上海思源中学八年级数学下册第五单元《数据的分析》测试卷(包含答案解析)

合集下载

人教版初中数学八年级数学下册第五单元《数据的分析》检测卷(有答案解析)

人教版初中数学八年级数学下册第五单元《数据的分析》检测卷(有答案解析)

一、选择题1.某校规定学生的学期学业成绩由三部分组成:平时成绩占20%,期中成绩占30%,期末成绩占50%,小颖的平时、期中、期末成绩分别为85分、90分、92分,则她本学期的学业成绩为()A.85B.90C.92D.892.八年级某班五个合作学习小组人数如下:5,7,6,x,7.已知这组数据的平均数是6,则x的值为()A.7 B.6 C.5 D.43.小亮同学想知道自己的体重在班级中是否属于中等水平,则需了解全班同学体重的()A.平均数B.中位数C.众数D.极差4.甲、乙两班举行电脑汉字输入比赛,参赛学生每分输入汉字的个数统计结果如下表:某同学分析上表后得到如下结论:①甲、乙两班学生平均成绩相同;为优秀)②乙班优秀的人数多于甲班优秀的人数(每分输入汉字个数150③甲班成绩的波动比乙班大.上述结论中正确的是()A.①②③B.①②C.①③D.②③5.某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选()A.丁B.丙C.乙D.甲6.一组数据3,4,6,8,8,9的中位数和众数分别是()A .7,8B .7,8,5C .5,8D .7,5,7 7.样本数据4,m ,5,n ,9的平均数是6,众数是9,则这组数据的中位数是( ) A .3B .4C .5D .98.已知一组数据a ,b ,c 的平均数为5,方差为4,那么数据22a -,22b -,22c -的平均数和方差分别是( ) A .8,16 B .10,6C .3,2D .8,89.若a 、b 、c 这三个数的平均数为2,方差为S 2,则a+2,b+2,c+2的平均数和方差分别是( ) A .2,S 2B .4,S 2C .2,S 2+2D .4,S 2+410.某校八年级有八个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( )A .将八个班级各自的平均成绩之和除以8,就得到全年级学生的平均成绩B .全年级学生的平均成绩一定在这八个班级各自的平均成绩的最小值与最大值之间C .这八个班级各自的平均成绩的中位数就是全年级学生的平均成绩D .这八个班级各自的平均成绩的众数不可能是全年级学生的平均成绩 11.八(1)班45名同学一天的生活费用统计如下表: 生活费(元) 1015 2025 30学生人数(人)3915126A .15B .20C .21D .2512.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,值周班长小兵每周对各小组合作学习的情况进行综合评分,下表是其中一周的评分结果“分值”这组数据的中位数和众数分别是( ) A .89,90B .90,90C .88,95D .90,95二、填空题13.已知一组数据a ,b ,c 的方差为2,那么数据a +3,b +3,c +3的方差是_____. 14.一组数据1x ,2x ,3x ,4x ,5x 的平均数是5,方差是3,则143x -,243x -,343x -,443x -,543x -的平均数是________,方差是________.15.在一次数学测验中,甲组4名同学的平均成绩是70分,乙组6名同学的平均成绩是80分,则这10名同学的平均成绩是______________.16.一组数据:1,2,x ,y ,4,6,其中x <y ,中位数是2.5,众数是2.则这组数据的平均数是______;方差是______.17.某组数据的方差计算公式为S2=18[(x1﹣2)2+(x2﹣2)2+…+(x8﹣2)2],则该组数据的样本容量是_____,该组数据的平均数是_____.18.李老师为了了解学生的数学周考成绩,在班级随机抽查了10名学生的成绩,其统计数据如下表:则这10名学生的数学周考成绩的中位数是________分.19.设甲组数据:6,6,6,6,的方差为2s甲,乙组数据:1,1,2的方差为2s乙,则2s甲与2s乙的大小关系是________.20.已知5个数据的平均数是7,另外还有3个数据的平均数是k,则这 8个数据的平均数是_______(用关于 k 的代数式表示).参考答案三、解答题21.学校广播站要招聘一名播音员,考查形象、知识面、普通话三个项目(每个项目按百分制计分).若按形象占10%,知识面占40%,普通话占50%计算加权平均数,作为最后评定的总成绩.李颖和张明两位同学的各项成绩如表所示:(2)若张明同学要在总成绩上超过李颖同学,求x的范围.22.某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:平均数 方差 中位数 甲 7 ① . 7 乙② .5.4③ .(1)请将右上表补充完整:(参考公式:方差2222121[()()()]n S x x x x x x n=-+-++-)(2)请从下列三个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看,__________的成绩好些;②从平均数和中位数相结合看,___________的成绩好些; (3)若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.23.在全民读书月活动中,某校随机调查了部分同学,本学期计划购买课外书的费用情况,并将结果绘制成如图所示的统计图.根据相关信息,解答下列问题. (1)这次调查获取的样本容量是 .(直接写出结果)(2)这次调查获取的样本数据的众数是 ,中位数是 .(直接写出结果) (3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.24.在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是________,这组数据的众数为________元;(2)求这组数据的平均数;(3)该校共有600学生参与捐款,请你估计该校学生的捐款总数.25.疫情期间福州一中初中部举行了“宅家运动会”.该学校七、八年级各有300名学生参加了这次“宅家运动会”,现从七、八年级各随机抽取20名学生宅家运动会的成绩进行抽样调查.收集数据如下:74979672989972737674七年级:7469768978749997989976889689789489949550八年级:89686589778689889291整理数据如下:x90100xx8089x60695059x7079七年级01101a八年级12386分析数据如下:年级平均数中位数众数方差七年级84.27774138.56八年级84b89129.7根据以上信息,回答下列问题:(1)a=___________,b=___________;(2)你认为哪个年级“宅家运动会”的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合理性)(3)学校对“宅家运动会”成绩不低于80分的学生颁发优胜奖,请你估计学校七、八年级所有学生中获得优胜奖的大约有___________人.26.今年5月12日是我国第11个全国防灾减灾日,重庆某中学为普及推广全民防灾减灾知识和避灾自救技能,开展了“提高灾害防治能力,构筑生命安全防线”知识竞赛活动.初一、初二年级各500人,为了调查竞赛情况,学校进行了抽样调查,过程如下,请根据表格回答问题.收集数据:从初一、初二年级各抽取20名同学的测试成绩(单位:分),记录如下:初一:68、79、100、98、98、86、88、99、100、93、90、100、80、76、84、98、99、86、98、90初二:92、89、100、99、98、94、100、62、100、86、75、98、89、100、100、68、79、100、92、89整理数据:表一分析数据:表二得出结论:(1)在表中:m=_______,n=_______,x=_______,y=_______;(2)得分情况较稳定的是___________(填初一或初二);(3)估计该校初一、初二年级学生本次测试成绩中可以得满分的人数共有多少人?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据加权平均数的计算方法可以得解.【详解】解:由题意得,小颖本学期的学业成绩为:⨯+⨯+⨯=++=(分),8520%9030%9250%17274690故选B.【点睛】本题考查加权平均数的计算,熟练掌握加权平均法的计算方法是解题关键.2.C解析:C【分析】根据平均数的计算公式列出算式,再进行计算即可得出x的值.【详解】解:∵5,7,6,x,7的平均数是6,∴1(5+7+6+x+7)=6,5解得:x=5;故选:C.【点睛】本题考查了算术平均数的知识,解题的关键是根据算术平均数求出数据总和.3.B解析:B【分析】根据中位数的定义进行解答即可.【详解】∵小亮同学想知道自己的体重在班级中是否属于中等水平,∴需了解全班同学体重数据的中间的数据,即中位数,故选:B.【点睛】本题主要考查统计的有关知识,中位数是一组数据中,最中间的数据;对统计量进行合理的选择和恰当的运用是解题关键.4.A解析:A【分析】平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小.【详解】从表中可知,平均字数都是135,①正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,②正确;甲班的方差大于乙班的,又说明甲班的波动情况大,所以③也正确.①②③都正确.故选:A.【点睛】此题考查平均数,中位数,方差的意义.解题关键在于掌握平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.5.B解析:B【分析】先比较平均数得到甲和丙成绩较好,然后比较方差得到丙的状态稳定,即可决定选丙去参赛.【详解】∵甲、丙的平均数比乙、丁大,∴甲和丙成绩较好,∵丙的方差比甲的小,∴丙的成绩比较稳定,∴丙的成绩较好且状态稳定,应选的是丙,故选:B.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.6.A解析:A【分析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,据此可得答案.【详解】解:将数据从小到大排列为3、4、6、8、8、9,则这组数据的中位数为(6+8)÷2=7,众数为8.故选:A.【点睛】本题考查众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.7.C解析:C 【分析】先判断出m ,n 中至少有一个是9,再用平均数求出12m n +=,即可求出这两个数,由中位数的定义排序后求中位数即可. 【详解】解:∵一组数据4,m ,5,n ,9的众数为9, ∴m ,n 中至少有一个是9,∵一组数据4,m ,5,n ,9的平均数为6,45965m n ++++=∴12m n +=∴m ,n 中一个是9,另一个是3 ∴这组数按从小到大排列为:3,4,5,9,9. ∴这组数的中位数为:5. 故选:C. 【点睛】本题考查了众数、平均数和中位数的知识.能结合平均数和众数的定义对这组数据正确分析是解决此题的关键.8.A解析:A 【分析】如果一组的数据的每一个数都扩大或缩小相同的倍数,则平均数也扩大或缩小相同的倍数,方差则扩大或缩小平方倍;如果一组的数据的每一个数都增加或减少相同的数,则平均数也增加或减少相同的数,方差不变. 【详解】根据题意可知:这组数据的平均数为:2×5-2=8;方差为:24216⨯=. 故选:A 【点睛】本题主要考查的是数据的平均数和方差的变化规律,属于中等难度题型.解决这个问题的关键就是要明确变化规律,根据规律进行解答.9.B解析:B 【分析】方差是用来衡量一组数据波动大小的量,每个数都加了2,所以波动不会变,方差不变,平均数增加2. 【详解】由题意知,原来的平均数为2,每个数据都加上2,则平均数变为4;原来的方差221=(2)(2)(2)3S a b c ⎡⎤---⎣⎦22++现在的方差:222222111=(24)(24)(24)=(2)(2)(2)33S a b c a b c S ⎡⎤⎡⎤+-+-+-=---=⎣⎦⎣⎦22++++ 方差不变. 故选:B. 【点睛】本题考查了方差和平均数,当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.10.B解析:B 【分析】A 、由于这八个班的人数不一定相等,故全年级学生的平均成绩应等于所有学生成绩的和除以学生人数;B 、由于全年级学生的平均成绩等于所有学生成绩的和除以学生人数,故全年级学生的平均成绩一定在这八个平均成绩的最小值与最大值之间;C 、由于这八个班的人数不一定相等,故这10个平均成绩的中位数不一定是全年级学生的平均成绩;D 、众数是一组数据中出现次数最多的数,能反映数据的集中程度,平均数也能反映数据的集中程度,是有可能相等的. 【详解】A 、全年级学生的平均成绩应等于所有学生成绩的和除以学生人数,而这八个班的人数不一定相等,故错误;B 、由于全年级学生的平均成绩等于所有学生成绩的和除以学生人数,故全年级学生的平均成绩一定在这八个平均成绩的最小值与最大值之间,故正确;C 、中位数不一定与平均数相等,故错误;D 、众数与平均数有可能相等,故错误. 故选B . 【点睛】本题考查了平均数、中位数、众数的关系,它们有可能相等,也可能不相等.11.C解析:C 【分析】根据加权平均数公式列出算式求解即可. 【详解】解:这45名同学一天的生活费用的平均数=103159201525123062145⨯+⨯+⨯+⨯+⨯=.故答案为C. 【点睛】本题考查了加权平均数的计算,读懂题意,正确的运用公式是解题的关键12.B解析:B【解析】【分析】根据中位数和众数的定义找出从小到大排列后最中间的数和出现次数最多的数即可.【详解】把这组数据从小到大排列:84,89,90,90,90,91,96,最中间的数是90,则中位数是90;90出现了3次,出现的次数最多,则众数是90;故选B .【点睛】此题考查了中位数和众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.二、填空题13.2【分析】根据数据abc 的方差为2由方差为2可得出数据a+3b+3c+3的方差【详解】解:∵数据abc 的方差为2设平均数为m 则则数据a+3b+3c+3的平均数是m+3∴方差为:故答案为:2【点睛】本解析:2【分析】根据数据a ,b ,c 的方差为2,由方差为2可得出数据a+3,b+3,c+3的方差.【详解】解:∵数据a ,b ,c 的方差为2,设平均数为m , 则2222()()()23a mb mc m S -+-+-==, 则数据a +3,b +3,c +3的平均数是m+3, ∴方差为:2222(33)(33)(33)3a m b m c m S +--++--++--= 222()()()23a mb mc m -+-+-==, 故答案为:2.【点睛】本题考查的是方差,熟记方差的定义是解答此题的关键.14.1748【分析】根据平均数和方差公式的变形即可得到结果【详解】一组数据x1x2x3x4x5的平均数是5则4x1-34x2-34x3-34x4-34x5-3的平均数是4(x1+x2+x3+x4+x5)解析:17 48【分析】根据平均数和方差公式的变形即可得到结果.【详解】一组数据x1,x2,x3,x4,x5的平均数是5,则4x1-3,4x2-3,4x3-3,4x4-3,4x5-3的平均数是15[4(x1+x2+x3+x4+x5)-15]=17,∵新数据是原数据的4倍减3;∴方差变为原来数据的16倍,即48.故答案为:17;48.【点睛】本题考查方差的计算公式的运用:一般地设有n个数据,x1,x2,…x n,若每个数据都放大或缩小相同的倍数后再同加或同减去一个数,其平均数也有相对应的变化,方差则变为这个倍数的平方倍.15.76分;【解析】【分析】根据加权平均数的计算方法:先求出这10名同学的总成绩再除以10即可得出答案【详解】这10名同学的平均成绩为:=76(分)故答案为:76分【点睛】本题考查的是加权平均数的求法本解析:76分;【解析】【分析】根据加权平均数的计算方法:先求出这10名同学的总成绩,再除以10,即可得出答案.【详解】这10名同学的平均成绩为:7048106⨯+⨯=76(分),故答案为:76分.【点睛】本题考查的是加权平均数的求法.本题易出现的错误是对加权平均数的理解不正确,而求70、80这两个数的平均数.16.3【解析】【分析】由中位数及众数的定义和给定的条件求出xy的值然后根据平均数的定义求出平均数即可;利用方差公式计算即可求出方差【详解】由一组数据12xy46的中位数是25众数是2则有x=2y=3∴这解析:3 8 3【解析】【分析】由中位数及众数的定义和给定的条件求出x,y的值,然后根据平均数的定义求出平均数即可;利用方差公式计算即可求出方差.【详解】由一组数据1,2,x,y,4,6的中位数是2.5,众数是2,则有x=2,y=3,,∴这组数据的平均数为:12234636+++++=. ∴这组数据的平均数为3; 这组数据的方差为:22222218(13)(23)(23)(33)(43)(63)63⎡⎤-+-+-+-+-+-=⎣⎦. ∴这组数据的方差为83. 故答案为3;83. 【点睛】本题考查数据的平均数、中数、方差,掌握平均数、中数、方差的的定义是解题的关键. 17.82【分析】样本方差S2=(x1-)2+(x2-)2+…+(xn-)2其中n 是这个样本的容量是样本的平均数利用此公式直接求解【详解】由于S2=(x1-2)2+(x2-2)2+…+(x8-2)2所以该解析:8 2【分析】样本方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中n 是这个样本的容量,x 是样本的平均数.利用此公式直接求解. 【详解】由于S 2=18[(x 1-2)2+(x 2-2)2+…+(x 8-2)2], 所以该组数据的样本容量是8,该组数据的平均数是2.故答案为8,2.【点睛】此题考查方差的有关计算,解答此题的关键是熟练记住公式:S 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]中各个字母所代表的含义.18.134【解析】【分析】根据表格中的数据可以求得这10名学生的数学周考成绩的中位数【详解】由表格可得这10名学生的数学周考成绩的中位数是:(132+136)÷2=134(分)故答案为:134【点睛】本解析:134【解析】【分析】根据表格中的数据可以求得这10名学生的数学周考成绩的中位数.【详解】由表格可得,这10名学生的数学周考成绩的中位数是:(132+136)÷2=134(分),故答案为:134.【点睛】本题考查中位数,解答本题的关键是明确中位数的含义,会求一组数据的中位数. 19.与【分析】根据方差的意义进行判断【详解】解:因为甲组的数据都相等没有波动而乙组数有波动所以s 甲2<s 乙2故答案为s 甲2<s 乙2【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量方差越大则平 解析:2s 甲与2s 乙【分析】根据方差的意义进行判断.【详解】解:因为甲组的数据都相等,没有波动,而乙组数有波动,所以s 甲2<s 乙2.故答案为s 甲2<s 乙2.【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好. 20.【解析】【详解】根据平均数的概念和公式可知5个数据的和为5×7=353个数据的和为3k 因此这8个数的和为35+3k 因此其平均数为(35+3k )÷8即故答案为: 解析:35+38k 【解析】【详解】根据平均数的概念和公式,可知5个数据的和为5×7=35,3个数据的和为3k ,因此这8个数的和为35+3k ,因此其平均数为(35+3k )÷8,即35+38k . 故答案为:35+38k . 三、解答题21.(1)83;(2)90<x ≤100【分析】(1)按照各项目所占比求得总成绩;(2)各项目所占比求得总成绩大于83分即可,列出不等式求解.【详解】(1)70×10%+80×40%+88×50%=83(分);(2)80×10%+75×40%+50%•x >83,∴x >90.∵每个项目按百分制计分∴90<x≤100∴李颖同学的总成绩是83分,张明同学要在总成绩上超过李颖同学,则他的普通话成绩应90<x≤100.【点睛】本题综合考查平均数的运用.解题的关键是正确理解题目的含义.22.(1)①1.2;②7;③7.5;(2)①甲;②乙;(3)乙,理由见解析【分析】(1)根据方差公式直接计算即可得出甲的方差,然后根据折线图信息进一步分析即可求出乙的平均数以及中位数;(2)①甲乙平均数相同,而甲的方差要小,所以甲的成绩更加稳定,从而得出甲的成绩好一些;②甲乙平均数相同,而乙的中位数较大,即乙的成绩的中间量较大,所以得出乙的成绩好一些;(3)根据甲乙二人成绩的相关数据结合实际进一步分析比较即可.【详解】(1)①甲的方差为:2222221[(97)(57)4(77)2(87)2(67)] 1.210S =-+-+⨯-+⨯-+⨯-=, ②乙的平均数为:()24687789910107+++++++++÷=,③乙的中位数为:()7827.5+÷=,故答案为:①1.2;②7;③7.5;(2)①甲乙平均数相同,而甲的方差要小,所以甲的成绩更加稳定,从而得出甲的成绩好一些;②甲乙平均数相同,而乙的中位数较大,即乙的成绩的中间量较大,所以得出乙的成绩好一些;故答案为:①甲;②乙;(3)选乙,理由如下:综合看,甲发挥更稳定,但射击精准度差;乙发挥虽然不稳定,但击中高靶环次数更多,成绩逐步上升,提高潜力大,更具有培养价值,所以应选乙.【点睛】本题考查了折线统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,折线统计图能清楚地看出数据的变化情况.23.(1)40;(2)30,50;(3)50500元【分析】(1)根据条形统计图中的数据可以求得这次调查获取的样本容量;(2)根据条形统计图中的数据可以得到这次调查获取的样本数据的众数和中位数;(3)根据条形统计图中的数据可以得到该校本学期计划购买课外书的总花费.【详解】解:(1)样本容量是:6+12+10+8+4=40,(2)由统计图可得,这次调查获取的样本数据的众数是30,中位数是50;(3)2063012501080810046121084⨯+⨯+⨯+⨯+⨯++++×1000=50500(元), 答:该校本学期计划购买课外书的总花费是50500元.故答案为(1)40;(2)30,50;(3)50500元.【点睛】 本题考查众数、中位数、加权平均数、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.24.(1)30,10;(2)平均数为12元;(3)学生的捐款总数为7200元.【分析】(1)由题意得出本次调查的样本容量是6118530+++=,由众数的定义即可得出结果;(2)由加权平均数公式即可得出结果;(3)由总人数乘以平均数即可得出答案.【详解】(1)本次调查的样本容量是6118530+++=,这组数据的众数为10元;故答案为30,10;(2)这组数据的平均数为6511108155201230⨯+⨯+⨯+⨯=(元); (3)估计该校学生的捐款总数为600127200⨯=(元).【点睛】此题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.本题也考查了平均数、中位数、众数的定义以及利用样本估计总体的思想.25.(1) 8a =,89=b ;(2) 八年级成绩较好,理由①:八年级成绩的众数、中位数比七年级成绩相应的众数、中位数都要大,说明八年级成绩的集中趋势要高;理由②:方差八年级较小,说明八年级的成绩比较稳定;(3) 345(人).【分析】(1)从调查的7年级的总人数20人中减去前几组的人数即可;将8年级20名学生的成绩排序后找到最中间的第10个和第11个数的平均是即可求出中位数;(2)从中位数、众数、方差等方面进行分析即可;(3)用各个年级的总人数乘以样本中大于等于80分所占的百分比即可.【详解】解:(1)由题意有:2011018=---=a将8年级的20名学生成绩排序后最中间两个数据为:89和89,故中位数为89; 故答案为:8a =,89=b .(2) 八年级成绩较好,八年级成绩的众数、中位数比七年级成绩相应的众数、中位数都要大,说明八年级成绩的集中趋势要高,方差八年级较小,说明八年级的成绩比较稳定;(3)七年级优胜奖所占的比例为:1+89=2020, 故其300人中能获得优胜奖的有:9300=13520⨯(人), 八年级优胜奖所占的比例为:6+87=2010, 故其300人中能获得优胜奖的有:7300=21010⨯(人), ∴所有能获得优胜奖的学生人数为:135+210=345(人).故答案为:345(人).【点睛】 本题考查频数分布表、众数、中位数、平均数、方差的意义及计算方法,明确各自的意义和计算方法是解决问题的前提.26.(1)2,5,93,98;(2)初一;(3)225【分析】(1)根据给出的初一20名同学测试成绩,成绩在7080x ≤<范围内的共有2名,可知m 值,成绩在8090x ≤<范围内的有5名,可得n 值,再根据中位数、众数的定义即可得出x 、y ;(2)判断哪个年级得分情况较稳定,根据方差的意义即可得出答案;(3)先求出各年级满分的人数所占的百分比,用该校各年级的总人数分别乘以得满分的人数所占的百分比,即可得出答案.【详解】(1)根据给出的数据可得:∵成绩在7080x ≤<范围内的共有2名,∴m=2∵成绩在8090x ≤<范围内的有5名,∴n=5把初二成绩从小到大排列,则中位数x=92942+=93, ∵初一成绩中出现次数最多的是98∴y=98;故答案为:2,5,93,98;(2)∵根据表二可得初一的方差是84.75,初二的方差是123.05∴初一的方差小于初二的方差∴得分情况较稳定的是初一故答案为:初一(3)根据20名初一同学测试成绩,取得100分的同学有3个,占320根据20名初二同学测试成绩,取得100分的同学有6个,占6 20则该校初一、初二年级学生本次测试成绩中可以得满分的人数共有:500×320+500×620=225(人)该校初一、初二年级学生本次测试成绩中可以得满分的人数共有225人.故答案为:225【点睛】本题考查了中位数、众数的定义,已知一组数求中位数和众数;考查了方差的意义,在考虑稳定性时,利用方差来判断;会用样本估算总体.。

(常考题)人教版初中数学八年级数学下册第五单元《数据的分析》测试(含答案解析)(3)

(常考题)人教版初中数学八年级数学下册第五单元《数据的分析》测试(含答案解析)(3)

一、选择题1.数据2-,1-,0,1,2的方差是()A.0 B.2C.2 D.42.若数据 4,x,2,8 ,的平均数是 4,则这组数据的中位数和众数是()A.3 和 2 B.2 和 3 C.2 和 2 D.2 和43.某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是()A.88.5 B.86.5 C.90 D.90.54.如果将所给定的数据组中的每个数都减去一个非零常数,那么该数组的()A.平均数改变,方差不变B.平均数改变,方差改变C.平均数不变,方差改变D.平均数不变,方差不变5.某校有21名同学们参加某比赛,预赛成绩各不同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的( ) A.最高分B.中位数C.极差D.平均数6.为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是()①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A.①②④B.①③④C.③④D.①②7.一组数据,6、4、a、3、2的平均数是5,这组数据的方差为()A.8 B.5 C.6 D.38.某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选( ) A .丁B .丙C .乙D .甲9.某校八年级有八个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( )A .将八个班级各自的平均成绩之和除以8,就得到全年级学生的平均成绩B .全年级学生的平均成绩一定在这八个班级各自的平均成绩的最小值与最大值之间C .这八个班级各自的平均成绩的中位数就是全年级学生的平均成绩D .这八个班级各自的平均成绩的众数不可能是全年级学生的平均成绩 10.八(1)班45名同学一天的生活费用统计如下表:A .15B .20C .21D .25 11.有一组数据:1,1,1,1,m .若这组数据的方差是0,则m 为( ) A .4- B .1- C .0 D .1 12.一组数据3,4,4,5,若添加一个数4,则发生变化的统计量是( )A .平均数B .众数C .中位数D .方差二、填空题13.已知一组样本数据1x ,2x ,3x ,⋅⋅⋅,n x 的平均数为2,方差为3,则数据12+5x ,22+5x ,325x +,⋅⋅⋅,2+5n x 的平均数为__________,方差为__________.14.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数x (单位:千克)及方差S 2(单位:千克2)如表所示:__.15.一组数据4、5、a、6、8的平均数5x=,则方差2s=________.16.若一组数据4,,5,,7,9x y的平均数为6,众数为5,则这组数据的方差为__________.17.甲、乙二人在相同情况下,各射靶10次,两人命中环数的平均数都是7,方差2S甲=2.8,2S乙=1.5,则射击成绩较稳定的是______.(填“甲”或“乙”)18.已知一组数据5,10,15,x,9的平均数是8,那么这组数据的中位数是______.19.一组数据5,8,x,10,4的平均数是2x,则这组数据的方差是___________.20.某组数据按从小到大的顺序如下:2、4、8、x、10、14,已知这组数据的中位数是9,则这组数据的众数是_____.三、解答题21.甲、乙两位同学5次数学选拔赛的成绩统计如表,他们5次考试的总成绩相同,请同学们完成下列问题:第1次第2次第3次第4次第5次甲成绩8040705060乙成绩705070a70=,甲同学成绩的极差为;(2)小颖计算了甲同学的成绩平均数为60,方差是S甲2=15[(80﹣60)2+(40﹣60)2+(70﹣60)2+(50﹣60)2+(60﹣60)2]=200.请你求出乙同学成绩的平均数和方差;(3)从平均数和方差的角度分析,甲、乙两位同学谁的成绩更稳定.22.如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D 作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD的面积是.23.某校需要选出一名同学去参加温州市“生活中的数学说题”比赛,现有5名候选人参加该校举办的模拟说题比赛,挑选出成绩最高者参加说题比赛.已知5名候选人模拟说题比赛成绩情况如表所示.某校5名候选人模拟说题比赛成绩情况(1)5名候选人模拟说题比赛成绩的中位数是 ;(2)由于C 、E 两名候选人成绩并列第一;所以学校决定根据两人平时成绩、任课老师打分、模拟说题比赛成绩按2:3:5的比例最后确定成绩,最终谁将参加说题比赛.已知C 、E 两名候选人平时成绩、任课老师打分情况如表所示.24.为增强学生垃圾分类意识,推动垃圾分类进校园.某初中学校组织全校1200名学生参加了“垃圾分类知识竞赛”,为了解学生的答题情况,学校考虑采用简单随机抽样的方法抽取部分学生的成绩进行调查分析. (1)学校设计了以下三种抽样调查方案:方案一:从初一、初二、初三年级中指定部分学生成绩作为样本进行调查分析; 方案二:从初一、初二年级中随机抽取部分男生成绩及在初三年级中随机抽取部分女生成绩进行调查分析;方案三:从三个年级全体学生中随机抽取部分学生成绩进行调查分析.其中抽取的样本具有代表性的方案是__________.(填“方案一”、“方案二”或“方案三”) (2)学校根据样本数据,绘制成下表(90分及以上为“优秀”,60分及以上为“及格”): 样本容量 平均分 及格率 优秀率 最高分 最低分 10093.5100%70%10080分数段统计(学生成绩记为x ) 分数段 080x ≤<8085x ≤<8590x ≤<9095x ≤<95100x ≤≤频数5253040请结合表中信息解答下列问题:①估计该校1200名学生竞赛成绩的中位数落在哪个分数段内; ②估计该校1200名学生中达到“优秀”的学生总人数.25.随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注.某校计划将这种学习方式应用到教育教学中,从各年级共1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备情况进行了调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为人,图①中m的值为.(2)求本次调查获取的样本数据的众数、中位数;(3)根据样本数据,估计该校学生家庭中;拥有3台移动设备的学生人数.26.为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:收集数据:七年级: 79,85,73,80, 75,76,87, 70, 75,94,75,79,81,71, 75,80,86,59, 83, 77.八年级: 92,74, 87,82,72,81, 94,83,77, 83,80,81,71,81,72,77,82,80,70,41.整理数据:分析数据:应用数据:(1)由上表填空:a=,b=,c=,d=.(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先计算平均数,再计算方差.方差的定义一般地设n个数据,x1,x2,…x n的平均数为x,x =1n (x 1+x 2+…+x n ),则方差S 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]. 【详解】解:平均数x =15(-2-1+0+1+2)=0, 则方差S 2=15[(-2-0)2+(-1-0)2+(0-0)2+(1-0)2+(2-0)2]=2. 故选:C . 【点睛】本题考查方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,x =1n(x 1+x 2+…+x n ),则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.2.A解析:A 【分析】根据平均数的计算公式先求出x 的值,再根据中位数和众数的概念进行求解即可. 【详解】∵数据2,x ,4,8的平均数是4,∴这组数的平均数为2484x +++=4,解得:x =2; 所以这组数据是:2,2,4,8,则中位数是242+=3. ∵2在这组数据中出现2次,出现的次数最多,∴众数是2. 故选A . 【点睛】本题考查了平均数、中位数和众数,平均数的计算方法是求出所有数据的和,然后除以数据的总个数;据此先求得x 的值,再将数据按从小到大排列,将中间的两个数求平均值即可得到中位数,众数是出现次数最多的数.3.A解析:A 【分析】根据加权平均数的计算公式,用95分,90分,85分别乘以它们的百分比,再求和即可. 【详解】根据题意得:95×20%+90×30%+85×50%=88.5(分), 即小彤这学期的体育成绩为88.5分. 故选A . 【点睛】本题考查了加权平均数的计算,熟练掌握公式是解题关键.4.A解析:A【解析】试题分析:根据平均数、方差的计算公式即可判断.由题意得该数组的平均数改变,方差不变,故选A.考点:本题考查的是平均数,方差点评:数学公式的计算与应用是初中数学学习中的一个基本能力,此类问题往往考查学生对数学公式的理解能力,难度不大.5.B解析:B【解析】共有21名学生参加预赛,取前11名,小颖知道了自己的成绩,我们把所有同学的成绩按大小顺序排列,第11名的成绩是这组数据的中位数,所以小颖知道这组数据的中位数,才能知道自己是否进入决赛.故选B.6.C解析:C【分析】根据频数分布直方图中的数据,求得众数,平均数,中位数,即可得出结论.【详解】解:①根据频数分布直方图,可得众数为60−80元范围,故每人乘坐地铁的月均花费最集中的区域在60−80元范围内,故①不正确;②每人乘坐地铁的月均花费的平均数=876001000=87.6=87.6元,所以每人乘坐地铁的月均花费的平均数范围是80~100元,故②错误;③每人乘坐地铁的月均花费的中位数约为80元,在60~100元范围内,故③正确;④为了让市民享受到更多的优惠,若使50%左右的人获得折扣优惠,则乘坐地铁的月均花费达到80元以上的人可以享受折扣,故④正确.故选:C【点睛】本题主要考查了频数分布直方图,平均数以及中位数的应用,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.A解析:A【分析】先由平均数的公式计算出a的值,再根据方差的公式计算即可.【详解】∵数据6、4、a、3、2平均数为5,∴(6+4+2+3+a)÷5=5,解得:a=10,∴这组数据的方差是1[(6-5)2+(4-5)2+(10-5)2+(2-5)2+(3-5)2]=8.5故选:A.【点睛】此题考查平均数,方差,解题关键在于掌握它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.8.B解析:B【分析】先比较平均数得到甲和丙成绩较好,然后比较方差得到丙的状态稳定,即可决定选丙去参赛.【详解】∵甲、丙的平均数比乙、丁大,∴甲和丙成绩较好,∵丙的方差比甲的小,∴丙的成绩比较稳定,∴丙的成绩较好且状态稳定,应选的是丙,故选:B.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.9.B解析:B【分析】A、由于这八个班的人数不一定相等,故全年级学生的平均成绩应等于所有学生成绩的和除以学生人数;B、由于全年级学生的平均成绩等于所有学生成绩的和除以学生人数,故全年级学生的平均成绩一定在这八个平均成绩的最小值与最大值之间;C、由于这八个班的人数不一定相等,故这10个平均成绩的中位数不一定是全年级学生的平均成绩;D、众数是一组数据中出现次数最多的数,能反映数据的集中程度,平均数也能反映数据的集中程度,是有可能相等的.【详解】A、全年级学生的平均成绩应等于所有学生成绩的和除以学生人数,而这八个班的人数不一定相等,故错误;B、由于全年级学生的平均成绩等于所有学生成绩的和除以学生人数,故全年级学生的平均成绩一定在这八个平均成绩的最小值与最大值之间,故正确;C、中位数不一定与平均数相等,故错误;D、众数与平均数有可能相等,故错误.故选B.【点睛】本题考查了平均数、中位数、众数的关系,它们有可能相等,也可能不相等.10.C解析:C【分析】根据加权平均数公式列出算式求解即可.【详解】解:这45名同学一天的生活费用的平均数=103159201525123062145⨯+⨯+⨯+⨯+⨯=.故答案为C.【点睛】本题考查了加权平均数的计算,读懂题意,正确的运用公式是解题的关键11.D解析:D【分析】方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.【详解】依题意可得,平均数:45mx∴224441555m mm解得m=1,故选D.【点睛】本题考查了方差,熟练运用方差公式是解题的关键.12.D解析:D【分析】依据平均数、中位数、众数、方差的定义和公式分别计算新旧两组数据的平均数、中位数、众数、方差求解即可.【详解】原数据的3,4,4,5的平均数为3+4+4+5=44, 原数据的3,4,4,5的中位数为4+4=24, 原数据的3,4,4,5的众数为4,原数据的3,4,4,5的方差为14×[(3-4)2+(4-4)2×2+(5-4)2]=0.5; 新数据3,4,4,4,5的平均数为3+4+4+4+5=45, 新数据3,4,4,4,5的中位数为4, 新数据3,4,4,4,5的众数为4,新数据3,4,4,4,5的方差为15×[(3-4)2+(4-4)2×3+(5-4)2]=0.4; ∴添加一个数据4,方差发生变化, 故选D . 【点睛】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.二、填空题13.912【分析】利用平均数求法和方差的方法分别列式求得平均数和方差得出答案即可【详解】∵x1x2…xn 的平均数为2∴x1+x2+…+xn=2n ∴=2×2+5=9∵原平均数为2新数据的平均数变为9则原来解析:9 12 【分析】利用平均数求法和方差的方法分别列式求得平均数和方差得出答案即可. 【详解】∵x 1、x 2、…x n 的平均数为2, ∴x 1+x 2+…+x n =2n , ∴12252525n x x x n++++⋯++ =2×2+5=9,∵原平均数为2,新数据的平均数变为9, 则原来的方差S 12=1n[(x 1-2)2+(x 2-2)2+…+(x n -2)2]=3, 现在的方差S 22=1n[(2x 1+5-9)2+(2x 2+5-9)2+…+(2x n +5-9)2] =1n[4(x 1-2)2+4(x 2-2)2+…+4(x n -2)2]=4×3=12. 故答案为:9,12.【点睛】此题考查平均数与方差的意义,掌握平均数与方差的计算方法是解题的关键.14.甲【分析】先比较平均数得到甲和乙产量较高然后比较方差得到甲比较稳定【详解】解:因为甲乙的平均数比丙大所以甲乙的产量较高又甲的方差比乙小所以甲的产量比较稳定即从这三个品种中选出一种产量既高又稳定的枇杷解析:甲【分析】先比较平均数得到甲和乙产量较高,然后比较方差得到甲比较稳定.【详解】解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高,又甲的方差比乙小,所以甲的产量比较稳定,即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲;故答案为:甲.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数.15.4【分析】首先根据其平均数为5求得a的值然后再根据方差的计算方法计算即可【详解】解:根据题意得(4+5+a+6+8)=5×5解得a=2则这组数据为45268的平均数为5所以这组数据的方差为s2=(4解析:4【分析】首先根据其平均数为5求得a的值,然后再根据方差的计算方法计算即可.【详解】解:根据题意得(4+5+a+6+8)=5×5,解得a=2,则这组数据为4,5,2,6,8的平均数为5,所以这组数据的方差为s2= 15[(4-5)2+(5-5)2+(2-5)2+(6-5)2+(8-5)2]=4.故答案为:4【点睛】本题考查方差的定义、意义、计算公式,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16.【分析】根据平均数的计算公式可得再根据众数是5所以可得xy中必须有一个5则另一个就是6通过方差的计算公式计算即可【详解】解:∵一组数据的平均数为6众数为5∴中至少有一个是5∵一组数据的平均数为6∴∴解析:83【分析】根据平均数的计算公式,可得11x y +=,再根据众数是5,所以可得x,y 中必须有一个5,则另一个就是6,通过方差的计算公式计算即可.【详解】解:∵一组数据4,,5,,7,9x y 的平均数为6,众数为5,∴,x y 中至少有一个是5,∵一组数据4,,5,,7,9x y 的平均数为6, ∴()4579166x y +++++=, ∴11x y +=,∴,x y 中一个是5,另一个是6, ∴这组数据的方差为()()()()()22222846256661[]676963-+-+-+-+-=; 故答案为83. 【点睛】 本题是一道数据统计中的综合性题目,涉及知识点较多,应当熟练掌握,特别是记忆方差的计算公式.17.乙【解析】【分析】直接利用方差的意义方差越小越稳定进而分析得出答案【详解】∵方差=1515<28∴射击成绩较稳定的是:乙故答案为:乙【点睛】此题主要考查了方差正确把握方差的意义是解题关键解析:乙【解析】【分析】直接利用方差的意义,方差越小越稳定,进而分析得出答案.【详解】∵方差222.8,S S =甲乙=1.5,1.5<2.8,∴射击成绩较稳定的是:乙.故答案为:乙.【点睛】此题主要考查了方差,正确把握方差的意义是解题关键.18.9【解析】【分析】根据平均数的定义先求出x 的值再根据中位数的定义即可得出答案【详解】根据平均数的定义可知(5+10+15+x+9)÷5=8解得:x=1把这组数据从小到大的顺序排列为1591015处于解析:9【解析】根据平均数的定义先求出x的值,再根据中位数的定义即可得出答案.【详解】根据平均数的定义可知,(5+10+15+x+9)÷5=8,解得:x=1,把这组数据从小到大的顺序排列为1,5,9,10,15,处于中间位置的那个数是9,那么由中位数的定义可知,这组数据的中位数是9;故答案为9.【点睛】考查了中位数,掌握中位数的定义是本题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.19.68【分析】本题可用求平均数的公式解出x的值在运用方差的公式解出方差【详解】解:依题意得:5+8+x+10+4=2x×5所以x=32x=6方差s2==68【点睛】本题考查了算术平均数方差的计算方法熟解析:6.8【分析】本题可用求平均数的公式解出x的值,在运用方差的公式解出方差.【详解】解:依题意得:5+8+x+10+4=2x×5,所以x=3,2x=6,方差s2=15()()()()()222225-6+8-6+3-6+10-6+4-6⎡⎤⎣⎦=6.8,【点睛】本题考查了算术平均数、方差的计算方法,熟练掌握该知识点是本题解题的关键. 20.10【解析】分析:根据中位数为9可求出x的值继而可判断出众数详解:由题意得:(8+x)÷2=9解得:x=10则这组数据中出现次数最多的是10故众数为10故答案为10点睛:本题考查了中位数及众数的知识解析:10【解析】分析:根据中位数为9,可求出x的值,继而可判断出众数.详解:由题意得:(8+x)÷2=9,解得:x=10,则这组数据中出现次数最多的是10,故众数为10.故答案为10.点睛:本题考查了中位数及众数的知识,属于基础题,掌握中位数及众数的定义是关键.三、解答题21.(1)40,40;(2)平均数为60,方差160;(3)见解析.(1)由“他们5次考试的总成绩相同”可求得a的值,利用极差的定义求解可得;(2)利用方差公式计算出乙的方差;(3)根据平均数与方差的意义进行判断,即可得出结论.【详解】解:(1)a=(80+40+70+50+60)﹣(70+50+70+70)=40,甲同学成绩的极差为:80﹣40=40,故答案为:40,40;(2)乙同学的成绩平均数为15×(70+50+70+40+70)=60,方差S乙2=15[(70﹣60)2+(50﹣60)2+(70﹣60)2+(40﹣60)2+(70﹣60)2]=160;(3)因为甲乙两位同学的平均数相同,S甲2>S乙2,所以乙同学的成绩更稳定.【点睛】本题主要考查平均数、方差,解题的关键是掌握方差、平均数、极差的计算方法和方差的意义.22.(1)证明见解析;(2)4.【解析】【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【详解】(1)∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD是菱形,∴AC=2OC=4,BD=2OD=2,∴菱形ABCD的面积为:12AC•BD=12×4×2=4,故答案为4.【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.23.(1)85;(2)最终候选人E将参加说题比赛【分析】(1)根据中位数的定义直接进行解答即可;(2)根据算术平均数的计算公式先求出C、E两名候选人的平均成绩,再进行比较,即可【详解】解:(1)把这些数从小到大排列为:75,83,85,90,90,则名候选人模拟说题比赛成绩的中位数是85分;故答案为:85;(2)∵C 的平均成绩是:952803905235⨯+⨯+⨯++=88(分), E 的平均成绩是:852*********⨯+⨯+⨯++=89(分), ∴88<89,∴最终候选人E 将参加说题比赛.【点睛】本题考查中位数、平均数,加权平均数等知识,解题的关键是理解平均数的定义. 24.(1)方案三;(2)①该校1200名学生竞赛成绩的中位数落在9095x ≤<分数段内;②该校1200名学生中达到“优秀”的学生总人数为840人【分析】(1)抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的.(2)①根据中位数的定义,即可求出这次竞赛成绩的中位数所落的分数段;②用优秀率乘以该校共有的学生数,即可求出答案.【详解】解:(1)要调查学生的答题情况,需要考虑样本具有广泛性与代表性,就是抽取的样本必须是随机的,则抽取的样本具有代表性的方案是方案三.答案是:方案三;(2)①∵由表可知样本共有100名学生,∴这次竞赛成绩的中位数是第50和51个数的平均数,∴这次竞赛成绩的中位数落在落在9095x ≤<分数段内;∴该校1200名学生竞赛成绩的中位数落在9095x ≤<分数段内;②由题意得:120070%840⨯=(人).∴该校1200名学生中达到“优秀”的学生总人数为840人.【点睛】解决此题,需要能从统计表中获取必要的信息,根据题意列出算式是本题的关键,用到的知识点是抽样的可靠性,中位数的定义,用样本估计总体等.25.(1)50,32;(2)众数为4;中位数是3;(3)420【分析】(1)根据2台的人数和所占百分比可求出调查的学生总人数,用4台的人数除以总人数可得m 的值;(2)根据众数和中位数的定义求解;(3)用1500乘以拥有3台移动设备的学生人数所占的百分比即可.解:(1)本次接受随机抽样调查的学生人数为:10÷20%=50(人),16%100%32%50m , ∴m =32,故答案为:50,32; (2)∵这组样本数据中,4出现了16次,出现次数最多,∴这组数据的众数为4;∵将这组数据从小到大排列,其中处于中间的两个数均为3,且332+=3, ∴这组数据的中位数是3;(3)1500×28%=420(人),答:估计该校学生家庭中;拥有3台移动设备的学生人数约为420人.【点睛】本题考查了条形统计图和扇形统计图的综合运用,众数和中位数的定义以及样本估计总体,能够从不同的统计图中获取有用信息是解题的关键.26.(1)11,10,78,81;(2)90人;(3)八年级学生对经典文化知识掌握的总体水平较好,理由是八年级学生成绩的中位数较高【分析】(1)根据已知数据及中位数和众数的概念求解即可.(2)利用样本估计总体思想求解可得.(3)答案不唯一,合理即可.【详解】(1)a=11,b=10,c=78,d=81(2)312009040⨯=(人) 答:估计七八年级90分以上的学生共90人(3)八年级学生对经典文化知识掌握的总体水平较好,理由:八年级学生成绩的中位数较高【点睛】本题考查了概率统计的问题,掌握中位数和众数的概念、利用样本估计总体的方法是解题的关键.。

