模式识别复习重点总结材料

合集下载

模式识别复习重点总结

模式识别复习重点总结

1.线性判别方法(1)两类:二维及多维判别函数,判别边界,判别规则 二维情况:(a )判别函数: ( ) (b )判别边界:g(x)=0; (cn 维情况:(a )判别函数: 也可表示为:(b )判别边界:g 1(x ) =W T X=0(c )判别规则:(2)多类:3种判别方法(函数、边界、规则)(A)第一种情况:(a)判别函数:M 类可有M 个判别函数(b) 判别边界:ωi (i=1,2,…,n )类与其它类之间的边界由 g i (x )=0确定(c)(B)第二种情况:(a)判别函数:有 M (M _ 1)/2个判别平面(b) 判别边界: (c)判别规则:(C)第三种情况:(a)判别函数: (b) 判别边界:g i (x ) =g j (x ) 或g i (x ) -g j (x ) =0(c)判别规则:32211)(w x w x w x g ++=为坐标向量为参数,21,x x w 12211......)(+++++=n n n w x w x w x w x g X W x g T =)(为增值模式向量。

,=为增值权向量,Tn n T n n x x x x X w w w w W )1,...,,(),,...,,(21121+=+XW x g Tij ij =)(0)(=x g ij j i x g ij ≠⎩⎨⎧∈→<∈→>j ix 0x 0)(ωω当当权向量。

个判别函数的为第式中i w w w w W T in in i i i ),,,...,,(121+=XW x g K k =)(⎩⎨⎧∈=小,其它最大,当i Tki x X W x g ω)(2.分段线性判别方法1)基于距离:(1)子类,类判别函数 (2)判别规则(1)子类:把ωi 类可以分成l i 个子类:∴ 分成l 个子类。

子类判别函数:在同类的子类中找最近的均值 (2)判别规则: 这是在M 类中找最近均值。

模式识别 复习笔记

模式识别 复习笔记

第一章 概论① 什么是模式识别?使计算机模仿人的感知能力,从感知数据中提取信息(判别物体和行为)的过程。

(老师的简略说法:用机器判断事物类别)② 模式识别系统主要由四个部分组成:原始数据的获取和预处理,特征提取与选择,分类或类聚,后处理。

③ 紧致性:做模式识别的前提条件是每个模式类满足紧致性。

④ 相似性度量满足的条件:1234点⑤ 一些专业术语的中英文:PR (pattern recognition )模式识别 BP (back-propagation )反向传播算法 PCA (principal component analysis )主成分分析NN (neural networks )神经网络 ⑥ 欧式距离:()()Tx u x u -- ⑦ 马氏距离:()()1Tx u x u ---∑第二章 贝叶斯决策(两大贝叶斯决策=最小错误率贝叶斯决策+最小风险贝叶斯决策):①贝叶斯决策的三个前提条件:类别数确定,各类的先验概率p(w i)已知,各类的条件概率密度函数p(x|w i)已知。

②最小错误率贝叶斯决策:使错误率最小的分类决策。

对应于最大后验概率。

贝叶斯公式:P17 白细胞例子③最小风险贝叶斯决策:考虑各种错误造成损失不同时的一种最优决策。

第三章最大似然估计(两大参数估计=最大似然估计+贝叶斯估计):最可能出一题最大似然估计的计算题。

判断估计好坏的标准:无偏性、有效性、一致性。

①最大似然估计的求解流程:1、构造似然函数2、对数化3、求偏导4、求解第四章线性分类器①Fisher判别法Fisher准则:找到一个最合适的投影轴,使两类样本在该轴上的投影之间的距离尽可能远,而每一类样本的投影尽可能紧凑,从而使分类效果为最佳。

各类样本均值向量m i判定函数J(w)越大,说明分子类间距离越大,分母类内距离越小。

符合fisher准则。

引入拉格朗日函数:求偏导②最小二乘法y=ax+b第五章非线性分类器①反向传播算法BP:1.三层结构2.简述BP过程、偏差回来调整权系数P953.学习规则:a.随机给定权系数;b.计算输出;c.得到偏差;d.进行调整4.算法步骤:第七章特征选择遗传算法过程:a.初始化:设置进化代数计数器t=0,设置最大进化代数T,随机生成M个个体作为初始群体P(0).b.个体评价:计算群体P(t)中各个个体的适应度。

模式识别复习重点总结

模式识别复习重点总结

模式:存在于时间,空间中可观察的事物,具有时偶尔空间分布的信息; 模式识别:用计算机实现人对各种事物或者现象的分析,描述,判断,识别。

模式识别的应用领域: (1)字符识别; (2) 医疗诊断; (3)遥感; (4)指纹识别 脸形识别; (5)检测污染分析,大气,水源,环境监测; (6)自动检测; (7 )语声识别,机器翻译,电话号码自动查询,侦听,机器故障判断; (8)军事应用。

(1) 信息的获取:是通过传感器,将光或者声音等信息转化为电信息;(2) 预处理:包括A\D,二值化,图象的平滑,变换,增强,恢复,滤波等, 主要指图象处理; (3) 特征抽取和选择: 在测量空间的原始数据通过变换获得在特征空间最能反映分类本质的特征; (4) 分类器设计:分类器设计的主要功能是通过训练确定判决规则,使按此类判决规则分类时,错误率最低。

