六年级数学分数奥数题(附答案)
【奥数题】人教版小学数学六年级上册分数、百分数问题奥数思维拓展(试题)含答案与解析
分数、百分数问题奥数思维拓展一.选择题(共6小题)1.一袋洗衣粉,第一周用了全部的,第二周用了全部的25%,还剩1.2千克。
这瓶洗衣粉原来有多少千克?()A.3.2B.5.6C.3.5D.5.22.汽车厂今年上半年完成计划的75%,下半年完成计划的,汽车厂今年超产()A.75%B.50%C.25%D.125%3.甲数比乙数多,乙数就比甲数少()A.12.5%B.37.5%C.60%4.体育用品商店进购一批体育器材,其中足球和篮球的总数是150个,足球的数量占两种球总数的40%.后来又进购了一些足球,此时篮球的数量占两种球总数的,后来又进购了()个足球.A.90B.70C.605.学校一次课外活动,缺勤人数是出勤人数的10%,后来又有2人因病请假,这时缺勤人数是出勤人数的,这个学校课外活动小组共有()A.99人B.90人C.100人D.190人6.某厂上半月完成计划的75%,下半月完成计划的,这个月增产()A.25%B.45%C.30%D.20%二.填空题(共8小题)7.某服装厂计划一个月生产衬衫8000件,结果上半月完成了60%,下半月完成,这个月超量生产件。
8.某超市将商品促销活动,一种书包原价是100元,先降价20%后,又提价这种书包现在的售价是元。
9.湖边种了40棵柳树,是桃树棵数的,榕树的棵数是桃树棵数的65%。
湖边种了棵榕树。
10.工地有水泥120吨,沙子的质量是水泥的40%,又是石子的,石子的质量是吨。
11.运动健身迎亚运,和谐杭州展新韵。
为迎接第十九届杭州亚运会,学校组织教师健步走,张老师已经走了全程的40%,如果再走4千米,已走路程就占全程的。
这次健步走的全程是千米。
12.明彩文具超市新购进180支钢笔,新购进的圆珠笔的数量比钢笔多,新购进的圆珠笔有支;新购进的中性笔比圆珠笔少50%。
新购进的中性笔有支。
13.一堆货物,第一天运走了总数的,第二天运走了总数的25%,剩下的按3:4分配给甲车和乙车。
(完整版)小学六年级奥数题附答案
小学六年级奥数题1.某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?2.电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?3.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。
这时两人钱相等,求乙的存款4.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。
再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?5.小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。
”小明原有玻璃球多少个?6.搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A 仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?7.一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?8.股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。
老王10月8日以股票10.65元的价格买进一种科技股票3000股,6月26日以每月13.86元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱?9.某书店老板去图书批发市场购买某种图书,第一次购书用100元,按该书定价2.8元出售,很快售完。
第二次购书时,每本的批发价比第一次增多了0.5元,用去150元,所购数量比第一次多10本,当这批书售出4/5时出现滞销,便以定价的5折售完剩余图书。
六年级数学分数奥数题(附答案)-2
六年级数学分数奥数题(附答案)-2-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN六年级分数应用题竞赛题1.小刚有若干本书,小华借走一半加一本,剩下的书小明借走一半加两本,再剩下的书小峰借走一半加三本,最后小刚还剩下两本书,那么小刚原有还剩下两本书,那么小刚原有多少本书?考点:逆推问题.分析:本题需要从问题出发,一步步向前推,小刚剩的2本书加上3本就是小明借走后的一半,那么就可以求出小明借走后的数量,同理可以求出小华借走后的数量,进而可求小明原有的数量.解答:解:小峰未借前有书:(2+3)÷(1-1/2 )=10(本),小明未借之前有:(10+2)÷(1-1/2 )=24(本),小刚原有书:(24+1)÷(1-1/2 )=50(本).答:小明原有书50本.故答案为:50.2、甲数比乙数多1/3,乙数比甲数少几分之几?乙数是单位“1”,甲数是:1+1/3=4/3乙数比甲数少:1/3÷4/3=1/43、把一根绳分别折成5股和6股,5股比6股长20厘米,这根绳子长多少米?这根绳子长20÷(1/5-1/6)=600cm4、有一个分数,它的分母比分子多4,如果把分子、分母都加上9,得到的分数约分后是9分之7,这个分数是多少?5、小辉乘飞机参加世界少年奥林匹克数学金杯赛。
机窗外市一片如画的蔚蓝大海。
他看到云海占整个画面的1/2,并遮住一个海岛的1/4,露出的海岛占整个画面的1/4.求被遮住的海岛占应看见的整个海面的几分之几设海岛为x,整个画面为y,遮住海面为z,根据题意,3/4*x=1/4*yy=3x则海面为3/4*xz=1/2*3x-1/4*x=5/4*x又海面为2x …………y-x=3x-x=2x所以比例为5/86、甲从A地到B地需要5小时,乙从B地到A地,速度是甲的5/8.现在甲、乙两人分别从A,B两地同时出发,相向而行。
在途中相遇后继续前进。
小学六年级分数奥数题100道及答案(完整版)
小学六年级分数奥数题100道及答案(完整版)1. 一个分数,分母比分子大25,分子、分母同时除以一个相同的数后得4/9,原来的分数是多少?答案:20/45。
思路:9-4=5,25÷5=5,分子是4×5=20,分母是9×5=45。
2. 把一根绳子平均分成5 段,每段长6 米,这根绳子长多少米?答案:30 米。
思路:5×6=30(米)。
3. 有一堆煤,第一天用去1/4,第二天用去余下的1/3,还剩下12 吨,这堆煤原有多少吨?答案:24 吨。
思路:第二天用去总数的(1-1/4)×1/3=1/4,剩下总数的1-1/4-1/4=1/2,所以总数为12÷1/2=24 吨。
4. 一桶油,第一次用去1/5,第二次比第一次多用去20 千克,还剩下22 千克,这桶油原来有多少千克?答案:50 千克。
思路:设这桶油原来有x 千克,x-1/5x-(1/5x+20)=22,解得x=50。
5. 某班男生人数是女生人数的4/5,女生比男生多5 人,这个班共有多少人?答案:45 人。
思路:设女生人数为x,x-4/5x=5,解得x=25,男生人数为20,全班人数为45 人。
6. 一本书,第一天看了全书的1/3,第二天看了余下的1/2,还剩下40 页没看,这本书共有多少页?答案:120 页。
思路:第二天看了全书的(1-1/3)×1/2=1/3,剩下全书的1-1/3-1/3=1/3,所以全书有40÷1/3=120 页。
7. 一条公路,已经修了全长的2/5,再修60 米,就正好修了全长的一半,这条公路长多少米?答案:300 米。
思路:设公路长x 米,1/2x-2/5x=60,解得x=300。
8. 小明看一本书,第一天看了全书的1/5,第二天看了25 页,两天共看了全书的3/10,这本书共有多少页?答案:125 页。
思路:设全书有x 页,1/5x+25=3/10x,解得x=125。
分数应用题奥数六年级
分数应用题奥数六年级一、基础分数应用题。
1. 一桶油,第一次用去(1)/(5),第二次比第一次多用去20千克,还剩下16千克,这桶油有多少千克?- 解析:设这桶油有x千克。
第一次用去(1)/(5)x千克,第二次用去(1)/(5)x + 20千克,可列出方程x-(1)/(5)x-((1)/(5)x + 20)=16。
化简得x-(2)/(5)x-20 = 16,(3)/(5)x=16 + 20,(3)/(5)x=36,解得x = 60千克。