人教版初中数学八年级数学下册第五单元《数据的分析》测试(包含答案解析)(1)

人教版初中数学八年级数学下册第五单元《数据的分析》测试(包含答案解析)(1)

一、选择题1.为评估一种农作物的种植效果,选了8块地作试验田,这8块地的亩产量(单位:kg )分别为1x ,2x ,…,8x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A .1x ,2x ,…,8x 的平均数B .1x ,2x ,…,8x 的方差C .1x ,2x ,…,8x 的中位数D .1x ,2x ,…,8x 的众数2.某校规定学生的学期学业成绩由三部分组成:平时成绩占20%,期中成绩占30%,期末成绩占50%,小颖的平时、期中、期末成绩分别为85分、90分、92分,则她本学期的学业成绩为( ) A .85B .90C .92D .893.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班的学生成绩统计如下: 成绩(分) 60 70 80 90 100 人 数4812115则该办学生成绩的众数和中位数分别是( ) A .70分,80分 B .80分,80分 C .90分,80分 D .80分,90分4.某商场统计五个月来两种型号洗衣机的销售情况,制成了条形统计图,则在五个月中,下列说法正确的是( )A .甲销售量比乙销售量稳定B .乙销售量比甲销售量稳定C .甲销售量与乙销售量一样稳定D .无法比较两种洗衣机销售量稳定性5.已知数据12,,,n x x x 的平均数是2,方差是0.1,则1242,42,,42n x x x ---的平均数和标准差分别为( ) A .2,1.6B .2,105C .6,0.4D .6,1056.下图是2019年5月17日至31日某市的空气质量指数趋势图.(说明:空气质量指数为0-50、51-100、101-150分别表示空气质量为优、良、轻度污染) 有如下结论:①在此次统计中,空气质量为优的天数少于轻度污染的天数; ②在此次统计中,空气质量为优良的天数占45; ③20,21,22三日的空气质量指数的方差小于26,27,28三日的空气质量指数的方差. 上述结论中,所有正确结论的序号是( ) A .①B .①③C .②③D .①②③7.给出下列命题:①三角形的三条高相交于一点;②如果一组数据中有一个数据变动,那么它的平均数、众数、中位数都随之变动; ③如果不等式()33m x m ->-的解集为1x <,那么3m <;④如果三角形的一个外角等于与它相邻的一个内角则这个三角形是直角三角形; 其中正确的命题有( ) A .1个 B .2个 C .3个 D .4个 8.一组数据3,4,6,8,8,9的中位数和众数分别是( )A .7,8B .7,8,5C .5,8D .7,5,7 9.样本数据4,m ,5,n ,9的平均数是6,众数是9,则这组数据的中位数是( ) A .3B .4C .5D .910.有甲乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码不重复的整数,乙箱内没有球。

沪科版八年级数学下册《数据的初步分析》单元试卷检测练习及答案解析

沪科版八年级数学下册《数据的初步分析》单元试卷检测练习及答案解析

沪科版八年级数学下册《数据的初步分析》单元试卷检测练习及答案解析一、选择题1、已知一个样本容量为50,在频数分布直方图中,各小长方形的高比为2:3:4:1,那么第二组的频数是()A.10 B.20 C.15 D.52、在-(-3),(-3)2,(-3)3,︱-3︱中,负数出现的频率为()A.25%B.50%C.75%D.100%3、为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8-10小时之间的学生大约是( )A.280 B.240C.300 D.2604、下列说法正确的是().A.频数越小,频率越大B.频数大,频率也一定大C.频数一定时,频率越小,总次数越大D.频数很大时,频率可能超过15、“提笔忘字”正成为一个令人忧心的文化现象,为了提高中学生的汉字听写能力,我市某中学组织50名学生参加“中国梦•汉字情”中小学规范汉字听写大赛,成绩如下:这些学生成绩的中位数和众数分别是()A. 93分,94分B. 90分,94分C. 93分,93分D. 94分,93分6、在一次体育测试中,小芳所在小组8人的成绩分别是:,则这8人体育成绩的中位数和众数分别是A.B.C.D.7、某科普小组有5名成员,身高分别为(单位:cm):160,165,170,163,167.增加1名身高为165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数不变,方差不变B.平均数不变,方差变大C.平均数不变,方差变小D.平均数变小,方差不变8、某校有9名同学报名参加科技竞赛,学校通过测试取前4名参加决赛,测试成绩各不相同,小英已经知道了自己的成绩,她想知道自己能否参加决赛,还需要知道这9名同学测试成绩的()A.中位数B.平均数C.众数D.方差二、填空题9、袋子中有红球、白球共10个,这些球除颜色外都相同,将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断重复这一过程,摸了100次后,发现有30次摸到红球,请你估计这个袋中红球约有___个。

(易错题)初中数学八年级数学下册第五单元《数据的分析》测试题(答案解析)

(易错题)初中数学八年级数学下册第五单元《数据的分析》测试题(答案解析)

一、选择题1.已知5个数1a 、2a 、3a 、4a 、5a 的平均数是a ,则数据11a +、22a +、33a +、44a +、55a +的平均数为( )A .aB .3a +C .56a D .15a +2.某校规定学生的学期学业成绩由三部分组成:平时成绩占20%,期中成绩占30%,期末成绩占50%,小颖的平时、期中、期末成绩分别为85分、90分、92分,则她本学期的学业成绩为( ) A .85B .90C .92D .893.某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是( ) A .88.5 B .86.5 C .90 D .90.5 4.一组数据,6、4、a 、3、2的平均数是5,这组数据的方差为( ) A .8B .5C .6D .35.一组数据,,,,,,a b c d e f g 的平均数是m ,极差是k ,方差是n ,则23,23,23,23,23,23------a b d e f g 的平均数、极差、和方差分别是( )A .222、、m k nB .23232m k n --、、C .232-、、4m k nD .2323--、、4m k n6.下列说法正确的是( )A .为了解我国中学生课外阅读的情况,应采取全面调查的方式B .一组数据1、2、5、5、5、3、3的中位数和众数都是5C .若甲组数据的方差是003,乙组数据的方差是0.1,则甲组数据比乙组数据稳定D .抛掷一枚硬币100次,一定有50次“正面朝上”7.某校10名学生参加某项比赛成绩统计如图所示。

对于这10名学生的参赛成绩,下列说法中错误的是( )A .众数是90B .中位数是90C .平均数是90D .参赛学生最高成绩与最低成绩之差是158.如图是根据我市某天七个整点时的气温绘制成的统计图,则下列说法正确的是()A.这组数据的众数是14B.这组数据的中位数是31C.这组数据的标准差是4D.这组是数据的极差是99.有一组数据:1,1,1,1,m.若这组数据的方差是0,则m为()A.4-B.1-C.0 D.110.为参加全市中学生足球赛.某中学从全校学生中选拔22名足球运动员组建校足球队,这22名运动员的年龄(岁)如下表所示,该足球队队员的平均年龄是()年龄(岁)12131415人数71032A.12岁B.13岁C.14岁D.15岁11.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的()A.平均数B.方差C.众数D.中位数12.甲、乙两位射击运动员参加射击训练,各射击20次,成绩如下表所示:设甲、乙两位运动员射击成绩的方差分别为S 2甲和S2乙,则下列说法正确的是( )A.S2甲<S2乙B.S 2甲=S2乙C.S 2甲>S2乙D.无法比较S 2甲和S2乙的大小二、填空题13.若一组数据1,2,a,3,5的平均数是3,则这组数据的标准差是______.14.一组数据1,0,2,1的方差S2=_____.15.已知一组数据为:5,3,3,6,3则这组数据的方差是______.16.设甲组数据:6,6,6,6,的方差为2s甲,乙组数据:1,1,2的方差为2s乙,则2s与2s乙的大小关系是________.甲17.已知一组数据的方差s2=14[(x1﹣6)2+(x2﹣6)2+(x3﹣6)2+(x4﹣6)2],那么这组数据的总和为_____.18.现有甲、乙两个合唱队队员的平均身高均为170cm,方差分别是2S甲,2S乙,且22S S<甲乙,则两个队的队员的身高较整齐的是______.19.如图,在边长为4的等边ABC中,D,E分别为AB,BC的中点,EF AC⊥于点F,G为EF的中点,连接DG,则DG的长为__________.20.某班一次数学竞赛考试成绩如下表所示,已知全班共有38人,且众数为60分,中位数为70分,则x2-2y=_________.成绩(分)30405060708090100人数235x6y34三、解答题21.甲、乙两位同学5次数学选拔赛的成绩统计如表,他们5次考试的总成绩相同,请同学们完成下列问题:第1次第2次第3次第4次第5次甲成绩8040705060乙成绩705070a70=,甲同学成绩的极差为;(2)小颖计算了甲同学的成绩平均数为60,方差是S甲2=15[(80﹣60)2+(40﹣60)2+(70﹣60)2+(50﹣60)2+(60﹣60)2]=200.请你求出乙同学成绩的平均数和方差;(3)从平均数和方差的角度分析,甲、乙两位同学谁的成绩更稳定.22.某公司共有三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图.各部门人数及每人所创年利润统计表部门员工人数每人所创的年利润/万元A510B 8C5(1)①在扇形图中,C部门所对应的圆心角的度数为___________;②在统计表中,___________,___________;(2)求这个公司平均每人所创年利润.23.为选拔优秀选手参加瑶海区第八届德育文化艺术节“诵经典”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示(1)根据图示填写下表班级平均数(分)中位数(分)众数(分)九(1)8585九(2)80(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差,并说明哪个班五名选手的成绩较稳定.24.为宣传6月6日世界海洋日,某校九年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(如图).表1知识竞赛成绩分组统计表 组别分数/分 频数A6070x ≤< aB7080x ≤< 10 C8090x ≤< 14 D90100x ≤<18请根据图表信息解答以下问题:(1)本次调查一共随机抽取了________个参赛学生的成绩,表1中a =________; (2)所抽取的参赛学生的成绩的中位数落在的“组别”是________;(3)请你估计,该校九年级竞赛成绩达到80分以上(含80分)的学生约多少人? 25.如图1,A ,B ,C 是郑州市二七区三个垃圾存放点,点B ,C 分别位于点A 的正北和正东方向,40AC =米.八位环卫工人分别测得的BC 长度如下表:甲 丁 丙 丁 戊 戌 申 辰 BC (单位:m )8476788270848680他们又调查了各点的垃圾量,并绘制了下列间不完整的统计图2.(1)表中的中位数是 、众数是 ; (2)求表中BC 长度的平均数x ; (3)求A 处的垃圾量,并将图2补充完整;(4)用(2)中的x 作为BC 的长度,要将A 处的垃圾沿道路AB 都运到B 处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.26.八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(单位:分): 甲 78 9 7 10 10 910 10 10乙 10 8 7 9 8 10 10 910 9)甲队成绩的中位数是 分,乙队成绩的众数是 分; (2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4 分 2,则成绩较为整齐的是 队.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据数据11a +、22a +、33a +、44a +、55a +比数据1a 、2a 、3a 、4a 、5a 的和多15,可得数据11a +、22a +、33a +、44a +、55a +的平均数比a 多3,据此求解即可 【详解】解:a+()()24512345132+4+51+3+-+a a a a a a a a a a ++++++++⎡⎤⎣⎦ ÷5 =a+[1+2+3+4+5] ÷5 =a+15÷5 =a+3 故选:B此题主要考察了算术平均数的含义和求法,解题关键是判断出:数据11a +、22a +、33a +、44a +、55a +比数据1a 、2a 、3a 、4a 、5a 的平均数多3.2.B解析:B 【分析】根据加权平均数的计算方法可以得解. 【详解】解:由题意得,小颖本学期的学业成绩为:8520%9030%9250%17274690⨯+⨯+⨯=++=(分), 故选B . 【点睛】本题考查加权平均数的计算,熟练掌握加权平均法的计算方法是解题关键.3.A解析:A 【分析】根据加权平均数的计算公式,用95分,90分,85分别乘以它们的百分比,再求和即可. 【详解】根据题意得:95×20%+90×30%+85×50%=88.5(分), 即小彤这学期的体育成绩为88.5分. 故选A . 【点睛】本题考查了加权平均数的计算,熟练掌握公式是解题关键.4.A解析:A 【分析】先由平均数的公式计算出a 的值,再根据方差的公式计算即可. 【详解】∵数据6、4、a 、3、2平均数为5, ∴(6+4+2+3+a )÷5=5, 解得:a=10, ∴这组数据的方差是15[(6-5)2+(4-5)2+(10-5)2+(2-5)2+(3-5)2]=8. 故选:A . 【点睛】此题考查平均数,方差,解题关键在于掌握它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.5.C【分析】根据平均数、极差和方差的变化规律即可得出答案.【详解】∵数据a、b、c、d、e、f、g的平均数是m,∴2a−3、2b−3、2c−3、2d−3、2e−3、2f−3、2g−3的平均数是2m−3;∵数据a、b、c、d、e、f、g的极数是k,∴2a−3、2b−3、2c−3、2d−3、2e−3、2f−3、2g−3的平均数是2k;∵数据a、b、c、d、e、f、g的方差是n,∴数据2a−3、2b−3、2c−3、2d−3、2e−3、2f−3、2g−3的方差是224n n;故选C.【点睛】此题考查方差、极差、算术平均数,解题关键在于掌握方差、极差、算术平均数变化规律即可.6.C解析:C【分析】可根据调查的选择、中位数和众数的求法、方差及随机事件的意义,逐个判断得结论.【详解】解:因为我国中学生人数众多,其课外阅读的情况也不需要特别精确,所以对我国中学生课外阅读情况的调查,宜采用抽样调查,故选项A不正确;因为B中数据按从小到大排列为1、2、3、3、5、5、5,位于中间的数是3,故该组数据的中位数为3,所以选项B说法不正确;因为0.003<0.1,方差越小,波动越小,数据越稳定,所以甲组数据比乙组数据稳定,故选项C说法正确;因为抛掷硬币属于随机事件,抛掷一枚硬币100次,不一定有50次“正面朝上”故选项D说法不正确.故选:C.【点睛】本题的关键在于掌握调查的选择、中位数和众数的求法、方差及随机事件的意义.7.C解析:C【分析】根据众数、中位数、平均数、极差的定义和统计图中提供的数据分别列出算式,求出答案.【详解】解:∵90出现了5次,出现的次数最多,∴众数是90;故A正确;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;故B正确;∵平均数是(80×1+85×2+90×5+95×2)÷10=89;故C错误;参赛学生最高成绩与最低成绩之差是:95-80=15;故D正确.故选:C.【点睛】此题考查了折线统计图,用到的知识点是众数、中位数、平均数、极差,关键是能从统计图中获得有关数据,求出众数、中位数、平均数、极差.8.D解析:D【解析】【分析】根据中位数,众数、极差、标准差的定义即可判断.【详解】解:七个整点时数据为:22,22,23,26,28,30,31所以中位数为26,众数为22,平均数为:22+22+23+26+28+3032167+=;极差是31-22=9,标准差是:故D正确,故选:D【点睛】此题考查中位数,众数、极差、标准差的定义,解题关键在于看懂图中数据9.D解析:D【分析】方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.【详解】依题意可得,平均数:45mx∴224441555m mm解得m=1,故选D.【点睛】本题考查了方差,熟练运用方差公式是解题的关键.10.B解析:B【解析】【分析】直接利用加权平均数的定义计算可得.【详解】解:该足球队队员的平均年龄是127131014315222⨯+⨯+⨯+⨯=13(岁),故选:B.【点睛】本题考查了加权平均数,解题的关键是掌握加权平均数的定义.11.B解析:B【分析】平均数、众数、中位数反映的是数据的集中趋势,方差反映的是数据的离散程度,方差越大,说明这组数据越不稳定,方差越小,说明这组数据越稳定.【详解】解:由于方差能反映数据的稳定性,故需要比较这两名同学5次短跑训练成绩的方差.故选B.【点睛】考核知识点:均数、众数、中位数、方差的意义.12.C解析:C【解析】【分析】先计算两组数据的平均数,再计算它们的方差,选择正确的答案即可.【详解】甲的平均数为:120×5×(7+8+9+10)=172乙的平均数为:120×(4×7+6×8+6×9+4×10)=172S甲2=120×{5×[(7-172)2+(8-172)2+(9-172)2+(10-172)2]}=14×[94+14+14+94]=54;S 乙2=120×[4×[(7-172)2+6×(8-172)2+6×(9-172)2+4×(10-172)2]=120×[9+64+64+9] =2120; ∵54>2120∴S 甲2>S 乙2 故选C . 【点睛】此题主要考查了平均数及方差的知识.方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.二、填空题13.【分析】根据题意可得×(1+3+2+5+a)=3解这个方程就可以求出a 的值;根据标准差的计算公式即可求出样本标准差【详解】根据题意由平均数的定义得×(1+3+2+5+a)=3解得a=4所以方差为:S【分析】根据题意可得15×(1+3+2+5+a)=3,解这个方程就可以求出a 的值;根据标准差的计算公式即可求出样本标准差. 【详解】根据题意 由平均数的定义得15×(1+3+2+5+a)=3, 解得,a=4.所以方差为:S 2=()()()()()2222213-1+3-3+3-2+3-5+3-4=5⎡⎤⨯⎣⎦2,. 【点睛】此题考查平均数的概念,解题关键在于掌握计算公式.14.05【分析】利用方差的计算公式计算即可【详解】解:则故答案为05【点睛】本题考查的是方差的计算掌握方差的计算公式是解题的关键解析:0.5【分析】利用方差的计算公式计算即可. 【详解】 解:1x (1021)14=+++=, 则222221(11)(01)(21)(11)0.54S ⎡⎤=-+-+-+-=⎣⎦, 故答案为0.5. 【点睛】本题考查的是方差的计算,掌握方差的计算公式()()()2222121n S x x x x x x n ⎡⎤=-+-+⋯+-⎣⎦是解题的关键. 15.【解析】【分析】先求出平均数再根据方差的公式计算即可【详解】这组数据的平均数是:则这组数据的方差是;故答案为【点睛】此题考查了方差:一般地设n 个数据的平均数为则方差它反映了一组数据的波动大小方差越大 解析:1.6【解析】 【分析】先求出平均数,再根据方差的公式计算即可. 【详解】这组数据的平均数是:()5336354++++÷=, 则这组数据的方差是(22221S [(54)3(34)64) 1.65⎤=-+⨯-+-=⎦; 故答案为1.6. 【点睛】此题考查了方差:一般地设n 个数据,1x ,2x ,n x ⋯的平均数为x ,则方差(222212n 1S [(x x)(x x)x x)n⎤=-+-+⋯+-⎦,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16.与【分析】根据方差的意义进行判断【详解】解:因为甲组的数据都相等没有波动而乙组数有波动所以s 甲2<s 乙2故答案为s 甲2<s 乙2【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量方差越大则平解析:2s 甲与2s <乙 【分析】根据方差的意义进行判断. 【详解】解:因为甲组的数据都相等,没有波动,而乙组数有波动, 所以s 甲2<s 乙2.故答案为s 甲2<s 乙2. 【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.17.24【分析】根据方差公式S2=(x1﹣)2+(x2﹣)2+…+(xn ﹣)2中各个字母表示的意义得出这组数据的平均数是6数据个数是4从而得出这组数据的总和【详解】∵s2=(x1﹣6)2+(x2﹣6)2解析:24 【分析】根据方差公式S 2=1n[(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2]中各个字母表示的意义,得出这组数据的平均数是6,数据个数是4,从而得出这组数据的总和. 【详解】∵s 2=14[(x 1﹣6)2+(x 2﹣6)2+(x 3﹣6)2+(x 4﹣6)2],∴这组数据的平均数是6,数据个数是4,∴这组数据的总和为4×6=24. 故答案为24. 【点睛】本题考查了方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2]. 18.甲【解析】【分析】根据方差小的身高稳定判断即可【详解】现有甲乙两个合唱队队员的平均身高均为170cm 方差分别是且则两个队的队员的身高较整齐的是甲故答案为:甲【点睛】此题考查了方差方差是用来衡量一组数解析:甲 【解析】 【分析】根据方差小的身高稳定判断即可. 【详解】现有甲、乙两个合唱队队员的平均身高均为170cm ,方差分别是2S 甲,2S 乙,且22S S 甲乙,则两个队的队员的身高较整齐的是甲, 故答案为:甲 【点睛】此题考查了方差,方差是用来衡量一组数据波动大小的量.19.【解析】分析:连接DE 根据题意可得ΔDEG 是直角三角形然后根据勾股定理即可求解DG 的长详解:连接DE ∵DE 分别是ABBC 的中点∴DE ∥ACDE=AC ∵ΔABC 是等边三角形且BC=4∴∠DEB=60°解析:192【解析】 分析:连接DE ,根据题意可得ΔDEG 是直角三角形,然后根据勾股定理即可求解DG 的长. 详解:连接DE ,∵D 、E 分别是AB 、BC 的中点, ∴DE ∥AC ,DE=12AC ∵ΔABC 是等边三角形,且BC=4 ∴∠DEB=60°,DE=2 ∵EF ⊥AC ,∠C=60°,EC=2 ∴∠FEC=30°,3∴∠DEG=180°-60°-30°=90° ∵G 是EF 的中点, ∴EG=32. 在RtΔDEG 中,22223192()2DE EG +=+=192点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.20.50【分析】由于全班共有38人则x+y=38-(2+3+5+6+3+4)=15结合众数为50分中位数为60分分情况讨论即可确定xy 之值从而求出x2-2y 之值【详解】∵全班共有38人∴x+y=38-(解析:50 【分析】由于全班共有38人,则x+y=38-(2+3+5+6+3+4)=15,结合众数为50分,中位数为60分,分情况讨论即可确定x 、y 之值,从而求出x 2-2y 之值. 【详解】 ∵全班共有38人,∴x+y=38-(2+3+5+6+3+4)=15,又∵众数为60分,∴x≥8,当x=8时,y=7,中位数是第19,20两个数的都为70分,则中位数为70分,符合题意;当x=9时,y=6,中位数是第19,20两个数的平均数,则中位数为(60+70)÷2=65分,不符合题意;同理当x=10,11,12,13,14,15时,中位数都不等于70分,不符合题意.则x=8,y=7.则x2-2y=64-14=50.故答案为50.【点睛】此题主要考查了中位数和众数的应用,关键是根据众数的人数和中位数的数值进行分类讨论x、y的取值.三、解答题21.(1)40,40;(2)平均数为60,方差160;(3)见解析.【分析】(1)由“他们5次考试的总成绩相同”可求得a的值,利用极差的定义求解可得;(2)利用方差公式计算出乙的方差;(3)根据平均数与方差的意义进行判断,即可得出结论.【详解】解:(1)a=(80+40+70+50+60)﹣(70+50+70+70)=40,甲同学成绩的极差为:80﹣40=40,故答案为:40,40;(2)乙同学的成绩平均数为15×(70+50+70+40+70)=60,方差S乙2=15[(70﹣60)2+(50﹣60)2+(70﹣60)2+(40﹣60)2+(70﹣60)2]=160;(3)因为甲乙两位同学的平均数相同,S甲2>S乙2,所以乙同学的成绩更稳定.【点睛】本题主要考查平均数、方差,解题的关键是掌握方差、平均数、极差的计算方法和方差的意义.22.(1)①108°;②9,6;(2)7.6万元.【解析】试题分析:(1)①在扇形图中,由C部门所占比例乘以360°即可得出C部门所对应的圆心角的度数.②先计算出A部门所占比例,再计算出总人数,根据B、C部门所占比例即可求出b、c的值.(2)利用加权平均数的计算公式计算即可.试题(1)①360°×30%=108°;②∵a%=1-45%-30%=25% 5÷25%=20 ∴20×45%=9(人) 20×30%=6(人)(2)10×25%+8×45%+5×30%=7.6答:这个公司平均每人所创年利润是7.6万元. 考点:1.扇形统计图;2.加权平均数. 23.(1)(3)九(1)班五名选手的成绩较稳定. 【分析】(1)观察图分别写出九(1)班和九(2)班5名选手的复赛成绩,然后根据中位数的定义和平均数的求法以及众数的定义求解即可; (2)在平均数相同的情况下,中位数高的成绩较好; (3)根据方差公式计算即可:()()()2222121x x x n n S x x x ⎡⎤=--++-⎢⎥⎣+⎦(可简单记忆为“等于差方的平均数”). 【详解】解:(1)由图可知九(1)班5名选手的复赛成绩为:75、80、85、85、100, ∴九(1)的中位数为85,把九(2)的成绩按从小到大的顺序排列为:70、75、80、100、100, ∴九(2)的平均数为(70+75+80+100+100)÷5=85, 九(2)班的众数是100;(3)215S =一班[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,21=5S 二班[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160.∵22S S 一班二班,∴九(1)班五名选手的成绩较稳定. 【点睛】本题考查了中位数、众数以及平均数的求法,同时也考查了方差公式,解题的关键是牢记定义并能熟练运用公式.24.(1)50; 8;(2)C 组;(3)320人 【分析】(1)利用统计表和扇形统计图中D 组的信息可得样本容量,从而得出表1中A 对应的人数;(2)成绩已经按照从小到大的顺序排列,找出最中间的2人,即第25和第26位,取二者的平均值即可;(3)先求出80分以上的比例,然后乘总人数可得. 【详解】解:(1)本次调查一共随机抽取学生:1836%50÷=(人),8a = (2)∵抽样了50人,则最中间的为第25和第26位的平均值 第25位落在C 组,第26位落在C 组 ∴中位数落在C 组(3)该校九年级竞赛成绩达到80分以上(含80分)的学生有141850032050+⨯=(人) 【点睛】本题考查调查与统计,解题关键是结合残缺不全的统计表和扇形统计图,得出样本容量. 25.(1)81米,84米;(2)80米;(3)80千克,图详见解析;(4)运垃圾所需的费用为 【分析】(1)根据中位数和众数的定义即可得; (2)根据平均数的计算公式121()n x x x x n=+++即可得;(3)先根据C 处垃圾量的扇形统计图和条形统计图信息求出三处垃圾总量,再减去B 、C 两处的垃圾量可得A 处的垃圾量,然后补全条形统计图即可;(4)先利用勾股定理求出AB 的长,再根据“运送1千克垃圾每米的费用为0.005元”列出式子求解即可得. 【详解】(1)由众数的定义得:众数是84米由中位数的定义,先将表中的数据从小到大进行顺序为70,76,78,80,82,84,84,86,则中位数是8082812+=(米) 故答案为:81米,84米; (2)由平均数的计算公式得:8476788270848680808x +++++++==(米)答:表中BC 长度的平均数x 为80米;(3)A 、B 、C 三处垃圾总量为32050%640÷=(千克) 则A 处的垃圾总量是:64032024080--=(千克) 补全条形统计图如下:(4)在直角ABC 中,22228040403AB BC AC -=-=∵运送1千克垃圾每米的费用为0.005元∴运垃圾所需的费用为403800.005163⨯= 答:运垃圾所需的费用为163 【点睛】本题考查了中位数、众数、平均数的定义,条形统计图和扇形统计图的信息关联等知识点,掌握并理解统计调查的相关概念是解题关键. 26.(1)9.5,10;(2)9分,1分2;(3)乙 【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;(2)先求出乙队的平均成绩,再根据方差公式进行计算;(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案. 【详解】(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分; 故答案为:9.5,10; (2)乙队的平均成绩是:()104827939110⨯+⨯++⨯=⨯(分), 则方差是:()()()()22224109211089793991⎡⎤⨯-+⨯-+-+⨯-=⎣⎦⨯(分2) ;(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1, ∴成绩较为整齐的是乙队; 故答案为:乙. 【点睛】本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n 个数据x 1,x 2,…x n 的平均数为x ,则方差S 2=()()()()22221231n x x x x x x x x n ⎡⎤-+-+-++-⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大.。