把这些判决规则建成标准库; (5) 分类决策:在特征空间中对被识别对象进行分类。

(1)模式(样本)表示方法: (a )向量表示; (b )矩阵表示; (c )几何表示; (4)基元(链 码)表示; (2)模式类的紧致性:模式识别的要求:满足紧致集,才干很好地分类;如果不满足紧 致集,就要采取变换的方法,满足紧致集(3)相似与分类; (a)两个样本x i ,x j 之间的相似度量满足以下要求:① 应为非负值② 样本本身相似性度量应最大 ③ 度量应满足对称性④ 在满足紧致性的条件下,相似性应该是点间距离的单调函数 (b) 用各种距离表示相似性(4)特征的生成:特征包括: (a)低层特征;(b)中层特征;(c)高层特征 (5) 数据的标准化:(a)极差标准化; (b)方差标准化二维情况: (a )判别函数: g(x) = w x + w x + w ( w 为参数, x , x 为坐标向量)1 12 23 1 2(b )判别边界: g(x)=0;(c )判别规则: (> 0, Xg i(x) =〈< 0, X1 n 维情况: (a )判别函数: g(x) = w 1x 1 + w2 x 2 + ...... + w n x n + w n +1也可表示为: g(x) = W T XW = (w , w ,..., w , w )T 为增值权向量,1 2 n n +1X =(x , x ,..., x ,x +1)T 为增值模式向量。

模式识别总结

模式识别总结
13
模式识别压轴总结
另外,使用欧氏距离度量时,还要注意模式样本测量值的选取,应该是有效 反映类别属性特征(各类属性的代表应均衡) 。但马氏距离可解决不均衡(一个 多,一个少)的问题。例如,取 5 个样本,其中有 4 个反映对分类有意义的特征 A,只有 1 个对分类有意义的特征 B,欧氏距离的计算结果,则主要体现特征 A。
信息获取 预处理 特征提取与选择 聚类 结果解释
1.4 模式识别系统的构成 基于统计方法的模式识别系统是由数据获取, 预处理, 特征提取和选择, 分类决策构成
2
模式识别压轴总结
1.5 特征提取和特征选择 特征提取 (extraction):用映射(或变换)的方法把原始特征变换为较少 的新特征。 特征选择(selection) :从原始特征中挑选出一些最有代表性,分类性能最 好的特征 特征提取/选择的目的,就是要压缩模式的维数,使之便于处理。 特征提取往往以在分类中使用的某种判决规则为准则,所提取的特征使在 某种准则下的分类错误最小。为此,必须考虑特征之间的统计关系,选用 适当的变换,才能提取最有效的特征。 特征提取的分类准则:在该准则下,选择对分类贡献较大的特征,删除贡 献甚微的特征。 特征选择:从原始特征中挑选出一些最有代表性、分类性能最好的特征进 行分类。 从 D 个特征中选取 d 个,共 CdD 种组合。 - 典型的组合优化问题 特征选择的方法大体可分两大类: Filter 方法:根据独立于分类器的指标 J 来评价所选择的特征子集 S,然后 在所有可能的特征子集中搜索出使得 J 最大的特征子集作为最优特征子 集。不考虑所使用的学习算法。 Wrapper 方法:将特征选择和分类器结合在一起,即特征子集的好坏标准 是由分类器决定的,在学习过程中表现优异的的特征子集会被选中。

模式识别期末复习总结

模式识别期末复习总结

1、贝叶斯分类器贝叶斯分类器的定义:在具有模式的完整统计知识的条件下,按照贝叶斯决策理论进行设计的一种最优分类器。

贝叶斯分类器的分类原理:通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。

贝叶斯分类器是各种分类器中分类错误概率最小或者在预先给定代价的情况下平均风险最小的分类器。

贝叶斯的公式:什么情况下使用贝叶斯分类器:对先验概率和类概率密度有充分的先验知识,或者有足够多的样本,可以较好的进行概率密度估计,如果这些条件不满足,则采用最优方法设计出的分类器往往不具有最优性质。

2、K近邻法kNN算法的核心思想:如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。

假设有N个已知样本分属c个类,考察新样本x在这些样本中的前K个近邻,设其中有个属于类,则类的判别函数就是决策规则:若则∈什么情况下使用K近邻法:kNN只是确定一种决策原则,在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别,并不需要利用已知数据事先训练出一个判别函数,这种方法不需要太多的先验知识。

在样本数量不足时,KNN法通常也可以得到不错的结果。

但是这种决策算法需要始终存储所有的已知样本,并将每一个新样本与所有已知样本进行比较和排序,其计算和存储的成本都很大。

对于类域的交叉或重叠较多的待分样本集来说,kNN方法较其他方法更为适合。

3、PCA和LDA的区别Principal Components Analysis(PCA):uses a signal representation criterionLinear Discriminant Analysis(LDA):uses a signal classification criterionLDA:线性判别分析,一种分类方法。

它寻找线性分类器最佳的法线向量方向,将高维数据投影到一维空间,使两类样本在该方向上的投影满足类内尽可能密集,类间尽可能分开。

模式识别复习提纲

模式识别复习提纲

模式识别第⼀一章(主要是概念,可以参照PPT)模式的定义模式识别的⺫⽬目的假说的两种获得⽅方法模式分类的主要⽅方法模式识别系统的基本组成模式识别系统各组成单元的介绍第⼆二章聚类分析•聚类分析的定义聚类分析是⼀一种⽆无监督的分类⽅方法•模式相似/分类的依据•聚类分析的有效性•特征选择的维数——降维⽅方法是什么?•模式对象特征测量的数字化(了解涵义)•相似度测度——欧⽒氏距离(重点),⻢马⽒氏距离(了解),⼀一般化的明⽒氏距离(了解),⾓角度相似性函数(了解)•聚类准则——试探⽅方法;聚类准则函数法(聚类准则函数J的定义?)•聚类分析的算法•最近相邻规则的简单试探法(重点)•最⼤大最⼩小距离算法(了解算法流程和基本思想)•系统聚类法(重点)•动态聚类法——K均值算法(重点);ISODATA算法(了解)第三章判别函数•线性判别函数(n维)•分类问题——多类情况1、2、3(重点)•⼲⼴广义线性判别函数(了解)•分段线性判别函数(了解)•模式空间与权空间(了解)•感知器算法(重点)第四章统计判别•⻉贝叶斯判别&判别原则•⻉贝叶斯最⼩小⻛风险判别(ppt上有例⼦子)•其他(参考PPT了解)第五章特征选择与提取•距离与散布矩阵(重点)•类内散布矩阵•类间散布矩阵•特征的选择与提取的原则与⽅方法(了解)•K-L变换第六章⼈人⼯工神经⺴⽹网络(⽼老师直接跳过了)第七章句法模式识别•⽂文法与⾃自动机相关的定义(如:句⼦子、句型、语⾔言、短语。