2. 有一袋米,第一周吃了(2)/(5),第二周吃了12千克,还剩6千克。
这袋米原有多少千克?- 解析:设这袋米原有x千克。
第一周吃了(2)/(5)x千克,则x-(2)/(5)x-12 = 6。
化简得(3)/(5)x=18,解得x = 30千克。
3. 某工厂计划生产一批零件,第一天生产了总数的(1)/(5),第二天生产了450个,这时已经生产的个数与剩下个数的比是3:7。
这批零件一共有多少个?- 解析:已经生产的个数与剩下个数的比是3:7,那么已生产的占总数的(3)/(3 + 7)=(3)/(10)。
设这批零件一共有x个,则(1)/(5)x+450=(3)/(10)x。
移项得(3)/(10)x-(1)/(5)x = 450,(1)/(10)x=450,解得x = 4500个。
二、单位“1”转换的分数应用题。
4. 甲、乙、丙三人合做一批零件,甲做的是乙、丙所做总数的(1)/(2),乙做的是甲、丙总数的(1)/(3),丙做了600个。
这批零件有多少个?- 解析:甲做的是乙、丙所做总数的(1)/(2),那么甲做的占总数的(1)/(1 +2)=(1)/(3);乙做的是甲、丙总数的(1)/(3),那么乙做的占总数的(1)/(1+3)=(1)/(4)。
所以丙做的占总数的1-(1)/(3)-(1)/(4)=(5)/(12)。
设这批零件有x个,则(5)/(12)x = 600,解得x=1440个。
六年级分数简便运算奥数题及答案
六年级分数简便运算奥数题及答案(1)1/1*3+1/2*4+1/3*5+1/4*6+1/5*7......1/98*100+1/99*101=(1-1/3+1/2-1/4+1/3-1/5+1/4-1/6+1/5-1/7+……+1/98-1/100+1/99-1/101)÷2=(1+1/2-1/100-1/101)÷2=15049/10100÷2=15049/20200(2)6分之1+12分之1+24分之1+48分之1+96分之1+192分之1=1/6×(1+1/2+1/4+1/8+1/16+1/32)=1/6×(1-1/32)=1/6-1/192=31/192(3)1/(1×2)+2/(1×2×3)+3/(1×2×3×4)+4/(1×2×3×4×5)+5/(1×2×3×4×5×6)+6/(1×2×3×4×5×6×7)= 1-1/(1×2)+1/(1×2)-1/(1×2×3)+1/(1×2×3)-1/(1×2×3×4)+1/(1×2×3×4)-1/(1×2×3×4×5)+1/(1×2×3×4×5)-1/(1×2×3×4×5×6)+1/(1×2×3×4×5×6)-1/(1×2×3×4×5×6×7)=1-1/(1×2×3×4×5×6×7)=1-1/5040=5039/5040(4)6360/39)/(1600/39)=6360/1600=3.975一、工程问题甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时开启甲乙两水管,5小时后,再开启排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。
六年级奥数题10道及答案巨难
六年级奥数题10道及答案巨难1.某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?解:设不低于80分的为A人,则80分以下的人数是(A-2)/4,及格的就是A+22,不及格的就是A+(A-2)/4-(A+22)=(A-90)/4,而6*(A-90)/4=A+22,则A=314,80分以下的人数是(A-2)/4,也即是78,参赛的总人数314+78=3922.电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?解:设一张电影票价x元(x-3)×(1+1/2)=(1+1/5)x(1+1/5)x这一步是什么意思,为什么这么做(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)}左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}如此计算后得到总收入,使方程左右相等3.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。
这时两人钱相等,求乙的存款答案取40%后,存款有9600×(1-40%)=5760(元)这时,乙有:5760÷2+120=3000(元)乙原来有:3000÷(1-40%)=5000(元)4.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。
再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,巧克力是奶糖的60/40=1。
5倍再增加30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍增加了3-1.5=1.5倍,说明30颗占1.5倍奶糖=30/1.5=20颗巧克力=1.5*20=30颗奶糖=20-10=10颗5.小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。
六年级奥数题及答案(五篇)
六年级奥数题及答案(五篇)六年级奥数题及答案 1某造纸厂在100天里共生产2024吨纸,开始阶段,每天只能生产10吨纸.中间阶段由于改进了技术,每天的产量提高了一倍.最后阶段由于购置了新设备,每天的产量又比中间阶段提高了一倍半.已知中间阶段生产天数的2倍比开始阶段多13天,那么最后阶段有几天?中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,因为在100天里共生产2024吨,*均每天产量:2024÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,因为在100天里共生产2024吨,*均每天产量:2024÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天六年级奥数题及答案 2从花城到太阳城的公路长12公里.在该路的2千米处有个铁道路口,是每关闭3分钟又开放3分钟的.还有在第4千米及第6千米有交通灯,每亮2分钟红灯后就亮3分钟绿灯.小糊涂驾驶电动车从花城到太阳城,出发时道口刚刚关闭,而那两处交通灯也都刚刚切换成红灯.已知电动车速度是常数,小糊涂既不刹车也不加速,那么在不违反交通规则的情况下,他到达太阳城最快需要多少分钟?答案与解析:画出反映交通灯红绿情况的s-t图,可得出小糊涂的行车图像不与实线相交情况下速度最大可以是0.5千米/分钟,此时恰好经过第6千米的红绿灯由红转绿的点,所以他到达太阳城最快需要24分钟.六年级奥数题及答案 3分母不大于60,分子小于6的'最简真分数有____个?答案与解析:分类讨论:(1)分子是1,分母是2~60的最简真分数有59个:(2)分子是2,分母是3~60,其中非2、的倍数有58-58÷2=29(个);(3)分子是3,分母是4~60,其中非3的倍数有57-57÷3-38(个);(4)分子是4,分母是5~60,其中非2的倍数有56-56÷2-28c个);(5)分子是5,分母是6~60,其中非5的倍数有55-55÷5―44(个).这样,分子小于6,分母不大于60的最简真分数一共有59+29+38+28+44=198(个).六年级奥数题及答案 4甲、乙、丙三人依次相距280米,甲、乙、丙每分钟依次走90米、80米、72米.如果甲、乙、丙同时出发,那么经过几分钟,甲第一次与乙、丙的距离相等?答案与解析:甲与乙、丙的距离相等有两种情况:一种是乙追上丙时;另一种是甲位于乙、丙之间.⑴乙追上丙需:280(80-72)=35(分钟).⑵甲位于乙、丙之间且与乙、丙等距离,我们可以假设有一个丁,他的速度为乙、丙的速度的*均值,即(80+72)2=76(米/分),且开始时丁在乙、丙之间的中点的位置,这样开始时丁与乙、丙的距离相等,而且无论经过多长时间,乙比丁多走的路程与丁比丙多走的路程相等,所以丁与乙、丙的距离也还相等,也就是说丁始终在乙、丙的中点.所以当甲遇上丁时甲与乙、丙的距离相等,而甲与丁相遇时间为:(280+2802)(90-76)=30(分钟).经比较,甲第一次与乙、丙的距离相等需经过30分钟.六年级奥数题及答案 5王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时50千米.如果他想按时返回甲地,他应以多大的速度往回开?答案与解析:本题相当于去的时候速度为每小时50千米,而整个行程的*均速度为每小时60千米,求回来的时候的速度.根据例题中的分析,可以假设甲地到乙地的路程为300千米,那么往返一次需时间__*2=10(小时),现在从甲地到乙地花费了时间__=6(小时),所以从乙地返回到甲地时所用的时间是10-6=4(小时).如果他想按时返回甲地,他应以3004=75(千米/时)的速度往回开.。