上海市八初级中学八年级数学下册第五单元《数据的分析》检测卷(含答案解析)

上海市八初级中学八年级数学下册第五单元《数据的分析》检测卷(含答案解析)

一、选择题1.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.2环,方差分别是20.56S =甲,20.45S =乙,20.50S =丙,20.60S =丁;则成绩最稳定的是( )A .甲B .乙C .丙D .丁2.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是( ) A .甲的成绩比乙的成绩稳定 B .乙的成绩比甲的成绩稳定 C .甲、乙两人的成绩一样稳定D .无法确定甲、乙的成绩谁更稳定3.某次数学趣味竞赛共有10道题目,每道题答对得10分,答错或不答得0分.全班40名同学的成绩的中位数和众数分别是( ) A .75,70 B .70,70C .80,80D .75,804.某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选( ) A .丁B .丙C .乙D .甲5.有甲乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码不重复的整数,乙箱内没有球。

已知某同学从甲箱内拿出49颗球放入乙箱后,乙箱内球的号码的中位数为40.若此时甲箱内有a 颗球的号码小于40,有b 颗球的号码大于40,则关于a,b 的值,下列选项正确的是( ) A .a=15B .a=16C .b=24D .b=356.今年上半年,我市某俱乐部举行山地越野车大赛,其中8名选手某项得分如下表:人数1232则这8名选手得分的平均数是()A.88 B.87 C.86 D.857.为参加全市中学生足球赛.某中学从全校学生中选拔22名足球运动员组建校足球队,这22名运动员的年龄(岁)如下表所示,该足球队队员的平均年龄是()年龄(岁)12131415人数71032A.12岁B.13岁C.14岁D.15岁8.某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82.下列关于这组数据的描述不正确的是()A.众数是108 B.中位数是105C.平均数是101 D.方差是939.一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):组员甲乙丙丁戊平均成绩众数得分8177808280A.80,80B.81,80C.80,2D.81,210.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,值周班长小兵每周对各小组合作学习的情况进行综合评分,下表是其中一周的评分结果“分值”这组数据的中位数和众数分别是( )A.89,90 B.90,90 C.88,95 D.90,9511.为了帮助我市一名贫困学生,某校组织捐款,现从全校所有学生的捐款数额中随机抽取10名学生的捐款数统计如下表:捐款金额/20305090元人数2431A.10名学生是总体的一个样本B.中位数是40C.众数是90D.方差是40012.某班体育委员记录了第一小组七位同学定点投篮(每人投10次)的情况,投进篮筐的个数为6,9,5,3,4,8,4,这组数据的众数是()A.3 B.4 C.5 D.8二、填空题13.有一组数据如下:2,3,3,4,则这组数据的方差是____________.14.某市某一周的PM2.5(大气中直径小于等于2.5微米的颗粒物,也称可入肺颗粒物指数)如表,则该周PM2.5指数的众数为________.15.某组数据的方差计算公式为S2=18[(x1﹣2)2+(x2﹣2)2+…+(x8﹣2)2],则该组数据的样本容量是_____,该组数据的平均数是_____.16.对一种环保电动汽车性能抽测,获得如下条形统计图.根据统计图可估计得被抽检电动汽车一次充电后平均里程数为______.17.某班45名同学的数学平均分是80分,其中女生有20名,她们的数学平均分为82分,那么这个班男同学的数学平均分为______分.18.某样本数据是:2,2,x,3,3,6如果这个样本的众数为2,那么这组数据的方差是______19.一组数据:3、5、8、x、6,若这组数据的极差为6,则x的值为__________. 20.已知x1,x2,x3的平均数x=10,方差s2=3,则2x1,2x2,2x3的平均数为__________,方差为__________.三、解答题21.嘉淇同学利用业余时间进行射击训练,一共射击 7 次,经过统计,制成如图所示的折线统计图.(1)这组成绩的众数是;中位数是;(2)求这组成绩的方差;22.为了解某校九年级学生的理化实验操作情况,随机抽查了40名同学实验操作的得分.根据获取的样本数据,制作了如下的条形统计图和扇形统计图.请根据相关信息,解答下列问题:(1)扇形①的圆心角的大小是度;(2)这40个样本数据的众数是_______;中位数是_______.(3)若该校九年级共有320名学生,估计该校理化实验操作得满分的学生人数.23.受疫情影响,某地无法按原计划正常开学.在延迟开学期间该地区组织了在线教学活动.开学后,某校针对各班在线教学的个性化落实情况,通过初评决定从甲、乙、丙三个班中推荐一个作为在线教学先进班级,下表是这三个班的五项指标的考评得分表(单位:分):根据统计表中的信息解答下列问题:(1)请确定如下的“五项指标的考评得分分析表”中的a、b、c的值:(2)如果学校把“课程设置”、“课程质量”、“在线答疑”、“作业情况”、“学生满意度”这五项指标得分按照2∶2∶3∶1∶2的比例确定最终成绩,请你通过计算判断应推荐哪个班为在线教学先进班级?24.某政府部门进行公务员招聘考试,其中三人中录取一人,他们的成绩如下:人 测试成绩 题目 甲 乙 丙 文化课知识 74 87 69 面试 58 74 70 平时表现874365(1)按照平均成绩甲、乙、丙谁应被录取?(2)若按照文化课知识、面试、平时表现的成绩已4:3:1的比例录取,甲、乙、丙谁应被录取?25.为宣传6月6日世界海洋日,某校九年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(如图).表1知识竞赛成绩分组统计表 组别分数/分 频数A6070x ≤< aB7080x ≤< 10 C8090x ≤< 14 D90100x ≤<18请根据图表信息解答以下问题:(1)本次调查一共随机抽取了________个参赛学生的成绩,表1中a =________; (2)所抽取的参赛学生的成绩的中位数落在的“组别”是________;(3)请你估计,该校九年级竞赛成绩达到80分以上(含80分)的学生约多少人? 26.某中学七、八年级各选10名同学参加“创全国文明城市”知识竞赛,计分10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或9分以上为优秀,这次竞赛后,七、八年级两支代表队成绩分布的条形统计图和成绩分析表如下,其中七年级代表队得6分、10分选手人数分别为a ,b .队列 平均分 中位数 方差 合格率 优秀率七年级 6.7m3.41 90% n八年级7.1 7.5 1.6980%10%(1)根据图表中的数据,求a ,b 的值. (2)直接写出表中的m = ,n = .(3)你是八年级学生,请你给出两条支持八年级队成绩好的理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】直接利用方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,进而分析即可. 【详解】解:∵20.56S =甲,20.45S =乙,20.50S 丙=,20.60S =丁, ∴2S 乙<2S 丙<2S 甲<2S 丁,∴成绩最稳定的是乙. 故选B . 【点睛】此题主要考查了方差,正确理解方差的意义是解题关键.2.B解析:B 【分析】根据方差的意义求解可得.【详解】∵乙的成绩方差<甲成绩的方差,∴乙的成绩比甲的成绩稳定,故选B.【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.3.A解析:A【分析】根据中位数和众数的定义解答即可.【详解】共40个数据中第20和第21个数分别是70、80,∴这组数据的中位数是75,这组数据中出现次数最多的是70,所以众数是70,故选:A.【点睛】此题考查了中位数和众数的定义,一组数据最中间的一个数或两个数的平均数是这组数据的中位数,出现次数最多的数是这组数据的众数,正确掌握定义是解题的关键.4.B解析:B【分析】先比较平均数得到甲和丙成绩较好,然后比较方差得到丙的状态稳定,即可决定选丙去参赛.【详解】∵甲、丙的平均数比乙、丁大,∴甲和丙成绩较好,∵丙的方差比甲的小,∴丙的成绩比较稳定,∴丙的成绩较好且状态稳定,应选的是丙,故选:B.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.5.A解析:A【分析】先求出甲箱的球数,再根据乙箱中位数40,得出乙箱中小于、大于40的球数,从而得出甲箱中小于40的球数和大于40的球数,即可求出答案.【详解】解:∵甲箱98−49=49(颗),∵乙箱中位数40,∴小于、大于40各有(49−1)÷2=24(颗),∴甲箱中小于40的球有39−24=15(颗),大于40的有49−15=34(颗),即a=15,b=34.故选:A【点睛】本题考查了中位数,正确进行分析,掌握中位数的概念是解题的关键.6.B解析:B【分析】由表可知,得分82的有1人,得分85的有2人,得分88的有3人,得分90的有2人.再根据平均数概念求解;【详解】解:(82×1+85×2+88×3+90×2)÷8= 87(分),所以平均数是87分.故选:B.【点睛】本题考查加权平均数的概念和计算方法,解题关键是熟练掌握加权平均数的计算公式. 7.B解析:B【解析】【分析】直接利用加权平均数的定义计算可得.【详解】解:该足球队队员的平均年龄是127131014315222⨯+⨯+⨯+⨯=13(岁),故选:B.【点睛】本题考查了加权平均数,解题的关键是掌握加权平均数的定义.8.D解析:D【分析】把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110,求出众数、中位数、平均数和方差,即可得出结论.【详解】解:把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110,∴众数是108,中位数为1021081052+=,平均数为82961021081081101016+++++=,方差为()()()()()()222222182101961011021011081011081011101016⎡⎤-+-+-+-+-+-⎣⎦ 94.393≈≠;故选D . 【点睛】考核知识点:众数、中位数、平均数和方差;理解定义,记住公式是关键.9.A解析:A 【分析】根据平均数的计算公式先求出丙的得分,再根据方差公式进行计算即可得出答案. 【详解】 根据题意得:805(81778082)80⨯-+++=(分),则丙的得分是80分; 众数是80, 故选A . 【点睛】考查了众数及平均数的定义,解题的关键是根据平均数求得丙的得分,难度不大.10.B解析:B 【解析】 【分析】根据中位数和众数的定义找出从小到大排列后最中间的数和出现次数最多的数即可. 【详解】把这组数据从小到大排列:84,89,90,90,90,91,96, 最中间的数是90,则中位数是90;90出现了3次,出现的次数最多,则众数是90; 故选B . 【点睛】此题考查了中位数和众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.11.D解析:D 【分析】根据样本、众数、中位数及方差的定义,结合表格分别进行解答,即可得出答案. 【详解】A 、10名学生的捐款数是总体的一个样本,故本选项错误;B 、中位数是30,故本选项错误;C 、众数是30,故本选项错误;D 、平均数是:(20×2+30×4+50×3+90)÷10=40(元), 则方差是:110×[2×(20﹣40)2+4×(30﹣40)2+3×(50﹣40)2+(90﹣40)2]=400,故本选项正确, 故选D . 【点睛】本题考查了中位数、方差、众数及样本的知识,掌握相关的定义以及求解方法是解题的关键.12.B解析:B 【解析】 【分析】众数是出现次数最多的数,据此求解即可. 【详解】∵数据4出现了2次,最多, ∴众数为4, 故选:B . 【点睛】本题考查了众数的知识,解题的关键是了解有关的定义,属于基础题,难度不大.二、填空题13.【分析】先由平均数的公式计算出平均数再根据方差的公式计算即可【详解】2334的平均数是(2+3+3+4)4=3;【点睛】方差等于样本中各数据与平均数差的平方之和再除以样本个数 解析:12【分析】先由平均数的公式计算出平均数,再根据方差的公式计算即可. 【详解】2,3,3,4的平均数是(2+3+3+4) ÷4= 3;2222211(32)(33)(33)(43)42S ⎡⎤=-+-+-+-=⎣⎦ 【点睛】方差等于样本中各数据与平均数差的平方之和再除以样本个数.14.150【分析】先求出PM25指数为150的天数再根据众数的定义以及性质求出众数即可【详解】∵PM25指数为150的天数∴该周PM25指数的众数为150故答案为:150【点睛】本题考查了众数的问题掌握解析:150【分析】先求出PM2.5指数为150的天数,再根据众数的定义以及性质求出众数即可.【详解】∵PM2.5指数为150的天数72113=---=∴该周PM2.5指数的众数为150故答案为:150.【点睛】本题考查了众数的问题,掌握众数的定义以及性质是解题的关键.15.82【分析】样本方差S2=(x1-)2+(x2-)2+…+(xn-)2其中n是这个样本的容量是样本的平均数利用此公式直接求解【详解】由于S2=(x1-2)2+(x2-2)2+…+(x8-2)2所以该解析:8 2【分析】样本方差S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],其中n是这个样本的容量,x是样本的平均数.利用此公式直接求解.【详解】由于S2=18[(x1-2)2+(x2-2)2+…+(x8-2)2],所以该组数据的样本容量是8,该组数据的平均数是2.故答案为8,2.【点睛】此题考查方差的有关计算,解答此题的关键是熟练记住公式:S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2]中各个字母所代表的含义.16.165125千米【解析】【分析】根据加权平均数的定义列式进行求解即可【详解】估计被抽检电动汽车一次充电后平均里程数为:165125(千米)故答案为165125千米【点睛】本题考查了条形统计图的知识以解析:165.125千米.【解析】【分析】根据加权平均数的定义列式进行求解即可.【详解】估计被抽检电动汽车一次充电后平均里程数为:150415510160161652017014175121804410162014124⨯+⨯+⨯+⨯+⨯+⨯+⨯=++++++165.125(千米), 故答案为165.125千米.【点睛】本题考查了条形统计图的知识以及加权平均数,能准确分析条形统计图并掌握加权平均数的计算公式是解此题的关键.17.784【解析】【分析】设男生的平均分为x 分根据男生总分和女生总分的和是全体学生的总分结合全班45名同学平均分是80分其中女生有20名她们的数学平均分为82分我们可以构造出一个关于x 的方程解方程即可求解析:78.4【解析】【分析】设男生的平均分为x 分,根据男生总分和女生总分的和是全体学生的总分,结合全班45名同学,平均分是80分,其中女生有20名,她们的数学平均分为82分,我们可以构造出一个关于x 的方程,解方程即可求出x 的值.【详解】设男生的平均分为x 分,则2582204580x +⨯=⨯,解得78.4x =.即这个班男同学的数学平均分为78.4分.故答案为78.4.【点睛】本题考查了加权平均数,其中根据男生总分和女生总分的和是全体学生的总分,结合已知条件,构造关于x 的方程是解题的关键.18.2【解析】【分析】根据众数的概念确定x 的值再求该组数据的方差【详解】因为一组数据22x336的众数是2所以x=2于是这组数据为222336该组数据的平均数为:(2+2+2+3+3+6)=3方差S2=解析:2【解析】【分析】根据众数的概念,确定x 的值,再求该组数据的方差.【详解】因为一组数据2,2,x ,3,3,6,的众数是2,所以x=2.于是这组数据为2,2,2,3,3,6. 该组数据的平均数为:16(2+2+2+3+3+6)=3, 方差S 2=16[(2-3)2+(2-3)2+(2-3)2+(3-3)2+(3-3)2+(6-3)2]=2.【点睛】本题考查了平均数、众数、方差的意义.①平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”; ②众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个; ③方差是用来衡量一组数据波动大小的量.19.2或9【解析】【分析】根据极差的定义先分两种情况进行讨论当x 最大时或最小时分别进行求解即可【详解】∵数据358x6的极差是6∴当x 最大时:x ﹣3=6解得:x=9;当x 最小时8﹣x=6解得:x=2∴x解析:2或 9【解析】【分析】根据极差的定义先分两种情况进行讨论,当x 最大时或最小时分别进行求解即可.【详解】∵数据3、5、8、x 、6的极差是6,∴当x 最大时:x ﹣3=6,解得:x =9;当x 最小时,8﹣x =6,解得:x =2,∴x 的值为2或9.故答案为:2或9.【点睛】本题考查了极差,掌握极差的定义是解题的关键;求极差的方法是用一组数据中的最大值减去最小值.20.2012【解析】∵=10∴=10设222的方差为则=2×10=20∵∴==4×3=12故答案为20;12点睛:本题考查了当数据加上一个数(或减去一个数)时方差不变即数据的波动情况不变平均数也加或减这解析:20 12【解析】 ∵x =10, ∴1233x x x ++=10, 设21x ,22x ,23x 的方差为, 则1232223x x x y ++==2×10=20, ∵22221231(10)(10)(10)3s x x x ⎡⎤=-+-++⎣⎦ , ∴22221231(2)(2)(2)S x y x y x y n '⎡⎤=-+-+-⎣'⎦ =132221234(10)4(10)4(10)x x x ⎡⎤-+-++⎣⎦ =4×3=12.点睛:本题考查了当数据加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变,平均数也加或减这个数;当乘以一个数时,方差变成这个数的平方倍,平均数也乘以这个数.三、解答题21.(1)10,9(2)87 【分析】(1)根据众数的定义:一组数据中出现次数最多的数和中位数的定义:按照顺序排列的一组数据中居于中间位置的数,结合统计图得到答案;(2)先求出这组数的平均数,再求出这组成绩的方差.【详解】解:(1)由折线统计图可知第1次:10环;第2次:7环;第3次:10环;第4次:10环;第5次:9环;第6次:8环;第7次:9环10出现的次数最多,所以众数为10;这7次成绩从小到大排列为:7,8,9,9,10,10,10,故中位数为9.(2)这组成绩的平均数为:()1107101098997++++++=, 这组成绩的方差为:()()()()2222181093992897977⎡⎤-⨯+-⨯+-+-=⎣⎦ 【点睛】本题考查了折线统计图,中位数,众数及方差.掌握中位数,众数及方差的定义是解题的关键.22.(1)36;(2)9; 8;(3)估计该校理化实验操作得满分的学生人数是56人.【分析】(1)用360°乘以①所占的百分比,计算即可得解;(2)众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数分别解答; (3)用九年级总人数乘以满分的人数所占的份数计算即可得解.【详解】(1)360°×(1-15%-27.5%-30%-17.5%)=360°×10%=36°;故答案为:36;(2)∵9出现了12次,次数最多,∴众数是9;∵将40个数字按从小到大排列,中间的两个数都是8,∴中位数是8882+=, 故答案为:9,8; (3)32017.5%56⨯=(人),估计该校理化实验操作得满分的学生人数是56人.【点睛】本题考查条形统计图、扇形统计图、众数与中位数的意义、用样本估计总体.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(1)a =10,b =8,c =8.6;(2)推荐丙班级为网上教学先进班级.【分析】(1)直接根据中位数、众数、平均分的概念即可求解;(2)先根据各项得分的权重求得各班的最终成绩,然后比较即可判断.【详解】解:(1)∵甲班的五项指标得分由小到大重新排列为:6、7、10、10、10∴甲班的中位数为:10分;∵乙班的五项指标得分为:10、8、8、9、88分出现次数最多,∴乙班的众数是:8分;∵(9+10+8+7+9)÷5=8.6(分),∴丙班的平均分是:8.6分;∴a =10,b =8,c =8.6.(2) 甲:10×20%+10×20%+6×30%+10×10%+7×20%=8.2(分)乙:10×20%+8×20%+8×30%+9×10%+8×20%=8.5(分)丙:9×20%+10×20%+8×30%+7×10%+9×20%=8.7(分),∴推荐丙班级为网上教学先进班级.【点睛】此题主要考查数据的统计和分析,正确理解每个概念是解题关键.24.(1)甲的平均数=73,乙的平均数=68 丙的平均数=68∴甲被录取;(2)甲的成绩=69.625,乙的成绩=76.625,丙的成绩=68.875,∴乙被录取.【分析】(1)根据算术平均数的计算方法分别求出三人的平均分,然后作出判断即可; (2)根据加权平均数的计算方法分别求出三人的平均分,然后作出判断即可.【详解】解:(1)甲:11(745887)2197333⨯++=⨯=, 乙:11(877443)2046833⨯++=⨯=,丙:11(697065)2046833⨯++=⨯=, ∵73分最高,∴应该录取甲; (2)甲:11(744583871)55769.62588⨯⨯+⨯+⨯=⨯=, 乙:11(874743431)61376.62588⨯⨯+⨯+⨯=⨯=, 丙:11(694703651)55168.87588⨯⨯+⨯+⨯=⨯=, ∵76.625分最高,∴应该录取乙.【点睛】 本题考查的是加权平均数的求法与算术平均数的求法,是基础题,需熟练掌握. 25.(1)50; 8;(2)C 组;(3)320人【分析】(1)利用统计表和扇形统计图中D 组的信息可得样本容量,从而得出表1中A 对应的人数;(2)成绩已经按照从小到大的顺序排列,找出最中间的2人,即第25和第26位,取二者的平均值即可;(3)先求出80分以上的比例,然后乘总人数可得.【详解】解:(1)本次调查一共随机抽取学生:1836%50÷=(人),8a =(2)∵抽样了50人,则最中间的为第25和第26位的平均值第25位落在C 组,第26位落在C 组∴中位数落在C 组(3)该校九年级竞赛成绩达到80分以上(含80分)的学生有141850032050+⨯=(人)【点睛】本题考查调查与统计,解题关键是结合残缺不全的统计表和扇形统计图,得出样本容量. 26.(1)51a b =⎧⎨=⎩;(2)6m = 20%n =;(3)详见解析. 【分析】(1)根据七年级代表队的总人数为10人以及七年级的成绩的平均分为6.7,列方程组可求出a 与b 的值;(2)根据(1)a 与b 的值,确定出m 与n 的值即可;(3)从中位数,平均数,方差等角度考虑,给出两条支持八年级队成绩好的理由即可.【详解】解:(1)由题意,得101111 6.73167181911010a b a b +=----⎧⎪=⨯++⨯+⨯+⨯+⎨⎪⎩,即:661040a b a b +=⎧⎨+=⎩,解得:51a b =⎧⎨=⎩. (2)七年级成绩为3,6,6,6,6,6,7,8,9,10,中位数为6,即m=6; 优秀率为111=105+=20%,即n=20%; (3)答案不唯一.如:支持八年级队成绩好的理由有: ①八年级队的平均分比七年级队高,说明总成绩八年级好;②八年级队中位数是7.5,而七年级队中位数是6,说明八年级队半数以上的学生比七年级队半数以上成绩好【点睛】此题考查了条形统计图,以及中位数,平均数,以及方差,弄清概念是解题的关键.。

上海中国中学八年级数学下册第五单元《数据的分析》测试(包含答案解析)

上海中国中学八年级数学下册第五单元《数据的分析》测试(包含答案解析)

一、选择题1.某校九年级(1)班部分学生上学路上所花时间如图所示.设他们上学路上所花时间的平均数为a ,中位数为b ,众数为c ,则有( )A .b a c >>B .c a b >>C .a b c >>D .b c a >>2.已知5个数1a 、2a 、3a 、4a 、5a 的平均数是a ,则数据11a +、22a +、33a +、44a +、55a +的平均数为( )A .aB .3a +C .56a D .15a +3.2017年世界未来委员会与联合国防治荒漠化公约授予我国“未来政策奖”,以表彰我国在防治土地荒漠化方面的突出成就.如图是我国荒漠化土地面积统计图,则荒漠化土地面积是五次统计数据的中位数的年份是( )A .1999年B .2004年C .2009年D .2014年4.某地区汉字听写大赛中,10名学生得分情况如下表: 分数 50 85 90 95 人数3421那么这10名学生所得分数的中位数和众数分别是( ) A .85和85 B .85.5和85 C .85和82.5 D .85.5和80 5.一组数据3,4,6,8,8,9的中位数和众数分别是( )A .7,8B .7,8,5C .5,8D .7,5,76.某校10名学生参加某项比赛成绩统计如图所示。