了解)•I型⽂文法•II型⽂文法•III型⽂文法•句法结构的⾃自动机识别(重点)•有限态⾃自动机•⾮非确定有限态⾃自动机•下推⾃自动机。

模式识别复习资料

模式识别复习资料
Nj:第j类的样本数。
(4)如果 Z j( k 1 ) Z j( k )j 1 ,2 , ,K ,则回到(2),将模式 样本逐个重新分类,重复迭代计算。
.
15
例2.3:已知20个模式样本如下,试用K-均值算法分类。
X1 0,0T X2 1,0T X3 0,1T X4 1,1T X5 2,1T X6 1,2T X7 2,2T X8 3,2T
x1
20
8 聚类准则函数Jj与K的关系曲线
上述K-均值算法,其类型数目假定已知为K个。当K未知时,
可以令K逐渐增加, 此时J j 会单调减少。最初减小速度快,但当 K 增加到一定数值时,减小速度会减慢,直到K =总样本数N 时,
Jj = 0。Jj-K关系曲线如下图:
Jj
曲线的拐点 A 对应着接近最优
④ 判断:
Zj(2)Zj(1)
j 1,2 ,故返回第②步。 .
17
② 从新的聚类中心得:
X 1: D D12||||X X11ZZ12((22))|||| X1S1(2) ┋
X 20:D D12||||X X2200Z Z12((22))|||| X20S2(2) 有: S 1 ( 2 ) { X 1 ,X 2 , ,X 8 } N 1 8
(2)将最小距离 3 对应的类 G1(0) 和G2 (0) 合并为1类,得 新的分类。
G 1( 1 2 ) G 1 ( 0 )G , 2 ( 0 ) G 3(1)G 3(0) G 4(1 )G 4(0 ) G 5(1)G 5(0) G 6(1 )G 6(0)
计算聚类后的距离矩阵D(1): 由D(0) 递推出D(1) 。
3)计算合并后新类别之间的距离,得D(n+1)。
4)跳至第2步,重复计算及合并。

四川大学模式识别复习要点及答案

四川大学模式识别复习要点及答案

简答题1.什么是模式与模式识别?模式:对象之间存在的规律性关系;模式识别:是研究用计算机来实现人类模式识别能力的一门学科。

/*模式:广义地说,模式是一些供模仿用的、完美无缺的标本。

本课程把所见到的具体事物称为模式,而将它们归属的类别称为模式类。

模式的直观特性:可观察性,可区分性,相似性模式识别:指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程。

*/2.一个典型的模式识别系统主要由哪几个部分组成3.什么是后验概率?系统在某个具体的模式样本X条件下位于某种类型的概率。

4.确定线性分类器的主要步骤①采集训练样本,构成训练样本集。

样本应该具有典型性②确定一个准则J=J(w,x),能反映分类器性能,且存在权值w*使得分类器性能最优③设计求解w的最优算法,得到解向量w*5.样本集推断总体概率分布的方法6.近邻法的基本思想是什么?作为一种分段线性判别函数的极端情况,将各类中全部样本都作为代表点,这样的决策方法就是近邻法的基本思想。

7.什么是K近邻法?取未知样本x的k个近邻,看这k个近邻中多数属于哪一类,就把x归为哪一类。

7.监督学习与非监督学习的区别利用已经标定类别的样本集进行分类器设计的方法称为监督学习。

很多情况下无法预先知道样本的类别,从没有标记的样本集开始进行分类器设计,这就是非监督学习。

/*监督学习:对数据实现分类,分类规则通过训练获得。

该训练集由带分类号的数据集组成,因此监督学习方法的训练过程是离线的。

非监督学习方法不需要单独的离线训练过程,也没有带分类号的训练数据集,一般用来对数据集进行分析。

如聚类,确定其分布的主分量等。

*/8.什么是误差平方和准则?对于一个给定的聚类,均值向量是最能代表聚类中所有样本的一个向量,也称其为聚类中心。

一个好的聚类方法应能使集合中的所有向量与这个均值向量的误差的长度平方和最小。

9.分级聚类算法的2种基本途径是什么按事物的相似性,或内在联系组织起来,组成有层次的结构,使得本质上最接近的划为一类,然后把相近的类再合并,依次类推,这就是分级聚类算法的基本思想。