六年级奥数题100道及答案
六年级奥数题100道及答案题目1计算 2+3 的结果。
答案:5题目2计算 6-2 的结果。
答案:4题目3计算 4*5 的结果。
答案:20题目4计算 10/2 的结果。
答案:5题目5计算 8+2*4 的结果。
答案:16题目6计算 (6+2)*3 的结果。
答案:24题目7计算 12/3-2 的结果。
答案:2题目8计算 4*5+6 的结果。
答案:26题目9计算 18/3/2 的结果。
答案:3题目10计算 10-3+5 的结果。
答案:12计算 2^3 的结果。
答案:8题目12计算 5^2 的结果。
答案:25题目13计算 4^0 的结果。
答案:1题目14计算 16^(1/2) 的结果。
答案:4题目15将 3/8 化成小数。
答案:0.375题目16将 0.75 化成分数。
答案:3/4题目17计算 1/4+2/3 的结果。
答案:11/12题目18计算 2/3-1/6 的结果。
答案:1/2题目19计算 1/3*2/5 的结果。
答案:2/15题目20计算 3/4÷1/2 的结果。
答案:3/2题目21计算 \(\sqrt{9} - \sqrt{4}\) 的结果。
答案:1计算 \(\sqrt{16} + \sqrt{25}\) 的结果。
答案:9题目23计算 \(\sqrt{144}\) 的结果。
答案:12题目24计算 \(\sqrt{81} \times \sqrt{49}\) 的结果。
答案:63题目25已知一个正方形的面积为64平方厘米,求其边长。
答案:8厘米题目26已知一个长方形的长为10厘米,宽为5厘米,求其面积。
答案:50平方厘米题目27已知一个长方体的底面积为20平方厘米,高为5厘米,求其体积。
答案:100立方厘米题目28已知一个圆的半径为6厘米,求其周长。
答案:12π厘米题目29已知三角形的底边长为8厘米,高为4厘米,求其面积。
答案:16平方厘米题目30已知一个正方体的边长为5厘米,求其表面积。
8道小学六年级奥数题(及答案)
8道小学六年级奥数题(及答案)1、用一批纸装订一种练习本。
如果已装订120本,剩下的纸是这批纸的40%;如果装订了185本,则还剩下1350张纸。
这批纸一共有多少张?答案与解析:方法一:120本对应(1-40%=)60%的总量,那么总量为120÷60%=200本。
当装订了185本时,还剩下200-185:15本未装订,对应为1350张,所以每本需纸张:1350÷15=90张,那么200本需200×90=18000张。
即这批纸共有18000张。
方法二:装订120本,剩下40%的纸,即用了60%的纸。
那么装订185本,需用185×(60%÷120)=92.5%的纸,即剩下1-92.5%=7.5%的纸,为1350张。
所以这批纸共有1350÷7.5%=18000张。
2、A、B两人要到沙漠中探险,他们每天向沙漠深处走20千米,已知每人最多可携带一个人24天的食物和水,如果不准将部分食物存放于途中,问其中一个人最远可以深入沙漠多少千米(要求最后两人返回出发点)?如果可以将部分食物存放于途中以备返回时取用呢?答案与解析:最远可以深入沙漠360千米设A走X天后返回,A留下自己返回时所需的食物,剩下的转给B,此时B 共有(48-3X)天的食物,因为B最多携带24天的食物,所以X=8,剩下的24天食物,B只能再向前走8天,留下16天的食物供返回时用,所以B可以向沙漠深处走16天,因为每天走20千米,所以其中一人最多可以深入沙漠320千米。
如果改变条件,则问题关键为A返回时留给B24天的食物,由于24天的食物可以使B单独深入沙漠12天的路程,而另外24天的食物要供A、B两人往返一段路,这段路为24÷4=6天的路程,所以B可以深入沙漠18天的路程,也就是说,其中一个人最远可以深入沙漠360千米。
3、六年级同学参加学校的数学竞赛。
试题共50道。
评分标准是:答对一道给3分,不答给1分,答错倒扣1分。
分数方程(六年级奥数题及答案)
分数方程
若干只同样的盒子排成一列,小聪把42个同样的小球放在这些盒子里然后外出,小明从每支盒子里取出一个小球,然后把这些小球再放到小球数最少的盒子里去。
再把盒子重排了一下.小聪回来,仔细查看,没有发现有人动过小球和盒子.问:一共有多少只盒子?
解答:设原来小球数最少的盒子里装有a只小球,现在增加了b 只,由于小聪没有发现有人动过小球和盒子,这说明现在又有了一只装有a个小球的盒子,而这只盒子里原来装有(a+1)个小球.
同样,现在另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球.
类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数.
现在变成:将42分拆成若干个连续整数的和,一共有多少种分法,每一种分法有多少个加数?
因为42=6×7,故可以看成7个6的和,又(7+5)+(8+4)+(9+3)是6个6,从而42=3+4+5+6+7+8+9,一共有7个加数;
又因为42=14×3,故可将42:13+14+15,一共有3个加数;
又因为42=21×2,故可将42=9+10+11+12,一共有4个加数.
所以原问题有三个解:一共有7只盒子、4只盒子或3只盒子。
六年级数学分数奥数题(附答案)
把甲乙丙三根木棒插入水池中,三根木棒的长度和为360厘米,甲有3/4在水外,乙有4/7在水外,丙有2/5在水外。
水有多深?设水深xcm则甲长4x,乙长7x/3,丙长5x/34x+7x/3+5x/3=360x=45水有45cm深小刚有若干本书,小华借走一半加一本,剩下的书小明借走一半加两本,再剩下的书小峰借走一半加三本,最后小刚还剩下两本书,那么小刚原有还剩下两本书,那么小刚原有多少本书?考点:逆推问题.分析:本题需要从问题出发,一步步向前推,小刚剩的2本书加上3本就是小明借走后的一半,那么就可以求出小明借走后的数量,同理可以求出小华借走后的数量,进而可求小明原有的数量.解答:解:小峰未借前有书:(2+3)÷(1-1/2 )=10(本),小明未借之前有:(10+2)÷(1-1/2 )=24(本),小刚原有书:(24+1)÷(1-1/2 )=50(本).答:小明原有书50本.故答案为:50.甲数比乙数多1/3,乙数比甲数少几分之几?乙数是单位“1”,甲数是:1+1/3=4/3乙数比甲数少:1/3÷4/3=1/4有梨和苹果若干个,梨的个数是全体的5/3少17个,苹果的个数是全体的7/4少31个,那么梨和苹果的个数共多少?解:设总数有35X个那么梨有35X*3/5-17=21X-17个苹果有35X*4/7-31=20X-31个20X-31+21X-17=35X41X-48=35X6X=48X=8所以梨有21×6-17=109个苹果有20×6-31=89个有一个分数,它的分母比分子多4,如果把分子、分母都加上9,得到的分数约分后是9分之7,这个分数是多少?设分子为X,分母为X+4,则;(X+9)/(X+13)=7/9;解之,得X=5答:该分子为5/9把一根绳分别折成5股和6股,5股比6股长20厘米,这根绳子长多少米?这根绳子长20÷(1/5-1/6)=600cm小萍今年的年龄是妈妈的1/3,两年前母女的年龄相差24岁。
六年级奥数题及答案:分数(中等难度)_题型归纳
六年级奥数题及答案:分数(中等难度)_题型归纳
分数:(中等难度)
某学校的若干学生在一次数学考试中所得分数之和是8250分.第一、二、三名的成绩是88、85、80分,得分最低的是30分,得同样分的学生不超过3人,每个学生的分数都是自然数.问:至少有几个学生的得分不低于60分?
分数答案:
除得分88、85、80的人之外,其他人的得分都在30至79分之间,其他人共得分:8250-(88+85+80)=7997(分).
为使不低于60分的人数尽量少,就要使低于60分的人数尽量多,即得分在30~59分中的人数尽量多,在这些分数上最多有3(30+31++59)= 4005分(总分),因此,得60~79分的人至多总共得7997-4005=3992分.