对于这10名学生的参赛成绩,下列说法中错误的是( )A .众数是90B .中位数是90C .平均数是90D .参赛学生最高成绩与最低成绩之差是157.下表为某校八年级72位女生在规定时间内的立定投篮数统计, 投进的个数 5 6 7 8 9 10 11 12 13 14 15 人数37610118137142若投篮投进个数的中位数为a ,众数为b ,则+a b 的值为( ) A .20B .21C .22D .238.已知一组数据a ,b ,c 的平均数为5,方差为4,那么数据22a -,22b -,22c -的平均数和方差分别是( ) A .8,16B .10,6C .3,2D .8,89.小明、小华两名射箭运动员在某次测试中各射箭10次,两人的平均成绩均为7.5环,如图做出了表示平均数的直线和10次射箭成绩的折线图.S 1,S 2分别表示小明、小华两名运动员这次测试成绩的方差,则有( )A .S 1<S 2B .S 1>S 2C .S 1=S 2D .S 1≥S 210.某兴趣小组为了解我市气温变化情况,记录了今年1月份连续6天的最低气温(单位:C ︒):-6,-4,-2,0,-2,2.关于这组数据,下列结论不正确的是( ) A .平均数是-2B .中位数是-2C .众数是-2D .方差是511.随着时代的进步,人们对 2.5PM (空气中直径小于等于2.5微米的颗粒)的关注日益密切.某市一天中 2.5PM 的值1y (3/ug m )随时间t (h )的变化如图所示,设2y 表示0时到t 时 2.5PM 的值的极差(即0时到t 时 2.5PM 的最大值与最小值的差),则2y 与t的函数关系大致是( )A .B .C .D .12.测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时出现了一处错误:将最高成绩写得更高了,则计算结果不受影响的是( ) A .中位数B .平均数C .方差D .极差二、填空题13.某中学篮球队12名队员的年龄情况如下: 年龄(单位:岁) 14 15 16 17 18 人数14322则这个队队员年龄的众数和中位数分别是_____岁、_____岁.14.据统计,某车间10名员工的日平均生产零件个数为8个,方差为2.5个2,引入新技术后,每名员工每天都比原先多生产1个零件,则现在日平均生产零件个数为______个,方差为______个2.15.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数是_______,中位数是___________.16.已知点(x1,y1),(x2,y2),(x3,y3)都在函数y=-2x+7的图象上,若数据x1,x2,x3的方差为5,则另一组数据y1,y2,y3的方差为_________.17.组数据2,x,1,3,5,4,若这组数据的中位数是3,则x的值是______.18.某次数学竞赛共有15道题,下表是对于做对n(n=0,1,2…15)道题的人数的一个统计,如果又知其中做对4道题和4道以上的学生每人平均做对6道题,做对10道题和10道题以下的学生每人平均做对4道题,问这个表至少统计了______人.n0123 (12131415)做对 n道781021 (15631)题的人数19.一组数2、a、4、6、8的平均数是5,这组数的中位数是______.20.小明五次数学测验的平均成绩是85,中位数为86,众数是89,则最低两次测验的成绩之和为________.三、解答题21.为了了解七年级学生零花钱的使用情况,校团委随机调查了本校七年级部分学生每人一周的零花钱数额,并绘制了如图甲、乙所示的两个统计图(部分未完成),请根据图中信息,回答下列问题:(1)校团委随机调查了多少学生?请你补全条形统计图;(2)表示“50元”的扇形的圆心角是多少度?(3)某地发生自燃灾害后,七年级800名学生每人自发地捐出一周零花钱的一半,以支援灾区恢复生产,请估算七年级学生捐款多少元?22.小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下:a.小云所住小区5月1日至30日的厨余垃圾分出量统计图:b.小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下:时段1日至10日11日至20日21日至30日平均数100170250(2)已知该小区4月的厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的多少倍(结果保留小数点后一位);(3)记该小区5月1日至10日的厨余垃圾分出量的方差为s12,5月11日至20日的厨余垃圾分出量的方差为s22,5月21日至30日的厨余垃圾分出量的方差为s32.直接写出s12,s22,s32的大小关系.23.某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:平均数 方差 中位数 甲 7 ① . 7 乙② .5.4③ .(1)请将右上表补充完整:(参考公式:方差2222121[()()()]n S x x x x x x n=-+-++-)(2)请从下列三个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看,__________的成绩好些;②从平均数和中位数相结合看,___________的成绩好些; (3)若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.24.为宣传6月6日世界海洋日,某校九年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(如图).表1知识竞赛成绩分组统计表 组别分数/分 频数A6070x ≤< aB7080x ≤< 10 C8090x ≤< 14 D90100x ≤<18请根据图表信息解答以下问题:(1)本次调查一共随机抽取了________个参赛学生的成绩,表1中a=________;(2)所抽取的参赛学生的成绩的中位数落在的“组别”是________;(3)请你估计,该校九年级竞赛成绩达到80分以上(含80分)的学生约多少人?25.如图1,A,B,C是郑州市二七区三个垃圾存放点,点B,C分别位于点A的正北AC=米.八位环卫工人分别测得的BC长度如下表:和正东方向,40甲丁丙丁戊戌申辰BC (单位:8476788270848680 m)他们又调查了各点的垃圾量,并绘制了下列间不完整的统计图2.(1)表中的中位数是、众数是;(2)求表中BC长度的平均数x;(3)求A处的垃圾量,并将图2补充完整;(4)用(2)中的x作为BC的长度,要将A处的垃圾沿道路AB都运到B处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.26.某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第1次第2次第3次第4次第5次第6次甲10988109根据表格中的数据,可计算出甲、乙两人的平均成绩都是9环. (1)分别计算甲、乙六次测试成绩的方差;(2)根据数据分析的知识,你认为选______名队员参赛.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先根据图形得出相关数据,再分别求出平均数、中位数、众数,由此即可得. 【详解】由图可知,统计的学生人数为43310++=(人),他们上学路上所花时间分别为20,20,20,20,30,30,30,40,40,40,则平均数202020203030304040402910a +++++++++==,中位数3030302b +==, 因为20出现的次数最多,所以众数20c =, 因此有b a c >>, 故选:A . 【点睛】本题考查了平均数、中位数、众数,熟练掌握相关定义和计算公式是解题关键.2.B解析:B 【分析】根据数据11a +、22a +、33a +、44a +、55a +比数据1a 、2a 、3a 、4a 、5a 的和多15,可得数据11a +、22a +、33a +、44a +、55a +的平均数比a 多3,据此求解即可 【详解】解:a+()()24512345132+4+51+3+-+a a a a a a a a a a ++++++++⎡⎤⎣⎦ ÷5 =a+[1+2+3+4+5] ÷5=a+3 故选:B 【点睛】此题主要考察了算术平均数的含义和求法,解题关键是判断出:数据11a +、22a +、33a +、44a +、55a +比数据1a 、2a 、3a 、4a 、5a 的平均数多3.3.C解析:C 【分析】把数据的年份从小到大排列,根据中位数的定义即可得答案, 【详解】把数据的年份从小到大排列为:2014年、1994年、2009年、2004年、1999年, ∵中间的年份是2009年,∴五次统计数据的中位数的年份是2009年, 故选:C . 【点睛】本题考查中位数,把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数.4.A解析:A 【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案. 【详解】把这组数据从小到大排列,处于中间位置的两个数都是85,那么由中位数的定义可知,这组数据的中位数是85;在这一组数据中85出现的次数最多,则众数是85; 故选:A . 【点睛】此题考查众数与中位数的意义.解题关键在于掌握众数是一组数据中出现次数最多的数据;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.A解析:A 【分析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,据此可得答案.解:将数据从小到大排列为3、4、6、8、8、9,则这组数据的中位数为(6+8)÷2=7,众数为8.故选:A.【点睛】本题考查众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.6.C解析:C【分析】根据众数、中位数、平均数、极差的定义和统计图中提供的数据分别列出算式,求出答案.【详解】解:∵90出现了5次,出现的次数最多,∴众数是90;故A正确;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;故B正确;∵平均数是(80×1+85×2+90×5+95×2)÷10=89;故C错误;参赛学生最高成绩与最低成绩之差是:95-80=15;故D正确.故选:C.【点睛】此题考查了折线统计图,用到的知识点是众数、中位数、平均数、极差,关键是能从统计图中获得有关数据,求出众数、中位数、平均数、极差.7.A解析:A【分析】根据中位数与众数的求法,分别求出投中个数的中位数与众数再相加即可解答.【详解】第36 与37人投中的个数均为9,故中位数a=9,11出现了13次,次数最多,故众数b=11,所以a+b=9+11=20.故选A.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8.A解析:A【分析】如果一组的数据的每一个数都扩大或缩小相同的倍数,则平均数也扩大或缩小相同的倍数,方差则扩大或缩小平方倍;如果一组的数据的每一个数都增加或减少相同的数,则平均数也增加或减少相同的数,方差不变.【详解】根据题意可知:这组数据的平均数为:2×5-2=8;方差为:24216⨯=.故选:A【点睛】本题主要考查的是数据的平均数和方差的变化规律,属于中等难度题型.解决这个问题的关键就是要明确变化规律,根据规律进行解答.9.A解析:A【分析】各数据与平均值的离散程度越大,稳定性就越小;反之,各数据与其平均值的离散程度越小,稳定性就越好.【详解】根据图形可得,小明、小华两名射箭运动员在某次测试中各射箭10次所得的成绩中, 小明的成绩与平均成绩离散程度小,而小华的成绩与平均成绩离散程度大,故S 1<S 2故选:A .【点睛】此题考查方差和折线统计图,解题关键在于掌握方差是反映一组数据的波动大小的一个量.方差越大,则与平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.10.D解析:D【分析】根据平均数、中位数、众数及方差的定义以及计算公式,依次计算各选项即可作出判断.【详解】解:A 、平均数是-2,结论正确,故A 不符合题意;B 、中位数是-2,结论正确,故B 不符合题意;C 、众数是-2,结论正确,故C 不符合题意;D 、方差是203,结论错误,故D 符合题意; 故选:D .【点睛】本题考查平均数、中位数、众数及方差的知识,属于基础题,掌握各部分的定义及计算方法是解题关键.11.B解析:B【分析】根据极差的定义,分别从0t =、010t <≤、1020t <≤及2024t <≤时,极差2y 随t 的变化而变化的情况,从而得出答案.【详解】当0t =时,极差285850y =-=,当010t <≤时,极差2y 随t 的增大而增大,最大值为43;当1020t <≤时,极差2y 随t 的增大保持43不变;当2024t <≤时,极差2y 随t 的增大而增大,最大值为98;故选B .【点睛】本题主要考查极差,解题的关键是掌握极差的定义及函数图象定义与画法.12.A解析:A【分析】根据中位数的定义解答可得.【详解】解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不受极端值影响,所以将最高成绩写得更高了,计算结果不受影响的是中位数,故选A .【点睛】本题主要考查方差、极差、中位数和平均数,解题的关键是掌握中位数的定义.二、填空题13.1615【分析】根据中位数和众数的定义求解【详解】解:从小到大排列此数据数据15出现了四次最多为众数16和16处在第5位和第六位它两个数的平均数为16为中位数故答案为:1615【点睛】本题属于基础题解析:16 15【分析】根据中位数和众数的定义求解.【详解】解:从小到大排列此数据,数据15出现了四次最多为众数,16和16处在第5位和第六位,它两个数的平均数为16为中位数.故答案为:16,15.【点睛】本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.14.925【分析】根据平均数与方差的定义计算即可得答案【详解】∵每名员工每天都比原先多生产1个零件∴现在日平均生产零件个数为=9设原先每人日生产零件的个数为:x1x2x3……x10∴原先的方差为=25∴解析:9 2.5【分析】根据平均数与方差的定义计算即可得答案.【详解】∵每名员工每天都比原先多生产1个零件,∴现在日平均生产零件个数为8101010⨯+=9, 设原先每人日生产零件的个数为:x 1、x 2、x 3、……x 10,∴原先的方差为22212101(8)(8)(8)10x x x ⎡⎤-+-+-⎣⎦…+=2.5, ∴现在的方差为22212101(19)(19)(19)10x x x ⎡⎤+-++-++-⎣⎦…+=22212101(8)(8)(8)10x x x ⎡⎤-+-+-⎣⎦…+=2.5, 故答案为:9,2.5【点睛】本题考查平均数与方差,熟练掌握定义与计算公式是解题关键.15.15岁15岁【分析】由图得到男子足球队的年龄及对应的人数再根据平均数中位数的概念求解【详解】∵由图可得:13岁的有2人14岁的有6人15岁的有8人16岁的有3人17岁的有2人18岁的有1人∴平均数为解析:15岁 15岁【分析】由图得到男子足球队的年龄及对应的人数,再根据平均数、中位数的概念求解.【详解】∵由图可得:13岁的有2人,14岁的有6人,15岁的有8人,16岁的有3人,17岁的有2人,18岁的有1人,∴平均数为13214615816317218115268321⨯+⨯+⨯+⨯+⨯+⨯=+++++; ∵足球队共有队员2+6+8+3+2+1=22人,∴中位数是11名和第12名的平均年龄,即15岁,故答案是:15岁,15岁.【点睛】本题考查了求一组数据的加权平均数和中位数.解题关键是求中位数时一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.16.20【解析】【分析】把x1x2x3分别代入y=-2x+7得出y1y2y3设这组数据x1x2x3的平均数为由方差S2=5则另一组新数据-2x1+7-2x2+7-2x3+7的平均数为-2+7方差为S′2解析:20.【解析】【分析】把x 1、x 2、x 3分别代入y=-2x+7,得出y 1、y 2、y 3,设这组数据x 1,x 2,x 3的平均数为x ,由方差S 2=5,则另一组新数据-2x 1+7,-2x 2+7,-2x 3+7的平均数为-2x +7,方差为S′2,代入公式S 2=()()()222121n x x x x x x n ⎡⎤-+-+⋯+-⎣⎦计算即可. 【详解】 设这组数据x 1,x 2,x 3的平均数为x ,则另一组新数据-2x 1+7,-2x 2+7,-2x 3+7的平均数为-2x +7,∵S 2=13[(x 1-x )2+(x 2-x )2+(x 3-x )2]=5, ∴方差为S′2=13 [(-2x 1+7+2x -7)2+(-2x 2+7+2x -7)2+(-2x 3+7+2x -7)2] =13[4(x 1-x )2+4(x 2-x )2+4(x 3-x )2] =4S 2=4×5=20,故答案为:20.【点睛】本题说明了当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.17.3【解析】【分析】利用中位数的定义只有x 和3的平均数可能为3从而得到x 的值【详解】解:除x 外5个数由小到大排列为12345因为原数据有6个数所以最中间的两个数的平均数为3所以只有x+3=2×3即x=解析:3【解析】利用中位数的定义,只有x和3的平均数可能为3,从而得到x的值.【详解】解:除x外5个数由小到大排列为1、2、3、4、5,因为原数据有6个数,所以最中间的两个数的平均数为3,所以只有x+3=2×3,即x=3.故答案为3.【点睛】本题考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.18.200【解析】【分析】设统计的总人数为x答对11道题的人数为a根据做对4个题和4个以上的人数乘以其平均分加上做对4个以下题的人答对的总题数等于所有被统计的人答对的总题数;做对10个题和10个以下的人解析:200【解析】【分析】设统计的总人数为x,答对11道题的人数为a,根据做对4个题和4个以上的人数乘以其平均分加上做对4个以下题的人答对的总题数等于所有被统计的人答对的总题数;做对10个题和10个以下的人数乘以其平均分加上做对10个以上题的人答对的总题数等于所有被统计的人答对的总题数.做对10个题和10个以下的人数乘以其平均分加上做对11,12,13,14道题的人答对的总题数等于所有被统计的人答对的总题数列方程求解即可.【详解】设统计的总人数为x,答对11道题的人数为a.∵做对4个题和4个以上的人数为(x-7-8-10-21)=(x-46)人,∴所有学生做的总题数为:(x-46)×6+0×7+1×8+2×10+3×21=6x-185;又∵做对10个题和10个以下的人数为(x-a-15-6-3-1)=(x-a-25)人,∴所有学生做的总题数为:(x-a-25)×4+15×1+14×3+13×6+12×15+11a=4x+215+7a,∴6x-185=4x+215+7a,2x=400+7a,x=200+ 72 a,∵a为自然数,∴当a=0时x取最小值200.所以至少统计了200人.故答案为200【点睛】本题考查了加权平均数及方程的应用,有一定的难度.解题关键是根据答对的总题数不变19.5【解析】【分析】由平均数可求解a的值再根据中位数的定义即可求解【详解】解:由平均数可得a=5×5-2-4-6-8=5则该组数由小至大排序为:24568则中位数为5故答案为:5【点睛】本题考查了平均解析:5【解析】【分析】由平均数可求解a的值,再根据中位数的定义即可求解.【详解】解:由平均数可得,a=5×5-2-4-6-8=5,则该组数由小至大排序为:2、4、5、6、8,则中位数为5,故答案为:5.【点睛】本题考查了平均数和中位数的概念.20.161【解析】分析:知道平均数可以求出5次成绩之和又知道中位数和众数就能求出最低两次成绩详解:由五次数学测验的平均成绩是85分∴5次数学测验的总成绩是425分∵中位数是86分众数是89分∴最低两次测解析:161【解析】分析:知道平均数可以求出5次成绩之和,又知道中位数和众数,就能求出最低两次成绩.详解:由五次数学测验的平均成绩是85分,∴5次数学测验的总成绩是425分,∵中位数是86分,众数是89分,∴最低两次测试成绩为425-86-2×89=161,故答案为:161.点睛:本题主要考查平均数和众数等知识点.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.三、解答题21.(1)40;补图见详解;(2)36°;(3)13200元.【分析】(1)用捐款40元的人数除以所占百分比即可求出调查的学生数,用调查的学生数乘以15%求出捐款20元的学生数,不去统计图即可;(2)用捐款50元的学生人数除以调查总人次再乘以360°即可求解;(3)计算出本次调查的平均数,再根据题意列式计算即可求解.【详解】解:(1)10÷25%=40(人),40×15%=6(人),∴校团委随机调查了40名学生,补全条形统计图如图:(2)表示“50元”的扇形的圆心角为4360=3640⨯︒︒; (3)206302040105041800=13200402⨯+⨯+⨯+⨯⨯⨯(元), 答:七年级学生捐款约为13200元.【点睛】本题考查了条形统计图与扇形统计图,用样本估计总体,加权平均数等知识,根据条形统计图和扇形统计图的关联量求出各组数据是解题关键.22.(1)173;(2)2.9;(3)222123s s s >>【分析】(1)结合表格,利用加权平均数的定义列式计算可得;(2)结合(1)所求结果计算即可得出答案;(3)由图a 知第1个10天的分出量最分散、第3个10天分出量最为集中,根据方差的意义可得答案.【详解】解:(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为10010170102501017330⨯+⨯+⨯≈(千克), 故答案为:173;(2)该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的173 2.960≈(倍), 故答案为:2.9;(3)由小云所住小区5月1日至30日的厨余垃圾分出量统计图知:第1个10天的分出量最分散、第3个10天分出量最为集中,222123s s s ∴>>. 【点睛】本题主要考查方差和加权平均数,解题的关键是掌握方差的意义和加权平均数的定义. 23.(1)①1.2;②7;③7.5;(2)①甲;②乙;(3)乙,理由见解析【分析】(1)根据方差公式直接计算即可得出甲的方差,然后根据折线图信息进一步分析即可求出乙的平均数以及中位数;(2)①甲乙平均数相同,而甲的方差要小,所以甲的成绩更加稳定,从而得出甲的成绩好一些;②甲乙平均数相同,而乙的中位数较大,即乙的成绩的中间量较大,所以得出乙的成绩好一些;(3)根据甲乙二人成绩的相关数据结合实际进一步分析比较即可.【详解】(1)①甲的方差为:2222221[(97)(57)4(77)2(87)2(67)] 1.210S =-+-+⨯-+⨯-+⨯-=, ②乙的平均数为:()24687789910107+++++++++÷=,③乙的中位数为:()7827.5+÷=,故答案为:①1.2;②7;③7.5;(2)①甲乙平均数相同,而甲的方差要小,所以甲的成绩更加稳定,从而得出甲的成绩好一些;②甲乙平均数相同,而乙的中位数较大,即乙的成绩的中间量较大,所以得出乙的成绩好一些;故答案为:①甲;②乙;(3)选乙,理由如下:综合看,甲发挥更稳定,但射击精准度差;乙发挥虽然不稳定,但击中高靶环次数更多,成绩逐步上升,提高潜力大,更具有培养价值,所以应选乙.【点睛】本题考查了折线统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,折线统计图能清楚地看出数据的变化情况.24.(1)50; 8;(2)C 组;(3)320人【分析】(1)利用统计表和扇形统计图中D 组的信息可得样本容量,从而得出表1中A 对应的人数;(2)成绩已经按照从小到大的顺序排列,找出最中间的2人,即第25和第26位,取二者的平均值即可;(3)先求出80分以上的比例,然后乘总人数可得.【详解】解:(1)本次调查一共随机抽取学生:1836%50÷=(人),8a =(2)∵抽样了50人,则最中间的为第25和第26位的平均值第25位落在C 组,第26位落在C 组∴中位数落在C 组(3)该校九年级竞赛成绩达到80分以上(含80分)的学生有141850032050+⨯=(人)【点睛】 本题考查调查与统计,解题关键是结合残缺不全的统计表和扇形统计图,得出样本容量. 25.(1)81米,84米;(2)80米;(3)80千克,图详见解析;(4)运垃圾所需的费用为163元.【分析】(1)根据中位数和众数的定义即可得;(2)根据平均数的计算公式121()n x x x x n =+++即可得;(3)先根据C 处垃圾量的扇形统计图和条形统计图信息求出三处垃圾总量,再减去B 、C 两处的垃圾量可得A 处的垃圾量,然后补全条形统计图即可;(4)先利用勾股定理求出AB 的长,再根据“运送1千克垃圾每米的费用为0.005元”列出式子求解即可得.【详解】(1)由众数的定义得:众数是84米由中位数的定义,先将表中的数据从小到大进行顺序为70,76,78,80,82,84,84,86,则中位数是8082812+=(米) 故答案为:81米,84米;(2)由平均数的计算公式得:8476788270848680808x +++++++==(米) 答:表中BC 长度的平均数x 为80米;(3)A 、B 、C 三处垃圾总量为32050%640÷=(千克)则A 处的垃圾总量是:64032024080--=(千克)补全条形统计图如下:(4)在直角ABC 中,22228040403AB BC AC -=-=∵运送1千克垃圾每米的费用为0.005元∴运垃圾所需的费用为403800.005163⨯=。

上海市八年级数学下册第五单元《数据的分析》测试题(有答案解析)

上海市八年级数学下册第五单元《数据的分析》测试题(有答案解析)

一、选择题1.反映一组数据变化范围的是( ) A .极差 B .方差C .众数D .平均数2.若一组数据2,3,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为( ). A .1 B .6 C .1或6D .5或63.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.2环,方差分别是20.56S =甲,20.45S =乙,20.50S =丙,20.60S =丁;则成绩最稳定的是( )A .甲B .乙C .丙D .丁4.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s 2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( ) A .平均分不变,方差变大 B .平均分不变,方差变小 C .平均分和方差都不变D .平均分和方差都改变5.在学校举行的“我为祖国献首歌”的合唱比赛中,六位评委给初三某班的评分分别是:87、90、83、87、87、83,这组数据的众数和中位数分别是( ) A .87,87B .87,85C .83,87D .83,856.一组数据中有m 个a ,n 个b ,k 个c ,那么这组数据的平均数为( ) A .3a b c++ B .3m n k++ C .3ma nb kc++D .ma nb kcm n k++++7.某班七个兴趣小组人数如下:5,6,6,x ,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是( ) A .6 B .6.5 C .7 D .8 8.有一组数据:1,1,1,1,m .若这组数据的方差是0,则m 为( )A .4-B .1-C .0D .19.为参加全市中学生足球赛.某中学从全校学生中选拔22名足球运动员组建校足球队,这22名运动员的年龄(岁)如下表所示,该足球队队员的平均年龄是( ) 年龄(岁) 12 13 14 15 人数71032A .12岁B .13岁C .14岁D .15岁10.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择( ) A .甲B .乙C .丙D .丁11.某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是( ) A .众数是8B .中位数是8C .平均数是8.2D .方差是1.212.测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时出现了一处错误:将最高成绩写得更高了,则计算结果不受影响的是( ) A .中位数B .平均数C .方差D .极差二、填空题13.将一组数据中的每一数减去40后,所得新的一组数据的平均数是2,则原来那组数据的平均数_______________.14.已知一组数据a ,b ,c 的方差为2,那么数据3a +,3b +,3+c 的方差是________.15.已知一组数据为1-、x 、0、1、2-的平均数为0,则x =__________这组数据的标准差为___________.16.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数是_______,中位数是___________.17.某中学人数相等的甲、乙两班学生参加了同一次数学测验,两班平均分和方差分别为⎺x 甲=82分,⎺x 乙=82分,S 2甲=245,S 2乙=190.那么成绩较为整齐的是__________班 18.一组数据5,8,x ,10,4的平均数是2x ,则这组数据的方差是___________. 19.春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为__.20.为调查某班学生每天使用零花钱的情况,张华随机调查了30名同学,结果如下表:每天使用零花钱(单位:元)12345人数25896则这30名同学每天使用的零花钱的中位数是_____元.三、解答题21.英语老师对八年级某班级全班同学进行口语测试,并按10分制评分,将评分结果制成了如图两幅统计图(不完整).请根据图表信息,解答下列问题:(1)求该班级学生总人数,并将条形统计图补充完整.(2)求该班学生口语测试所得分数的平均数、中位数、众数.(3)若全年级共有260人,请估计得分在9分及以上的同学有多少人?22.在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调查获取的样本数据的众数是;(2)这次调查获取的样本数据的中位数是;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有人.23.为宣传6月6日世界海洋日,某校九年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(如图).表1知识竞赛成绩分组统计表 组别分数/分 频数A6070x ≤< aB7080x ≤< 10 C8090x ≤< 14 D90100x ≤<18请根据图表信息解答以下问题:(1)本次调查一共随机抽取了________个参赛学生的成绩,表1中a =________; (2)所抽取的参赛学生的成绩的中位数落在的“组别”是________;(3)请你估计,该校九年级竞赛成绩达到80分以上(含80分)的学生约多少人? 24.为了解学生的课外阅读情况,李老师随机调查了一部分学生,得到了他们上周双休日课外阅读时间(记为t ,单位:h )的一组样本数据,其部分条形图和扇形图如下: (1)请补全条形图和扇形图;(2)试确定这组样本数据的中位数和众数; (3)估计全班学生上周双休日的平均课外阅读时间.25.某校为了分析九年级学生艺术考试的成绩,随机抽查了两个班级的各5名学生的成绩,它们分别是:九(1)班:96,92,94,97,96 九(2)班:90,98,97,98,92通过数据分析,列表如下:(1)__________;__________a b ==(2)计算两个班级所抽取的学生艺术成绩的方差,判断哪个班学生艺术成绩比较稳定. 26.某单位招聘员工两名,采取笔试与面试相结合的方式进行,两项成绩原始分满分均为100分,前六名选手的得分如下: 序号项目 1 2 3 4 5 6 笔试成绩(分) 85 92 84 90 84 80 面试成绩(分)908382908085(1)这6名选手笔试成绩的中位数是________分,众数是________分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比; (3)在(2)的情况下________,(填序号)选手会被录取.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据极差是刻画数据离散程度的一个统计量.它能反映数据的波动范围大小解答. 【详解】解:反映一组数据变化范围的是极差; 故选:A . 【点睛】本题考查了极差、方差、众数以及平均数的概念和意义,掌握极差是刻画数据离散程度的一个统计量.它能反映数据的波动范围是解题的关键.2.C解析:C 【解析】根据数据x 1,x 2,…x n 与数据x 1+a ,x 2+a ,…x n +a 的方差相同这个结论即可解决问题. 解:∵一组数据2,2,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等, ∴这组数据可能是2,3,4,5,6或1,2,3,4,5,∴x=1或6, 故选C.“点睛”本题考查方差、平均数等知识,解题的关键领域结论:数据x 1,x 2,…x n 与数据x 1+a ,x 2+a ,…x n +a 的方差相同解决问题,属于中考常考题型.3.B解析:B 【分析】直接利用方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,进而分析即可. 【详解】解:∵20.56S =甲,20.45S =乙,20.50S 丙=,20.60S =丁, ∴2S 乙<2S 丙<2S 甲<2S 丁,∴成绩最稳定的是乙. 故选B . 【点睛】此题主要考查了方差,正确理解方差的意义是解题关键.4.B解析:B 【分析】根据平均数、方差的定义计算即可. 【详解】∵小亮的成绩和其它39人的平均数相同,都是90分, ∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分, ∴40人的方差为[41×39+(90-90)2]÷40<41, ∴方差变小,∴平均分不变,方差变小 故选B. 【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.5.A解析:A 【分析】首先对这组数据进行排序,根据中位数和众数的定义回答即可. 【详解】∵这组数据排序后为83,83,87,87,87,90,∴这组数据的众数是87,这组数据的中位数是87872+=87. 故选A . 【点睛】本题考查了中位数和众数的定义.注意找中位数的时候一定要先排好顺序,然后再根据数据个数确定中位数:如果数据有奇数个,则正中间的数字即为所求;如果是偶数个则找中间两位数的平均数.6.D解析:D 【分析】先求得这组数据的和和个数,再根据平均数的定义求解. 【详解】∵一组数据中有m 个a ,n 个b ,k 个c , ∴这组数据的和=ma+nb+kc ,数据的个数=m+n+k , ∴这组数据的平均数为:ma nb kcm n k++++.故选:D. 【点睛】考查了加权平均数的计算,解题关键是计算出这组数据的和和个数.7.C解析:C 【分析】根据平均数求出x 的值,再利用中位数定义即可得出答案. 【详解】∵5,6,6,x ,7,8,9,这组数据的平均数是7, ∴()775667898x =⨯-+++++=, ∴这组数据从小到大排列为:5,6,6,7,8,8,9 ∵这组数据最中间的数为7, ∴这组数据的中位数是7. 故选C . 【点睛】此题主要考查了中位数,根据平均数正确得出x 的值是解题关键.8.D解析:D 【分析】方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差. 【详解】 依题意可得,平均数:45mx∴224441555m mm解得m=1,故选D.【点睛】本题考查了方差,熟练运用方差公式是解题的关键.9.B解析:B【解析】【分析】直接利用加权平均数的定义计算可得.【详解】解:该足球队队员的平均年龄是127131014315222⨯+⨯+⨯+⨯=13(岁),故选:B.【点睛】本题考查了加权平均数,解题的关键是掌握加权平均数的定义.10.C解析:C【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,选出方差最小,而且平均数较大的同学参加数学比赛.【详解】∵3.6<7.4<8.1,∴甲和丙的最近几次数学考试成绩的方差最小,发挥稳定,∵95>92,∴丙同学最近几次数学考试成绩的平均数高,∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择丙.故选C.【点睛】此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.11.D解析:D【分析】首先根据图形数出各环数出现的次数,在进行计算众数、中位数、平均数、方差.【详解】根据图表可得10环的2次,9环的2次,8环的3次,7环的2次,6环的1次.所以可得众数是8,中位数是8,平均数是102+92+83+72+61=8.210⨯⨯⨯⨯⨯方差是222222(108.2)2(98.2)3(88.2)2(78.2)(68.2)1.5610⨯-+⨯-+⨯-+⨯-+-=故选D【点睛】本题主要考查统计的基本知识,关键在于众数、中位数、平均数和方差的概念.特别是方差的公式.12.A解析:A【分析】根据中位数的定义解答可得.【详解】解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不受极端值影响,所以将最高成绩写得更高了,计算结果不受影响的是中位数,故选A.【点睛】本题主要考查方差、极差、中位数和平均数,解题的关键是掌握中位数的定义.二、填空题13.42【分析】根据所有数据均减去40后平均数也减去40从而得出答案【详解】解:一组数据中的每一个数减去40后的平均数是2则原数据的平均数是42;故答案为:42【点睛】本题考查了算术平均数解决本题的关键解析:42【分析】根据所有数据均减去40后平均数也减去40,从而得出答案.【详解】解:一组数据中的每一个数减去40后的平均数是2,则原数据的平均数是42;故答案为:42.【点睛】本题考查了算术平均数,解决本题的关键是牢记“一组数据减去同一个数后,平均数也减去这个数”.14.2【分析】根据方差是用来衡量一组数据波动大小的量每个数都加3所以波动不会变方差不变【详解】解:设abc 的平均数是d 所以方差不变故答案为:2【点睛】本题主要考查了方差的公式解题的关键是当数据都加上一个解析:2 【分析】根据方差是用来衡量一组数据波动大小的量,每个数都加3,所以波动不会变,方差不变. 【详解】解:设a 、b 、c 的平均数是d,()222211S =()()23a d b d c d ⎡⎤-+-+-=⎢⎥⎣⎦ , ()222221S =33(33)(33)23a d b d c d ⎡⎤+-+++-+++-+=⎢⎥⎣⎦ , ()222221S =()()23a d b d c d ⎡⎤-+-+-=⎢⎥⎣⎦, 所以方差不变. 故答案为:2. 【点睛】本题主要考查了方差的公式,解题的关键是当数据都加上一个数时,方差不变.15.2【分析】根据平均数的公式计算出x 后再运用标准差的公式即可解出本题【详解】解:∵一组数据为的平均数为∴∴x=2∴这组数据的标准差为:故答案为:2【点睛】此题考查算术平均数标准差解题关键在于掌握运算法则解析:2, 【分析】根据平均数的公式计算出x 后,再运用标准差的公式即可解出本题. 【详解】解:∵一组数据为1-、x 、0、1、2-的平均数为0∴()-1+x+0+1+2=05-∴x=2∴故答案为:2 【点睛】此题考查算术平均数,标准差,解题关键在于掌握运算法则16.15岁15岁【分析】由图得到男子足球队的年龄及对应的人数再根据平均数中位数的概念求解【详解】∵由图可得:13岁的有2人14岁的有6人15岁的有8人16岁的有3人17岁的有2人18岁的有1人∴平均数为解析:15岁 15岁【分析】由图得到男子足球队的年龄及对应的人数,再根据平均数、中位数的概念求解.【详解】∵由图可得:13岁的有2人,14岁的有6人,15岁的有8人,16岁的有3人,17岁的有2人,18岁的有1人,∴平均数为13214615816317218115268321⨯+⨯+⨯+⨯+⨯+⨯=+++++; ∵足球队共有队员2+6+8+3+2+1=22人,∴中位数是11名和第12名的平均年龄,即15岁,故答案是:15岁,15岁.【点睛】 本题考查了求一组数据的加权平均数和中位数.解题关键是求中位数时一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.17.乙【解析】【分析】根据方差的意义方差反映了一组数据的波动大小根据方差越小波动越小故可由两班的方差得到结论【详解】∵S2甲>S2乙∴成绩较为稳定的是乙故答案为乙【点睛】本题考查了方差的意义:反映了一组 解析:乙【解析】【分析】根据方差的意义,方差反映了一组数据的波动大小,根据方差越小,波动越小,故可由两班的方差得到结论.【详解】∵S 2甲>S 2乙∴成绩较为稳定的是乙.故答案为乙.【点睛】本题考查了方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18.68【分析】本题可用求平均数的公式解出x 的值在运用方差的公式解出方差【详解】解:依题意得:5+8+x +10+4=2x×5所以x =32x =6方差s2==68【点睛】本题考查了算术平均数方差的计算方法熟解析:6.8【分析】本题可用求平均数的公式解出x 的值,在运用方差的公式解出方差.【详解】解:依题意得:5+8+x +10+4=2x×5,所以x=3,2x=6,方差s2=15()()()()()222225-6+8-6+3-6+10-6+4-6⎡⎤⎣⎦=6.8,【点睛】本题考查了算术平均数、方差的计算方法,熟练掌握该知识点是本题解题的关键. 19.234【解析】【分析】将折线统计图中的数据按从小到大进行排序然后根据中位数的定义即可确定【详解】从图中看出五天的游客数量从小到大依次为219224234249254则中位数应为234故答案为234【解析:23.4【解析】【分析】将折线统计图中的数据按从小到大进行排序,然后根据中位数的定义即可确定.【详解】从图中看出,五天的游客数量从小到大依次为21.9,22.4,23.4,24.9,25.4,则中位数应为23.4,故答案为23.4.【点睛】本题考查了中位数的定义,熟知“中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)”是解题的关键.20.35【解析】分析:利用众数的定义可以确定众数在第三组由于张华随机调查了20名同学根据表格数据可以知道中位数是按从小到大排序第15个与第16个数的平均数详解:∵4出现了9次它的次数最多∴众数为4∵张华解析:3.5【解析】分析: 利用众数的定义可以确定众数在第三组,由于张华随机调查了20名同学,根据表格数据可以知道中位数是按从小到大排序,第15个与第16个数的平均数.详解: ∵4出现了9次,它的次数最多,∴众数为4.∵张华随机调查了30名同学,∴根据表格数据可以知道中位数=(3+4)÷2=3.5,即中位数为3.5.故答案为:3.5.点睛: 本题属于基础题,考查了确定一组数据的中位数和众数的能力.要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.三、解答题21.(1)40人,画图见解析;(2)平均数:8.9分,中位数:9分,众数:9分;(3)182人【分析】(1)用10分的人数÷10分人数所占的百分比,即可得到总人数,根据题意将条形统计图补充完整;(2)根据平均分、中位数、众数的定义即可得到结论;(3)用样本估计总体即可.【详解】(1)该班级学生总人数为:1230%40÷=(人),得分为9分的同学人数为:40481216---=(人),补全条形统计图如下图所示.(2)该班学生口语测试所得分数的平均分()1478816912108.940=⨯+⨯+⨯+⨯=(分), 一共有40人,则中位数为9992+=(分), 9分人数最多,则众数为9(分); (3)9分以上的占161274010+=,则726018210⨯=(人), 故9分以上的共有182人.【点睛】 本题考查的是条形统计图和扇形统计图的综合运用,以及用样本估计总体.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(1)30元;(2)50元;(3)250.【分析】(1)根据众数的定义即可判判断;(2)根据中位数的定义即可判断;(3)先计算出样本中计划购买课外书花费50元的学生所占的比例,然后在乘以总人数即可;【详解】(1)花费30元的有12人,最多,故众数是30元;(2)一共有40个数据,排序后第20、21个数据的平均数即是中位数,6+12=18<20,6+12+10=28>20,故第20、21个数据都是50元,故中位数是50元;(3)10÷40×2400=600(人),故估计本学期计划购买课外书花费50元的学生有50人. 23.(1)50; 8;(2)C 组;(3)320人【分析】(1)利用统计表和扇形统计图中D 组的信息可得样本容量,从而得出表1中A 对应的人数;(2)成绩已经按照从小到大的顺序排列,找出最中间的2人,即第25和第26位,取二者的平均值即可;(3)先求出80分以上的比例,然后乘总人数可得.【详解】解:(1)本次调查一共随机抽取学生:1836%50÷=(人),8a =(2)∵抽样了50人,则最中间的为第25和第26位的平均值第25位落在C 组,第26位落在C 组∴中位数落在C 组(3)该校九年级竞赛成绩达到80分以上(含80分)的学生有141850032050+⨯=(人)【点睛】本题考查调查与统计,解题关键是结合残缺不全的统计表和扇形统计图,得出样本容量. 24.(1)详见解析;(2)中位数是3(h ),众数是4(h );(3)全班学生上周双休日的平均课外阅读时间为3.36h .【分析】(1)由条形统计图知:读1小时的人数为3人,在扇形统计图中占的比例为12%,则总调查人数可求出.这样可分别求出读2小时的人数,读3小时的人数,以及读4小时的人数占的比例,再计算其在扇形统计图中的圆心角.最后求出读5小时的人数占的比例和读5小时的人数;(2)根据中位数和众数的定义解答.(3)根据平均数的定义计算即可.【详解】解:(1)由条形统计图知,读1小时的人数为3人,在扇形统计图中占的比例为12%, ∴总调查人数=3÷12%=25人,∴读2小时的人数=25×16%=4人,读3小时的人数=25×24%=6人,读4小时的人数占的比例=7÷25=28%,在扇形统计图中的圆心角=360°×28%=100.8°,读5小时的人数占的比例=1﹣28%﹣24%﹣16%﹣12%﹣8%=12%,读5小时的人数=25×12%=3人.(2)中位数是3(h),众数是4(h);(3)1×12%+2×16%+3×24%+4×28%+5×12%+6×8%=3.36(h).估计全班学生上周双休日的平均课外阅读时间为3.36h.【点睛】本题考查了条形统计图和扇形统计图以及从统计图中获取信息的能力.解题时要掌握平均数、中位数、众数的概念和求法.25.(1)96;98;(2)九(1)班的学生的艺术成绩比较稳定.【分析】(1)根据中位数和众数的定义求解可得;(2)根据方差公式计算,再依据方差越小成绩越稳定可得答案.【详解】(1)九(1)班成绩重新排列为92,94,96,96,97,则中位数a=96,九(2)班成绩的众数为b=98;故答案为:96,98;(2)S2(1)班=15×[(96-95)2+(92-95)2+(94-95)2+(97-95)2+(96-95)2]=3.2,S2(2)班=15×[(90-95)2+(98-95)2+(97-95)2+(98-95)2+(92-95)2]=11.2,∵S2(1)班<S2(2)班,∴九(1)班学生的艺术成绩比较稳定.【点睛】此题考查中位数、众数和方差的意义,解题关键在于掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.26.(1)84.5,84;(2)笔试成绩占40%,面试成绩占60%;(3)4号.【分析】(1)先将笔试成绩从小到大重新排列,再根据中位数和众数的定义求解可得.(2)先设笔试成绩和面试成绩各占的百分百是x,y,根据题意列出方程组,求出x,y的值即可;(3)根据笔试成绩和面试成绩各占的百分比,分别求出其余五名选手的综合成绩,即可得出答案.【详解】解:(1)这6名选手笔试成绩重新排列为80,84,84,85,90,92,∴这6名选手笔试成绩的中位数为:84852=84.5(分),众数为84分,故答案为:84.5,84;(2)设笔试成绩和面试成绩各占的百分比是x,y,根据题意得:1859088x y x y +=⎧⎨+=⎩, 解得:0.40.6x y =⎧⎨=⎩, 笔试成绩和面试成绩各占的百分比是40%,60%;(3)2号选手的综合成绩是92×0.4+83×0.6=86.6(分),3号选手的综合成绩是84×0.4+82×0.6=82.8(分),4号选手的综合成绩是90×0.4+90×0.6=90(分),5号选手的综合成绩是84×0.4+80×0.6=81.6(分),6号选手的综合成绩是80×0.4+85×0.6=83(分),则在(2)的情况下4号选手会被录取.故答案为:4号.【点睛】此题考查了加权平均数,用到的知识点是中位数、众数、加权平均数的计算公式,关键灵活运用有关知识列出算式.。

