依题意,得2012(200010)20x y x y -++=+++,整理,得 1011,2xy -=x 、y 均为0 ~ 9的整数,∴0.x = 此时 5.y =∴王亮的出生年份是2005年,今年7周岁.…………………8分(2)若王亮出生年份在2000年前,则王亮的出生年份为190010x y ++,依题意,得2012(190010)19x y x y -++=+++,整理,得 111022x y =-,故x 为偶数,又1021110211,09,22x xy --=≤≤ ∴ 779,11x ≤≤ ∴ 8.x = 此时7.y = ∴王亮的出生年份是1987年,今年25周岁. …………………14分 综上,王亮今年可能是7周岁,也可能是25周岁.……………15分14.如图,在平面直角坐标系中,直角梯形OABC 的顶点A 、B 的坐标分别是(5,0)、(3,2),点D 在线段OA 上,BD =BA , 点Q 是线段BD 上一个动点,点P 的坐标是(0,3),设直线PQ 的解析式为y kx b =+.(1)求k 的取值范围;(2)当k 为取值范围内的最大整数时,若抛物线25y ax ax =-的顶点在直线PQ 、OA 、AB 、BC 围成的四边形内部,求a 的取值范围.解.(1)直线y kx b =+经过P (0,3),∴ 3b =.∵B (3,2),A (5,0),BD =BA ,∴ 点D 的坐标是(1,0), ∴ BD 的解析式是1y x =-, 1 3.x ≤≤依题意,得 1,3.y x y kx =-⎧⎨=+⎩,∴4,1x k =-∴ 41 3.1k -≤≤解得13.3k --≤≤……………………………………………7分 (2) 13,3k --≤≤且k 为最大整数,∴1k =-.则直线PQ 的解析式为3y x =-+.……………………………………………9分又因为抛物线25y ax ax =-的顶点坐标是525,24a ⎛⎫-⎪⎝⎭,对称轴为52x =.解方程组⎪⎩⎪⎨⎧=+-=.25,3x x y 得⎪⎪⎩⎪⎪⎨⎧==.21,25y x 即直线PQ 与对称轴为52x =的交点坐标为51(,)22,∴125224a <-<.解得 822525a -<<-.……………………………………15分 15. 如图,扇形O M N 的半径为1,圆心角是90°.点B 是MN 上一动点,BA ⊥OM 于点A ,BC ⊥ON 于点C ,点D 、E 、F 、G 分别是线段OA 、AB 、BC 、CO 的中点,GF 与CE 相交于点P ,DE 与AG 相交于点Q .(1)求证.四边形EPGQ 是平行四边形;(2)探索当OA 的长为何值时,四边形EPGQ 是矩形;(3)连结PQ ,试说明223PQ OA +是定值.解.(1)证明.如图①, ∵∠AOC =90°,BA ⊥OM ,BC ⊥ON , ∴四边形OABC 是矩形. ∴OC AB OC AB =,//. ∵E 、G 分别是AB 、CO 的中点, ∴.,//GC AE GC AE =∴四边形AECG 为平行四边形.∴.//AG CE ……………………………4分 连接OB , ∵点D 、E 、F 、G 分别是线段OA 、AB 、BC 、CO 的中点, ∴ GF ∥OB ,DE ∥OB , ∴ PG ∥EQ ,∴四边形EPGQ 是平行四边形.………………………………………………6分A BCO D EFGPQ M N图①(2)如图②,当∠CED =90°时,□EPGQ 是矩形. 此时 ∠AED +∠CEB =90°.又∵∠DAE =∠EBC =90°,∴∠AED =∠BCE .∴△AED ∽△BCE .………………………………8分 ∴AD AEBE BC=. 设OA =x ,AB =y ,则2x ∶2y =2y ∶x ,得222y x =.…10分又 222OA AB OB +=,即2221x y +=.∴2221x x +=,解得x =∴当OA的长为3时,四边形EPGQ 是矩形.………………………………12分 (3)如图③,连结GE 交PQ 于O ',则.,E O G O Q O P O '=''='.过点P 作OC 的平行线分别交BC 、GE 于点B '、A '.由△PCF ∽△PEG 得,2,1PG PE GE PF PC FC === ∴ PA '=23A B ''=13AB , GA '=13GE =13OA ,∴ 1126A O GE GA OA '''=-=. 在Rt △PA O ''中,222PO PA A O ''''=+,即 2224936PQ AB OA =+, 又 221AB OA +=, ∴ 22133PQ AB =+,∴ 2222143()33OA PQ OA AB +=++=.……………………………………18分A BCOD E F GP QMN 图②B'N MA'QP O'G F E D C B A O 图③。