如果得60分至79分的有60人,共占分数3(60+61+ + 79)= 4170,比这些人至多得分7997-4005= 3992分还多178分,所以要从不低于60分的人中去掉尽量多的人.但显然最多只能去掉两个不低于60分的(另加一个低于60分的,例如,178=60+60+58).因此,加上前三名,不低于60分的人数至少为61人.。
六年级上册 第一单元 分数乘法 奥数题(附答案)
第一单元 分数乘法板块一 巧算分数乘法分数的裂项公式:①()11111+-=+n n n n ,如3121321-=⨯。
②())11(11k n n k k n n +-=+,如)(512131521-=⨯。
③()k n n k n n k +-=+11,如8131835-=⨯ ④m n m n m n 11+=⨯+,如4131437+=⨯ ⑤()⎥⎦⎤⎢⎣⎡++-+=++)2)(1(1)1(121)211n n n n n n n (,如)321211213211⨯-⨯=⨯⨯( 【例题】例1.计算:(1)201820171431321211⨯+⋅⋅⋅⋅⋅⋅+⨯+⨯+⨯(2)201820161861641421⨯+⋅⋅⋅⋅⋅⋅+⨯+⨯+⨯(3)322931183853523⨯+⋅⋅⋅⋅⋅⋅+⨯+⨯+⨯(4)90197217561542133011+-+-(5)30282611086186416421⨯⨯+⋅⋅⋅⋅⋅⋅+⨯⨯+⨯⨯+⨯⨯例2.巧算。
(1) 2012×(1+21+31+……+20111)-[1+(1+21)+(1+21+31)+……+(1+21+31+……+20111)](2)200132200121432432132321221+⋅⋅⋅+++⋅⋅⋅++⨯⋅⋅⋅⨯+++++⨯+++⨯+(3))()()(()(100011001120141)2015120161-⨯-⨯⋅⋅⋅⨯-⨯-⨯-(4))()()()(20161312120171312112016131211201713121+⋅⋅⋅++⨯+⋅⋅⋅+++-+⋅⋅⋅+++⨯+⋅⋅⋅++(5)(6)(7)655161544151433141⨯+⨯+⨯2007120082007200620082007+-⨯⨯+)911()711()511()3111011811611411211-⨯-⨯-⨯-⨯+⨯+⨯+⨯+⨯+()()()()()((8))201321()201321())201121()201121()921()921()721()721()52-1521-⨯+⨯-⨯+⨯⋅⋅⋅⨯-⨯+⨯-⨯+⨯⨯+()((9)【练习】1.计算:(1)1+361+5121+7201+9301+11421+13561+15721+17901(2)31+151+351+631+991(3)42384411041064624⨯+⋅⋅⋅⋅⋅⋅+⨯+⨯+⨯132132132111111212121156156156⨯(4)31+43+52+75+87+209+2110+2411+3519(5)2.巧算。
六年级奥数分数应用题经典例题加练习带答案解析
一.知识的回忆....................................................................... 1 ............. ...... ..1.工厂原有职工128人,男工人数占总数的 -,后来又调入男职工假设干人,调入后男工人4,一 ,,,2 ................. ...数占总人数的2 ,这时工厂共有职工人.5 ------------【解析】在调入的前后,女职工人数保持不变.在调入前,女职工人数为128 (1 1) 96人,42 3 3调入后女职工占总人数的 1 2 3,所以现在工厂共有职工96 - 160人.5 5 52.有甲、乙两桶油,甲桶油的质量是乙桶的5倍,从甲桶中倒出5千克油给乙桶后,甲桶2,,一一一,一一4 八,一,一,, 一,油的质量是乙桶的一倍,乙桶中原有油千克.3 -------------【解析】原来甲桶油的质量是两桶油总质量的-^― -,甲桶中倒出5千克后剩下的油的5 2 74 4质量是两桶油总质量的—4 ,由于总质量不变,所以两桶油的总质量为4 3 75 4 2 一,5 (— -) 35千克,乙桶中原有油35 — 10千克.7 7 7【例2】(1)某工厂二月份比元月份增产10%,三月份比二月份减产10%.问三月份比元月份增产了还是减产了? ( 2) 一件商品先涨价15%,然后再降价15%, 问现在的价格和原价格比拟升高、降低还是不变?…一… 一,一一~ ,一一一一, 10【解析】(1)设二月份产量是1,所以兀月份产量为: 1 1+10% =10,三月份产量为:111 10%=0.9,由于—>0.9,所以三月份比元月份减产了11(2)设商品的原价是1,涨价后为1+15%=115 ,降价15%为:1.15 1 15% =0.9775,现价和原价比拟为:0.9775 <1,所以价格比拟后是价 降低了., …八,…口 ,,,,,,1 把100个人分成四队,一队人数是二队人数的 1-倍, 3倍,那么四队有多少个人 ? 方法一:设一队的人数是“ 1〞,那么二队人数是:1所以设一队有[4,5]20份,那么二队有15份,三队有16份,所以三个队之和为15 16 20 51份,而四个队的份数之和必须是 100的因数,因此四个队份数之【例3】 新光小学有音乐、美术和体育三个特长班,音乐班人数相当于另外两个班人数的23一,美术班人数相当于另外两个班人数的一,体育班有58人,首乐班和美术班各5 7有多少人?22 【解析】条件可以化为:首乐班的人数是所有班人数的,,美术班的学生人数是所5 2 7,…口,,,,,,1一队人数是三队人数的 14一 14 3 4 1 1 —— , 1 —— 45 4 5 人数是整数,一队人数一 51一,因止匕,20二、三队之和是:一队人数定是20的整数倍,而三个队的人数之和是数),由于这是100以内的数,这个整数只能是1 .所以三个队共有 二、三队各有 20, 15, 16人.而四队有:100 51 49(A).方法二:设二队有3份,那么一队有4份;设三队有4份,那么一队有 51 「, —, 由于 2051 (某一整 51人,其中一、5份.为统一一队和是100份,恰是一份一人,所以四队有100 51 49 人〔人〕., 一, 3 3_ ................ ...... 一, 2 3 29 __有班人数的——,所以体育班的人数是所有班人数的 1 上 *三,所以所7 3 10 7 10 7029 2有班的人数为58 29 140人,其中音乐班有140 - 40人,美术班有70 73 .140 / 42 人.【稳固】甲、乙、丙三人共同加工一批零件,甲比乙多加工20个,丙加工零件数是乙加工4 5零件数的4,甲加工零件数是乙、丙加工零件总数的?,那么甲、丙加工的零件数5 6分别为个、个.【解析】把乙加工的零件数看作1,那么丙加工的零件数为f,甲加工的零件数为54 5 3 ............................. ................... .... ............... 3 一(1 -)--,由于甲比乙多加工20个,所以乙加工了20 (— 1) 40个,甲、5 6 2 23 .4 .丙加工的零件数分别为40 - 60个、40 - 32个.2 5【例4】王先生、李先生、赵先生、杨先生四个人比年龄,王先生的年龄是另外三人年龄,1 _ ,… 八…, 1 > ,………和的一,李先生的年龄是另外三人年龄和的-,赵先生的年龄是其他三人年龄2 3一,,1和的一,杨先生26岁,你知道王先生多少岁吗?4【解析】方法一:要求王先生的年龄, 必须先要求出其他三人的年龄各是多少. 而题目中出现了三个“另外三人〞所包含的对象并不同,即三个单位“1〞是不同的,这就是所说的单位“1〞不统一,因此,解答此题的关键便是抓不变量, 统一单位“1〞•题中四个人的年龄总和是不变的, 如果以四个人的年龄总和为单位“1〞,那么单位“1〞就统一了.那么王先生的年龄就是四人年龄和的1 …,………-,李先生的年龄就是四,—一 1 12口………人年龄和的——一,赵先生的年龄就是四人年龄和的1 3 4谓的转化单位“ 1〞).那么杨先生的年龄就是四人年龄和的1 、,「,一一(这些过程就是所51 1 1 13 , 一一一一.