上海上海中学八年级数学下册第五单元《数据的分析》检测卷(包含答案解析)

上海上海中学八年级数学下册第五单元《数据的分析》检测卷(包含答案解析)

一、选择题1.数据2-,1-,0,1,2的方差是( ) A .0B .2C .2D .42.小王在清点本班为偏远贫困地区的捐款时发现,全班同学捐款的钞票情况如下:100元的3 张,50元的9张,10元的23张,5元的10张.在这些不同面额的钞票中,众数是( )A .10B .23C .50D .1003.某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是( ) A .88.5B .86.5C .90D .90.54.下图是2019年5月17日至31日某市的空气质量指数趋势图.(说明:空气质量指数为0-50、51-100、101-150分别表示空气质量为优、良、轻度污染) 有如下结论:①在此次统计中,空气质量为优的天数少于轻度污染的天数; ②在此次统计中,空气质量为优良的天数占45; ③20,21,22三日的空气质量指数的方差小于26,27,28三日的空气质量指数的方差. 上述结论中,所有正确结论的序号是( ) A .①B .①③C .②③D .①②③5.下面说法正确的个数有( )(1)二元一次方程组的两个方程的所有解,叫做二元一次方程组的解; (2)如果a b >,则ac bc >;(3)三角形的外角等于与它不相邻的两个内角的和; (4)多边形内角和等于360︒;(5)一组数据1,2,3,4,5的众数是0 A .0个B .1个C .2个D .3个6.2017年世界未来委员会与联合国防治荒漠化公约授予我国“未来政策奖”,以表彰我国在防治土地荒漠化方面的突出成就.如图是我国荒漠化土地面积统计图,则荒漠化土地面积是五次统计数据的中位数的年份是( )A .1999年B .2004年C .2009年D .2014年7.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是( ) A .50分B .82分C .84分D .86分8.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为( ) A .8.5,9B .8.5,8C .8,8D .8,99.如表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:甲 乙 丙 丁平均数x (厘米) 375350375350 方差2s12.5 13.5 2.45.4要从中选择一名成绩好又发挥稳定的运动员参加决赛,最合适的是( ) A .甲B .乙C .丙D .丁10.已知一组数据a ,b ,c 的平均数为5,方差为4,那么数据22a -,22b -,22c -的平均数和方差分别是( ) A .8,16 B .10,6C .3,2D .8,811.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是( )A.9.7m,9.9m B.9.7m,9.8m C.9.8m,9.7m D.9.8m,9.9m 12.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择( )A.甲B.乙C.丙D.丁二、填空题13.已知一组数据:3,3,x,5,5的平均数是4,则这组数据的方差是___________. 14.有一组数据如下:2,3,3,4,则这组数据的方差是____________.15.某市某一周的PM2.5(大气中直径小于等于2.5微米的颗粒物,也称可入肺颗粒物指数)如表,则该周PM2.5指数的众数为________.16.甲、乙两人参加某网站的招聘测试,测试由网页制作和语言两个项目组成,他们各自的成绩(百分制)如下表所示:应聘者网页制作语言甲8070乙7080该网站根据成绩在两人之间录用了甲,则本次招聘测试中权重较大的是_____项目.17.若这8个数据-3, 2,-1,0,1,2,3,x的极差是11,则这组数据的平均数是______.18.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是2S甲、2S,且乙22S S,则队员身高比较整齐的球队是_____.甲乙19.若样本数据1,2,3,2的平均数是a,中位数是b,众数是c,则数据a,b,c的方差是___.20.为迎接2018年的体育中考,甲、乙两位同学参加排球训练,体育老师根据训练成绩算出他们成绩的方差分别为S甲2=1.6,S乙2=2.8,则_____(填“甲”或“乙”)成绩较稳定.三、解答题21.甲、乙两位同学5次数学选拔赛的成绩统计如表,他们5次考试的总成绩相同,请同学们完成下列问题:=,甲同学成绩的极差为;(2)小颖计算了甲同学的成绩平均数为60,方差是S甲2=15[(80﹣60)2+(40﹣60)2+(70﹣60)2+(50﹣60)2+(60﹣60)2]=200.请你求出乙同学成绩的平均数和方差;(3)从平均数和方差的角度分析,甲、乙两位同学谁的成绩更稳定.22.某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;(2)若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定期末评价成绩.①请计算小张的期末评价成绩为多少分?②小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?23.甲、乙两人在相同条件下各立定跳远5次,距离如下(单位:cm):甲:225,230,240,230,225;乙:220,235,225,240,230.(1)计算这两组数据的方差;(2)谁的跳远技术较稳定?为什么?24.为选拔优秀选手参加瑶海区第八届德育文化艺术节“诵经典”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示(1)根据图示填写下表九(2)80(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差,并说明哪个班五名选手的成绩较稳定.25.某初中要调查学校学生(总数 1000 人)双休日课外阅读情况,随机调查了一部分学生,调查得到的数据分别制成频数直方图(如图 1)和扇形统计图(如图 2).(1)请补全上述统计图(直接填在图中);(2)试确定这个样本的中位数和众数;(3)请估计该学校 1000 名学生双休日课外阅读时间不少于 4 小时的人数.26.学校开展的“书香校园”活动受到同学们的广泛关注,为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计图表.学生借阅图书的次数统计表:借阅图书的次0次1次2次3次4次及以上数人数713a103请你根据统计图表中的信息,解答下列问题:(1)a=,b=;(2)该调查统计数据的中位数是,众数是;(3)若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书4次及以上的人数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先计算平均数,再计算方差.方差的定义一般地设n个数据,x1,x2,…x n的平均数为x,x=1n(x1+x2+…+x n),则方差S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2].【详解】解:平均数x=15(-2-1+0+1+2)=0,则方差S2=15[(-2-0)2+(-1-0)2+(0-0)2+(1-0)2+(2-0)2]=2.故选:C.【点睛】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x,x=1 n(x1+x2+…+x n),则方差S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.2.A解析:A【分析】根据众数就是一组数据中,出现次数最多的数,即可得出答案.【详解】∵100元的有3 张,50元的有9张,10元的有23张,5元的有10张,其中10元的最多,∴众数是10元.故答案为A.【点睛】本题考查众数的概念.,一组数据中出现次数做多的数叫做众数.3.A解析:A【分析】根据加权平均数的计算公式,用95分,90分,85分别乘以它们的百分比,再求和即可.【详解】根据题意得:95×20%+90×30%+85×50%=88.5(分),即小彤这学期的体育成绩为88.5分.故选A.【点睛】本题考查了加权平均数的计算,熟练掌握公式是解题关键.4.C解析:C【分析】根据折线统计图的数据,逐一分析即可.【详解】解:①中:当空气质量指数为0-50时表示优,数出折线图中在这个范围内的天数有5天;当空气质量指数为101-150是表示轻度污染,数出折线图中在这个范围内的天数有3天,故空气质量优的天数大于轻度污染的天数,故①错误;②中:空气质量指数在0-100范围内为优良,其天数共有12天,故空气质量为优良的天数所占比例为:124=155,故②正确;③中:20,21,22三日的空气质量指数波动范围小于26,27,28三日的空气质量指数波动范围,故20,21,22三日的空气质量指数的方差小于26,27,28三日的空气质量指数的方差,故③正确.∴正确的有:②③.故答案为:C.【点睛】本题是复式折线统计图,要通过坐标轴以及图例等读懂本图,根据图中所示的数量解决问题.5.B解析:B【分析】利用二元一次方程组的解的定义、不等式的性质、三角形的内角的性质及众数的定义分别判断后即可确定正确的选项.【详解】解:(1)二元一次方程组的两个方程的所有公共解,叫做二元一次方程组的解,故原命题错误,不符合题意;(2)如果a>b,则当c<0时,ac>bc,故原命题错误,不符合题意;(3)三角形的外角等于与它不相邻的两个内角的和,正确,符合题意;(4)多边形内角和等于(n-2)×180°,故原命题错误,不符合题意;(5)数据1,2,3,4,5没有众数,故错误,不符合题意,正确的个数为1个,故选:B.【点睛】本题考查了二元一次方程组的解的定义、不等式的性质、三角形的内角的性质及众数的定义,属于基础知识,比较简单.6.C解析:C【分析】把数据的年份从小到大排列,根据中位数的定义即可得答案,【详解】把数据的年份从小到大排列为:2014年、1994年、2009年、2004年、1999年,∵中间的年份是2009年,∴五次统计数据的中位数的年份是2009年,故选:C.【点睛】本题考查中位数,把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数.7.D解析:D【分析】计算出各项学习成绩的分数再相加即是数学成绩.【详解】⨯=分研究性学习成绩为:8040%32⨯=分期末卷面成绩为:9060%54+=分数学成绩为;325486故选:D 【点睛】本题考查了加权平均数的相关定义,解题的关键是根据加权平均数的相关定义计算.8.C解析:C 【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 【详解】这组数据中出现次数最多的一个数是8,所以这组数据的众数是8环;22是偶数,按大小顺序排列后中间两个数是8和8,所以这组数据的中位数是8(环). 故选:C . 【点睛】此题考查众数和中位数.注意掌握中位数和众数的定义是解题关键.9.C解析:C 【分析】先比较平均数,平均数相同时选择方差更小的参加. 【详解】因为乙和丁的平均数最小,所以应该从甲和丙中选择一人参加比赛, 又因为丙的方差小于甲的方差, 所以丙的成绩更具有稳定性, 所以应该选择丙参赛. 故选:C. 【点睛】考查了平均数和方差,解题关键是利用了:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.10.A解析:A 【分析】如果一组的数据的每一个数都扩大或缩小相同的倍数,则平均数也扩大或缩小相同的倍数,方差则扩大或缩小平方倍;如果一组的数据的每一个数都增加或减少相同的数,则平均数也增加或减少相同的数,方差不变. 【详解】根据题意可知:这组数据的平均数为:2×5-2=8;方差为:24216⨯=. 故选:A 【点睛】本题主要考查的是数据的平均数和方差的变化规律,属于中等难度题型.解决这个问题的关键就是要明确变化规律,根据规律进行解答.11.B解析:B【分析】将这7个数据从小到大排序后处在第4位的数是中位数,利用算术平均数的计算公式进行计算即可.【详解】把这7个数据从小到大排列处于第4位的数是9.7m,因此中位数是9.7m,++++++÷=m,平均数为:(9.59.69.79.79.810.110.2)79.8故选B.【点睛】考查中位数、算术平均数的计算方法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数就是这组数据的中位数,平均数则是反映一组数据的集中水平.12.C解析:C【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,选出方差最小,而且平均数较大的同学参加数学比赛.【详解】∵3.6<7.4<8.1,∴甲和丙的最近几次数学考试成绩的方差最小,发挥稳定,∵95>92,∴丙同学最近几次数学考试成绩的平均数高,∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择丙.故选C.【点睛】此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.二、填空题13.【分析】先由平均数的定义求得x的值再根据方差的公式计算方差【详解】根据题意得:3+3+x+5+5=4×5解得:x=4则这组数据的方差为×2(3-4)2+(4-4)2+2(5-4)2=08故答案是:0解析:0.8【分析】先由平均数的定义求得x 的值,再根据方差的公式计算方差. 【详解】 根据题意得: 3+3+x+5+5=4×5, 解得:x=4, 则这组数据的方差为15×[2(3-4)2+(4-4)2+2(5-4)2]=0.8, 故答案是:0.8. 【点睛】考查了求一组数的方差,解题关键是熟记方差计算公式:()()()2222121n S x x x x x x n ⎡⎤=-+-+⋯+-⎣⎦. 14.【分析】先由平均数的公式计算出平均数再根据方差的公式计算即可【详解】2334的平均数是(2+3+3+4)4=3;【点睛】方差等于样本中各数据与平均数差的平方之和再除以样本个数 解析:12【分析】先由平均数的公式计算出平均数,再根据方差的公式计算即可. 【详解】2,3,3,4的平均数是(2+3+3+4) ÷4= 3;2222211(32)(33)(33)(43)42S ⎡⎤=-+-+-+-=⎣⎦ 【点睛】方差等于样本中各数据与平均数差的平方之和再除以样本个数.15.150【分析】先求出PM25指数为150的天数再根据众数的定义以及性质求出众数即可【详解】∵PM25指数为150的天数∴该周PM25指数的众数为150故答案为:150【点睛】本题考查了众数的问题掌握解析:150 【分析】先求出PM 2.5指数为150的天数,再根据众数的定义以及性质求出众数即可. 【详解】∵PM 2.5指数为150的天数72113=---= ∴该周PM 2.5指数的众数为150 故答案为:150. 【点睛】本题考查了众数的问题,掌握众数的定义以及性质是解题的关键.16.网页制作【分析】根据加权平均数的定义解答即可【详解】解:设网页制作的权重为a语言的权重为b则甲的分数为80a+70b乙的分数为70a+80b而甲的分数高所以80a+70b>70a+80b解得a>b则解析:网页制作【分析】根据加权平均数的定义解答即可.【详解】解:设网页制作的权重为a,语言的权重为b,则甲的分数为80a+70b,乙的分数为70a+80b,而甲的分数高,所以80a+70b>70a+80b,解得a>b,则本次招聘测试中权重较大的是网页制作项目.故答案为:网页制作.【点睛】本题考查了加权平均数的和解一元一次不等式的知识,属于基础题型,熟练掌握加权平均数的定义是关键.17.15或-05【分析】根据极差的概念求出x的值然后根据平均数的概念求解【详解】一组数据-32-10123x的极差是11当x为最大值时x﹣(﹣3)=11x=8平均数是:;当x是最小值时3﹣x=11解得:解析:1.5或-0.5【分析】根据极差的概念求出x的值,然后根据平均数的概念求解.【详解】一组数据-3, 2,-1,0,1,2,3,x的极差是11,当x为最大值时,x﹣(﹣3)=11,x=8,平均数是:--÷=();[3+ 2+1+0+1+2+3+8]8 1.5当x是最小值时,3﹣x=11,解得:x=﹣8,平均数是:()-,[3+ 2+1+0+1+2+3+(8)]80.5--÷=-故答案为:1.5或-0.5【点睛】本题考查了极差和平均数,掌握平均数是所有数据的和除以数据的个数;极差就是这组数中最大值与最小值的差,是解题的关键18.乙【分析】根据方差的意义可作出判断方差是用来衡量一组数据波动大小的量方差越小表明这组数据分布比较集中各数据偏离平均数越小即波动越小数据越稳定【详解】解:∵∴队员身高比较整齐的球队是乙故答案为乙【点睛解析:乙【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵22S S >甲乙,∴队员身高比较整齐的球队是乙, 故答案为乙. 【点睛】本题考查方差.解题关键在于知道方差是用来衡量一组数据波动大小的量19.0【解析】【分析】先确定出abc 后根据方差的公式计算abc 的方差【详解】解:平均数;中位数;众数;bc 的方差故答案是:0【点睛】考查了平均数中位数众数和方差的意义解题的关键是正确理解各概念的含义解析:0. 【解析】 【分析】先确定出a ,b ,c 后,根据方差的公式计算a ,b ,c 的方差. 【详解】解:平均数()123242a =+++÷=; 中位数()2222b =+÷=; 众数2c =;a ∴,b ,c 的方差(222[(22)(22)22)30⎤=-+-+-÷=⎦.故答案是:0. 【点睛】考查了平均数、中位数、众数和方差的意义,解题的关键是正确理解各概念的含义.20.甲【分析】根据方差的意义即方差越小波动越小方差越大波动越大解答【详解】∵<∴甲稳定【点睛】本题考查的知识点是方差解题的关键是熟练的掌握方差解析:甲 【分析】根据方差的意义,即方差越小波动越小,方差越大波动越大解答. 【详解】∵2S 甲<2S 乙,∴甲稳定. 【点睛】本题考查的知识点是方差,解题的关键是熟练的掌握方差.三、解答题21.(1)40,40;(2)平均数为60,方差160;(3)见解析. 【分析】(1)由“他们5次考试的总成绩相同”可求得a 的值,利用极差的定义求解可得;(2)利用方差公式计算出乙的方差;(3)根据平均数与方差的意义进行判断,即可得出结论. 【详解】解:(1)a =(80+40+70+50+60)﹣(70+50+70+70)=40, 甲同学成绩的极差为:80﹣40=40, 故答案为:40,40;(2)乙同学的成绩平均数为15×(70+50+70+40+70)=60,方差S 乙2=15[(70﹣60)2+(50﹣60)2+(70﹣60)2+(40﹣60)2+(70﹣60)2]=160;(3)因为甲乙两位同学的平均数相同,S 甲2>S 乙2,所以乙同学的成绩更稳定. 【点睛】本题主要考查平均数、方差,解题的关键是掌握方差、平均数、极差的计算方法和方差的意义.22.(1)80;(2)①81;②85. 【分析】(1)直接利用算术平均数的定义求解可得; (2)根据加权平均数的定义计算可得. 【详解】解:(1)小张的期末评价成绩为709080803++=(分); (2)①小张的期末评价成绩为70190280781127⨯+⨯+⨯=++(分);②设小王期末考试成绩为x 分,根据题意,得:601752780127x⨯+⨯+++,解得84.2x ,∴小王在期末(期末成绩为整数)应该最少考85分才能达到优秀.【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义. 23.(1)30;50(2)甲稳定;见解析. 【分析】(1)根据平均数的计算公式先求出甲和乙的平均数,再代入方差公式()()()2221221=.....n S x x x x x x n ⎡⎤-+-++-⎢⎥⎣⎦,进行计算即可得出答案;(2)根据方差的意义,方差越小数据越稳定,即可得出答案. 【详解】 解:(1)甲的平均数是:()1225+230+240+230+225=2305cm ⨯,乙的平均数是:()1220+235+240+230+225=2305cm ⨯, 甲的方差是:()()()()()22222221=225230230230240230230230225230305S cm ⎡⎤⨯-+-+-+-+-=⎣⎦,乙的方差是:()()()()()22222221=220230235230240230230230225230505S cm ⎡⎤⨯-+-+-+-+-=⎣⎦;(2)由(1)知,S 甲2<S 乙2, ∴甲的跳远技术较稳定. 【点睛】本题主要考查平均数与方差,熟练掌握方差及平均数的运算公式是解题的关键. 24.(1)(3)九(1)班五名选手的成绩较稳定. 【分析】(1)观察图分别写出九(1)班和九(2)班5名选手的复赛成绩,然后根据中位数的定义和平均数的求法以及众数的定义求解即可; (2)在平均数相同的情况下,中位数高的成绩较好;(3)根据方差公式计算即可:()()()2222121x x x n n S x x x ⎡⎤=--++-⎢⎥⎣+⎦(可简单记忆为“等于差方的平均数”). 【详解】解:(1)由图可知九(1)班5名选手的复赛成绩为:75、80、85、85、100, ∴九(1)的中位数为85,把九(2)的成绩按从小到大的顺序排列为:70、75、80、100、100, ∴九(2)的平均数为(70+75+80+100+100)÷5=85, 九(2)班的众数是100;(3)21 5S=一班[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,21 = 5S二班[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160.∵22S S一班二班,∴九(1)班五名选手的成绩较稳定.【点睛】本题考查了中位数、众数以及平均数的求法,同时也考查了方差公式,解题的关键是牢记定义并能熟练运用公式.25.(1)画图见解析;(2)中位数是3小时,众数是4小时;(3)400人.【分析】(1)根据阅读5小时以上频数为6,所占百分比为12%,求出数据的总数,再用数据总数减去其余各组频数得到阅读3小时以上频数,然后补全频数分布直方图,分别求得阅读0小时和4小时的人数所占百分比,补全扇形图;(2)利用各组频数和总数之间的关系确定中位数和众数;(3)用1000乘以每周课外阅读时间不小于4小时的学生所占百分比即可.【详解】解:(1)总人数:6÷12%= 50 (人),阅读3小时以上人数:50-4-6-8-14-6= 12 (人),阅读3小时以上人数的百分比为12÷50= 24% ,阅读0小时以上人数的百分比为4÷50= 8% .图如下:(2)中位数是3小时,众数是4小时;(3) 1000⨯(28% + 12%)= 1000⨯40%= 400(人)答:该学校1000名学生双休日课外阅读时间不少于4小时的人数为400人.【点睛】此题考查数据的收集,主要有中位数,众数,扇形图和直方图的画法及表达的意义. 26.(1)17,20a b ==;(2)中位数是2次,众数是2次;(3)120人 【分析】(1)根据借阅1次的人数及百分比求出样本总人数,减去其他的人数即可得到a ,用借阅3次的人数除以总人数乘以100%即可得到3次的百分比,由此得到b ; (2)根据中位数及众数的定义解答;(3)根据样本中4次及以上的百分比乘以2000解答. 【详解】(1)调查的总人数是1326%50÷=(人), ∴a=50-7-13-10-3=17,10%100%20%50b =⨯=, 故答案为:17,20; (2)50个数据中中间两个数据都是2次,故中位数是2次, 数据出现次数最多的是2次,故众数是2次, 故答案为:2次,2次; (3)3100%200050⨯⨯=120(人), ∴该校学生在一周内借阅图书4次及以上的人数是120人. 【点睛】此题考查统计数据的计算,正确掌握样本总数的计算方法,中位数的定义,众数的定义,利用样本的百分比求总体的方法是解题的关键.。

上海新市学校八年级数学下册第五单元《数据的分析》检测卷(包含答案解析)

上海新市学校八年级数学下册第五单元《数据的分析》检测卷(包含答案解析)

一、选择题1.数据2-,1-,0,1,2的方差是()A.0 B C.2 D.42.初三体育素质测试,某小组5名同学成绩如下所示,有两个数据遮盖,如图:A.35 2 B.36 4 C.35 3 D.36 33.某校以“我和我的祖国”为主题的演讲比赛中,共有10位评委分别给出某选手的原始评分,在评定该选手成绩时,则从10个原始评分中去掉1个最高分和1个最低分,得到8个有效评分. 8个有效评分与10个原始评分相比,不变的是()A.平均数B.极差C.中位数D.方差4.八年级某班五个合作学习小组人数如下:5,7,6,x,7.已知这组数据的平均数是6,则x的值为()A.7 B.6 C.5 D.45.某学习小组的5名同学在一次数学文化节竞赛活动中的成绩分别是:92分,96分,90分,92分,85分,则下列结论正确的是()A.平均数是92 B.中位数是90 C.众数是92 D.极差是76.甲、乙、丙、丁四位同学五次数学测验成绩统计如右表所示,如果从这四位同学中,选出一位同学参加数学竞赛,那么应选___________去.A.甲B.乙C.丙D.丁7.样本数据4,m,5,n,9的平均数是6,众数是9,则这组数据的中位数是( )A.3 B.4 C.5 D.98.已知数据x,4,0,3,-1的平均数是1,那么它的众数是()A.4 B.0 C.3 D.-19.若a、b、c这三个数的平均数为2,方差为S2,则a+2,b+2,c+2的平均数和方差分别是()A.2,S2B.4,S2C.2,S2+2 D.4,S2+410.某兴趣小组为了解我市气温变化情况,记录了今年1月份连续6天的最低气温(单):-6,-4,-2,0,-2,2.关于这组数据,下列结论不正确的是()位:CA.平均数是-2 B.中位数是-2 C.众数是-2 D.方差是511.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是()A.9.7m,9.9m B.9.7m,9.8m C.9.8m,9.7m D.9.8m,9.9m 12.某校八年级(1)班全体学生进行了第一次体育中考模拟测试,成绩统计如下表:成绩(分) 24 25 26 27 28 29 30人数(人) 65 5 8 7 7 4根据上表中的信息判断,下列结论中错误的是( )A.该班一共有42名同学B.该班学生这次考试成绩的众数是8C.该班学生这次考试成绩的平均数是27D.该班学生这次考试成绩的中位数是27分二、填空题13.商店某天销售了11件衬衫,其领口尺寸统计如下表:领口尺寸(单位:cm)3839404142件数14312则这11件衬衫领口尺寸的中位数是________cm.14.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数是_______,中位数是___________.15.已知点(x1,y1),(x2,y2),(x3,y3)都在函数y=-2x+7的图象上,若数据x1,x2,x3的方差为5,则另一组数据y1,y2,y3的方差为_________.16.已知一组数据5,10,15,x,9的平均数是8,那么这组数据的中位数是______.17.某中学人数相等的甲、乙两班学生参加了同一次数学测验,两班平均分和方差分别为⎺x甲=82分,⎺x乙=82分,S2甲=245,S2乙=190.那么成绩较为整齐的是__________班18.为迎接2018年的体育中考,甲、乙两位同学参加排球训练,体育老师根据训练成绩算出他们成绩的方差分别为S甲2=1.6,S乙2=2.8,则_____(填“甲”或“乙”)成绩较稳定.19.已知一组数据的方差s2=14[(x1﹣6)2+(x2﹣6)2+(x3﹣6)2+(x4﹣6)2],那么这组数据的总和为_____.20.为调查某班学生每天使用零花钱的情况,张华随机调查了30名同学,结果如下表:每天使用零花钱(单位:元)12345人数25896则这30名同学每天使用的零花钱的中位数是_____元.三、解答题21.本学期初,某校为迎接中华人民共和国建国七十周年,开展了以“不忘初心,缅怀革命先烈,奋斗新时代”为主题的读书活动.校德育处对本校七年级学生四月份“阅读该主题相关书籍的读书量”(下面简称:“读书量”)进行了随机抽样调查,并对所有随机抽取学生的“读书量”(单位:本)进行了统计,如图所示:根据以上信息,解答下列问题:(1)补全上面两幅统计图;(2)本次所抽取学生四月份“读书量”的中位数为本;(3)求本次所抽取学生四月份“读书量”的平均数;(4)已知该校七年级有1200名学生,请你估计该校七年级学生中,四月份“读书量”为5本的学生人数.22.某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:平均数 方差 中位数 甲 7 ① . 7 乙② .5.4③ .(1)请将右上表补充完整:(参考公式:方差2222121[()()()]n S x x x x x x n=-+-++-)(2)请从下列三个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看,__________的成绩好些;②从平均数和中位数相结合看,___________的成绩好些; (3)若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.23.某初中要调查学校学生(总数 1000 人)双休日课外阅读情况,随机调查了一部分学生,调查得 到的数据分别制成频数直方图(如图 1)和扇形统计图(如图 2).(1)请补全上述统计图(直接填在图中); (2) 试确定这个样本的中位数和众数;(3)请估计该学校 1000 名学生双休日课外阅读时间不少于 4 小时的人数.24.某篮球队在一次联赛中共进行了10场比赛,已知这10场比赛的平均得分为48分,且前9场比赛的得分依次为:57,51,45,51,44,46,45,42,48. (1)求第10场比赛的得分;(2)直接写出这10场比赛的中位数,众数和方差.25.某班级从甲、乙两位同学中选派一人参加知识竞赛,老师对他们的五次模拟成绩(单位:分)进行了整理,并计算出甲成绩的平均数是80分,甲、乙成绩的方差分别是320,40,但绘制的统计图表尚不完整.甲、乙两人模拟成绩统计表第一次第二次第三次第四次第五次甲成绩901009050a乙成绩8070809080甲、乙两人模拟成绩折线图根据以上信息,请你解答下列问题:(1)a(2)请完成图中表示甲成绩变化情况的折线;(3)求乙成绩的平均数;(4)从平均数和方差的角度分析,谁将被选中.26.八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(单位:分):甲789710109101010乙10879810109109)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4 分2,则成绩较为整齐的是队.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】先计算平均数,再计算方差.方差的定义一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,x =1n (x 1+x 2+…+x n ),则方差S 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]. 【详解】解:平均数x =15(-2-1+0+1+2)=0, 则方差S 2=15[(-2-0)2+(-1-0)2+(0-0)2+(1-0)2+(2-0)2]=2. 故选:C . 【点睛】本题考查方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,x =1n(x 1+x 2+…+x n ),则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.2.B解析:B 【分析】根据平均数的计算公式先求出编号3的得分,再根据方差公式进行计算即可得出答案. 【详解】 解:这组数据的平均数是37,∴编号3的得分是:375(38343740)36⨯-+++=;方差是:222221[(3837)(3437)(3637)(3737)(4037)]45-+-+-+-+-=;故选:B . 【点睛】本题考查平均数和方差的定义,一般地设n 个数据,1x ,2x ,n x ⋯的平均数为x ,则方差2222121[()()()]n S x x x x x x n=-+-+⋯+-,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.3.C解析:C 【分析】根据题意,由数据的数字特征的定义,分析可得答案. 【详解】根据题意,从10个原始评分中去掉1个最高分、1个最低分,得到8个有效评分,8个有效评分与10个原始评分相比,最中间的两个数不变,即中位数不变,故选C.【点睛】本题考查数据的数字特征,关键是掌握数据的平均数、中位数、方差、极差的定义以及计算方法.4.C解析:C【分析】根据平均数的计算公式列出算式,再进行计算即可得出x的值.【详解】解:∵5,7,6,x,7的平均数是6,∴15(5+7+6+x+7)=6,解得:x=5;故选:C.【点睛】本题考查了算术平均数的知识,解题的关键是根据算术平均数求出数据总和.5.C解析:C【分析】根据平均数、中位数、众数以及极差的定义、计算公式对各选项进行判断.【详解】解:A.这组数据的平均分15×(85+90+92+92+96)=91分,所以A选项错误;B、这组数据按从小到大排列为:85、90、92、92、96,所以这组数据的中位数为92(分),所以B选项错误;C、这组数据的众数为92(分),所以C选项正确;D.这组数据极差是96﹣85=11,所以D选项错误;故选C.【点睛】本题查平均数,中位数,众数以及极差,解题关键是正确熟练运用公式.6.B解析:B【分析】本题首先可通过四位同学的平均分比较,择高选取;继而根据方差的比较,择低选取求解本题.【详解】通过四位同学平均分的比较,乙、丙同学平均数均为90,高于甲、丁同学,故排除甲、丁;乙、丙同学平均数相同,但乙同学方差更小,说明其发挥更为稳定,故选择乙同学. 故选:B . 【点睛】本题考查平均数以及方差,平均数表示其平均能力的高低;方差表示数据波动的大小,即稳定性高低,数值越小,稳定性越强,考查对应知识点时严格按照定义解题即可.7.C解析:C 【分析】先判断出m ,n 中至少有一个是9,再用平均数求出12m n +=,即可求出这两个数,由中位数的定义排序后求中位数即可. 【详解】解:∵一组数据4,m ,5,n ,9的众数为9, ∴m ,n 中至少有一个是9,∵一组数据4,m ,5,n ,9的平均数为6,45965m n ++++=∴12m n +=∴m ,n 中一个是9,另一个是3 ∴这组数按从小到大排列为:3,4,5,9,9. ∴这组数的中位数为:5. 故选:C. 【点睛】本题考查了众数、平均数和中位数的知识.能结合平均数和众数的定义对这组数据正确分析是解决此题的关键.8.D解析:D 【分析】先根据平均数的定义求出x .这组数据中出现次数最多的数是众数. 【详解】∵x ,4,0,3,-1的平均数是1, ∴403115x +++-=⨯ ∴1x =-∴这组数据是14031--,,,, ∴众数是1- 故选:D . 【点睛】本题考查了平均数的定义和确定一组数据的众数的能力.要明确定义,找到这组数据中出现次数最多的数.9.B【分析】方差是用来衡量一组数据波动大小的量,每个数都加了2,所以波动不会变,方差不变,平均数增加2. 【详解】由题意知,原来的平均数为2,每个数据都加上2,则平均数变为4;原来的方差221=(2)(2)(2)3S a b c ⎡⎤---⎣⎦22++ 现在的方差:222222111=(24)(24)(24)=(2)(2)(2)33S a b c a b c S ⎡⎤⎡⎤+-+-+-=---=⎣⎦⎣⎦22++++ 方差不变. 故选:B. 【点睛】本题考查了方差和平均数,当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.10.D解析:D 【分析】根据平均数、中位数、众数及方差的定义以及计算公式,依次计算各选项即可作出判断. 【详解】解:A 、平均数是-2,结论正确,故A 不符合题意; B 、中位数是-2,结论正确,故B 不符合题意; C 、众数是-2,结论正确,故C 不符合题意; D 、方差是203,结论错误,故D 符合题意; 故选:D . 【点睛】本题考查平均数、中位数、众数及方差的知识,属于基础题,掌握各部分的定义及计算方法是解题关键.11.B解析:B 【分析】将这7个数据从小到大排序后处在第4位的数是中位数,利用算术平均数的计算公式进行计算即可. 【详解】把这7个数据从小到大排列处于第4位的数是9.7m ,因此中位数是9.7m , 平均数为:(9.59.69.79.79.810.110.2)79.8++++++÷=m , 故选B .考查中位数、算术平均数的计算方法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数就是这组数据的中位数,平均数则是反映一组数据的集中水平.12.B解析:B【解析】【分析】根据众数,中位数,平均数的定义解答.【详解】解:该班共有6+5+5+8+7+7+4=42(人),成绩27分的有8人,人数最多,众数为27;该班学生这次考试成绩的平均数是=142(24×6+25×5+26×5+27×8+28×7+29×7+30×4)=27,该班学生这次考试成绩的中位数是第21名和第22名成绩的平均数为27分,错误的为B,故选:B.【点睛】本题考查的是众数,中位数,平均数,熟练掌握众数,中位数,平均数的定义是解题的关键.二、填空题13.40【分析】根据中位数的概念中位数是指将数据按大小顺序排列起来形成一个数列居于数列中间位置的那个数据再根据题中所给表格找出中位数【详解】将所卖衬衫按照领口尺寸从小到大排列后处于中间的衬衫领口尺寸为4解析:40【分析】根据中位数的概念,中位数,是指将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据,再根据题中所给表格,找出中位数.【详解】将所卖衬衫按照领口尺寸从小到大排列后,处于中间的衬衫领口尺寸为40cm,此中位数是40cm故答案:40【点睛】本题首先要掌握中位数的概念,能看懂题中所给表格,根据中位数的概念来解答的. 14.15岁15岁【分析】由图得到男子足球队的年龄及对应的人数再根据平均数中位数的概念求解【详解】∵由图可得:13岁的有2人14岁的有6人15岁的有8人16岁的有3人17岁的有2人18岁的有1人∴平均数为解析:15岁 15岁【分析】由图得到男子足球队的年龄及对应的人数,再根据平均数、中位数的概念求解.【详解】∵由图可得:13岁的有2人,14岁的有6人,15岁的有8人,16岁的有3人,17岁的有2人,18岁的有1人,∴平均数为13214615816317218115268321⨯+⨯+⨯+⨯+⨯+⨯=+++++; ∵足球队共有队员2+6+8+3+2+1=22人,∴中位数是11名和第12名的平均年龄,即15岁,故答案是:15岁,15岁.【点睛】 本题考查了求一组数据的加权平均数和中位数.解题关键是求中位数时一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.15.20【解析】【分析】把x1x2x3分别代入y=-2x+7得出y1y2y3设这组数据x1x2x3的平均数为由方差S2=5则另一组新数据-2x1+7-2x2+7-2x3+7的平均数为-2+7方差为S′2解析:20.【解析】【分析】把x 1、x 2、x 3分别代入y=-2x+7,得出y 1、y 2、y 3,设这组数据x 1,x 2,x 3的平均数为x ,由方差S 2=5,则另一组新数据-2x 1+7,-2x 2+7,-2x 3+7的平均数为-2x +7,方差为S′2,代入公式S 2=()()()222121n x x x x x x n ⎡⎤-+-+⋯+-⎣⎦计算即可. 【详解】 设这组数据x 1,x 2,x 3的平均数为x ,则另一组新数据-2x 1+7,-2x 2+7,-2x 3+7的平均数为-2x +7,∵S 2=13[(x 1-x )2+(x 2-x )2+(x 3-x )2]=5, ∴方差为S′2=13 [(-2x 1+7+2x -7)2+(-2x 2+7+2x -7)2+(-2x 3+7+2x -7)2] =13[4(x 1-x )2+4(x 2-x )2+4(x 3-x )2] =4S 2=4×5=20,故答案为:20.【点睛】本题说明了当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.16.9【解析】【分析】根据平均数的定义先求出x的值再根据中位数的定义即可得出答案【详解】根据平均数的定义可知(5+10+15+x+9)÷5=8解得:x=1把这组数据从小到大的顺序排列为1591015处于解析:9【解析】【分析】根据平均数的定义先求出x的值,再根据中位数的定义即可得出答案.【详解】根据平均数的定义可知,(5+10+15+x+9)÷5=8,解得:x=1,把这组数据从小到大的顺序排列为1,5,9,10,15,处于中间位置的那个数是9,那么由中位数的定义可知,这组数据的中位数是9;故答案为9.【点睛】考查了中位数,掌握中位数的定义是本题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.17.乙【解析】【分析】根据方差的意义方差反映了一组数据的波动大小根据方差越小波动越小故可由两班的方差得到结论【详解】∵S2甲>S2乙∴成绩较为稳定的是乙故答案为乙【点睛】本题考查了方差的意义:反映了一组解析:乙【解析】【分析】根据方差的意义,方差反映了一组数据的波动大小,根据方差越小,波动越小,故可由两班的方差得到结论.【详解】∵S2甲>S2乙∴成绩较为稳定的是乙.故答案为乙.【点睛】本题考查了方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18.甲【分析】根据方差的意义即方差越小波动越小方差越大波动越大解答【详解】∵<∴甲稳定【点睛】本题考查的知识点是方差解题的关键是熟练的掌握方差解析:甲【分析】根据方差的意义,即方差越小波动越小,方差越大波动越大解答.【详解】∵2S甲<2S乙,∴甲稳定.【点睛】本题考查的知识点是方差,解题的关键是熟练的掌握方差.19.24【分析】根据方差公式S2=(x1﹣)2+(x2﹣)2+…+(xn﹣)2中各个字母表示的意义得出这组数据的平均数是6数据个数是4从而得出这组数据的总和【详解】∵s2=(x1﹣6)2+(x2﹣6)2解析:24【分析】根据方差公式S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2]中各个字母表示的意义,得出这组数据的平均数是6,数据个数是4,从而得出这组数据的总和.【详解】∵s2=14[(x1﹣6)2+(x2﹣6)2+(x3﹣6)2+(x4﹣6)2],∴这组数据的平均数是6,数据个数是4,∴这组数据的总和为4×6=24.故答案为24.【点睛】本题考查了方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2].20.35【解析】分析:利用众数的定义可以确定众数在第三组由于张华随机调查了20名同学根据表格数据可以知道中位数是按从小到大排序第15个与第16个数的平均数详解:∵4出现了9次它的次数最多∴众数为4∵张华解析:3.5【解析】分析: 利用众数的定义可以确定众数在第三组,由于张华随机调查了20名同学,根据表格数据可以知道中位数是按从小到大排序,第15个与第16个数的平均数.详解: ∵4出现了9次,它的次数最多,∴众数为4.∵张华随机调查了30名同学,∴根据表格数据可以知道中位数=(3+4)÷2=3.5,即中位数为3.5.故答案为:3.5.点睛: 本题属于基础题,考查了确定一组数据的中位数和众数的能力.要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.三、解答题21.(1)见解析;(2)3;(3)3本;(4)120人【分析】(1)先用读2本的人数除以其所占百分比求出抽取的总人数,进而可求出读4本书的人数与读3本的人数所占百分比,进而可补全统计图;(2)根据中位数的定义解答即可;(3)根据加权平均数的定义求解即可;(4)用扇形统计图中读5本书的人数所占百分比×1200即得结果.【详解】解:(1)所抽取学生总数=18÷30%=60人,60×20%=12人,21÷60=35%;补全两幅统计图如图所示:(2)本次所抽取学生四月份“读书量”的中位数为3本;故答案为:3;(3)3118221312465360⨯+⨯+⨯+⨯+⨯=(本);答:本次所抽取学生四月份“读书量”的平均数为3本;(4)10%×1200=120(人);答:估计该校七年级学生中,四月份“读书量”为5本的学生人数为120人.【点睛】本题考查了条形统计图、扇形统计图、中位数、加权平均数以及利用样本估计总体等知识,属于常考题型,正确理解题意、熟练掌握上述知识是解题的关键.22.(1)①1.2;②7;③7.5;(2)①甲;②乙;(3)乙,理由见解析【分析】(1)根据方差公式直接计算即可得出甲的方差,然后根据折线图信息进一步分析即可求出乙的平均数以及中位数;(2)①甲乙平均数相同,而甲的方差要小,所以甲的成绩更加稳定,从而得出甲的成绩好一些;②甲乙平均数相同,而乙的中位数较大,即乙的成绩的中间量较大,所以得出乙的成绩好一些;(3)根据甲乙二人成绩的相关数据结合实际进一步分析比较即可.【详解】(1)①甲的方差为:2222221[(97)(57)4(77)2(87)2(67)] 1.210S =-+-+⨯-+⨯-+⨯-=, ②乙的平均数为:()24687789910107+++++++++÷=,③乙的中位数为:()7827.5+÷=,故答案为:①1.2;②7;③7.5;(2)①甲乙平均数相同,而甲的方差要小,所以甲的成绩更加稳定,从而得出甲的成绩好一些;②甲乙平均数相同,而乙的中位数较大,即乙的成绩的中间量较大,所以得出乙的成绩好一些;故答案为:①甲;②乙;(3)选乙,理由如下:综合看,甲发挥更稳定,但射击精准度差;乙发挥虽然不稳定,但击中高靶环次数更多,成绩逐步上升,提高潜力大,更具有培养价值,所以应选乙.【点睛】本题考查了折线统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,折线统计图能清楚地看出数据的变化情况.23.(1)画图见解析;(2)中位数是3小时,众数是4小时;(3)400人.【分析】(1)根据阅读5小时以上频数为6,所占百分比为12%,求出数据的总数,再用数据总数减去其余各组频数得到阅读3小时以上频数,然后补全频数分布直方图,分别求得阅读0小时和4小时的人数所占百分比,补全扇形图;(2)利用各组频数和总数之间的关系确定中位数和众数;(3)用1000乘以每周课外阅读时间不小于4小时的学生所占百分比即可.【详解】解:(1)总人数:6÷12%= 50 (人),阅读3小时以上人数:50-4-6-8-14-6= 12 (人),阅读3小时以上人数的百分比为12÷50= 24% ,阅读0小时以上人数的百分比为4÷50= 8% .图如下:(2)中位数是3小时,众数是4小时;(3) 1000⨯(28% + 12%)= 1000⨯40%= 400(人)答:该学校1000名学生双休日课外阅读时间不少于4小时的人数为400人.【点睛】此题考查数据的收集,主要有中位数,众数,扇形图和直方图的画法及表达的意义. 24.(1)第10场比赛的得分为51分;(2)这10场比赛得分的中位数为47分,众数为51分,方差18.2.【分析】(1)根据平均数的定义先求出总数,再分别减去前9个数即可;(2)根据中位数、众数的定义分别求出最中间两个数的平均数和出现次数最多数,再根据方差的计算公式代入计算即可.【详解】(1)∵10场比赛的平均得分为48分,∴第10场比赛的得分=48×10-57-51-45-51-44-46-45-42-48=51(分),(2)把这10个数从小到大排列为;42、44、45、45、46、48、51、51、51、57,最中间两个数的平均数是(46+48)÷2=47,则这10场比赛得分的中位数为47分,∵51出现了3次,出现次数最多,所以众数为51分,方差22222221(4248)(4448)2(4548)(4648)(4848)3(5148)(5748)18.210⎡⎤=-+-+⨯-+-+-+⨯-+-=⎣⎦. 【点睛】此题考查了平均数、众数与中位数和方差.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数;方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,牢记方差的公式是求解方差的关键.25.(1)70;(2)详见解析;(3)80;(4)乙将被选中,理由详见解析【分析】(1)根据平均数公式即可求得a 的值;(2)根据(1)计算的结果即可作出折线图;(3)利用平均数公式即可秋求解;(4)首先比较平均数,选择平均数大的,若相同,则比较方差,选择方差小,比较稳定的.【详解】解:(1)根据题意得:901009050805a ++++=,解得:a=70. (2)完成图中表示甲成绩变化情况的折线如图:(3)()乙1=8070809080=805x ++++, (4)甲乙成绩的平均数相同,乙的方差小于甲的方差,乙比甲稳定,所以乙将被选中.【点睛】本题考查了折线图的意义和平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数.26.(1)9.5,10;(2)9分,1分2;(3)乙【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;(2)先求出乙队的平均成绩,再根据方差公式进行计算;(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.【详解】(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)乙队的平均成绩是:()104827939110⨯+⨯++⨯=⨯(分), 则方差是:()()()()22224109211089793991⎡⎤⨯-+⨯-+-+⨯-=⎣⎦⨯(分2) ;(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.【点睛】本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n 个数据x 1,x 2,…x n 的平均数为x ,则方差S 2=()()()()22221231n x x x x x x x x n ⎡⎤-+-+-++-⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大.。