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年全国初中数学联合竞赛试题参考答案第一试一、选择题:(本题满分42分,每小题7分)1.已知1a =,b =-2c =,那么,,a b c 的大小关系是 ( C )A. a b c <<B. a c b <<C. b a c <<D.b c a <<2.方程222334x xy y ++=的整数解(,)x y 的组数为( B )A .3.B .4.C .5.D .6. 3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与CD 交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为 ( D )A 3B 3C 3D 34.已知实数,a b 满足221a b +=,则44a ab b ++的最小值为( B )A .18-. B .0. C .1. D .98.5.若方程22320x px p +--=的两个不相等的实数根12,x x 满足232311224()x x x x +=-+,则 实数p 的所有可能的值之和为( B )A .0.B .34-. C .1-.D .54-.6.由1,2,3,4这四个数字组成四位数abcd (数字可重复使用),要求满足a c b +=+.这样的四位数共有 ( C )A .36个.B .40个.C .44个.D .48个.二、填空题:(本题满分28分,每小题7分) 1.已知互不相等的实数,,a b c 满足111a b c t b c a+=+=+=,则t =1±.2.使得521m ⨯+是完全平方数的整数m 的个数为 1 . 3.在△ABC 中,已知AB =AC ,∠A =40°,P 为AB 上一点,∠ACP =20°,则B C A P=.4.已知实数,,a b c 满足1abc =-,4a b c ++=,22243131319a b c a a b b c c ++=------,则22a b c++=332.第二试 (A )一、(本题满分20分)已知直角三角形的边长均为整数,周长为30,求它的外接圆的面积.解设直角三角形的三边长分别为,,a b c (a b c ≤<),则30a b c ++=. 显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值. 由a b c ≤<及30a b c ++=得303a b c c =++<,所以10c >. 由a b c +>及30a b c ++=得302a b c c =++>,所以15c <. 又因为c 为整数,所以1114c ≤≤.根据勾股定理可得222a b c +=,把30c a b =--代入,化简得30()4500ab a b -++=,所以22(30)(30)450235a b --==⨯⨯,因为,a b 均为整数且a b ≤,所以只可能是22305,3023,a b ⎧-=⎪⎨-=⨯⎪⎩解得5,12.a b =⎧⎨=⎩所以,直角三角形的斜边长13c =,三角形的外接圆的面积为1694π.二.(本题满分25分)如图,PA 为⊙O 的切线,PBC 为⊙O 的割线,A D ⊥OP 于点D .证明:2A DB DC D=⋅.证明:连接OA ,OB ,OC.∵OA ⊥AP ,A D ⊥OP ,∴由射影定理可得2PA PD PO =⋅,2AD PD OD =⋅.又由切割线定理可得2PA P B P C =⋅,∴P B P C P D P O ⋅=⋅,∴D 、B 、C 、O 四点共圆,∴∠PDB =∠PCO =∠OBC =∠ODC ,∠PBD =∠COD ,∴△PB D ∽△COD ,∴P D B D C DO D=,∴2AD PD OD BD CD =⋅=⋅.三.(本题满分25分)已知抛物线216y x bx c =-++的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x <)两点,与y 轴交于点C ,PA 是△ABC 的外接圆的切线.设M 3(0,)2-,若AM//BC ,求抛物线的解析式.解 易求得点P 23(3,)2b bc +,点C (0,)c .设△ABC 的外接圆的圆心为D ,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3,)b m .显然,12,x x 是一元二次方程2106x bx c -++=的两根,所以13x b =23x b =+AB 的中点E 的坐标为(3,0)b ,所以AE=.因为PA 为⊙D 的切线,所以PA ⊥AD ,又A E ⊥PD ,所以由射影定理可得2AE PE DE =⋅,即223()||2b c m =+⋅,又易知0m <,所以可得6m =-.