由3 4 5 60, (11)此便可求出四人的年龄和:26 1 -12 13120(岁),王先生的年…… 1-,龄为:120 — 40〔岁〕.3方法二:设王先生年龄是1份,那么其他三人年龄和为2份,那么四人年龄和为3份,同理设李先生年龄为1份,那么四人年龄和为4份,设赵先生年龄为1份,那么四人年龄和为5 份,不管怎样四人年龄和应是相同的,但是现在四人年龄和分别是3份、4份、5份,它们的最小公倍数是 60份,所以最后可以设四人年龄和为 60份,那么王先生的年龄就变为20份,李先生的年龄就变为 15份,赵先生的年龄就变为 12份,那么杨先生 的年龄为13份,恰好是26岁,所以1份是2岁,王先生年龄是20份所以就是40 岁.【稳固】 甲、乙、丙、丁四个筑路队共筑 1200米长的一段公路,甲队筑的路是其他三个1 1 1 队的一,乙队筑的路是其他三个队的 一,丙队筑的路是其他三个队的 一,丁队筑23 43【例5】 小刚给王奶奶运蜂得煤,第一次运了全部的-,第二次运了 50块,这时已运来8的恰好是没运来的5.问还有多少块蜂窝煤没有运来?75【解析】万法一:运完第一次后,还剩下 -没运,再运来50块后,已运来的恰好是没运来的8了多少米?【解析】甲队筑的路是其他三个队的乙队筑的路是其他三个队的 丙队筑的路是其他三个队的 所以丁筑路为:120011」,所以甲队筑的路占总公路长的2 1 ~,……,一,,-,所以乙队筑的路占总公路长的3 1 ~ ............................. -,所以丙队筑的路占总公路长的41 1 ---- =-; 1+23 1 1一=;1+3 4 1 1--- =一,1+4 51-=260 5〔米〕5 , 7一…, ,,八一,—,也就是说没运来的占全部的一,所以,第二次运来的50块占全部的:7 125 7 1 1一—一,全部蜂窝煤有:50 一1200 〔块〕,没运来的有:8 12 24 241200 — 700〔块〕.12方法二:根据题意可以设全部为8份,由于已运来的恰好是没运来的 -,所以可以7 设全部为12份,为了统一全部的蜂窝煤, 所以设全部的蜂窝煤共有[8,12] 24份,5 7那么已运来应是24 —— 10份,没运来的24 —— 14份,第一次运来9份,7 5 7 5所以第二次运来是10 9 1份恰女?是50块,因此没运来的蜂窝煤有50 14 700 〔块〕.【稳固】五〔一〕班原方案抽1的人参加大扫除,临时又有2个同学主动参加,实际参加扫除51的人数是其余人数的1.原方案抽多少个同学参加大扫除?3【解析】又有2个同学参加扫除后,实际参加扫除的人数与其余人数的比是1:3 ,实际参加....... ..... ............. 1 1 1 …一一1 1人数比原方案多———一 .即全班共有2 —40〔人〕.原方案抽40 - 8〔人〕1 3 5 20 20 5参加大扫除.〜 .. ............ .. ... ............. ... ... .. .. ... . ... ........ 1 一一 , 〃一、,,,【稳固】某校学生参加大扫除的人数是未参加大扫除人数的1 ,后来又有20名同学参加4人乙,,,一乙一, 1 、八、,、一一,大扫除,实际参加的人数是未参加人数的一,这个学校有多少人?31 1【解析】20400 〔人〕【例6】小莉和小刚分别有一些玻璃球,如果小莉给小刚24个,那么小莉的玻璃球比小刚少3 ;如果小刚给小莉24个,那么小刚的玻璃球比小莉少5,小莉和小刚原来共7 8有玻璃球多少个?【解析】小莉给小刚24个时,小莉是小刚的 -〔=1 --〕,即两人球数和的小刚给7 7 11小莉24个时,小莉是两人球数和的—〔=——8一〕,因此24+24是两人球数和11 8 8 5的------ =—.从而,和是〔24+24〕+ — =132〔个〕.11 11 11 111 一 ,,——、一一【稳固】某班一次集会,请假人数是出席人数的-,中途又有一人请假离开,这样一来,9............................... 3 ................................... 请假人数是出席人数的—,那么,这个班共有多少人?221【解析】由于总人数未变,以总人数作为“1〞.原来请假人数占总人数的 ,,现在请假1 9人数占总人数的二一,这个班共有:1+〔」--'〕=50〔人〕.3 22 3 22 1 9【例7】小明是从昨天开始看这本书的,昨天读完以后,小明已经读完的页数是还没读的一,,1 1页数一,他今天比昨天多读了14页,这时已经读完的页数是还没读的页数的一9 3问题是,这本书共有多少页?〞1【解析】首先,可以直接运算得出,第一天小明读了全书的-9- 工,而前二天小明一共1 1 10913 1读了全书的上7 -,所以第二天比第一天多读的14页对应全书的1 1 4311 1 〜…,,一 1 一八,E ,,…,,--2 一.所以整本书一共有14 —— 280 〔页〕.此外,如果对分数的4 10 20 20掌握还不是很熟练的话,那么这道题可以采用设份数的方法:把这本书看作20份, 那么昨天他看了2份,而今天他看了2份还多14页,两天一共看了4份还多14页, 或者可以表示成20 1 3 5 〔份〕.那么每份是14 5 4 14 〔页〕,这本书共14 20 280 〔页〕.【例8】小明是从昨天开始看这本书的,昨天读完以后,小明已经读完的页数是还没读的页数1,他今天比昨天多读了14页,这时已经读完的页数是还没读的页数的-9 3问题是,这本书共有多少页?〞【解析】新三班人数占原来两班人数之和的 1 1 1口,所以,原来两班总人数为:3 4 12530 — 72〔人〕,新一班与新二班人数之和为:72 30 42〔人〕,新二班人数是:12_ 1 __ . .. ................ _____, 、_一、一. ..42 〔1 — 1〕 20 〔人〕,新一班人数为:42 20 22 〔人〕,新一班与新二班人数10之差为22 20 2 ,而新一班与新二班人数之差为〔原一班人数原二班人,,11 1 1 一 ,,,,数〕〔--〕,故:原一班人数原二班人数 2 〔- -〕 24〔人〕,原一班人数3 4 3 4(72 24) 2 48(人)., 一.,、,一…一............... ....................... 1 一某工厂对一、二两个车间的职工进行重组,将原来的一车间人数的-和二车间人2 ,,,,1 1 一............ 1 、一数白-分到一车间,将原来的一车间人数的一和二车间人数的一分到二车间,两3 3 2........ ...一 . (1)个车间剩余的140人组成劳动效劳公司, 现在二车间人数比一车间人数多—,现17在一车间有人,二车间有人.1 1 . ..................... 由将一车间人数的1和二车间人数的1分到一车间,将一车间人数的2 3,一,,1 八,,、,,一, —,、,,,,,、一,,,,…人数的一分到二车间〞可知,现在一、二两车间的人数之和为总人数的25 1 一.......... 所以劳动效劳公司的140人占总人数的1 5 1,那么总人数为:1401 一,、一一和一■车间31 1 52 3 6'1 .一840 人, 6现在一、二两车间的人数之和为840 - 700人.由于现在二车间人数比一车间人61 . .............................数多一,所以现在一车间人数为700171 , 1 ..................... 〔1 1 —〕340人,现在二车间人数为700 340 360人.提示:可以继续求出原来一车间和二车间的人数.由于现在〔840 120〕 2 360 人,原来二车间有 360 120 480 人.1【例9】 林林倒满一杯纯牛奶,第一次喝了 1 ,然后参加豆浆,将杯子斟满并搅拌均匀,3_ ,一, - 1 ... ....... ........... ... .......... 一一 .一 第二次林林又喝了 1 ,继续用豆浆将杯子斟满并搅拌均匀,重复上述过程,那么3【解析】 大家要先分析清楚的是不管是否参加豆浆,每次喝到的都是杯子里剩下牛奶的 (1)车间比一车间多 20人,所以原来二车间人数的 -2人,那么原来二车间人数比乙车间人数多201 3 1 61 ......................... 1 二 -比一车间人数的-多20 6 6 120人,原来一车间有 第四次后,林林共喝了一杯纯牛奶总量的〔用分数表示〕.一 一1 24865所以最后喝掉的牛奶为,248653 9 27 81 8112 【例10】 参加迎春杯数学竞赛的人数共有2000多人.其中光明区占—,中央区占朝阳37,1区占一,剩余的全是远郊区的学生.