大二上学期末模式识别与人工智能复习要点

大二上学期末模式识别与人工智能复习要点

大二上学期末模式识别与人工智能复习要点
一、数学基础
在学习模式识别与人工智能课程时,数学基础是非常重要的。

特别
是概率论、统计学和线性代数知识。

要重点复习和掌握这些数学概念,包括概率密度函数、条件概率、贝叶斯定理、协方差矩阵、特征值分
解等内容。

二、模式识别基础
模式识别的基本概念和方法也是复习的重点。

包括特征提取、特征
选择、模式分类、聚类分析等内容。

可以通过复习课本上的相关知识
和做一些练习题来加深对这些概念和方法的理解。

三、机器学习算法
在复习模式识别与人工智能课程时,机器学习算法是需要重点复习
的内容。

包括K近邻算法、支持向量机、决策树、神经网络等。

要对
这些算法的原理和应用有一个清晰的理解。

四、深度学习
近年来,深度学习在模式识别与人工智能领域得到了广泛的应用。

复习时要重点关注深度学习的基本概念、常见的深度学习模型以及它
们的训练和应用。

五、应用案例
复习模式识别与人工智能课程时,要结合一些实际的应用案例来加深对知识的理解。

比如人脸识别、字符识别、语音识别等。

可以通过相关的论文和实验来了解这些应用案例的原理和方法。

六、实践操作
最后,在复习模式识别与人工智能课程时,要进行一些实践操作。

可以通过编程实现一些经典的模式识别算法和人工智能模型,加深对知识的理解和掌握。

通过以上的复习要点,相信能够帮助大家更好地复习模式识别与人工智能课程,取得更好的成绩。

希望大家都能够在期末考试中取得优异的成绩,加油!。

模式识别复习要点

模式识别复习要点

复习要点绪论1、举出日常生活或技术、学术领域中应用模式识别理论解决问题的实例。

答:语音识别,图像识别,车牌识别,文字识别,人脸识别,通信中的信号识别;① 文字识别汉字已有数千年的历史,也是世界上使用人数最多的文字,对于中华民族灿烂文化的形成和发展有着不可磨灭的功勋。

所以在信息技术及计算机技术日益普及的今天,如何将文字方便、快速地输入到计算机中已成为影响人机接口效率的一个重要瓶颈,也关系到计算机能否真正在我过得到普及的应用。

目前,汉字输入主要分为人工键盘输入和机器自动识别输入两种。

其中人工键入速度慢而且劳动强度大;自动输入又分为汉字识别输入及语音识别输入。

从识别技术的难度来说,手写体识别的难度高于印刷体识别,而在手写体识别中,脱机手写体的难度又远远超过了联机手写体识别。

到目前为止,除了脱机手写体数字的识别已有实际应用外,汉字等文字的脱机手写体识别还处在实验室阶段。

②语音识别语音识别技术技术所涉及的领域包括:信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等。

近年来,在生物识别技术领域中,声纹识别技术以其独特的方便性、经济性和准确性等优势受到世人瞩目,并日益成为人们日常生活和工作中重要且普及的安验证方式。

而且利用基因算法训练连续隐马尔柯夫模型的语音识别方法现已成为语音识别的主流技术,该方法在语音识别时识别速度较快,也有较高的识别率。

③ 指纹识别我们手掌及其手指、脚、脚趾内侧表面的皮肤凹凸不平产生的纹路会形成各种各样的图案。

而这些皮肤的纹路在图案、断点和交叉点上各不相同,是唯一的。

依靠这种唯一性,就可以将一个人同他的指纹对应起来,通过比较他的指纹和预先保存的指纹进行比较,便可以验证他的真实身份。

一般的指纹分成有以下几个大的类别:环型(loop),螺旋型(whorl),弓型(arch),这样就可以将每个人的指纹分别归类,进行检索。

指纹识别基本上可分成:预处理、特征选择和模式分类几个大的步骤。

中科院-模式识别考题总结材料(详细问题详解)

中科院-模式识别考题总结材料(详细问题详解)

1.简述模式的概念及其直观特性,模式识别的分类,有哪几种方法。

(6’)答(1):什么是模式?广义地说,存在于时间和空间中可观察的物体,如果我们可以区别它们是否相同或是否相似,都可以称之为模式。

模式所指的不是事物本身,而是从事物获得的信息,因此,模式往往表现为具有时间和空间分布的信息。

模式的直观特性:可观察性;可区分性;相似性。

答(2):模式识别的分类:假说的两种获得方法(模式识别进行学习的两种方法):●监督学习、概念驱动或归纳假说;●非监督学习、数据驱动或演绎假说。

模式分类的主要方法:●数据聚类:用某种相似性度量的方法将原始数据组织成有意义的和有用的各种数据集。

是一种非监督学习的方法,解决方案是数据驱动的。

●统计分类:基于概率统计模型得到各类别的特征向量的分布,以取得分类的方法。

特征向量分布的获得是基于一个类别已知的训练样本集。

是一种监督分类的方法,分类器是概念驱动的。

●结构模式识别:该方法通过考虑识别对象的各部分之间的联系来达到识别分类的目的。

(句法模式识别)●神经网络:由一系列互相联系的、相同的单元(神经元)组成。

相互间的联系可以在不同的神经元之间传递增强或抑制信号。

增强或抑制是通过调整神经元相互间联系的权重系数来(weight)实现。

神经网络可以实现监督和非监督学习条件下的分类。

2.什么是神经网络?有什么主要特点?选择神经网络模式应该考虑什么因素?(8’)答(1):所谓人工神经网络就是基于模仿生物大脑的结构和功能而构成的一种信息处理系统(计算机)。

由于我们建立的信息处理系统实际上是模仿生理神经网络,因此称它为人工神经网络。

这种网络依靠系统的复杂程度,通过调整部大量节点之间相互连接的关系,从而达到处理信息的目的。

人工神经网络的两种操作过程:训练学习、正常操作(回忆操作)。

答(2):人工神经网络的特点:●固有的并行结构和并行处理;●知识的分布存储;●有较强的容错性;●有一定的自适应性;人工神经网络的局限性:●人工神经网络不适于高精度的计算;●人工神经网络不适于做类似顺序计数的工作;●人工神经网络的学习和训练往往是一个艰难的过程;●人工神经网络必须克服时间域顺序处理方面的困难;●硬件限制;●正确的训练数据的收集。