上海上海大学附属中学实验学校八年级数学下册第五单元《数据的分析》检测卷(有答案解析)

上海上海大学附属中学实验学校八年级数学下册第五单元《数据的分析》检测卷(有答案解析)

一、选择题1.为评估一种农作物的种植效果,选了8块地作试验田,这8块地的亩产量(单位:kg )分别为1x ,2x ,…,8x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A .1x ,2x ,…,8x 的平均数B .1x ,2x ,…,8x 的方差C .1x ,2x ,…,8x 的中位数D .1x ,2x ,…,8x 的众数2.在我县“我的中国梦”演讲比赛中,有7名同学参加了比赛,他们最终决赛的成绩各不相同.其中一名学生想要知道自己是否进入前3名,不仅要知道自己的分数,还得知道这7名学生成绩的( ) A .众数B .方差C .平均数D .中位数3.下图是2019年5月17日至31日某市的空气质量指数趋势图.(说明:空气质量指数为0-50、51-100、101-150分别表示空气质量为优、良、轻度污染) 有如下结论:①在此次统计中,空气质量为优的天数少于轻度污染的天数; ②在此次统计中,空气质量为优良的天数占45; ③20,21,22三日的空气质量指数的方差小于26,27,28三日的空气质量指数的方差. 上述结论中,所有正确结论的序号是( ) A .①B .①③C .②③D .①②③4.为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是( )①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A.①②④B.①③④C.③④D.①②5.一组数据,6、4、a、3、2的平均数是5,这组数据的方差为()A.8 B.5 C.6 D.36.下列说法正确的是()A.为了解我国中学生课外阅读的情况,应采取全面调查的方式B.一组数据1、2、5、5、5、3、3的中位数和众数都是5C.若甲组数据的方差是003,乙组数据的方差是0.1,则甲组数据比乙组数据稳定D.抛掷一枚硬币100次,一定有50次“正面朝上”7.小明、小华两名射箭运动员在某次测试中各射箭10次,两人的平均成绩均为7.5环,如图做出了表示平均数的直线和10次射箭成绩的折线图.S1,S2分别表示小明、小华两名运动员这次测试成绩的方差,则有()A.S1<S2B.S1>S2C.S1=S2D.S1≥S28.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择( )A.甲B.乙C.丙D.丁9.某校八年级(1)班全体学生进行了第一次体育中考模拟测试,成绩统计如下表:成绩(分) 24 25 26 27 28 29 30人数(人) 65 5 8 7 7 4根据上表中的信息判断,下列结论中错误的是( )A.该班一共有42名同学B.该班学生这次考试成绩的众数是8C.该班学生这次考试成绩的平均数是27D.该班学生这次考试成绩的中位数是27分10.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,值周班长小兵每周对各小组合作学习的情况进行综合评分,下表是其中一周的评分结果“分值”这组数据的中位数和众数分别是( )A.89,90 B.90,90 C.88,95 D.90,9511.某班体育委员记录了第一小组七位同学定点投篮(每人投10次)的情况,投进篮筐的个数为6,9,5,3,4,8,4,这组数据的众数是()A.3 B.4 C.5 D.812.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是()A.甲队员成绩的平均数比乙队员的大B.乙队员成绩的平均数比甲队员的大C.甲队员成绩的中位数比乙队员的大D.甲队员成绩的方差比乙队员的大二、填空题13.商店某天销售了11件衬衫,其领口尺寸统计如下表:领口尺寸(单位:cm)3839404142件数14312则这11件衬衫领口尺寸的中位数是________cm.14.已知一组数据-1,x,0,1,-2的平均数是0,这组数据的极差和标准差分别是_____15.根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图中所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐______.16.某班45名同学的数学平均分是80分,其中女生有20名,她们的数学平均分为82分,那么这个班男同学的数学平均分为______分.17.为迎接2018年的体育中考,甲、乙两位同学参加排球训练,体育老师根据训练成绩算出他们成绩的方差分别为S甲2=1.6,S乙2=2.8,则_____(填“甲”或“乙”)成绩较稳定.18.已知一组数据的方差s2=14[(x1﹣6)2+(x2﹣6)2+(x3﹣6)2+(x4﹣6)2],那么这组数据的总和为_____.19.如图,在边长为4的等边ABC中,D,E分别为AB,BC的中点,EF AC于点F,G为EF的中点,连接DG,则DG的长为__________.20.在新年晚会的投飞镖游戏环节中,7名同学的投掷成绩(单位:环)分别是:7,9,9,6,9,8,8,则这组数据的方差是______________________ .三、解答题21.某校举办了一次趣味数学竞赛,满分100分,学生得分均为整数,达到成绩60分及以上为合格,达到90分及以上为优秀,这次竞赛中,甲、乙两组学生成绩如下(单位:分)甲组:30,60,60,60,60,60,70,90,90,100;乙组:50,60,60,60,70,70,70,70,80,90.(1)以上成绩统计分析表如表:组别平均分中位数方差合格率优秀率甲组68a37630%乙组b c90%则表中a=,b=,c=.(2)如果你是该校数学竞赛的教练员,现在需要你根据成绩的稳定性选一组同学代表学校参加复赛,你会选择哪一组?并说明理由.22.甲、乙两人在相同条件下各立定跳远5次,距离如下(单位:cm):甲:225,230,240,230,225;乙:220,235,225,240,230.(1)计算这两组数据的方差;(2)谁的跳远技术较稳定?为什么?23.某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:每人销售件数1650510250210150120人数113532(1)求这15位营销人员该月销售量的平均数、中位数和众数;(2)假设销售负责人把每位营销员的月销售额定为310件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由.24.2020年拟继续举办丽水市中学生汉字听写、诗词诵写大赛.经过初赛、复赛,选出了两个代表队参加市内7月份的决赛.两个队各选出的5名选手的复赛成绩如图所示.(1)根据图示补全下表;平均数(分)中位数(分)众数(分)A队8385B队95(2)结合两队成绩的平均数和中位数,分析哪个队的复赛成绩较好;(3)计算两队成绩的方差,并判断哪一个代表队选手成绩较为稳定.25.今年5月12日是我国第11个全国防灾减灾日,重庆某中学为普及推广全民防灾减灾知识和避灾自救技能,开展了“提高灾害防治能力,构筑生命安全防线”知识竞赛活动.初一、初二年级各500人,为了调查竞赛情况,学校进行了抽样调查,过程如下,请根据表格回答问题.收集数据:从初一、初二年级各抽取20名同学的测试成绩(单位:分),记录如下:初一:68、79、100、98、98、86、88、99、100、93、90、100、80、76、84、98、99、86、98、90初二:92、89、100、99、98、94、100、62、100、86、75、98、89、100、100、68、79、100、92、89整理数据:表一分析数据:表二得出结论:(1)在表中:m=_______,n=_______,x=_______,y=_______;(2)得分情况较稳定的是___________(填初一或初二);(3)估计该校初一、初二年级学生本次测试成绩中可以得满分的人数共有多少人?26.某班级从甲、乙两位同学中选派一人参加知识竞赛,老师对他们的五次模拟成绩(单位:分)进行了整理,并计算出甲成绩的平均数是80分,甲、乙成绩的方差分别是320,40,但绘制的统计图表尚不完整.甲、乙两人模拟成绩统计表第一次第二次第三次第四次第五次甲成绩901009050a乙成绩8070809080甲、乙两人模拟成绩折线图根据以上信息,请你解答下列问题:(1)a(2)请完成图中表示甲成绩变化情况的折线;(3)求乙成绩的平均数;(4)从平均数和方差的角度分析,谁将被选中.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据方差的意义即可判断.【详解】解:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.故选:B.【点睛】本题考查方差,平均数,中位数,众数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.D解析:D【分析】由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析.【详解】由于总共有7个人,且他们的成绩各不相同,第3的成绩是中位数,要判断是否进入前3名,故应知道中位数的多少.故选:D.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.3.C解析:C【分析】根据折线统计图的数据,逐一分析即可.【详解】解:①中:当空气质量指数为0-50时表示优,数出折线图中在这个范围内的天数有5天;当空气质量指数为101-150是表示轻度污染,数出折线图中在这个范围内的天数有3天,故空气质量优的天数大于轻度污染的天数,故①错误;②中:空气质量指数在0-100范围内为优良,其天数共有12天,故空气质量为优良的天数所占比例为:124=155,故②正确;③中:20,21,22三日的空气质量指数波动范围小于26,27,28三日的空气质量指数波动范围,故20,21,22三日的空气质量指数的方差小于26,27,28三日的空气质量指数的方差,故③正确.∴正确的有:②③.故答案为:C.【点睛】本题是复式折线统计图,要通过坐标轴以及图例等读懂本图,根据图中所示的数量解决问题.4.C解析:C【分析】根据频数分布直方图中的数据,求得众数,平均数,中位数,即可得出结论.【详解】解:①根据频数分布直方图,可得众数为60−80元范围,故每人乘坐地铁的月均花费最集中的区域在60−80元范围内,故①不正确;②每人乘坐地铁的月均花费的平均数=876001000=87.6=87.6元,所以每人乘坐地铁的月均花费的平均数范围是80~100元,故②错误;③每人乘坐地铁的月均花费的中位数约为80元,在60~100元范围内,故③正确;④为了让市民享受到更多的优惠,若使50%左右的人获得折扣优惠,则乘坐地铁的月均花费达到80元以上的人可以享受折扣,故④正确.故选:C【点睛】本题主要考查了频数分布直方图,平均数以及中位数的应用,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.A解析:A【分析】先由平均数的公式计算出a的值,再根据方差的公式计算即可.【详解】∵数据6、4、a、3、2平均数为5,∴(6+4+2+3+a)÷5=5,解得:a=10,∴这组数据的方差是15[(6-5)2+(4-5)2+(10-5)2+(2-5)2+(3-5)2]=8.故选:A.【点睛】此题考查平均数,方差,解题关键在于掌握它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.6.C解析:C【分析】可根据调查的选择、中位数和众数的求法、方差及随机事件的意义,逐个判断得结论.【详解】解:因为我国中学生人数众多,其课外阅读的情况也不需要特别精确,所以对我国中学生课外阅读情况的调查,宜采用抽样调查,故选项A不正确;因为B中数据按从小到大排列为1、2、3、3、5、5、5,位于中间的数是3,故该组数据的中位数为3,所以选项B说法不正确;因为0.003<0.1,方差越小,波动越小,数据越稳定,所以甲组数据比乙组数据稳定,故选项C说法正确;因为抛掷硬币属于随机事件,抛掷一枚硬币100次,不一定有50次“正面朝上”故选项D说法不正确.故选:C.【点睛】本题的关键在于掌握调查的选择、中位数和众数的求法、方差及随机事件的意义.7.A解析:A【分析】各数据与平均值的离散程度越大,稳定性就越小;反之,各数据与其平均值的离散程度越小,稳定性就越好.【详解】根据图形可得,小明、小华两名射箭运动员在某次测试中各射箭10次所得的成绩中,小明的成绩与平均成绩离散程度小,而小华的成绩与平均成绩离散程度大,故S1<S2故选:A.【点睛】此题考查方差和折线统计图,解题关键在于掌握方差是反映一组数据的波动大小的一个量.方差越大,则与平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.8.C解析:C【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,选出方差最小,而且平均数较大的同学参加数学比赛.【详解】∵3.6<7.4<8.1,∴甲和丙的最近几次数学考试成绩的方差最小,发挥稳定,∵95>92,∴丙同学最近几次数学考试成绩的平均数高,∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择丙.故选C.【点睛】此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.9.B解析:B【解析】根据众数,中位数,平均数的定义解答.【详解】解:该班共有6+5+5+8+7+7+4=42(人),成绩27分的有8人,人数最多,众数为27;该班学生这次考试成绩的平均数是=142(24×6+25×5+26×5+27×8+28×7+29×7+30×4)=27,该班学生这次考试成绩的中位数是第21名和第22名成绩的平均数为27分,错误的为B,故选:B.【点睛】本题考查的是众数,中位数,平均数,熟练掌握众数,中位数,平均数的定义是解题的关键.10.B解析:B【解析】【分析】根据中位数和众数的定义找出从小到大排列后最中间的数和出现次数最多的数即可.【详解】把这组数据从小到大排列:84,89,90,90,90,91,96,最中间的数是90,则中位数是90;90出现了3次,出现的次数最多,则众数是90;故选B.【点睛】此题考查了中位数和众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.11.B解析:B【解析】【分析】众数是出现次数最多的数,据此求解即可.【详解】∵数据4出现了2次,最多,∴众数为4,故选:B.【点睛】本题考查了众数的知识,解题的关键是了解有关的定义,属于基础题,难度不大.12.D解析:D【分析】根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案.【详解】甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882=8,甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8,乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环),甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4;乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2,综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差,故选D.【点睛】本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.二、填空题13.40【分析】根据中位数的概念中位数是指将数据按大小顺序排列起来形成一个数列居于数列中间位置的那个数据再根据题中所给表格找出中位数【详解】将所卖衬衫按照领口尺寸从小到大排列后处于中间的衬衫领口尺寸为4解析:40【分析】根据中位数的概念,中位数,是指将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据,再根据题中所给表格,找出中位数.【详解】将所卖衬衫按照领口尺寸从小到大排列后,处于中间的衬衫领口尺寸为40cm,此中位数是40cm故答案:40【点睛】本题首先要掌握中位数的概念,能看懂题中所给表格,根据中位数的概念来解答的. 14.4【解析】试题解析:4【解析】试题∵x=0-(-1+0-2+1),故极差为:2-(-2)=4,则方差s2=15[(-1-0)2+(2-0)2+(0-0)2+(1-0)2+(-2-0)2]=2,.15.刘亮【解析】【分析】根据折线统计图得出两人射击成绩再计算出两人成绩的方差据此即可作出判断【详解】解:李飞的成绩为58978910897则李飞成绩的平均数为=8所以李飞成绩的方差为×(5-8)2+2×解析:刘亮【解析】【分析】根据折线统计图得出两人射击成绩,再计算出两人成绩的方差,据此即可作出判断.【详解】解:李飞的成绩为5、8、9、7、8、9、10、8、9、7,则李飞成绩的平均数为57283931010+⨯+⨯+⨯+=8,所以李飞成绩的方差为110×[(5-8)2+2×(7-8)2+3×(8-8)2+3×(9-8)2+(10-8)2]=1.8;刘亮的成绩为7、8、8、9、7、8、8、9、7、9,则刘亮成绩的平均数为73849310⨯+⨯+⨯=8,∴刘亮成绩的方差为110×[3×(7-8)2+4×(8-8)2+3×(9-8)2]=0.6,∵0.6<1.8,∴应推荐刘亮,故答案为:刘亮.【点睛】本题考查折线统计图与方差,解题关键是根据折线统计图得出解题所需数据及方差的计算公式.16.784【解析】【分析】设男生的平均分为x分根据男生总分和女生总分的和是全体学生的总分结合全班45名同学平均分是80分其中女生有20名她们的数学平均分为82分我们可以构造出一个关于x的方程解方程即可求解析:78.4【解析】【分析】设男生的平均分为x分,根据男生总分和女生总分的和是全体学生的总分,结合全班45名同学,平均分是80分,其中女生有20名,她们的数学平均分为82分,我们可以构造出一个关于x的方程,解方程即可求出x的值.设男生的平均分为x分,则2582204580x+⨯=⨯,解得78.4x=.即这个班男同学的数学平均分为78.4分.故答案为78.4.【点睛】本题考查了加权平均数,其中根据男生总分和女生总分的和是全体学生的总分,结合已知条件,构造关于x的方程是解题的关键.17.甲【分析】根据方差的意义即方差越小波动越小方差越大波动越大解答【详解】∵<∴甲稳定【点睛】本题考查的知识点是方差解题的关键是熟练的掌握方差解析:甲【分析】根据方差的意义,即方差越小波动越小,方差越大波动越大解答.【详解】∵2S甲<2S乙,∴甲稳定.【点睛】本题考查的知识点是方差,解题的关键是熟练的掌握方差.18.24【分析】根据方差公式S2=(x1﹣)2+(x2﹣)2+…+(xn﹣)2中各个字母表示的意义得出这组数据的平均数是6数据个数是4从而得出这组数据的总和【详解】∵s2=(x1﹣6)2+(x2﹣6)2解析:24【分析】根据方差公式S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2]中各个字母表示的意义,得出这组数据的平均数是6,数据个数是4,从而得出这组数据的总和.【详解】∵s2=14[(x1﹣6)2+(x2﹣6)2+(x3﹣6)2+(x4﹣6)2],∴这组数据的平均数是6,数据个数是4,∴这组数据的总和为4×6=24.故答案为24.【点睛】本题考查了方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2].19.【解析】分析:连接DE 根据题意可得ΔDEG 是直角三角形然后根据勾股定理即可求解DG 的长详解:连接DE ∵DE 分别是ABBC 的中点∴DE ∥ACDE=AC ∵ΔABC 是等边三角形且BC=4∴∠DEB=60° 解析:192【解析】 分析:连接DE ,根据题意可得ΔDEG 是直角三角形,然后根据勾股定理即可求解DG 的长. 详解:连接DE ,∵D 、E 分别是AB 、BC 的中点,∴DE ∥AC ,DE=12AC ∵ΔABC 是等边三角形,且BC=4∴∠DEB=60°,DE=2∵EF ⊥AC ,∠C=60°,EC=2∴∠FEC=30°,3∴∠DEG=180°-60°-30°=90°∵G 是EF 的中点,∴EG=32. 在RtΔDEG 中,22223192()2DE EG +=+= 192点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.20.【解析】分析:先计算出这组数据的平均数再根据方差公式进行计算即可详解:故答案为:点睛:此题考查了方差用到的知识点是方差公式一般地设n 个数据x1x2…xn 的平均数为则方差它反映了一组数据的波动大小方差解析:87【解析】分析:先计算出这组数据的平均数,再根据方差公式进行计算即可. 详解:1(7996988)87x =++++++=, 2222218[(78)3(98)(68)2(88)]77S =-+-+-+-=. 故答案为:87点睛:此题考查了方差,用到的知识点是方差公式,一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差2222121[()()...()]n S x x x x x x n=-+-++-,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 三、解答题21.(1)60,68,70;(2)乙组,理由见解析【分析】(1)利用中位数的定义确定a 、c 的值,根据平均数的定义计算出b 的值;(2)先计算出乙组成绩的方差,然后选择甲乙两组成绩的方差较小的一组.【详解】解:(1)甲组学生成绩的中位数为60602+=60,即a =60; 乙组学生成绩的平均数为110(50+3×60+4×70+80+90)=68; 乙组学生成绩的中位数为70702+=70,即b =68,c =70; 故填:60,68,70;(2)选择乙组.理由如下: 乙组学生成绩的方差为110[(50﹣68)2+3(60﹣68)2+4(70﹣68)2+(80﹣68)2+(90﹣68)2]=116,因为甲乙两组学生成绩的平均数相同,而乙组学生成绩的方差较小,成绩比较稳定,所以选择乙组.【点睛】本题考查众数、中位数、平均数的意义和计算方法,理解各个统计量的意义及各个统计量所反映数据的特点是解决问题的关键.22.(1)30;50(2)甲稳定;见解析.【分析】(1)根据平均数的计算公式先求出甲和乙的平均数,再代入方差公式()()()2221221=.....n S x x x x x x n ⎡⎤-+-++-⎢⎥⎣⎦,进行计算即可得出答案; (2)根据方差的意义,方差越小数据越稳定,即可得出答案.【详解】 解:(1)甲的平均数是:()1225+230+240+230+225=2305cm ⨯, 乙的平均数是:()1220+235+240+230+225=2305cm ⨯, 甲的方差是:()()()()()22222221=225230230230240230230230225230305S cm ⎡⎤⨯-+-+-+-+-=⎣⎦, 乙的方差是:()()()()()22222221=220230235230240230230230225230505S cm ⎡⎤⨯-+-+-+-+-=⎣⎦;(2)由(1)知,S 甲2<S 乙2,∴甲的跳远技术较稳定.【点睛】本题主要考查平均数与方差,熟练掌握方差及平均数的运算公式是解题的关键.23.(1)310, 210, 210;(2)不合理,理由见解析.【分析】(1)找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.平均数是指在一组数据中所有数据之和再除以数据的个数.(2)根据表中数据和平均数、中位数和众数的意义回答.【详解】解:(1)平均数是:1650510250321051503120231015++⨯+⨯+⨯+⨯=(件), 表中的数据是按从大到小的顺序排列的,处于中间位置的是210,因而中位数是210(件),210出现了5次最多,所以众数是210;(2)不合理.因为15人中有13人的销售额不到310件,310件虽是所给一组数据的平均数,它却不能很好地反映销售人员的一般水平.销售额定为210件合适些,因为210件既是中位数,又是众数,是大部分人能达到的定额.【点睛】此题考查了中位数,众数,平均数,它们都是反映数据集中趋势的指标,掌握平均数、中位数和众数的意义是解题的关键.24.(1)A 众数85,B 平均数83,中位数80;(2)A 队;(3)226A S =,2106B S =,A 队选手成绩较为稳定.【分析】(1)根据条形统计图即可求出A 队的众数,将B 队的分数从小到大排列即可求出B 队的中位数,然后根据平均数公式即可求出B 队的平均分;(2)结合两队成绩的平均数和中位数即可得出结论;(3)根据方差公式:()()()2222121n S x x x x x x n ⎡⎤=-+-++-⎢⎥⎣⎦计算出A 、B 两队的方差,从而得出结论.【详解】解:()1由条形统计图可知:A 队的众数为85,将B 队的分数从小到大排列为70,75,80,95,95∴B 队的中位数为80, B 队的平均分为(70+75+80+95+95)÷5=83补全图表如下:()2两队成绩的平均分一样,但A 队成绩的中位数高,故A 队成绩较好()3()()()()()222222175838083858385839083265A S =⎡-+-+-+-+⎤⎦=⎣-, ()()()()()222222170839583958375838083106,5B S =-+-+-+-+-=⎡⎤⎣⎦ ∵26106<,因此A 队选手成绩较为稳定.【点睛】此题考查的是平均数、众数、中位数和方差的意义和求法,掌握平均数、众数、中位数和方差的定义和公式是解决此题的关键.25.(1)2,5,93,98;(2)初一;(3)225【分析】(1)根据给出的初一20名同学测试成绩,成绩在7080x ≤<范围内的共有2名,可知m 值,成绩在8090x ≤<范围内的有5名,可得n 值,再根据中位数、众数的定义即可得出x 、y ;(2)判断哪个年级得分情况较稳定,根据方差的意义即可得出答案;(3)先求出各年级满分的人数所占的百分比,用该校各年级的总人数分别乘以得满分的人数所占的百分比,即可得出答案.【详解】(1)根据给出的数据可得:∵成绩在7080x ≤<范围内的共有2名,∴m=2∵成绩在8090x≤<范围内的有5名,∴n=5把初二成绩从小到大排列,则中位数x=92942+=93,∵初一成绩中出现次数最多的是98∴y=98;故答案为:2,5,93,98;(2)∵根据表二可得初一的方差是84.75,初二的方差是123.05∴初一的方差小于初二的方差∴得分情况较稳定的是初一故答案为:初一(3)根据20名初一同学测试成绩,取得100分的同学有3个,占3 20根据20名初二同学测试成绩,取得100分的同学有6个,占6 20则该校初一、初二年级学生本次测试成绩中可以得满分的人数共有:500×320+500×620=225(人)该校初一、初二年级学生本次测试成绩中可以得满分的人数共有225人.故答案为:225【点睛】本题考查了中位数、众数的定义,已知一组数求中位数和众数;考查了方差的意义,在考虑稳定性时,利用方差来判断;会用样本估算总体.26.(1)70;(2)详见解析;(3)80;(4)乙将被选中,理由详见解析【分析】(1)根据平均数公式即可求得a的值;(2)根据(1)计算的结果即可作出折线图;(3)利用平均数公式即可秋求解;(4)首先比较平均数,选择平均数大的,若相同,则比较方差,选择方差小,比较稳定的.【详解】解:(1)根据题意得:901009050805a++++=,解得:a=70.(2)完成图中表示甲成绩变化情况的折线如图:。

上海杨思中学八年级数学下册第五单元《数据的分析》测试题(答案解析)

上海杨思中学八年级数学下册第五单元《数据的分析》测试题(答案解析)