比赛结果,光明区有去的学生得奖,中央区有5 1 1 1 ’的学生得奖,朝阳区有上的学生得奖,全部获奖者的号,远郊区的学生.那 16187么参赛学生有多少名? 获奖学生有多少名?多人,所以只能是2520 .光明区、中央区、朝阳区获奖学生共 35+45+28=108 人,. (1)6 ~ (6)r ,占获奖总数的1 -所以获奖学生总数为 108=126.即参赛学生有2520名,获奖学生有126名.先明区中央区证就区 畲簧学生数456来奖学隼轨35452S一 11【例11】一炉铁水凝成铁块,其体积缩小了 一,那么这个铁块又熔化成铁水 〔不计损耗〕,34其中体积增加了几分之几 ?1 33、…一, 1 1学生数占参赛总数的 - 一 3 247216 105 1 1 一,一56511 一 …….所以有参赛学生18 90数是3、7、5、72、56、90的倍数, 即为2520的倍数,而参赛学生总数只有2000 、, .......... ............ 1 方法一:设铁水的体积为 1,那么铁块为1 —34 积就要变为单位1,那么铁水的体积就为33 ................................一.现在变回来,那么铁块的体 3433 1 一 34 34 一……,一一,故体积增加了 : 3334方法二:体积缩小是铁块比铁水缩小,所以可以设铁水为34份,那么铁块为33份,铁块又熔化成铁水,体积增加是比铁块增加,所以用差的1份除以铁块的33份就是答案133.… _ ___ 1 、 _ ____________ __ _一 ,一【稳固】水结成冰后体积增大它的一.问:冰化成水后体积减少它的几分之几?101 【解析】设水的体积是10份,那么结成冰后体积为11份,冰化成水后比冰减少111 1-.1 .一【例12】在下降的电梯中称重,显不白重量比实际体重减少-;在上升的电梯中称重,显7___ _ __ ___ 1 , ... ................... ... ........................... .... ..示的重量比实际体重增加1.小明在下降的电梯中与小刚在上升的电梯中称得的6体重相同,小明和小刚实际体重的比是 .【解析】小明在下降的电梯中称得的体重为其实际体重的 5 ,小刚在上升的电梯中称得的7体重为其实际体重的7 ,而小明在下降的电梯中与小刚在上升的电梯中称得的体6一一 ~ _一__________ _________ __ 6 7重相同,所以小明和小刚实际体重的比是: 1 — : 1 —49:36.7 61 1【例13】某工厂二月份比兀月份增产 ,,三月份比二月份减产 ,.问三月份比元月份增产1010了还是减产了?1工厂一月份比兀月份增广一,将元月份产量看作1,那么二月份产量为:101 11 一 , 一一1 , 一 ,、一口,1 (1 —) 一 ,三月比二月减产一,那么三月份产量为10 10 1011 1(1 ) 10 10991001 ,所以三月份比元月份减产了.一 ,一—,,,. 1 ____________ __ 1【稳固】一件商品先涨价 -,然后再降价-,问现在的价格和原价格比拟升高、降低还是 5 5不变?1 1【解析】1〔1 _〕〔1 _〕 0,96 1 ,所以现在的价格比原价降低了.5 5【例14】如图⑴,线段MN将长方形纸分成面积相等的两局部. 沿MN将这张长方形纸对折后得到图⑵,将图⑵沿对称轴对折,得到图⑶,图⑶所覆盖的面积占长方........... 3 .......................................................................形纸面积的一,阴影局部面积为6平方厘米.长方形的面积是多少?10【解析】如图⑶所示,阴影局部是2层,空白局部是4层,如果将阴影局部缩小一半,即变为3平方厘米,那么阴影局部也变成4层,此时覆盖面的面积占长方形纸片面积的1 ................................................................... 3 1 ......................—,即缩小的3平方厘米相当于长方形纸片面积的〔一一〕,所以长方形纸片面4 10 4… 3 1积为3 〔石7〕 60〔平万厘米〕.刖|崛课后练习练习1.某小学六年级有三个班,一班和二班人数相等,三班的人数是全年级总人数的—,20并且比一班多3人,六年级共有多少人?【解析】根据条件“三班的人数占全年级的—,并且比二班多3人〞可知一班、二班都比20全年级的工少3人,假设一班、二班都占全年级的—,那么将比实际人数多出20 203 X2=6人,比单位“ 1 〞多出〔工+工 + 工—1 〕,两个数量正好对应.因此20 20 203X2- (― + — + — -1) =120 (人)六年级共有 120 人.20 20 20练习2.有三堆棋子,每堆棋子数一样多,并且都只有黑、白两色棋子.第一堆里的黑子和第二堆里的白子一样多,第三堆里的黑子占全部黑子的 -,把这三堆棋子集中在5一起,问白子占全部棋子的几分之几?【解析】不妨认为第二堆全是黑子, 第一堆全是白子,〔即将第一堆黑子与第二堆白子互换 〕, 第二堆黑子是全部棋子的 1 ,同时,又是黑子的1--.所以黑子占全部棋子的 」3 53+〔1--〕=—,白子占全部棋子的 1--=—.5 99 9练习3.有红、黄、白三种球共 160个.如果取出红球的那么还剩120个;如果取出红球的 1/5 ,黄球的1/4 ,白球的1/3 ,那么来J 116个, 问:〔1〕原有黄球几个? 〔2〕原有红球、白球各有几个?1 18【解析】〔1〕两次共取出球160 X2-〔120 + 116 〕 = 84 〔个〕,共取出红、白球的」1,3 5 15练习4.有一块菜地和一块稻田,菜地的一半和稻田的三分之一放在一起是 13公顷,稻田的一半和菜地的三分之一合在一起是12公顷.那么这块稻田有多少公顷?1 1【解析】 菜地+稻田 —+— =13+12 , 整 理得到 菜地+稻田=30,2 31 1 1—采地+稻田=15,而题目中」采地+1稻田=13,两者比照分析得到,稻田 2 2 3全年级的人数为: 1/3 ,黄球的1/4 ,白球的1/5 ,一,,1 黄球的一 4 红白 1 1—-.推知原有黄球 4 2160 40 (160(2) 1 1 1 整理得—红—40 —白 160 1203 4 5 8 8 1 人—84) (― -) 40(个) 15 15 2红白1201 . 1 , —红 —白 30,解彳#红=45,白=75 3 5、, 11 -为15 13 - - 12〔公顷〕练习5.学校派出60名选手参加2021年“华罗庚金杯小学数学邀请赛〞,其中女选手占1-.正式比赛时有几名女选手因故缺席,这样就使女选手人数变为参赛选手总数4的-.正式参赛的女选手有多少名?11【解析】由于女选手人数有变化, 男选手人数未变, 所以抓住男选手人数不变求解. 把总人数视为“ 1〞,男选手人数是60 X〔1- - 〕=45〔人〕,男选手人数占正式参赛选手总4数白1 1--,所以正式参赛选手总数是:45 -^〔1--〕=55〔人〕,正式参赛的女选手11 11人数是55 X —=10〔人〕.11… 1 ................. … ......... ...... ..................... 1 ….......... ......练习6.四只小猴吃桃,第一只小猴吃的是另外三只的总数的-,第二只小猴吃的是另外3............ 1 ….......... ...... ..................... 1 ……―三只吃的总数的一,第三只小猴吃的是另外三只的总数的1 ,第四只小猴将剩下4 5的46个桃全吃了 .问四只小猴共吃了多少个桃?【解析】根据题意知前三只小猴分别吃了总数的1, 1, 1,4 5 6... .......... .. 1 1 1人所以四只小猴共吃了46 (1 - - -) 120 (个)4 5 6。
六年级上册:分数应用题奥数基础(带答案)
奥数基础篇之分数应用题
1、晶晶三天看完一本书,第一天看了全书的 ,第二天看了余下的 ,第二天比第一天多看了15页。这本书共有多少页?
300
变形1:
晶晶三天看完一本书,第一天看了全书的 ,第二天看了第一天的 ,还剩下130页。这本书共有多少页?
200
变形2:
晶晶三天看完一本书,第一天看了全书的 ,第二天看了第一天的 ,两天一共看了70页。这本书共有多少页?
66.67%
3、男生比女生少 ,女生比男生多几分之几?