(完整版)《模式识别》知识重点总结与计算题,推荐文档

(完整版)《模式识别》知识重点总结与计算题,推荐文档

0.影响聚类结果的主要因素有那些?(2)证明马氏距离是平移不变的、非奇异线性变换不变的。

答:(1)分类准则,模式相似性测度,特征量的选择,量纲。

1.监督学习与非监督学习的区别:监督学习方法用来对数据实现分类,分类规则通过训练获得。

该训练集由带分类号的数据集组成,因此监督学习方法的训练过程是离线的。

非监督学习方法不需要单独的离线训练过程,也没有带分类号(标号)的训练数据集,一般用来对数据集进行分析,如聚类,确定其分布的主分量等。

(实例:道路图)就道路图像的分割而言,监督学习方法则先在训练用图像中获取道路象素与非道路象素集,进行分类器设计,然后用所设计的分类器对道路图像进行分割。

 使用非监督学习方法,则依据道路路面象素与非道路象素之间的聚类分析进行聚类运算,以实现道路图像的分割。

2.动态聚类是指对当前聚类通过迭代运算改善聚类; 分级聚类则是将样本个体,按相似度标准合并,随着相似度要求的降低实现合并。

3. 线性分类器三种最优准则: Fisher准则:根据两类样本一般类内密集, 类间分离的特点,寻找线性分类器最佳的法线向量方向,使两类样本在该方向上的投影满足类内尽可能密集,类间尽可能分开。

该种度量通过类内离散矩阵Sw和类间离散矩阵Sb实现。

感知准则函数:准则函数以使错分类样本到分界面距离之和最小为原则。

其优点是通过错分类样本提供的信息对分类器函数进行修正,这种准则是人工神经元网络多层感知器的基础。

支持向量机:基本思想是在两类线性可分条件下,所设计的分类器界面使两类之间的间隔为最大, 它的基本出发点是使期望泛化风险尽可能小。

一、试问“模式”与“模式类”的含义。

如果一位姓王的先生是位老年人,试问“王先生”和“老头”谁是模式,谁是模式类?答:在模式识别学科中,就“模式”与“模式类”而言,模式类是一类事物的代表,概念或典型,而“模式”则是某一事物的具体体现,如“老头”是模式类,而王先生则是“模式”,是“老头”的具体化。

上海市考研智能科学与技术复习资料人工智能与模式识别重点知识点总结

上海市考研智能科学与技术复习资料人工智能与模式识别重点知识点总结

上海市考研智能科学与技术复习资料人工智能与模式识别重点知识点总结上海市考研智能科学与技术复习资料——人工智能与模式识别重点知识点总结一、人工智能基础知识1. 人工智能概述人工智能是一门研究如何使计算机能够完成人类智能活动的学科,包括机器学习、自然语言处理、专家系统等。

2. 人工智能发展历程人工智能的发展经历了符号主义、连接主义和统计学习三个阶段,如今已进入深度学习时代。

3. 人工智能的应用领域人工智能在图像识别、语音识别、自动驾驶、医疗诊断等领域有广泛应用。

二、机器学习算法1. 机器学习概述机器学习是人工智能的一个重要分支,通过从数据中学习规律,使计算机具备自主学习和推断能力。

2. 监督学习监督学习是指通过已标记的训练数据来训练模型,并通过模型预测新数据的标签或值。

3. 无监督学习无监督学习是指使用未标记的数据进行模型训练,通过发现数据内在结构和模式来进行分类或聚类。

4. 深度学习深度学习是一种基于神经网络的机器学习方法,通过模拟人脑神经元之间的连接来实现高效的模式识别和推断。

三、模式识别算法1. 模式识别概述模式识别是指根据已有的模式来识别新样本的过程,包括特征提取、特征选择和分类器设计等步骤。

2. 特征提取特征提取是指从原始数据中提取出具有代表性的特征,常用的方法包括主成分分析、线性判别分析和小波变换等。

3. 特征选择特征选择是指从大量特征中选择出最具有代表性和区分性的特征,以提高分类器的性能。

4. 分类器设计分类器设计是指选择合适的算法或模型来对样本进行分类,常用的有支持向量机、决策树和随机森林等。

四、人工智能和模式识别的应用1. 图像识别人工智能和模式识别在图像识别领域有广泛应用,如人脸识别、物体检测和图像分类等。

2. 语音识别人工智能和模式识别在语音识别领域可以实现自动语音识别、语音合成和语音情感识别等技术。

3. 自动驾驶人工智能和模式识别在自动驾驶领域可以实现环境感知、路径规划和智能驾驶等功能。

模式识别复习重点总结85199

模式识别复习重点总结85199

1.什么是模式及模式识别?模式识别的应用领域主要有哪些?模式:存在于时间,空间中可观察的事物,具有时间或空间分布的信息; 模式识别:用计算机实现人对各种事物或现象的分析,描述,判断,识别。

模式识别的应用领域:(1)字符识别;(2) 医疗诊断;(3)遥感; (4)指纹识别 脸形识别;(5)检测污染分析,大气,水源,环境监测;(6)自动检测;(7 )语声识别,机器翻译,电话号码自动查询,侦听,机器故障判断; (8)军事应用。

2.模式识别系统的基本组成是什么?(1) 信息的获取:是通过传感器,将光或声音等信息转化为电信息;(2) 预处理:包括A \D,二值化,图象的平滑,变换,增强,恢复,滤波等, 主要指图象处理;(3) 特征抽取和选择:在测量空间的原始数据通过变换获得在特征空间最能反映分类本质的特征;(4) 分类器设计:分类器设计的主要功能是通过训练确定判决规则,使按此类判决规则分类时,错误率最低。