一、选择题1.若数据 4,x ,2,8 ,的平均数是 4,则这组数据的中位数和众数是( ) A .3 和 2B .2 和 3C .2 和 2D .2 和42.在我县“我的中国梦”演讲比赛中,有7名同学参加了比赛,他们最终决赛的成绩各不相同.其中一名学生想要知道自己是否进入前3名,不仅要知道自己的分数,还得知道这7名学生成绩的( ) A .众数B .方差C .平均数D .中位数3.给出下列命题:①三角形的三条高相交于一点;②如果一组数据中有一个数据变动,那么它的平均数、众数、中位数都随之变动; ③如果不等式()33m x m ->-的解集为1x <,那么3m <;④如果三角形的一个外角等于与它相邻的一个内角则这个三角形是直角三角形; 其中正确的命题有( ) A .1个B .2个C .3个D .4个4.2017年世界未来委员会与联合国防治荒漠化公约授予我国“未来政策奖”,以表彰我国在防治土地荒漠化方面的突出成就.如图是我国荒漠化土地面积统计图,则荒漠化土地面积是五次统计数据的中位数的年份是( )A .1999年B .2004年C .2009年D .2014年5.某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:甲 乙 丙 丁平均分 8.5 8.2 8.5 8.2 方差 1.81.21.21.1最高分9.89.89.89.7如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选( ) A .丁B .丙C .乙D .甲6.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为()A.8.5,9 B.8.5,8 C.8,8 D.8,97.在学校举行的“我为祖国献首歌”的合唱比赛中,六位评委给初三某班的评分分别是:87、90、83、87、87、83,这组数据的众数和中位数分别是()A.87,87 B.87,85 C.83,87 D.83,858.如图是根据我市某天七个整点时的气温绘制成的统计图,则下列说法正确的是()A.这组数据的众数是14B.这组数据的中位数是31C.这组数据的标准差是4D.这组是数据的极差是99.若a、b、c这三个数的平均数为2,方差为S2,则a+2,b+2,c+2的平均数和方差分别是()A.2,S2B.4,S2C.2,S2+2 D.4,S2+410.有一组数据:1,1,1,1,m.若这组数据的方差是0,则m为()A.4-B.1-C.0 D.111.某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82.下列关于这组数据的描述不正确的是()A.众数是108 B.中位数是105C.平均数是101 D.方差是9312.为了解某校计算机考试情况,抽取了50名学生的计算机考试成绩进行统计,统计结果如表所示,则50名学生计算机考试成绩的众数、中位数分别为()考试分数(分)2016128人数241853A.20,16 B.l6,20 C.20,l2 D.16,l2二、填空题13.已知一组数据a,b,c的方差为2,那么数据a+3,b+3,c+3的方差是_____.14.数据-1,2,0,1,-2的方差是____.15.某市某一周的PM2.5(大气中直径小于等于2.5微米的颗粒物,也称可入肺颗粒物指数)如表,则该周PM2.5指数的众数为________.16.一组数据1,0,2,1的方差S 2=_____.17.李老师为了了解学生的数学周考成绩,在班级随机抽查了10名学生的成绩,其统计数据如下表: 分数(单位:分) 126 132 136 138 142 人数14212则这10名学生的数学周考成绩的中位数是________分.18.一组数据1、2、3、4、5的方差为21S ,另一组数据6、7、8、9、10的方差为22S ,那么21S ______22(S 填“>”、“=”或“<”).19.一组数据2、3、5、6、x 的平均数正好也是这组数据的中位数,那么正整数x 为_____.20.一组数据5,8,x ,10,4的平均数是2x ,则这组数据的方差是___________.三、解答题21.“绿水青山就是金山银山”,北京市民积极参与义务植树活动.小武同学为了了解自己小区300户家庭在2018年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵): 1 1 2 3 2 3 2 3 3 4 3 3 4 3 3 5 3 4 3 4 4 5 4 5 3 4 3 4 5 6(1)对以上数据进行整理、描述和分析: ①绘制如下的统计图,请补充完整;②求这30户家庭2018年4月份义务植树数量的平均数是和中位数分别是多少? (2)“互联网+全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有多少户?22.某校八年级有800名学生,在一次跳绳模拟测试中,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为______,扇形统计图中m 的值为______. (2)本次调查获取的样本数据的众数是_____(分),中位数是_____(分). (3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人? 23.某篮球队在一次联赛中共进行了10场比赛,已知这10场比赛的平均得分为48分,且前9场比赛的得分依次为:57,51,45,51,44,46,45,42,48. (1)求第10场比赛的得分;(2)直接写出这10场比赛的中位数,众数和方差.24.甲、乙两运动员的五次射击成绩如下表(不完全):(单位:环)第1次 第2次 第3次 第4次 第5次甲 10 8 9108乙109ab9()1若甲、乙射击平均成绩一样,求+a b 的值;()2在()1条件下,若,a b 是两个连续整数,试问谁发挥的更稳定?25.根据重庆轨道集团提供的日客运量统计,2019年2月21日重庆轨道交通首次日客运量突破300万乘次,其中近期开通的重庆轨道交通环线日客运量为21.5万乘次.据了解,某工作日上午7点至9点轨道环线四公里站有20列列车进出站,每列车进出站时,将上车和下车的人数记录下来,各得到20个数据,并将数据进行整理,绘制成了如下两幅不完整统计图.(数据分组为:A 组:170180x ≤<,B 组:180190x ≤<,C 组:190200x ≤<,D 组:200210x ≤<,E 组:210220x ≤≤)I .上车人数在C 组的是:190,190,191,192,193,193,195,196,198,198,198,198;II .上车人数的平均数、中位数如下表:平均数 中位数 上车人数(人)194a根据以上信息,回答下列问题:(1)请补全频数分布直方图;(2)表中a=________,扇形统计图中m=_________,扇形统计图中E组所在的圆心角度数为________度;(3)请利用平均数,估算一周内5个工作日的上午7点至9点重庆轨道环线四公里站的上车总人数.26.为响应我市创建“全国文明城市”的号召,我区某校举办了一次“秀美巴中,绿色家园”主题演讲比赛,满分10分,得分均为整数,成绩大于等于6分为合格,大于等于9分为优秀,这次演讲比赛中甲、乙两组学生(各10名学生)成绩分布的条形统计图如下图:(1)补充完成下列的成绩统计分析表:组别平均分中位数众数方差合格率优秀率甲 6.76 3.4190%20%乙7.17.5 1.6980%10%可知,小王是________组的学生;(填“甲”或“乙”)(3)结合两个小组的成绩分析,你觉得哪个组的成绩更好一些?说说你的理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【分析】根据平均数的计算公式先求出x 的值,再根据中位数和众数的概念进行求解即可. 【详解】∵数据2,x ,4,8的平均数是4,∴这组数的平均数为2484x +++=4,解得:x =2; 所以这组数据是:2,2,4,8,则中位数是242+=3. ∵2在这组数据中出现2次,出现的次数最多,∴众数是2. 故选A . 【点睛】本题考查了平均数、中位数和众数,平均数的计算方法是求出所有数据的和,然后除以数据的总个数;据此先求得x 的值,再将数据按从小到大排列,将中间的两个数求平均值即可得到中位数,众数是出现次数最多的数.2.D解析:D 【分析】由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析. 【详解】由于总共有7个人,且他们的成绩各不相同,第3的成绩是中位数,要判断是否进入前3名,故应知道中位数的多少. 故选:D . 【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.3.B解析:B 【分析】根据三角形的高、平均数、众数、中位数的定义、不等式的基本性质和邻补角的定义逐一判断即可. 【详解】①钝角三角形的三条高不相交(三条高所在的直线交于一点),故错误;②如果一组数据中有一个数据变动,那么它的平均数会随之变动,但众数和中位数不一定变动,故错误;③如果不等式()33m x m ->-的解集为1x <,可得m -3<0,那么3m <,故正确;④如果三角形的一个外角等于与它相邻的一个内角,根据邻补角的定义可得这个外角和与它相邻的一个内角之和为180°,∴三角形的这个内角为180°÷2=90°则这个三角形是直角三角形,故正确.综上:正确的有2个故选B.【点睛】此题考查的是三角形的相关性质、定义、数据的平均数、众数、中位数的定义和不等式的基本性质,掌握三角形的相关性质、定义、数据的平均数、众数、中位数的定义和不等式的基本性质是解决此题的关键.4.C解析:C【分析】把数据的年份从小到大排列,根据中位数的定义即可得答案,【详解】把数据的年份从小到大排列为:2014年、1994年、2009年、2004年、1999年,∵中间的年份是2009年,∴五次统计数据的中位数的年份是2009年,故选:C.【点睛】本题考查中位数,把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数.5.B解析:B【分析】先比较平均数得到甲和丙成绩较好,然后比较方差得到丙的状态稳定,即可决定选丙去参赛.【详解】∵甲、丙的平均数比乙、丁大,∴甲和丙成绩较好,∵丙的方差比甲的小,∴丙的成绩比较稳定,∴丙的成绩较好且状态稳定,应选的是丙,故选:B.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.6.C解析:C【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】这组数据中出现次数最多的一个数是8,所以这组数据的众数是8环;22是偶数,按大小顺序排列后中间两个数是8和8,所以这组数据的中位数是8(环).故选:C.【点睛】此题考查众数和中位数.注意掌握中位数和众数的定义是解题关键.7.A解析:A【分析】首先对这组数据进行排序,根据中位数和众数的定义回答即可.【详解】∵这组数据排序后为83,83,87,87,87,90,∴这组数据的众数是87,这组数据的中位数是87872+=87.故选A.【点睛】本题考查了中位数和众数的定义.注意找中位数的时候一定要先排好顺序,然后再根据数据个数确定中位数:如果数据有奇数个,则正中间的数字即为所求;如果是偶数个则找中间两位数的平均数.8.D解析:D【解析】【分析】根据中位数,众数、极差、标准差的定义即可判断.【详解】解:七个整点时数据为:22,22,23,26,28,30,31所以中位数为26,众数为22,平均数为:22+22+23+26+28+3032167+=;极差是31-22=9,标准差是:故D正确,故选:D【点睛】此题考查中位数,众数、极差、标准差的定义,解题关键在于看懂图中数据9.B解析:B 【分析】方差是用来衡量一组数据波动大小的量,每个数都加了2,所以波动不会变,方差不变,平均数增加2. 【详解】由题意知,原来的平均数为2,每个数据都加上2,则平均数变为4;原来的方差221=(2)(2)(2)3S a b c ⎡⎤---⎣⎦22++ 现在的方差:222222111=(24)(24)(24)=(2)(2)(2)33S a b c a b c S ⎡⎤⎡⎤+-+-+-=---=⎣⎦⎣⎦22++++ 方差不变. 故选:B. 【点睛】本题考查了方差和平均数,当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.10.D解析:D 【分析】方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差. 【详解】 依题意可得, 平均数:45mx∴224441555mmm解得m=1, 故选D . 【点睛】本题考查了方差,熟练运用方差公式是解题的关键.11.D解析:D 【分析】把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110,求出众数、中位数、平均数和方差,即可得出结论. 【详解】解:把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110, ∴众数是108,中位数为1021081052+=,平均数为82961021081081101016+++++=,方差为()()()()()()222222182101961011021011081011081011101016⎡⎤-+-+-+-+-+-⎣⎦ 94.393≈≠;故选D . 【点睛】考核知识点:众数、中位数、平均数和方差;理解定义,记住公式是关键.12.A解析:A 【解析】 【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 【详解】解:在这一组数据中20是出现次数最多的,故众数是20;将这组数据从大到小的顺序排列后,处于中间位置的数是16,16,那么这组数据的中位数16. 故选:A . 【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是一组数据中出现次数最多的数.二、填空题13.2【分析】根据数据abc 的方差为2由方差为2可得出数据a+3b+3c+3的方差【详解】解:∵数据abc 的方差为2设平均数为m 则则数据a+3b+3c+3的平均数是m+3∴方差为:故答案为:2【点睛】本解析:2 【分析】根据数据a ,b ,c 的方差为2,由方差为2可得出数据a+3,b+3,c+3的方差. 【详解】解:∵数据a ,b ,c 的方差为2,设平均数为m ,则2222()()()23a mb mc m S -+-+-==, 则数据a +3,b +3,c +3的平均数是m+3, ∴方差为:2222(33)(33)(33)3a m b m c m S +--++--++--= 222()()()23a mb mc m -+-+-==, 故答案为:2.【点睛】本题考查的是方差,熟记方差的定义是解答此题的关键.14.2【分析】先由平均数的公式计算出这组数的平均值再根据方差的公式S2=计算【详解】设这组数的平均值为则:∴方差S2=故答案为:2【点睛】本题考查的是方差:一般地设n 个数据x1x2…xn 的平均数为则方差解析:2【分析】先由平均数的公式计算出这组数的平均值,再根据方差的公式S 2=()()()()22221231n x x x x x x x x n ⎡⎤-+-+-++-⎣⎦计算. 【详解】 设这组数的平均值为x ,则: 1201205x -+++-== ∴方差S 2=()()()()()222221020001020215⎡⎤--+-+-+-+--=⎣⎦⨯ 故答案为:2.【点睛】本题考查的是方差:一般地设n 个数据x 1,x 2,…x n 的平均数为x ,则方差S 2=()()()()22221231n x x x x x x x x n ⎡⎤-+-+-++-⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大. 15.150【分析】先求出PM25指数为150的天数再根据众数的定义以及性质求出众数即可【详解】∵PM25指数为150的天数∴该周PM25指数的众数为150故答案为:150【点睛】本题考查了众数的问题掌握解析:150【分析】先求出PM 2.5指数为150的天数,再根据众数的定义以及性质求出众数即可.【详解】∵PM 2.5指数为150的天数72113=---=∴该周PM 2.5指数的众数为150故答案为:150.【点睛】本题考查了众数的问题,掌握众数的定义以及性质是解题的关键.16.05【分析】利用方差的计算公式计算即可【详解】解:则故答案为05【点睛】本题考查的是方差的计算掌握方差的计算公式是解题的关键解析:0.5【分析】利用方差的计算公式计算即可.【详解】 解:1x (1021)14=+++=, 则222221(11)(01)(21)(11)0.54S ⎡⎤=-+-+-+-=⎣⎦, 故答案为0.5.【点睛】 本题考查的是方差的计算,掌握方差的计算公式()()()2222121n S x x x x x x n ⎡⎤=-+-+⋯+-⎣⎦是解题的关键. 17.134【解析】【分析】根据表格中的数据可以求得这10名学生的数学周考成绩的中位数【详解】由表格可得这10名学生的数学周考成绩的中位数是:(132+136)÷2=134(分)故答案为:134【点睛】本解析:134【解析】【分析】根据表格中的数据可以求得这10名学生的数学周考成绩的中位数.【详解】由表格可得,这10名学生的数学周考成绩的中位数是:(132+136)÷2=134(分),故答案为:134.【点睛】本题考查中位数,解答本题的关键是明确中位数的含义,会求一组数据的中位数. 18.=【分析】根据方差的定义分别计算出两组数据的方差即可得【详解】第1组数据的平均数为×(1+2+3+4+5)=3则其方差S12=×(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2=解析:=【分析】根据方差的定义分别计算出两组数据的方差即可得.【详解】第1组数据的平均数为15×(1+2+3+4+5)=3,则其方差S12=15×[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=2;第2组数据的平均数为15×(6+7+8+9+10)=8,则其方差S22=15×[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2;∴S12=S22.故答案为=.【点睛】本题考查了方差的意义,解题的关键是观察数据,找到波动较小的就方差小,也可以分别求得方差后再比较,难度不大.19.-149【分析】根据平均数的计算公式先表示出这组数据的平均数再根据中位数的定义进行讨论即可得出答案【详解】∵数据2356x的平均数是=∴当x=-1时这组数据的平均数是3中位数也是3;当x=4时这组数解析:-1、4、9【分析】根据平均数的计算公式先表示出这组数据的平均数,再根据中位数的定义进行讨论,即可得出答案.【详解】∵数据2、3、5、6、x的平均数是23565x++++=165x+,∴当x=-1时,这组数据的平均数是3,中位数也是3;当x=4时,这组数据的平均数是4,中位数也是4;当x=9时,这组数据的平均数是5,中位数也是5;∴x=-1,4或9;故答案为-1,4或9.【点睛】此题考查了中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.20.68【分析】本题可用求平均数的公式解出x的值在运用方差的公式解出方差【详解】解:依题意得:5+8+x+10+4=2x×5所以x=32x=6方差s2==68【点睛】本题考查了算术平均数方差的计算方法熟解析:6.8【分析】本题可用求平均数的公式解出x的值,在运用方差的公式解出方差.【详解】解:依题意得:5+8+x +10+4=2x×5,所以x =3,2x =6,方差s 2=15()()()()()222225-6+8-6+3-6+10-6+4-6⎡⎤⎣⎦=6.8, 【点睛】 本题考查了算术平均数、方差的计算方法,熟练掌握该知识点是本题解题的关键.三、解答题21.(1)①补图见解析;②这30户家庭2018年4月份义务植树数量的平均数是3.4棵,中位数是3棵;(2)估计该小区采用这种形式的家庭有70户.【分析】(1)①由已知数据知3棵的有12人、4棵的有8人,据此补全图形可得;②根据平均数和众数的定义求解可得;(2)用总户数乘以样本中采用了网上预约义务植树这种方式的户数所占比例可得.【详解】(1)①由已知数据知3棵的有12人、4棵的有8人,补全图形如下:②这30户家庭2018年4月份义务植树数量的平均数是1223312485461 3.430⨯+⨯+⨯+⨯+⨯+⨯=(棵) 中位数:从小到大排列,中位数应为第15位和第16位的数的平均值:3332+=(棵) 答:这30户家庭2018年4月份义务植树数量的平均数是3.4棵,中位数是3棵. (2)估计该小区采用这种形式的家庭有300×730=70户, 答:估计该小区采用这种形式的家庭有70户.【点睛】 本题主要考查了频数分布直方图,中位数、平均数的定义及样本估计总体思想的运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.(1)50;28;(2)12,11;(3)八年级模拟体测中得12分的学生约有256人.【分析】(1)根据得8分的学生人数和所占的百分比可以求得本次调查的人数,然后根据扇形统计图中的数据可以求得m 的值;(2)根据统计图中的数据可以求得本次调查获取的样本数据的众数和中位数;(3)根据统计图中的数据可以计算出我校九年级模拟模拟体测中得12分的学生约有多少人.【详解】:(1)本次抽取到的学生人数为:4÷8%=50,m%=1-8%-10%-22%-32%=28%,故答案为:50,28;(2)本次调查获取的样本数据的众数是12分,中位数是11分;(3)800×32%=256人;答:八年级模拟体测中得12分的学生约有256人;【点睛】此题考查扇形统计图、条形统计图、用样本估计总体、中位数、众数,解题的关键是明确题意,利用数形结合的思想解答.23.(1)第10场比赛的得分为51分;(2)这10场比赛得分的中位数为47分,众数为51分,方差18.2.【分析】(1)根据平均数的定义先求出总数,再分别减去前9个数即可;(2)根据中位数、众数的定义分别求出最中间两个数的平均数和出现次数最多数,再根据方差的计算公式代入计算即可.【详解】(1)∵10场比赛的平均得分为48分,∴第10场比赛的得分=48×10-57-51-45-51-44-46-45-42-48=51(分),(2)把这10个数从小到大排列为;42、44、45、45、46、48、51、51、51、57,最中间两个数的平均数是(46+48)÷2=47,则这10场比赛得分的中位数为47分,∵51出现了3次,出现次数最多,所以众数为51分,方差22222221(4248)(4448)2(4548)(4648)(4848)3(5148)(5748)18.210⎡⎤=-+-+⨯-+-+-+⨯-+-=⎣⎦. 【点睛】此题考查了平均数、众数与中位数和方差.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数;方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,牢记方差的公式是求解方差的关键.24.(1)17a b +=;(2)乙更稳定【分析】(1)求出甲的平均数为9,再根据甲、乙射击平均成绩一样,即乙的平均数也是9,即可得出+a b 的值;(2)根据题意令8,9a b ==,分别计算甲、乙的方差,方差越小.成绩越稳定.【详解】解:(1) 108910895x ++++==甲(环) 109995a b x ++++==乙(环) 17a b ∴+=(2)17a b +=且,a b 为连续的整数∴令8,9a b ==()()()()()22222211098999109890.85S ⎡⎤=-+-+-+-+-=⎣⎦甲, ()()()()()2222221109999989990.45S ⎡⎤=-+-+-+-+-=⎣⎦乙, 22S S >甲乙∴乙更稳定【点睛】本题考查的知识点是求数据的算术平均数以及方差,掌握算术平均数以及方差的计算公式是解此题的关键.25.(1)补图见解析;(2)193,30,36;(3)19400人.【分析】(1)用20减去A 、C 、D 、E 组的数量得到B 组数量,据此即可补全直方图;(2)利用中位数的概念可求得a 的值,用100%减去B 、C 、D 、E 组所占的百分比求得A 组所占的百分比可求得m 的值,用360度乘以E 组所占的比例即可求得相应圆心角的度数;(3)用样本的平均数乘以这一时间段的进站车数再乘以天数即可得.【详解】(1)B 组的数量为:20-2-12-2-1=3,补全频数直方图如图所示:(2)20个数据从小到大排列后位于中间的应该是第10、第11个数据,A、B、C、D、E组的数据是从小到大进行的,A、B组共有5个数据,C组有12个数据,从小到大排列为:190,190,191,192,193,193,195,196,198,198,198,198,C组中的第5个数据是总数据的第10个,为193,C组中的第6个数据是总数据的第11个,为193,所以中位数为:(193+193)÷2=193,即a=193;m%=100%-25%-20%-15%-10%=30%,所以m=30;扇形统计图中E组所在的圆心角度数为360°×10%=36°,故答案为:193,30,36;(3)估算一周内5个工作日的上午7点至9点重庆轨道环线四公里站的上车总人数为:194×20×5=19400人.【点睛】本题考查了频数分布直方图,扇形统计图,中位数,用样本估计总体等知识,弄清题意,准确识图,熟练运用相关知识是解题的关键.26.(1)6;8;(2)甲;(3)乙组的成绩更好一些.【分析】(1)先根据条形统计图得出甲、乙两组各学生的成绩,再根据中位数、众数的定义即可求得;(2)根据中位数即可判断,小明的成绩大于中位数;(3)可以从平均分、中位数、众数、方差四个方面综合分析.【详解】解:(1)∵甲组的成绩为:3,6,6,6,6,6,7,8,9,10.∴甲组中位数为6,∵乙组的成绩为:5,5,6,7,7,8,8,8,8,9.∴乙组众数为8,故答案为:6;8.(2)∵小明的成绩为7分属中游略偏上,甲组的中位数是6,乙组的中位数为7.5,∴小明在甲组.故答案为:甲.(3)因为乙组成绩的平均分、中位数、众数均比甲高,而乙组成绩的方差又比甲组小,所以乙组的成绩比甲组更稳定,因此综合分析乙组的成绩更好一些.【点睛】本题考查平均分、中位数、众数、方差等概念,正确掌握这些概念是解题的关键.。

新人教版初中数学八年级数学下册第五单元《数据的分析》测试(有答案解析)(4)

新人教版初中数学八年级数学下册第五单元《数据的分析》测试(有答案解析)(4)

一、选择题1.反映一组数据变化范围的是( ) A .极差B .方差C .众数D .平均数2.某校规定学生的学期学业成绩由三部分组成:平时成绩占20%,期中成绩占30%,期末成绩占50%,小颖的平时、期中、期末成绩分别为85分、90分、92分,则她本学期的学业成绩为( ) A .85 B .90C .92D .893.若一组数据2,3,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为( ). A .1 B .6 C .1或6D .5或64.某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,8,9,16,12,7,10,这组数据的中位数和众数分别是( ) A .10,12B .12,11C .11,12D .12,125.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班的学生成绩统计如下:则该办学生成绩的众数和中位数分别是( ) A .70分,80分 B .80分,80分 C .90分,80分D .80分,90分6.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为( ) A .8.5,9B .8.5,8C .8,8D .8,97.一组数据,,,,,,a b c d e f g 的平均数是m ,极差是k ,方差是n ,则23,23,23,23,23,23------a b d e f g 的平均数、极差、和方差分别是( )A .222、、m k nB .23232m k n --、、C .232-、、4m k nD .2323--、、4m k n8.下列说法正确的是( )A .为了解我国中学生课外阅读的情况,应采取全面调查的方式B .一组数据1、2、5、5、5、3、3的中位数和众数都是5C .若甲组数据的方差是003,乙组数据的方差是0.1,则甲组数据比乙组数据稳定D .抛掷一枚硬币100次,一定有50次“正面朝上”9.某校八年级有八个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( )A .将八个班级各自的平均成绩之和除以8,就得到全年级学生的平均成绩B .全年级学生的平均成绩一定在这八个班级各自的平均成绩的最小值与最大值之间C .这八个班级各自的平均成绩的中位数就是全年级学生的平均成绩D .这八个班级各自的平均成绩的众数不可能是全年级学生的平均成绩 10.下列说法正确的是( )A .中位数就是一组数据中最中间的一个数B . 8. 99,1010,11,,这组数据的众数是9 C .如果123,,,,n x x x x ⋯的平均数是1,那么()()()121110n x x x -+-+⋯+-= D .一组数据的方差是这组数据的极差的平方 11.八(1)班45名同学一天的生活费用统计如下表: 生活费(元) 1015 2025 30学生人数(人)39 15126A .15B .20C .21D .2512.某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为( ) A .40,37B .40,39C .39,40D .40,38二、填空题13.在学校演讲比赛中,10名选手的成绩统计图如图所示,则这10名选手成绩的平均分是____分.14.在一次数学测验中,甲组4名同学的平均成绩是70分,乙组6名同学的平均成绩是80分,则这10名同学的平均成绩是______________.15.若一组数据4,,5,,7,9x y 的平均数为6,众数为5,则这组数据的方差为__________. 16.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,那么另一组数据3x 1﹣2,3x 2﹣2,3x 3﹣2,3x 4﹣2,3x 5﹣2的平均数是_____.17.一组数据:1,2,x ,y ,4,6,其中x <y ,中位数是2.5,众数是2.则这组数据的平均数是______;方差是______.18.某班体育委员对本班所有学生一周锻炼时间(单位:小时)进行了统计,绘制了统计图,如图所示,根据统计图提供的信息,下列推断不正确的是__________________ ①该班学生共有44人;②.该班一周锻炼时间为10小时的学生最多;③该班学生一周锻炼时间的中位数是11;④该班学生一周锻炼的平均时间为910111213115++++=小时.19.某组数据的方差计算公式为S 2=18[(x 1﹣2)2+(x 2﹣2)2+…+(x 8﹣2)2],则该组数据的样本容量是_____,该组数据的平均数是_____.20.已知1x ,2x ,…,10x 的平均数是a ;11x ,12x ,…,30x 的平均数是b ,则1x ,2x ,…,30x 的平均数是_________.三、解答题21.甲、乙两位同学5次数学选拔赛的成绩统计如表,他们5次考试的总成绩相同,请同学们完成下列问题:第1次 第2次 第3次 第4次 第5次 甲成绩 80 40 70 50 60 乙成绩705070a70= ,甲同学成绩的极差为 ;(2)小颖计算了甲同学的成绩平均数为60,方差是S 甲2=15[(80﹣60)2+(40﹣60)2+(70﹣60)2+(50﹣60)2+(60﹣60)2]=200.请你求出乙同学成绩的平均数和方差; (3)从平均数和方差的角度分析,甲、乙两位同学谁的成绩更稳定.22.如图,在菱形ABCD 中,对角线AC 与BD 交于点O .过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E . (1)求证:四边形OCED 是矩形;(2)若CE=1,DE=2,ABCD 的面积是 .23.8年级某老师对一、二班学生阅读水平进行测试,并将成绩进行了统计,绘制了如下图表(得分为整数,满分为10分,成绩大于或等于6分为合格,成绩大于或等于9分为优秀).平均分方差中位数众数合格率优秀率一班7.2 2.117692.5%20%二班 6.85 4.288885%10%根据图表信息,回答问题:(1)用方差推断,班的成绩波动较大;用优秀率和合格率推断,班的阅读水平更好些;(2)甲同学用平均分推断,一班阅读水平更好些;乙同学用中位数或众数推断,二班阅读水平更好些.你认为谁的推断比较科学合理,更客观些.为什么?24.某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:每人销售件数1650510250210150120人数113532(1)求这15位营销人员该月销售量的平均数、中位数和众数;(2)假设销售负责人把每位营销员的月销售额定为310件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由.25.为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:甲乙射击成绩统计表平均数中位数方差命中10环的次数甲70乙7.5 5.41甲乙射击成绩折线图(1)请补全上述图表(请直接在统计表中填空和补全折线图);(2)如果规定成绩较稳定者胜出,则_____胜出,理由是____________________;(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?说明理由.26.甲、乙两运动员的五次射击成绩如下表(不完全):(单位:环)第1次第2次第3次第4次第5次甲1089108乙109a b9()1若甲、乙射击平均成绩一样,求+a b的值;()2在()1条件下,若,a b是两个连续整数,试问谁发挥的更稳定?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据极差是刻画数据离散程度的一个统计量.它能反映数据的波动范围大小解答.【详解】解:反映一组数据变化范围的是极差;故选:A.【点睛】本题考查了极差、方差、众数以及平均数的概念和意义,掌握极差是刻画数据离散程度的一个统计量.它能反映数据的波动范围是解题的关键.2.B解析:B【分析】根据加权平均数的计算方法可以得解.【详解】解:由题意得,小颖本学期的学业成绩为:8520%9030%9250%17274690⨯+⨯+⨯=++=(分),故选B.【点睛】本题考查加权平均数的计算,熟练掌握加权平均法的计算方法是解题关键.3.C解析:C【解析】根据数据x1,x2,…x n与数据x1+a,x2+a,…x n+a的方差相同这个结论即可解决问题.解:∵一组数据2,2,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,∴这组数据可能是2,3,4,5,6或1,2,3,4,5,∴x=1或6,故选C.“点睛”本题考查方差、平均数等知识,解题的关键领域结论:数据x1,x2,…x n与数据x1+a,x2+a,…x n+a的方差相同解决问题,属于中考常考题型.4.C解析:C【分析】先把原数据按由小到大排列,然后根据中位数和众数的定义求解.【详解】原数据按由小到大排列为:7,8,9,10,12,12,14,16,所以这组数据的中位数=12(10+12)=11,众数为12.故选:C.【点睛】此题考查众数,中位数的定义,解题关键在于掌握一组数据中出现次数最多的数据叫做众数.5.B解析:B【解析】试题分析:众数是在一组数据中,出现次数最多的数据,这组数据中80出现12次,出现的次数最多,故这组数据的众数为80分;中位数是一组数据从小到大(或从大到小)排列后,最中间的那个数(最中间两个数的平均数).因此这组40个按大小排序的数据中,中位数是按从小到大排列后第20,21个数的平均数,而第20,21个数都在80分组,故这组数据的中位数为80分.故选B.考点:1.众数;2.中位数.6.C解析:C【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】这组数据中出现次数最多的一个数是8,所以这组数据的众数是8环;22是偶数,按大小顺序排列后中间两个数是8和8,所以这组数据的中位数是8(环).故选:C.【点睛】此题考查众数和中位数.注意掌握中位数和众数的定义是解题关键.7.C解析:C【分析】根据平均数、极差和方差的变化规律即可得出答案.【详解】∵数据a、b、c、d、e、f、g的平均数是m,∴2a−3、2b−3、2c−3、2d−3、2e−3、2f−3、2g−3的平均数是2m−3;∵数据a、b、c、d、e、f、g的极数是k,∴2a−3、2b−3、2c−3、2d−3、2e−3、2f−3、2g−3的平均数是2k;∵数据a、b、c、d、e、f、g的方差是n,∴数据2a−3、2b−3、2c−3、2d−3、2e−3、2f−3、2g−3的方差是224n n;故选C.【点睛】此题考查方差、极差、算术平均数,解题关键在于掌握方差、极差、算术平均数变化规律即可.8.C解析:C【分析】可根据调查的选择、中位数和众数的求法、方差及随机事件的意义,逐个判断得结论.【详解】解:因为我国中学生人数众多,其课外阅读的情况也不需要特别精确,所以对我国中学生课外阅读情况的调查,宜采用抽样调查,故选项A不正确;因为B中数据按从小到大排列为1、2、3、3、5、5、5,位于中间的数是3,故该组数据的中位数为3,所以选项B说法不正确;因为0.003<0.1,方差越小,波动越小,数据越稳定,所以甲组数据比乙组数据稳定,故选项C说法正确;因为抛掷硬币属于随机事件,抛掷一枚硬币100次,不一定有50次“正面朝上”故选项D说法不正确.故选:C.【点睛】本题的关键在于掌握调查的选择、中位数和众数的求法、方差及随机事件的意义.9.B解析:B【分析】A、由于这八个班的人数不一定相等,故全年级学生的平均成绩应等于所有学生成绩的和除以学生人数;B、由于全年级学生的平均成绩等于所有学生成绩的和除以学生人数,故全年级学生的平均成绩一定在这八个平均成绩的最小值与最大值之间;C、由于这八个班的人数不一定相等,故这10个平均成绩的中位数不一定是全年级学生的平均成绩;D、众数是一组数据中出现次数最多的数,能反映数据的集中程度,平均数也能反映数据的集中程度,是有可能相等的.【详解】A、全年级学生的平均成绩应等于所有学生成绩的和除以学生人数,而这八个班的人数不一定相等,故错误;B、由于全年级学生的平均成绩等于所有学生成绩的和除以学生人数,故全年级学生的平均成绩一定在这八个平均成绩的最小值与最大值之间,故正确;C、中位数不一定与平均数相等,故错误;D、众数与平均数有可能相等,故错误.故选B.【点睛】本题考查了平均数、中位数、众数的关系,它们有可能相等,也可能不相等.10.C解析:C【分析】根据中位数以及众数和平均数和极差、方差的定义分别判断得出即可.【详解】A、当数据是奇数个时,按大小排列后,中位数就是一组数据中最中间的一个数,数据个数为偶数个时,按大小排列后,最中间的两个的平均数是中位数,故此选项错误;B、8,9,9,10,10,11这组数据的众数是9和10,故此选项错误;C、如果x1,x2,x3,…,x n的平均数是x,那么(x1-x)+(x2-x)+…+(x n-x)=x1+x2+x3+…+x n-n x=0,故此选项正确;D、一组数据的方差与极差没有关系,故此选项错误;故选C.【点睛】此题主要考查了中位数以及众数和平均数和极差、方差的定义,根据定义举出反例是解题关键.11.C解析:C【分析】根据加权平均数公式列出算式求解即可.【详解】解:这45名同学一天的生活费用的平均数=103159201525123062145⨯+⨯+⨯+⨯+⨯=.故答案为C.【点睛】本题考查了加权平均数的计算,读懂题意,正确的运用公式是解题的关键12.B解析:B【分析】根据众数和中位数的概念求解可得.【详解】将数据重新排列为37,37,38,39,40,40,40所以这组数据的众数为40,中位数为39,故选B.【点睛】本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.二、填空题13.885【分析】首先求出10名选手的总成绩再求出平均分即可【详解】解:根据统计图可知这10名选手成绩的平均分为=885(分)故答案为885【点睛】本题主要考查了加权平均数的知识掌握加权平均数的计算公式解析:88.5【分析】首先求出10名选手的总成绩,再求出平均分即可.【详解】解:根据统计图可知,这10名选手成绩的平均分为28018559029510⨯+⨯+⨯+⨯=88.5(分),故答案为88.5. 【点睛】本题主要考查了加权平均数的知识,掌握加权平均数的计算公式是解题的关键.14.76分;【解析】【分析】根据加权平均数的计算方法:先求出这10名同学的总成绩再除以10即可得出答案【详解】这10名同学的平均成绩为:=76(分)故答案为:76分【点睛】本题考查的是加权平均数的求法本解析:76分; 【解析】 【分析】根据加权平均数的计算方法:先求出这10名同学的总成绩,再除以10,即可得出答案. 【详解】这10名同学的平均成绩为:7048106⨯+⨯=76(分),故答案为:76分. 【点睛】本题考查的是加权平均数的求法.本题易出现的错误是对加权平均数的理解不正确,而求70、80这两个数的平均数.15.【分析】根据平均数的计算公式可得再根据众数是5所以可得xy 中必须有一个5则另一个就是6通过方差的计算公式计算即可【详解】解:∵一组数据的平均数为6众数为5∴中至少有一个是5∵一组数据的平均数为6∴∴解析:83【分析】根据平均数的计算公式,可得11x y +=,再根据众数是5,所以可得x,y 中必须有一个5,则另一个就是6,通过方差的计算公式计算即可. 【详解】解:∵一组数据4,,5,,7,9x y 的平均数为6,众数为5, ∴,x y 中至少有一个是5,∵一组数据4,,5,,7,9x y 的平均数为6,∴()4579166x y +++++=, ∴11x y +=,∴,x y 中一个是5,另一个是6,∴这组数据的方差为()()()()()22222846256661[]676963-+-+-+-+-=;故答案为83.【点睛】本题是一道数据统计中的综合性题目,涉及知识点较多,应当熟练掌握,特别是记忆方差的计算公式.16.4【解析】【分析】平均数的计算方法是求出所有数据的和然后除以数据的总个数先求数据x1x2x3x4x5的和然后再用平均数的定义求新数据的平均数【详解】一组数据x1x2x3x4x5的平均数是2有15(x解析:4【解析】【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.先求数据x1,x2,x3,x4,x5的和,然后再用平均数的定义求新数据的平均数.【详解】一组数据x1,x2,x3,x4,x5的平均数是2,有(x1+x2+x3+x4+x5)=2,那么另一组数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数是(3x1-2+3x2-2+3x3-2+3x4-2+3x5-2)=4.故答案是:4.【点睛】考查的是样本平均数的求法及运用,解题关键是记熟公式:.17.3【解析】【分析】由中位数及众数的定义和给定的条件求出xy的值然后根据平均数的定义求出平均数即可;利用方差公式计算即可求出方差【详解】由一组数据12xy46的中位数是25众数是2则有x=2y=3∴这解析:3 8 3【解析】【分析】由中位数及众数的定义和给定的条件求出x,y的值,然后根据平均数的定义求出平均数即可;利用方差公式计算即可求出方差.【详解】由一组数据1,2,x,y,4,6的中位数是2.5,众数是2,则有x=2,y=3,,∴这组数据的平均数为:12234636+++++=.∴这组数据的平均数为3;这组数据的方差为:22222218(13)(23)(23)(33)(43)(63)63⎡⎤-+-+-+-+-+-=⎣⎦. ∴这组数据的方差为83. 故答案为3;83. 【点睛】 本题考查数据的平均数、中数、方差,掌握平均数、中数、方差的的定义是解题的关键. 18.①②④【解析】【分析】根据统计图中的数据可以得到一共多少人然后根据平均数中位数和众数的定义即可求得这组数据的平均数中位数和众数【详解】由统计图可知锻炼9小时的有6人锻炼10小时的有9人锻炼11小时的 解析:①②④【解析】【分析】根据统计图中的数据可以得到一共多少人,然后根据平均数、中位数和众数的定义即可求得这组数据的平均数、中位数和众数.【详解】由统计图可知锻炼9小时的有6人,锻炼10小时的有9人,锻炼11小时的有10人,锻炼12小时的有8人,锻炼13小时的有7人,故该班学生共有6+9+10+8+7=40人,因此①错误;从统计图可以看出,该班一周锻炼时间为11小时的学生最多,因此②错误;该班学生一周锻炼时间的中位数是11小时,故③正确; 该班学生一周锻炼的平均时间为69+910+1110+128+137=11.02540⨯⨯⨯⨯⨯小时,故④错误.故错误的有①②④【点睛】题考查折线统计图、平均数、中位数和众数的定义,解答本题的关键是明确中位数的定义,利用数形结合的思想解答. 19.82【分析】样本方差S2=(x1-)2+(x2-)2+…+(xn-)2其中n 是这个样本的容量是样本的平均数利用此公式直接求解【详解】由于S2=(x1-2)2+(x2-2)2+…+(x8-2)2所以该解析:8 2【分析】样本方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中n 是这个样本的容量,x 是样本的平均数.利用此公式直接求解.【详解】由于S 2=18[(x 1-2)2+(x 2-2)2+…+(x 8-2)2], 所以该组数据的样本容量是8,该组数据的平均数是2.故答案为8,2.【点睛】此题考查方差的有关计算,解答此题的关键是熟练记住公式:S 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]中各个字母所代表的含义.20.【分析】利用平均数的定义利用数据x1x2…x10的平均数为ax11x12…x30的平均数为b 可求出x1+x2+…+x10=10ax11+x12+…+x30=20b 进而即可求出答案【详解】解:因为数据 解析:1(1020)30a b + 【分析】利用平均数的定义,利用数据x 1,x 2,…,x 10的平均数为a ,x 11,x 12,…,x 30的平均数为b ,可求出x 1+x 2+…+x 10=10a ,x 11+x 12+…+x 30=20b ,进而即可求出答案.【详解】解:因为数据x 1,x 2,…,x 10的平均数为a ,则有x 1+x 2+…+x 10=10a ,因为x 11,x 12,…,x 30的平均数为b ,则有x 11+x 12+…+x 30=20b ,∴x 1,x 2,…,x 30的平均数=()1102030a b + 故答案为:1(1020)30a b +. 【点睛】本题考查的是样本加权平均数的求法.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数. 三、解答题21.(1)40,40;(2)平均数为60,方差160;(3)见解析.【分析】(1)由“他们5次考试的总成绩相同”可求得a 的值,利用极差的定义求解可得; (2)利用方差公式计算出乙的方差;(3)根据平均数与方差的意义进行判断,即可得出结论.【详解】解:(1)a =(80+40+70+50+60)﹣(70+50+70+70)=40,甲同学成绩的极差为:80﹣40=40,故答案为:40,40;(2)乙同学的成绩平均数为15×(70+50+70+40+70)=60,方差S乙2=15[(70﹣60)2+(50﹣60)2+(70﹣60)2+(40﹣60)2+(70﹣60)2]=160;(3)因为甲乙两位同学的平均数相同,S甲2>S乙2,所以乙同学的成绩更稳定.【点睛】本题主要考查平均数、方差,解题的关键是掌握方差、平均数、极差的计算方法和方差的意义.22.(1)证明见解析;(2)4.【解析】【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【详解】(1)∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD是菱形,∴AC=2OC=4,BD=2OD=2,∴菱形ABCD的面积为:12AC•BD=12×4×2=4,故答案为4.【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.23.(1)二,一;(2)乙同学的推断比较科学合理,理由见解析.【分析】(1)根据方差的大小即可判断出波动的大小;结合合格率和优秀率则要先数值大的,由此即可得答案;(2)结合条形统计图,根据平均分、中位数、众数的优缺点进行解答即可.【详解】(1)一班的方差为2.11,二班的方差为4.28,用方差推断,二班的成绩波动较大;一班的合格率为92.5% ,优秀率为20%,二班的合格率为85%,优秀率为10%,一班的合格率与优秀率均比二班的大,因此用优秀率和合格率推断,一班的阅读水平更好些,故答案为二;一;(2)乙同学的推断比较科学合理.理由:虽然二班成绩的平均分比一班低,但从条形图中可以看出,二班有3名学生的成绩是1分,它在该组数据中是一个极端值,平均数受极端值影响较大,而中位数或众数不易受极端值的影响,所以,乙同学的推断更客观些.【点睛】本题考查了数据的收集整理与描述,涉及了平均数,方差,众数和中位数等知识,熟练掌握相关知识以及各自的优缺点是解题的关键.24.(1)310, 210, 210;(2)不合理,理由见解析.【分析】(1)找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.平均数是指在一组数据中所有数据之和再除以数据的个数.(2)根据表中数据和平均数、中位数和众数的意义回答.【详解】解:(1)平均数是:1650510250321051503120231015++⨯+⨯+⨯+⨯=(件), 表中的数据是按从大到小的顺序排列的,处于中间位置的是210,因而中位数是210(件),210出现了5次最多,所以众数是210;(2)不合理.因为15人中有13人的销售额不到310件,310件虽是所给一组数据的平均数,它却不能很好地反映销售人员的一般水平.销售额定为210件合适些,因为210件既是中位数,又是众数,是大部分人能达到的定额.【点睛】此题考查了中位数,众数,平均数,它们都是反映数据集中趋势的指标,掌握平均数、中位数和众数的意义是解题的关键.25.(1)补全图表见解析;(2)甲,理由见解析;(3)可制定评判规则为:命中10环次数较多者胜出,理由见解析.【分析】(1)根据甲选手成绩的平均数可求出甲选手第8次命中的环数,即可补全折线图;然后根据平均数、中位数和方差的求法补全统计表;(2)根据方差的意义可得答案;(3)可根据乙选手命中10环1次,甲选手没有命中10环来制定评判规则.【详解】解:(1)甲选手第8次命中的环数为:7×10-(9+6+7+6+5+7+7+8+9)=6, 将甲选手的成绩从小到大排列为:5,6,6,6,7,7,7,8,9,9,中间两次的环数分别为:7,7,故中位数为7772+=, 2222221=5767377387972=1.610S 甲,乙选手成绩的平均数为:24687789910=710, 补全表格和折线图为: 平均数 中位数 方差命中10环的次数 甲7 7 1.6 0 乙 7 7.5 5.4 1(2)如果规定成绩较稳定者胜出,则甲胜出,理由:因为甲的方差小于乙的方差,所以甲的成绩比乙稳定,即甲胜出;(3)可制定评判规则为:命中10环次数较多者胜出,理由:因为乙选手命中10环1次,甲选手没有命中10环,所以乙胜出.【点睛】本题考查了折线统计图,平均数、中位数、方差的意义与求法,能够从图表中得出有用信息是解题的关键.26.(1)17a b +=;(2)乙更稳定【分析】(1)求出甲的平均数为9,再根据甲、乙射击平均成绩一样,即乙的平均数也是9,即可得出+a b 的值;(2)根据题意令8,9a b ==,分别计算甲、乙的方差,方差越小.成绩越稳定.【详解】解:(1) 108910895x ++++==甲(环) 109995a b x ++++==乙(环) 17a b ∴+=(2)17a b +=且,a b 为连续的整数∴令8,9a b ==()()()()()22222211098999109890.85S ⎡⎤=-+-+-+-+-=⎣⎦甲, ()()()()()2222221109999989990.45S ⎡⎤=-+-+-+-+-=⎣⎦乙, 22S S >甲乙∴乙更稳定【点睛】本题考查的知识点是求数据的算术平均数以及方差,掌握算术平均数以及方差的计算公式是解此题的关键.。