2/5
4、水结成冰体积增加 ,冰化成水体积减少几分之几?
1/12
5、甲数是乙数的 ,乙数是丙数的 ,甲、乙、丙的和是216.甲、乙、丙各是多少?
48、72、96
6、甲数是乙数的 ,乙数是丙数的 ,甲、乙、丙三数的和是152.甲、乙、丙三数各是多少?
300
变形2:
有一批货物,第一天运来这批货物的 ,第二天运了余下的 ,两天共运了90吨。这批货物有多少吨?
900/7
变形3:
有一批货物,第一天运来这批货物的 ,第二天运的是第一天的 ,两天共运了90吨。这批货物有多少吨?
225
3、一修路队,第一天修了这条公路的 ,第二天修了余下的 ,已知这两天共修了1200米。这条公路全长多少米?
560
2、某小学五年级三个班植树,一班植树的棵数占三班总棵数的 ,二班与三班植树的棵数的比3:5,二班比三班少植树40棵。这三个班各植树多少棵?
40 60 100
3、图书角有故事书、科技书、文艺书这三种书,故事书的本数占总人数的 ,科技书的本数是文艺书的 ,文艺书比故事书少20本。图书角共有书多少本?
24 27
2、图书馆买来科技书和文艺书共340本,文艺书本数的 等于科技书本数的 。两种书各买来多少本?
(完整版)小学六年级奥数题附答案
小学六年级奥数题1。
某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?2.电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?3。
甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。
这时两人钱相等,求乙的存款4.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%.再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?5。
小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!"小亮说:“你要是能给我你的1/6,我就比你多2个了。
"小明原有玻璃球多少个?6.搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时。
有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?7。
一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?8.股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。
老王10月8日以股票10.65元的价格买进一种科技股票3000股,6月26日以每月13.86元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱?9.某书店老板去图书批发市场购买某种图书,第一次购书用100元,按该书定价2。
8元出售,很快售完。
第二次购书时,每本的批发价比第一次增多了0.5元,用去150元,所购数量比第一次多10本,当这批书售出4/5时出现滞销,便以定价的5折售完剩余图书。
六年级数学上册奥数题-分数乘法(附答案)
六年级上册--第一单元-分数乘法-奥数题(附答案)第一单元 分数乘法板块一 巧算分数乘法分数的裂项公式:①()11111+-=+n n n n ,如3121321-=⨯。
②())11(11k n n k k n n +-=+,如)(512131521-=⨯。
③()k n n k n n k +-=+11,如8131835-=⨯ ④m n m n m n 11+=⨯+,如4131437+=⨯ ⑤()⎥⎦⎤⎢⎣⎡++-+=++)2)(1(1)1(121)211n n n n n n n (,如)321211213211⨯-⨯=⨯⨯( 【例题】例1.计算:(1)201820171431321211⨯+⋅⋅⋅⋅⋅⋅+⨯+⨯+⨯(2)201820161861641421⨯+⋅⋅⋅⋅⋅⋅+⨯+⨯+⨯(3)32291188552⨯+⋅⋅⋅⋅⋅⋅+⨯+⨯+⨯(4)90197217561542133011+-+-(5)30282611086186416421⨯⨯+⋅⋅⋅⋅⋅⋅+⨯⨯+⨯⨯+⨯⨯例2.巧算。
(1) 2012×(1+21+31+……+20111)-[1+(1+21)+(1+21+31)+……+(1+21+31+……+20111)](2)200132200121432432132321221+⋅⋅⋅+++⋅⋅⋅++⨯⋅⋅⋅⨯+++++⨯+++⨯+(3))()()(()(100011100111201411)201511201611-⨯-⨯⋅⋅⋅⨯-⨯-⨯-(4))()()()(20161312120171312112016131211201713121+⋅⋅⋅++⨯+⋅⋅⋅+++-+⋅⋅⋅+++⨯+⋅⋅⋅++(5)(6)655161544151433141⨯+⨯+⨯2007120082007200620082007+-⨯⨯+(7)(8))201321()201321())201121()201121()921()921()721()721()52-1521-⨯+⨯-⨯+⨯⋅⋅⋅⨯-⨯+⨯-⨯+⨯⨯+()((9)【练习】1.计算:(1)1+361+5121+7201+9301+11421+13561+15721+17901(2)31+151+351+631+991132132132111111212121156156156⨯(3)4238411010662⨯+⋅⋅⋅⋅⋅⋅+⨯+⨯+⨯(4)31+43+52+75+87+209+2110+2411+3519(5)2.巧算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
把甲乙丙三根木棒插入水池中,三根木棒的长度和为360厘米,甲有3/4在水外,乙有4/7在水外,丙有2/5在水外。
水有多深?设水深xcm则甲长4x,乙长7x/3,丙长5x/34x+7x/3+5x/3=360x=45水有45cm深小刚有若干本书,小华借走一半加一本,剩下的书小明借走一半加两本,再剩下的书小峰借走一半加三本,最后小刚还剩下两本书,那么小刚原有还剩下两本书,那么小刚原有多少本书?考点:逆推问题.分析:本题需要从问题出发,一步步向前推,小刚剩的2本书加上3本就是小明借走后的一半,那么就可以求出小明借走后的数量,同理可以求出小华借走后的数量,进而可求小明原有的数量.解答:解:小峰未借前有书:(2+3)÷(1-1/2 )=10(本),小明未借之前有:(10+2)÷(1-1/2 )=24(本),小刚原有书:(24+1)÷(1-1/2 )=50(本).答:小明原有书50本.故答案为:50.甲数比乙数多1/3,乙数比甲数少几分之几?乙数是单位“1”,甲数是:1+1/3=4/3乙数比甲数少:1/3÷4/3=1/4有梨和苹果若干个,梨的个数是全体的5/3少17个,苹果的个数是全体的7/4少31个,那么梨和苹果的个数共多少?解:设总数有35X个那么梨有35X*3/5-17=21X-17个苹果有35X*4/7-31=20X-31个20X-31+21X-17=35X41X-48=35X6X=48X=8所以梨有21×6-17=109个苹果有20×6-31=89个有一个分数,它的分母比分子多4,如果把分子、分母都加上9,得到的分数约分后是9分之7,这个分数是多少?设分子为X,分母为X+4,则;(X+9)/(X+13)=7/9;解之,得X=5 答:该分子为5/9把一根绳分别折成5股和6股,5股比6股长20厘米,这根绳子长多少米?这根绳子长20÷(1/5-1/6)=600cm小萍今年的年龄是妈妈的1/3,两年前母女的年龄相差24岁。
四年后小萍的年龄是多少岁?解:设小萍今年X岁,则妈妈今年3X岁3X-2=X-2+243X=X+242X=24X=12最终答案:12+4=16(岁)有一篮苹果,甲取一半少一个,乙取余下的一半多一个,丙又取余下的一半,结果还剩下一个。