把这些判决规则建成标准库; (5) 分类决策:在特征空间中对被识别对象进行分类。

3.模式识别的基本问题有哪些?(1)模式(样本)表示方法:(a)向量表示;(b)矩阵表示;(c)几何表示;(4)基元(链码)表示;(2)模式类的紧致性:模式识别的要求:满足紧致集,才能很好地分类;如果不满足紧致集,就要采取变换的方法,满足紧致集(3)相似与分类;(a)两个样本x i ,x j 之间的相似度量满足以下要求: ① 应为非负值② 样本本身相似性度量应最大 ③ 度量应满足对称性④ 在满足紧致性的条件下,相似性应该是点间距离的 单调函数(b)用各种距离表示相似性 (4)特征的生成:特征包括:(a)低层特征;(b)中层特征;(c)高层特征 (5) 数据的标准化:(a)极差标准化;(b)方差标准化4.线性判别方法(1)两类:二维及多维判别函数,判别边界,判别规则 二维情况:(a)判别函数: ( )(b)判别边界:g(x )=0; (c)判别规则:n 维情况:(a)判别函数:也可表示为:32211)(w x w x w x g ++=为坐标向量为参数,21,x x w 12211......)(+++++=n n n w x w x w x w x g X W x g T =)(为增值权向量,T T n n w w w w W ),,...,,(121=+(b)判别边界:g1(x ) =W TX =0 (c)判别规则:(2)多类:3种判别方法(函数、边界、规则)(A )第一种情况:(a)判别函数:M 类可有M 个判别函数(b) 判别边界:ωi (i=1,2,…,n )类与其它类之间的边界由 g i(x )=0确定(c)(B)第二种情况:(a)判别函数:有 M (M _1)/2个判别平面(b) 判别边界: (c )判别规则:(C)第三种情况:(a)判别函数: (b) 判别边界:g i (x ) =gj (x ) 或g i (x ) -gj (x ) =0(c)判别规则:5.什么是模式空间及加权空间,解向量及解区? (1)模式空间:由 构成的n 维欧氏空间;(2)加权空间:以为变量构成的欧氏空间; (3)解向量:分界面为H,W 与H 正交,W称为解向量; (4)解区:解向量的变动范围称为解区。

《模式识别》知识重点总结与计算题

《模式识别》知识重点总结与计算题

0.影响聚类结果的主要因素有那些?(2)证明马氏距离是平移不变的、非奇异线性变换不变的。

答:(1)分类准则,模式相似性测度,特征量的选择,量纲。

1.监督学习与非监督学习的区别:监督学习方法用来对数据实现分类,分类规则通过训练获得。

该训练集由带分类号的数据集组成,因此监督学习方法的训练过程是离线的。

非监督学习方法不需要单独的离线训练过程,也没有带分类号(标号)的训练数据集,一般用来对数据集进行分析,如聚类,确定其分布的主分量等。

(实例:道路图)就道路图像的分割而言,监督学习方法则先在训练用图像中获取道路象素与非道路象素集,进行分类器设计,然后用所设计的分类器对道路图像进行分割。

使用非监督学习方法,则依据道路路面象素与非道路象素之间的聚类分析进行聚类运算,以实现道路图像的分割。

2.动态聚类是指对当前聚类通过迭代运算改善聚类;分级聚类则是将样本个体,按相似度标准合并,随着相似度要求的降低实现合并。

3. 线性分类器三种最优准则:Fisher准则:根据两类样本一般类内密集, 类间分离的特点,寻找线性分类器最佳的法线向量方向,使两类样本在该方向上的投影满足类内尽可能密集,类间尽可能分开。

该种度量通过类内离散矩阵Sw和类间离散矩阵Sb实现。

感知准则函数:准则函数以使错分类样本到分界面距离之和最小为原则。

其优点是通过错分类样本提供的信息对分类器函数进行修正,这种准则是人工神经元网络多层感知器的基础。

支持向量机:基本思想是在两类线性可分条件下,所设计的分类器界面使两类之间的间隔为最大, 它的基本出发点是使期望泛化风险尽可能小。

一、试问“模式”与“模式类”的含义。

如果一位姓王的先生是位老年人,试问“王先生”和“老头”谁是模式,谁是模式类?答:在模式识别学科中,就“模式”与“模式类”而言,模式类是一类事物的代表,概念或典型,而“模式”则是某一事物的具体体现,如“老头”是模式类,而王先生则是“模式”,是“老头”的具体化。

模式识别的重点内容归纳

模式识别的重点内容归纳

模式识别的重点内容归纳定义:模式识别是指对表征事物或现象的各种形式的信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程。

主要指用计算机来完成事物的自动识别工作。

机器识别,计算机识别,机器自动识别。

主要应用领域自动检测、字符识别,指纹识别,图像分析与处理、语音识别、通信、计算机辅助诊断、数据挖掘等学科。

模式识别研究目的利用计算机对客观对象进行分类,在一定的决策策略约束下,使识别的结果尽量与客观物体相符合。

模式识别的主要方法模板匹配、统计方法、句法方法、神经网络模式识别的分类监督分类:(判别分析Discriminant analysis)----将输入的“模式”归入已知的类别中。