又由DA =DC得22DA DC=,即22226)(30)()c m b m c +=-+-,把6m =-代入后可解得6c =-(另一解0c =舍去).又因为AM//BC ,所以O A O M O BO C=3||2|6|-=-.把6c =-代入解得52b =(另一解52b =-舍去).因此,抛物线的解析式为215662y x x =-+-.第二试 (B )一.(本题满分20分)已知直角三角形的边长均为整数,周长为60,求它的外接圆的面积.解 设直角三角形的三边长分别为,,a b c (a b c ≤<),则60a b c ++=.显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值. 由a b c ≤<及60a b c ++=得603a b c c =++<,所以20c >. 由a b c +>及60a b c ++=得602a b c c =++>,所以30c <. 又因为c 为整数,所以2129c ≤≤.根据勾股定理可得222a b c +=,把60c a b =--代入,化简得60()18000ab a b -++=,所以322(60)(60)1800235a b --==⨯⨯,因为,a b 均为整数且a b ≤,所以只可能是326025,6035,a b ⎧-=⨯⎪⎨-=⨯⎪⎩或2226025,6023,a b ⎧-=⨯⎪⎨-=⨯⎪⎩ 解得20,15,a b =⎧⎨=⎩或10,24.a b =⎧⎨=⎩当20,15a b ==时,25c =,三角形的外接圆的面积为6254π;当10,24a b ==时,26c =,三角形的外接圆的面积为169π. 二.(本题满分25分)如图,PA 为⊙O 的切线,PBC 为⊙O 的割线,A D ⊥OP 于点D ,△ADC 的外接圆与BC 的另一个交点为E.证明:∠BAE =∠ACB.证明:连接OA ,OB ,OC ,BD. ∵OA ⊥AP ,A D ⊥OP ,∴由射影定理可得2PA PD PO =⋅,2AD PD OD =⋅.又由切割线定理可得2PA P B P C =⋅,∴P B P C PD PO ⋅=⋅,∴D 、B 、C 、O 四点共圆, ∴∠PDB =∠PCO =∠OBC =∠ODC ,∠PBD =∠COD ,∴△PB D ∽△COD , ∴P D B D C D O D=,∴2BD CD PD OD AD ⋅=⋅=,∴B D A D A DC D=.又∠BDA =∠BDP +90°=∠ODC +90°=∠ADC ,∴△BDA ∽△ADC ,∴∠BAD =∠ACD ,∴AB 是△ADC 的外接圆的切线,∴∠BAE =∠ACB.三.(本题满分25分)题目和解答与(A )卷第三题相同.第二试 (C )一.(本题满分20分)题目和解答与(B )卷第一题相同. 二.(本题满分25分)题目和解答与(B )卷第二题相同. 三.(本题满分25分)已知抛物线216y x bx c =-++的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x <)两点,与y 轴交于点C ,PA 是△ABC 的外接圆的切线.将抛物线向左平移1)个单位,得到的新抛物线与原抛物线交于点Q ,且∠QBO =∠OBC.求抛物线的解析式.解 抛物线的方程即2213(3)62b y x bc =--++,所以点P 23(3,)2b bc +,点C (0,)c .设△ABC 的外接圆的圆心为D ,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3,)b m .显然,12,x x 是一元二次方程2106x bx c -++=的两根,所以13x b =23x b =+AB 的中点E 的坐标为(3,0)b ,所以AE =.因为PA 为⊙D 的切线,所以PA ⊥AD ,又A E ⊥PD ,所以由射影定理可得2AE PE DE =⋅,即223()||2b c m =+⋅,又易知0m <,所以可得6m =-.又由DA =DC得22DA DC=,即22226)(30)()c m b m c +=-+-,把6m =-代入后可解得6c =-(另一解0c =舍去).将抛物线2213(3)662b y x b =--+-向左平移1)个单位后,得到的新抛物线为2213(324)662by x b=--++-.易求得两抛物线的交点为Q23(312102)2bb+-+.由∠QBO=∠OBC可得tan∠QBO=tan∠OBC.作QN⊥AB,垂足为N,则N(3120)b+-,又233(x b b=+=+,所以tan∠QBO=Q NB N=2310212b+=21416(42b---=111)]22==⋅.又tan∠OBC=O COB61(2b==⋅-,所以111)](22b⋅=⋅-.解得4b=(另一解45)03b=<,舍去).因此,抛物线的解析式为21466y x x=-+-.。