如果每个苹果值1元9角8分,那么这篮苹果共值多少元?丙又取其余的一半,结果还剩一个,说明丙取前是1+1=2个乙取余下的一半多一个,则乙取前是(2+1)*2=6个甲取其中的一半少一个,则甲取前时(6-1)*2 = 10个因此,原来有10个下面是解题过程:设这袋苹果原来X个,则甲取走苹果的个数为X/2-1乙取走苹果的个数为(X-X/2+1)/2+1丙取走苹果的个数(也是剩余的个数)为:总数-甲取走-乙取走,即【X-X/2+1-(X-X/2+1)/2-1】/2=1 解方程得X=10小辉乘飞机参加世界少年奥林匹克数学金杯赛。
机窗外市一片如画的蔚蓝大海。
他看到云海占整个画面的1/2,并遮住一个海岛的1/4,露出的海岛占整个画面的1/4.求被遮住的海岛占应看见的整个海面的几分之几?设海岛为x,整个画面为y,遮住海面为z,根据题意,3/4*x=1/4*yy=3x则海面为3/4*xz=1/2*3x-1/4*x=5/4*x又海面为2x …………y-x=3x-x=2x所以比例为5/8除了不用XY,只用算数,不行的话,只有X也行回答海岛占整个画面=1/4÷3/4=1/3海面占整个画面=1-1/3=2/3遮住的海面占整个画面=(1/2-1/4*1/3)=1/2-1/12=5/12遮住的海面占应看见的整个海面=5/12÷2/3=5/8即:被遮住的海面占应看见的整个海面的八分之五一只猴子摘了一堆桃子:第一天吃了这堆桃子的七分之一;第二天吃了余下桃子的六分之一;第三天吃了余下桃子的五分之一;第四天吃了余下桃子的四分之一;第五天吃了余下桃子的三分之一;第六天吃了余下桃子的二分之一;这时还剩下12个桃子,那么第一天和第二天猴子所吃桃子的总数是多少个?设桃子总数为x1/7x乘以6/7x乘以5/6x乘以4/x5乘以3/4x乘以2/3x乘以1/2x=121/7x=12 x=84第一天 84X1/7=12第二天72X1/6=1212+12=24甲从A地到B地需要5小时,乙从B地到A地,速度是甲的5/8.现在甲、乙两人分别从A,B 两地同时出发,相向而行。
在途中相遇后继续前进。
甲到B地后立即返后,乙到A地后也立即返回,他们在途中又一次相遇。
如果两次相遇点相距72千米,则A,B两地相距多少千米?解:设AB两地的距离是单位1,则甲的速度是1/5,乙的速度是(1/5)*(5/8)=1/8甲乙的速度比是甲:乙=(1/5):(1/8)=8/5即第一次相遇时甲行了全程的8/(8+5)=8/13乙行了全程的5/13第二次相遇时两人共行3个全程,那么甲行了3*8/13=24/13,离行完2个全程差2-24/13=2/13所以AB两地相距72/(8/13-2/13)=156答:A、B两地相距156千米。
见图把100个人分成四队,一队人数是二队人数的4/3倍,一队人数是三队人数的5/4倍,那么四队有多少人?设第一队为1,第二队为3/4,第三队为4/5,则三队和为1+3/4+4/5=51/20,可知,第一队人数应为20的倍数。
第一队为20时,20+15+16+49=100;第一队为40时,40+30+32>100 舍去。
所以,20+15+16+49=100为唯一解,即:第四队有49人。
ps:也可将第一队设为k人,三队之和=51k / 20 ;显见,k应为20的倍数。
只有k=20时有解。
足球赛门票15元一张,降价后观众增加了一半,收入增加了五分之一,每张门票降价多少元?观众增加一倍,即原来只有一个人来看,现在是两个人来看。
收入增加1/5,即现在两个人的总票价比原来一个人时单人票价多1/5,为15*(1+1/5)=18元平均每人18/2=9元比原来降低了15-9=6元降低了6/15=40%答:解:15-15×[(1+1 /5 )÷(1+1 /2 )=15-15×[6 /5 ÷3 /2 ]=15-15×[6/ 5 ×2 /3 ]=15-15×4/ 5=15-12=3(元)答:一张门票降价是3元.故填:3.点评:此题关键是找准单位“1”,找准单位“1”对应的量,求单位“1”,用除法,告诉单位“1”,求单位“1”的几分之几,用乘法.降价前假设有10名观众,收入为L=15×10=150(元)现在有15人,降x元,(15-x)×15=150×(1+1/5)225-15x=18015x=45x=3,降价3元。
甲、乙、丙三人共同加工一批零件。
甲比乙多加工零件20个,丙加工的零件是乙加工零件的4/5,甲加工的零件是乙丙两人加工零件总数的5/6.甲、乙、丙各加工零件多少个?设:甲加工x个,乙加工x-20,丙加工4/5(x-20)5/6[x-20+4/5(x-20)]=x5/6[x-20+4x/5-16]=x5/6[9x/5-36]=x3x/2-30=xx/2=30x=60乙加工=60-20=40丙加工=40×4/5=32某工厂的27位师傅共带徒弟40名,每位师傅可以带一名徒弟、两名徒弟或三名徒弟。
如果带一名徒弟的师傅人数是其他师傅人数的两倍,那么带两名徒弟的师傅有几位?设带一名徒弟的师傅有2x人,那么 2x+(2x)/2=27 解得 x=9,2x=18 再设带两名徒弟的师傅有y人,那么,带三名徒弟的师傅就是 27-18-y=9-y 人,可得方程18*1+y*2+(9-y)*3=40 解得 y=5张、王、李三人共有54元,张用了自己钱数的3/5,王用了自己钱数的3/4,李用了自己钱数的2/3,各买了一枝相同的钢笔,那么张鹤李两人剩下的钱共有多少元?因为“各买了一支相同的钢笔”,所以花掉的钱是一样多的,那么可以设钢笔价格为x元,列出方程为x/(3/5)+x/(3/4)+x/(2/3)=54,解出x=12,然后用各自剩下的钱与用掉的钱的比例分别算出张、王、李剩余的钱为:12*((1-3/5)/(3/5))=8、12*((1-3/4)/(3/4))=4、12*((1-2/3)/(2/3))=6张的3/5与王的3/4与李的2/3一样多,可知原来三人带钱的比是张:王=3/4:3/5=5:4,王:李=2/3:3/4=8:9张:王:李=10:8:9原来张王李分别有钱:20、16、18元他们各剩下:8、4、6元。
在编号为1、2、3的三个相同的杯子里,分别盛着半杯液体。
1号杯子中溶有100克糖,2号杯子中是水,3号杯子中溶有100克盐。
先将1号杯中液体的一半及3号杯中液体的1/4倒入2号杯,然后搅匀,再从2号杯中倒出所盛液体的2/7到1号杯,接着倒出所剩液体的1/7到3号杯。
问:这时每个杯中含盐量与含糖量之比是多少?这个你要把体积和重量分开来算就好了,下面我按照你倒的次数后杯子里的余量第一次倒,1st杯子:50g糖,1/4液体;2nd杯子:50g糖,25g盐,7/8液体;3rd杯子:75g盐,3/8液体。
第二次倒,1st杯子:50+50x2/7糖,25x2/7盐,1/2液体;2nd杯子:50x:5/7糖,25x5/7盐,5/8液体。
第三次倒,2nd杯子:50x4/7糖,25x4/7盐,3/4液体;3rd杯子:50x1/7糖,75+25x1/7盐,1/2液体.所以含盐量:1st杯子(50/7)盐/(1/2)液=100/7;2nd杯子(100/7)盐/(3/4)液=400/21;3rd杯子(75+25/7)盐/(1/2)液=1075/7;所以比例为 15:18:129含糖量:1st杯(50x9/7)糖/(1/2)液=900/7;2nd杯子(50x4/7)糖/(1/2)液=400/7;3rd 杯子(50/7)糖/(1/2)液=100/7; 所以比例为9:4:10某校六年级共有152人,选出男生的1/11和5名女生去参加科技小组,则剩下的男女生人数刚好相等,六年级男女生各有多少人?男生有x人,女生有152-x(10/11)x=152-x-5x=77男生77人,女生75人林林倒满一杯纯牛奶,第一次喝了1/3,然后加入豆浆,将杯子斟满并搅拌均匀,第二次,林林又喝了1/3,继续用豆浆将杯子斟满并搅拌均匀,重复上述过程,那么第四次后,林林共喝了一杯纯牛奶总量的多少?(用分数表示)第一次1/3搅匀之后又是1/3,那么这次是2/3*1/3=2/9,剩下1-1/3-2/9=4/9再均匀之后1/3,那么这次是4/9*1/3=4/24,剩下4/9-4/27=8/27再均匀之后1/3,那么这次是8/27*1/3=8/81,剩下8/27-8/81=16/81那么一共喝了1-16/81=65/81有一根1米长的木条,第一次去掉它的1/5;第二次去掉余下木条的1/6;第三次又去掉第二次余下木条的1/7;这样一直下去,最后一次去掉上次余下木条的1/10。