非监督分类:(聚类clustering)-----将输入的“模式”归入到划分的未知类别中。

模式识别系统组成1,、图像的获取,通过传感器转化为电信号。

2、预处理包括A\D,二值化、图像平滑、变换、增强、恢复、滤波等,主要指图像处理。

3、特征提取和选择:在测量空间的原始数据通过变换获得在在特征空间中对被识别对象进行分类。

4、分类器设计:分类器设计主要功能是通过训练确定判决规则,使按此类判决规则分类时,错误率最低,将这些判决规则建成标准库。

5、分类决策:在特征空映分类本质的特征测量空间:原始数据组成的空间特征空间:分类识别赖以进行的空间模式表示:维数较高的测量空间->维数较低的特征空间分类决策:在特征空间中用模式识别方法把被识别对象归为某一类别基本做法:在样本训练集基础上确定某个判决规则,使得按这种规则对被识别对象进行分类所造成的错误识别率最小或引起的损失最小。

“模式识别”主要工作就是如何设计一个模式分类器。

其内容归结为:(1)特征提取;(2)学习/训练;(3)分类。

模式识别系统设计步骤1设计目标检测器;2特征选取;3分类器设计;4分类器训练;5性能评估设计周期数据收集(Data collection) 特征选择(Feature Choice)模型选择(Model Choice) 学习训练(Training)性能评价(Evaluation) 计算复杂性(Computational Complexity)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.什么是模式及模式识别?模式识别的应用领域主要有哪些?模式:存在于时间,空间中可观察的事物,具有时间或空间分布的信息; 模式识别:用计算机实现人对各种事物或现象的分析,描述,判断,识别。

模式识别的应用领域:(1)字符识别;(2) 医疗诊断;(3)遥感; (4)指纹识别 脸形识别;(5)检测污染分析,大气,水源,环境监测; (6)自动检测;(7 )语声识别,机器翻译,自动查询,侦听,机器故障判断; (8)军事应用。

2.模式识别系统的基本组成是什么?(1) 信息的获取:是通过传感器,将光或声音等信息转化为电信息;(2) 预处理:包括A\D,二值化,图象的平滑,变换,增强,恢复,滤波等, 主要指图象处理;(3) 特征抽取和选择:在测量空间的原始数据通过变换获得在特征空间最能反映分类本质的特征;(4) 分类器设计:分类器设计的主要功能是通过训练确定判决规则,使按此类判决规则分类时,错误率最低。

把这些判决规则建成标准库; (5) 分类决策:在特征空间中对被识别对象进行分类。

3.模式识别的基本问题有哪些? (1)模式(样本)表示方法:(a )向量表示;(b )矩阵表示;(c )几何表示;(4)基元(链码)表示;(2)模式类的紧致性:模式识别的要求:满足紧致集,才能很好地分类;如果不满足紧致集,就要采取变换的方法,满足紧致集(3)相似与分类;(a)两个样本x i ,x j 之间的相似度量满足以下要求: ① 应为非负值② 样本本身相似性度量应最大 ③ 度量应满足对称性④ 在满足紧致性的条件下,相似性应该是点间距离的 单调函数(b)用各种距离表示相似性(4)特征的生成:特征包括:(a)低层特征;(b)中层特征;(c)高层特征 (5) 数据的标准化:(a)极差标准化;(b)方差标准化4.线性判别方法(1)两类:二维及多维判别函数,判别边界,判别规则 二维情况:(a )判别函数: ( ) (b )判别边界:g(x)=0; (cn 维情况:(a )判别函数:也可表示为: 32211)(w x w x w x g ++=为坐标向量为参数,21,x x w 12211......)(+++++=n n n w x w x w x w x g X W x g T =)(为增值模式向量。

,=为增值权向量,Tn n T n n x x x x X w w w w W )1,...,,(),,...,,(21121+=+(b )判别边界:g 1(x ) =W TX =0 (c )判别规则:(2)多类:3种判别方法(函数、边界、规则)(A)第一种情况:(a)判别函数:M 类可有M 个判别函数(b) 判别边界:ωi (i=1,2,…,n )类与其它类之间的边界由 g i (x )=0确定(c)(B)第二种情况:(a)判别函数:有 M (M _1)/2个判别平面(b) 判别边界:(c)判别规则:(C)第三种情况:(a)判别函数: (b) 判别边界:g i (x ) =g j (x ) 或g i (x ) -g j (x ) =0(c)判别规则:5.什么是模式空间及加权空间,解向量及解区? (1)模式空间:由 构成的n 维欧氏空间;(2)加权空间:以为变量构成的欧氏空间; (3)解向量:分界面为H ,W 与H 正交,W 称为解向量; (4)解区:解向量的变动围称为解区。

6.超平面的四个基本性质是什么? 性质①:W 与H 正交; 性质 ②:W)x (g r =XW x g Tij ij =)(0)(=x g ij j i x g ij ≠⎩⎨⎧∈→<∈→>j ix 0x 0)(ωω当当权向量。

个判别函数的为第i w T in in i i i ),,121+XW x g K k =)(⎩⎨⎧∈=小,其它最大,当i T k i x X W x g ω)(T n x x x x X ),...,,(321=121,...,,+n w w w r其中, 为x 矢量到H 的正交投影; 性质③:性质④:7.二分法能力如何表示?N 个样品线性可分数目(条件:样本分布良好):线性可分概率:8.广义线性判别方法 (1)非线性→线性一个非线性判别函数通过映射,变换成线性判别函数:(2)线性判别 成正比的距离与原点到11,++=n n W H W W q 通过原点。

,说明超平面则若在原点负侧。

则在原点正侧,若则若H x W x g W H W H W T n n n ==<>+++)(,0,0,0111⎪⎩⎪⎨⎧+>+<=∑=-n k kN N n N C n N n N D 011,21,2),(若若为特征数为样本数其中n N k N k N C kN ,,])!1(![)!1(1---=-强。

说明样本少时二分能力范围,即在。

时,线性可分概率为时,即值,对于任意。

处出现明显的门限效应时,曲线急剧下降,在由当,1),(),1(22:)(21),()1(22:)(21:)(≈+<<=+===∞→n N P n N c n N P n N n b n a λλλ.2),1(2:)(,),1(22:)(0是最好情况即二分能力)的估计:个样本的线性可分性(对多线性可分能力越差。

说明样品越线性可分概率急剧下降范围,即在=+=+>>λλn N N e n N d )(,)(...)()()(,...)()()(212111增广模式向量。

广义权向量其中:空间变换空间⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==−−−−−−→−=→→+=∑x f x f x f Y w w w W Y g Y W x f w x g k k T y x k i i i 0=Y W T 判别平面:9.分段线性判别方法 1)基于距离:(1)子类,类判别函数(2)判别规则(1)子类:把ωi 类可以分成l i 个子类: ∴ 分成l 个子类。

子类判别函数:在同类的子类中找最近的均值 (2)判别规则: 这是在M 类中找最近均值。

则把x 归于ωj 类完成分类2)基于函数:(1)子类,类判别函数 (2)判别规则(1)子类类判别函数:对每个子类定义一个线性判别函数为:(2)判别规则:在各子类中找最大的判别函数作为此类的代表,则对于M 类,可定义M 个判别函数g i (x ),i =1,2,…..M,因此,决策规则3)基于凹函数的并:(1)析取式,合取式,凹函数(2) 判别规则(1) 析取式:P=(L 11∧L 12∧…∧L 1m )∨…∨(L q 1∧L q 2∧…∧L q m )合取式:Q= (L 11 ∨ L 12 ∨ … ∨ L 1m ) ∧ … ∧(L q 1 ∨ L q 2 ∨ … ∨ L q m )凹函数:P i =L i 1∧L i 2∧…∧L i m (2) 判别规则:设第一类有q 个峰,则有q 个凹函数。

即P=P 1∨P 2∨……∨P q10.非线性判别方法 (1)1ω集中,2ω分散⎩⎨⎧∈<∈>=21,0,0)(ωωx x Y g Y W T),...,,(21l i i i i ωωωω=li ll i x x g μ-==,...,2,1m in )(Mi x g x g i j ,...,2,1),(min )(==子类的权向量。

为其中l i l i l i l i w x w x g ω,)(=ji M i j x x g x g ω∈==则),(max )(,.....,2,1⎩⎨⎧=∈<=∈>=。

每个子类的判别函数数子类。

m j x q i x x w L ij ij ,...,2,1,,0,...,2,1,,021ωω⎩⎨⎧∈≤∈>21,0,0ωωx P x P 则则判别规则:大小。

的大小,决定超平面的判别函数定义111121,)()()(:μμω∑---=-k x x k x g T(2)1ω, 2ω均集中11.分类器的设计(1)梯度下降法(迭代法):准则函数,学习规则(a )准则函数:J(W)≈J(W k )+ ▽J T (W- W k )+(W- W k )T D(W- W k )T/2其中D 为当W = W k 时 J(W)的二阶偏导数矩阵(b )学习规则:从起始值W 1开始,算出W 1处目标函数的梯度矢量▽J(W 1),则下一步的w 值为:W 2 = W 1-ρ1▽J(W 1) 其中W 1为起始权向量, ρ1为迭代步长,J(W 1) 为目标函数,▽J(W 1)为W 1处的目标函数的梯度矢量 在第K 步的时候W k+1 = W k -ρk ▽J(W k ) 最佳步长为ρk =||▽J||2/▽J TD ▽J 这就是梯度下降法的迭代公式。

(2)感知器法:准则、学习规则(批量,样本) (a )准则函数: 其中x 0为错分样本(b )学习规则:1.错误分类修正w k如w k Tx ≤0并且x ∈ω1 w k+1= w k +ρk x如w k Tx ≥0并且x ∈ω2 w k+1= w k -ρk x 2.正确分类 ,w k 不修正如w k Tx >0并且x ∈ω1如w k Tx <0并且x ∈ω2 w k+1= w k(3)最小平方误差准则法(MSE 法)(非迭代法):准则、权向量解(a)准则函数: (b)权向量解: 协方差,为均值,,为其中:,两个判别函数:都比较集中,那么定义,如果212112212,1)()()(ωωωωμμμωω∑∑=---=-i i i i T i i i i x x k x g 。

可用来调整二类错误率判别规则:判别平面方程:21212221212211111221111211221,,0,0)(0)()()(2)()()()(k k x x x g k k x x x x g x g x g T T T T ⎩⎨⎧∈<∈>=-+---+--=-=∑∑∑∑∑∑------ωωμμμμμμ()∑∈-=0)(X X XW W J T ()∑-==-==N i b iX i W T b XW e W J 1222||||||||)(()bX b X XX T W T +-==1(4)韦—霍氏法(LMS 法)(迭代法):准则,学习规则 (a)准则函数: (b)学习规则: W 1任意 ,W k+1=W k +ρk (b k -W k T X k ) X kρk 随迭代次数k 而减少,以保证算法收敛于满意的W 值(5)何—卡氏法(H-K 法)(迭代法):准则,b ,W 的学习规则(a)准则: 它的解为:(b )b ,W 的学习规则:其中 c 为矫正系数,e k 为误差矢量,e k =XW k -b k初始条件 W 1=X +b 1并且b 1>0 迭代时检测如果e k ≥0时,XW >b ,系统线性可分,迭代收敛 如果e k <0时,XW <b ,系统线性不可分,迭代不收敛(6)Fisher 分类法:准则函数的建立,W 权值计算,0W 的选择(a)准则函数的建立:投影样本之间的类间分离性越大越好,投影样本的总离散度越小越好。

相关文档
最新文档