(常考题)人教版初中数学八年级数学下册第五单元《数据的分析》测试题(包含答案解析)(4)

(常考题)人教版初中数学八年级数学下册第五单元《数据的分析》测试题(包含答案解析)(4)

一、选择题1.某校规定学生的学期学业成绩由三部分组成:平时成绩占20%,期中成绩占30%,期末成绩占50%,小颖的平时、期中、期末成绩分别为85分、90分、92分,则她本学期的学业成绩为()A.85B.90C.92D.892.若数据 4,x,2,8 ,的平均数是 4,则这组数据的中位数和众数是()A.3 和 2 B.2 和 3 C.2 和 2 D.2 和43.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁4.某学习小组的5名同学在一次数学文化节竞赛活动中的成绩分别是:92分,96分,90分,92分,85分,则下列结论正确的是()A.平均数是92 B.中位数是90 C.众数是92 D.极差是75.甲、乙、丙、丁四位同学五次数学测验成绩统计如右表所示,如果从这四位同学中,选出一位同学参加数学竞赛,那么应选___________去.A.甲B.乙C.丙D.丁6.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为()A.8.5,9 B.8.5,8 C.8,8 D.8,97.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变8.某兴趣小组为了解我市气温变化情况,记录了今年1月份连续6天的最低气温(单位:C ︒):-6,-4,-2,0,-2,2.关于这组数据,下列结论不正确的是( )A .平均数是-2B .中位数是-2C .众数是-2D .方差是59.下列说法正确的是( )A .中位数就是一组数据中最中间的一个数B . 8. 99,1010,11,,这组数据的众数是9 C .如果123,,,,n x x x x ⋯的平均数是1,那么()()()121110n x x x -+-+⋯+-= D .一组数据的方差是这组数据的极差的平方10.有一组数据:1,1,1,1,m .若这组数据的方差是0,则m 为( ) A .4-B .1-C .0D .111.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择( ) A .甲B .乙C .丙D .丁12.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的( ) A .平均数B .方差C .众数D .中位数二、填空题13.图中显示的是某商场日用品柜台10名售货员4月份完成销售额(单位:千元)的情况,根据统计图,我们可以计算出该柜台的人均销售额为___________千元.14.已知样本x 1,x 2,x 3,…,x n 的方差是1,那么样本2x 1+3,2x 2+3,2x 3+3,…,2x n +3的方差是___________.15.某市某一周的PM 2.5(大气中直径小于等于2.5微米的颗粒物,也称可入肺颗粒物指数)如表,则该周PM 2.5指数的众数为________.16.已知一组数据-1,x ,0, 1,-2的平均数是0,这组数据的极差和标准差分别是 _____17.某班45名同学的数学平均分是80分,其中女生有20名,她们的数学平均分为82分,那么这个班男同学的数学平均分为______分. 18.已知一组数据的方差s 2=14[(x 1﹣6)2+(x 2﹣6)2+(x 3﹣6)2+(x 4﹣6)2],那么这组数据的总和为_____.19.已知x1,x2,x3的平均数x=10,方差s2=3,则2x1,2x2,2x3的平均数为__________,方差为__________.20.如图,在边长为4的等边ABC中,D,E分别为AB,BC的中点,EF AC 于点F,G为EF的中点,连接DG,则DG的长为__________.三、解答题21.某校举办了一次趣味数学竞赛,满分100分,学生得分均为整数,达到成绩60分及以上为合格,达到90分及以上为优秀,这次竞赛中,甲、乙两组学生成绩如下(单位:分)甲组:30,60,60,60,60,60,70,90,90,100;乙组:50,60,60,60,70,70,70,70,80,90.(1)以上成绩统计分析表如表:组别平均分中位数方差合格率优秀率甲组68a37630%乙组b c90%则表中a=,b=,c=.(2)如果你是该校数学竞赛的教练员,现在需要你根据成绩的稳定性选一组同学代表学校参加复赛,你会选择哪一组?并说明理由.22.“绿水青山就是金山银山”,北京市民积极参与义务植树活动.小武同学为了了解自己小区300户家庭在2018年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵):1 123 2 3 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6(1)对以上数据进行整理、描述和分析:①绘制如下的统计图,请补充完整;②求这30户家庭2018年4月份义务植树数量的平均数是和中位数分别是多少?(2)“互联网+全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有多少户?23.某校需要选出一名同学去参加温州市“生活中的数学说题”比赛,现有5名候选人参加该校举办的模拟说题比赛,挑选出成绩最高者参加说题比赛.已知5名候选人模拟说题比赛成绩情况如表所示.某校5名候选人模拟说题比赛成绩情况(1)5名候选人模拟说题比赛成绩的中位数是;(2)由于C、E两名候选人成绩并列第一;所以学校决定根据两人平时成绩、任课老师打分、模拟说题比赛成绩按2:3:5的比例最后确定成绩,最终谁将参加说题比赛.已知C、E两名候选人平时成绩、任课老师打分情况如表所示.24.某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A 、B 、C 、D 四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A 级:90分﹣100分;B 级:75分﹣89分;C 级:60分﹣74分;D 级:60分以下)(1)求出D 级学生的人数占全班总人数的百分比; (2)求出扇形统计图中C 级所在的扇形圆心角的度数; (3)该班学生体育测试成绩的中位数落在哪个等级内;(4)若该校九年级学生共有500人,请你估计这次考试中A 级和B 级的学生共有多少人?25.根据重庆轨道集团提供的日客运量统计,2019年2月21日重庆轨道交通首次日客运量突破300万乘次,其中近期开通的重庆轨道交通环线日客运量为21.5万乘次.据了解,某工作日上午7点至9点轨道环线四公里站有20列列车进出站,每列车进出站时,将上车和下车的人数记录下来,各得到20个数据,并将数据进行整理,绘制成了如下两幅不完整统计图.(数据分组为:A 组:170180x ≤<,B 组:180190x ≤<,C 组:190200x ≤<,D 组:200210x ≤<,E 组:210220x ≤≤)I .上车人数在C 组的是:190,190,191,192,193,193,195,196,198,198,198,198;II .上车人数的平均数、中位数如下表:平均数 中位数 上车人数(人)194a根据以上信息,回答下列问题: (1)请补全频数分布直方图;(2)表中a =________,扇形统计图中m =_________,扇形统计图中E 组所在的圆心角度数为________度;(3)请利用平均数,估算一周内5个工作日的上午7点至9点重庆轨道环线四公里站的上车总人数.26.山青养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,统计了它们的质量(单位:kg),并绘制出如下的统计图1和图2.请根据以上信息解答下列问题:(1)图1中m的值为;(2)统计的这组数据的众数是;中位数是;(3)求出这组数据的平均数,并估计这2500只鸡的总质量约为多少kg.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据加权平均数的计算方法可以得解.【详解】解:由题意得,小颖本学期的学业成绩为:⨯+⨯+⨯=++=(分),8520%9030%9250%17274690故选B.【点睛】本题考查加权平均数的计算,熟练掌握加权平均法的计算方法是解题关键.2.A解析:A 【分析】根据平均数的计算公式先求出x 的值,再根据中位数和众数的概念进行求解即可. 【详解】∵数据2,x ,4,8的平均数是4,∴这组数的平均数为2484x +++=4,解得:x =2; 所以这组数据是:2,2,4,8,则中位数是242+=3. ∵2在这组数据中出现2次,出现的次数最多,∴众数是2. 故选A . 【点睛】本题考查了平均数、中位数和众数,平均数的计算方法是求出所有数据的和,然后除以数据的总个数;据此先求得x 的值,再将数据按从小到大排列,将中间的两个数求平均值即可得到中位数,众数是出现次数最多的数.3.D解析:D 【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【详解】∵==x x x x >乙丁甲丙, ∴从乙和丁中选择一人参加比赛,∵22S S >乙丁,∴选择丁参赛, 故选D .【点睛】本题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.4.C解析:C 【分析】根据平均数、中位数、众数以及极差的定义、计算公式对各选项进行判断. 【详解】解:A .这组数据的平均分15×(85+90+92+92+96)=91分,所以A 选项错误; B 、这组数据按从小到大排列为:85、90、92、92、96,所以这组数据的中位数为92(分),所以B 选项错误;C 、这组数据的众数为92(分),所以C 选项正确;D .这组数据极差是96﹣85=11,所以D 选项错误; 故选C . 【点睛】本题查平均数,中位数,众数以及极差,解题关键是正确熟练运用公式.5.B解析:B【分析】本题首先可通过四位同学的平均分比较,择高选取;继而根据方差的比较,择低选取求解本题.【详解】通过四位同学平均分的比较,乙、丙同学平均数均为90,高于甲、丁同学,故排除甲、丁;乙、丙同学平均数相同,但乙同学方差更小,说明其发挥更为稳定,故选择乙同学.故选:B.【点睛】本题考查平均数以及方差,平均数表示其平均能力的高低;方差表示数据波动的大小,即稳定性高低,数值越小,稳定性越强,考查对应知识点时严格按照定义解题即可.6.C解析:C【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】这组数据中出现次数最多的一个数是8,所以这组数据的众数是8环;22是偶数,按大小顺序排列后中间两个数是8和8,所以这组数据的中位数是8(环).故选:C.【点睛】此题考查众数和中位数.注意掌握中位数和众数的定义是解题关键.7.B解析:B【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.8.D解析:D【分析】根据平均数、中位数、众数及方差的定义以及计算公式,依次计算各选项即可作出判断.【详解】解:A、平均数是-2,结论正确,故A不符合题意;B、中位数是-2,结论正确,故B不符合题意;C、众数是-2,结论正确,故C不符合题意;D、方差是203,结论错误,故D符合题意;故选:D.【点睛】本题考查平均数、中位数、众数及方差的知识,属于基础题,掌握各部分的定义及计算方法是解题关键.9.C解析:C【分析】根据中位数以及众数和平均数和极差、方差的定义分别判断得出即可.【详解】A、当数据是奇数个时,按大小排列后,中位数就是一组数据中最中间的一个数,数据个数为偶数个时,按大小排列后,最中间的两个的平均数是中位数,故此选项错误;B、8,9,9,10,10,11这组数据的众数是9和10,故此选项错误;C、如果x1,x2,x3,…,x n的平均数是x,那么(x1-x)+(x2-x)+…+(x n-x)=x1+x2+x3+…+x n-n x=0,故此选项正确;D、一组数据的方差与极差没有关系,故此选项错误;故选C.【点睛】此题主要考查了中位数以及众数和平均数和极差、方差的定义,根据定义举出反例是解题关键.10.D解析:D【分析】方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.【详解】依题意可得,平均数:45mx∴224441555m mm解得m=1,故选D.【点睛】本题考查了方差,熟练运用方差公式是解题的关键.11.C解析:C【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,选出方差最小,而且平均数较大的同学参加数学比赛.【详解】∵3.6<7.4<8.1,∴甲和丙的最近几次数学考试成绩的方差最小,发挥稳定,∵95>92,∴丙同学最近几次数学考试成绩的平均数高,∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择丙.故选C.【点睛】此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.12.B解析:B【分析】平均数、众数、中位数反映的是数据的集中趋势,方差反映的是数据的离散程度,方差越大,说明这组数据越不稳定,方差越小,说明这组数据越稳定.【详解】解:由于方差能反映数据的稳定性,故需要比较这两名同学5次短跑训练成绩的方差.故选B.【点睛】考核知识点:均数、众数、中位数、方差的意义.二、填空题13.67【分析】首先根据题意求出销售额为5千元的人数由此进一步求出该柜台的人均销售额即可【详解】由题意得:销售额为5千元的人数为:(人)∴该柜台的人均销售额为:(千元)故答案为:【点睛】本题主要考查了平 解析:6.7【分析】首先根据题意求出销售额为5千元的人数,由此进一步求出该柜台的人均销售额即可.【详解】由题意得:销售额为5千元的人数为:1012214----=(人),∴该柜台的人均销售额为:()1324452812010 6.7⨯+⨯+⨯+⨯+⨯÷=(千元), 故答案为:6.7.【点睛】本题主要考查了平均数的计算,熟练掌握相关概念是解题关键.14.4【分析】根据方差的意义分析原数据都乘2则方差是原来的4倍数据都加3方差不变【详解】解:设样本x1x2x3…xn 的平均数为m 则其方差为则样本2x1+32x2+32x3+3…2xn +3的平均数为2m +解析:4【分析】根据方差的意义分析,原数据都乘2,则方差是原来的4倍,数据都加3,方差不变.【详解】解:设样本x 1,x 2,x 3,…,x n 的平均数为m , 则其方差为22221121...1n S x m x m x m n, 则样本2x 1+3,2x 2+3,2x 3+3,…,2x n +3的平均数为2m +3, 其方差为222144S S ,故选:D .【点睛】本题考查方差的计算公式及其运用:一般地设有n 个数据,x 1,x 2,…x n ,若每个数据都放大或缩小相同的倍数后再同加或同减去一个数,其平均数也有相对应的变化,方差则变为这个倍数的平方倍. 15.150【分析】先求出PM25指数为150的天数再根据众数的定义以及性质求出众数即可【详解】∵PM25指数为150的天数∴该周PM25指数的众数为150故答案为:150【点睛】本题考查了众数的问题掌握解析:150【分析】先求出PM 2.5指数为150的天数,再根据众数的定义以及性质求出众数即可.【详解】∵PM 2.5指数为150的天数72113=---=∴该周PM 2.5指数的众数为150故答案为:150.【点睛】本题考查了众数的问题,掌握众数的定义以及性质是解题的关键.16.4【解析】试题解析:4【解析】试题∵x=0-(-1+0-2+1),解得x=2,故极差为:2-(-2)=4,则方差s2=15[(-1-0)2+(2-0)2+(0-0)2+(1-0)2+(-2-0)2]=2,.17.784【解析】【分析】设男生的平均分为x分根据男生总分和女生总分的和是全体学生的总分结合全班45名同学平均分是80分其中女生有20名她们的数学平均分为82分我们可以构造出一个关于x的方程解方程即可求解析:78.4【解析】【分析】设男生的平均分为x分,根据男生总分和女生总分的和是全体学生的总分,结合全班45名同学,平均分是80分,其中女生有20名,她们的数学平均分为82分,我们可以构造出一个关于x的方程,解方程即可求出x的值.【详解】设男生的平均分为x分,则2582204580x+⨯=⨯,解得78.4x=.即这个班男同学的数学平均分为78.4分.故答案为78.4.【点睛】本题考查了加权平均数,其中根据男生总分和女生总分的和是全体学生的总分,结合已知条件,构造关于x的方程是解题的关键.18.24【分析】根据方差公式S2=(x1﹣)2+(x2﹣)2+…+(xn﹣)2中各个字母表示的意义得出这组数据的平均数是6数据个数是4从而得出这组数据的总和【详解】∵s2=(x1﹣6)2+(x2﹣6)2解析:24【分析】根据方差公式S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2]中各个字母表示的意义,得出这组数据的平均数是6,数据个数是4,从而得出这组数据的总和.【详解】∵s 2=14[(x 1﹣6)2+(x 2﹣6)2+(x 3﹣6)2+(x 4﹣6)2],∴这组数据的平均数是6,数据个数是4,∴这组数据的总和为4×6=24.故答案为24.【点睛】本题考查了方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2]. 19.2012【解析】∵=10∴=10设222的方差为则=2×10=20∵∴==4×3=12故答案为20;12点睛:本题考查了当数据加上一个数(或减去一个数)时方差不变即数据的波动情况不变平均数也加或减这解析:20 12【解析】 ∵x =10, ∴1233x x x ++=10, 设21x ,22x ,23x 的方差为, 则1232223x x x y ++==2×10=20, ∵22221231(10)(10)(10)3s x x x ⎡⎤=-+-++⎣⎦ , ∴22221231(2)(2)(2)S x y x y x y n '⎡⎤=-+-+-⎣'⎦ =132221234(10)4(10)4(10)x x x ⎡⎤-+-++⎣⎦ =4×3=12.故答案为20;12. 点睛:本题考查了当数据加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变,平均数也加或减这个数;当乘以一个数时,方差变成这个数的平方倍,平均数也乘以这个数.20.【解析】分析:连接DE 根据题意可得ΔDEG 是直角三角形然后根据勾股定理即可求解DG 的长详解:连接DE ∵DE 分别是ABBC 的中点∴DE ∥ACDE=AC ∵ΔABC 是等边三角形且BC=4∴∠DEB=60°【解析】分析:连接DE ,根据题意可得ΔDEG 是直角三角形,然后根据勾股定理即可求解DG 的长. 详解:连接DE ,∵D 、E 分别是AB 、BC 的中点,∴DE ∥AC ,DE=12AC ∵ΔABC 是等边三角形,且BC=4∴∠DEB=60°,DE=2∵EF ⊥AC ,∠C=60°,EC=2∴∠FEC=30°,3∴∠DEG=180°-60°-30°=90°∵G 是EF 的中点,∴3 在RtΔDEG 中,22223192()22DE EG +=+= 192点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.三、解答题21.(1)60,68,70;(2)乙组,理由见解析【分析】(1)利用中位数的定义确定a 、c 的值,根据平均数的定义计算出b 的值;(2)先计算出乙组成绩的方差,然后选择甲乙两组成绩的方差较小的一组.【详解】解:(1)甲组学生成绩的中位数为60602+=60,即a =60; 乙组学生成绩的平均数为110(50+3×60+4×70+80+90)=68; 乙组学生成绩的中位数为70702+=70,即b =68,c =70;故填:60,68,70;(2)选择乙组.理由如下: 乙组学生成绩的方差为110[(50﹣68)2+3(60﹣68)2+4(70﹣68)2+(80﹣68)2+(90﹣68)2]=116,因为甲乙两组学生成绩的平均数相同,而乙组学生成绩的方差较小,成绩比较稳定,所以选择乙组.【点睛】本题考查众数、中位数、平均数的意义和计算方法,理解各个统计量的意义及各个统计量所反映数据的特点是解决问题的关键.22.(1)①补图见解析;②这30户家庭2018年4月份义务植树数量的平均数是3.4棵,中位数是3棵;(2)估计该小区采用这种形式的家庭有70户.【分析】(1)①由已知数据知3棵的有12人、4棵的有8人,据此补全图形可得;②根据平均数和众数的定义求解可得;(2)用总户数乘以样本中采用了网上预约义务植树这种方式的户数所占比例可得.【详解】(1)①由已知数据知3棵的有12人、4棵的有8人,补全图形如下:②这30户家庭2018年4月份义务植树数量的平均数是1223312485461 3.430⨯+⨯+⨯+⨯+⨯+⨯=(棵) 中位数:从小到大排列,中位数应为第15位和第16位的数的平均值:3332+=(棵) 答:这30户家庭2018年4月份义务植树数量的平均数是3.4棵,中位数是3棵. (2)估计该小区采用这种形式的家庭有300×730=70户, 答:估计该小区采用这种形式的家庭有70户.【点睛】 本题主要考查了频数分布直方图,中位数、平均数的定义及样本估计总体思想的运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.(1)85;(2)最终候选人E将参加说题比赛【分析】(1)根据中位数的定义直接进行解答即可;(2)根据算术平均数的计算公式先求出C、E两名候选人的平均成绩,再进行比较,即可得出答案.【详解】解:(1)把这些数从小到大排列为:75,83,85,90,90,则名候选人模拟说题比赛成绩的中位数是85分;故答案为:85;(2)∵C的平均成绩是:952803905235⨯+⨯+⨯++=88(分),E的平均成绩是:852903905235⨯+⨯+⨯++=89(分),∴88<89,∴最终候选人E将参加说题比赛.【点睛】本题考查中位数、平均数,加权平均数等知识,解题的关键是理解平均数的定义.24.(1)4%;(2)72°;(3)落在B等级内;(4)380人【分析】(1)先求出总人数,再求D成绩的人数占的比例;(2)C成绩的人数为10人,占的比例=10÷50=20%,表示C的扇形的圆心角=360°×20%=72°,(3)根据中位数的定义判断;(4)该班占全年级的比例=50÷500=10%,所以,这次考试中A级和B级的学生数=(13+25)÷10%=380人,【详解】(1)总人数为25÷50%=50人,D成绩的人数占的比例:2÷50=4%;(2)表示C的扇形的圆心角360°×(10÷50)=360°×20%=72°;(3)由于A成绩人数为13人,C成绩人数为10人,D成绩人数为2人,而B成绩人数为25人,故该班学生体育测试成绩的中位数落在B等级内;(4)这次考试中A级和B级的学生数:(13+25)÷(50÷500)=(13+25)÷10%=380(人).【点睛】本题主要考查统计图和用样本估计总体,提取统计图中的有效信息是解答此题的关键. 25.(1)补图见解析;(2)193,30,36;(3)19400人.【分析】(1)用20减去A、C、D、E组的数量得到B组数量,据此即可补全直方图;(2)利用中位数的概念可求得a的值,用100%减去B、C、D、E组所占的百分比求得A 组所占的百分比可求得m的值,用360度乘以E组所占的比例即可求得相应圆心角的度数;(3)用样本的平均数乘以这一时间段的进站车数再乘以天数即可得.【详解】(1)B组的数量为:20-2-12-2-1=3,补全频数直方图如图所示:(2)20个数据从小到大排列后位于中间的应该是第10、第11个数据,A、B、C、D、E组的数据是从小到大进行的,A、B组共有5个数据,C组有12个数据,从小到大排列为:190,190,191,192,193,193,195,196,198,198,198,198,C组中的第5个数据是总数据的第10个,为193,C组中的第6个数据是总数据的第11个,为193,所以中位数为:(193+193)÷2=193,即a=193;m%=100%-25%-20%-15%-10%=30%,所以m=30;扇形统计图中E组所在的圆心角度数为360°×10%=36°,故答案为:193,30,36;(3)估算一周内5个工作日的上午7点至9点重庆轨道环线四公里站的上车总人数为:194×20×5=19400人.【点睛】本题考查了频数分布直方图,扇形统计图,中位数,用样本估计总体等知识,弄清题意,准确识图,熟练运用相关知识是解题的关键.26.(1)28;(2)1.8kg,1.5kg;(3)平均数是1.52kg,总质量约为3800kg.【分析】(1)根据各种质量的百分比之和为1可得m的值;(2)根据众数、中位数、加权平均数的定义计算即可;(3)根据平均数的计算公式求出这组数据的平均数,再乘以总只数即可得出鸡的总质量.【详解】(1)图①中m的值为100﹣(32+8+10+22)=28,故答案为:28;(2)∵1.8kg出现的次数最多,∴众数为1.8kg,把这些数从小到大排列,则中位数为1.5 1.52+=1.5(kg);故答案为:1.8kg,1.5kg;(3)这组数据的平均数是:151114164++++×(5×1+11×1.2+14×1.5+16×1.8+4×2),=150⨯(5+13.2+21+28.8+8),=1.52(kg),∴2500只鸡的总质量约为:1.52×2500=3800(kg),所以这组数据的平均数是1.52kg,2500只鸡的总质量约为3800kg.【点睛】此题考查统计计算,正确掌握部分百分比的计算方法,众数的定义、中位数的定义,平均数的计算方法是解题的关键.。

人教版初中数学八年级数学下册第五单元《数据的分析》测试卷(包含答案解析)(2)

人教版初中数学八年级数学下册第五单元《数据的分析》测试卷(包含答案解析)(2)

一、选择题1.反映一组数据变化范围的是( ) A .极差B .方差C .众数D .平均数2.已知5个数1a 、2a 、3a 、4a 、5a 的平均数是a ,则数据11a +、22a +、33a +、44a +、55a +的平均数为( )A .aB .3a +C .56a D .15a +3.某次数学趣味竞赛共有10道题目,每道题答对得10分,答错或不答得0分.全班40名同学的成绩的中位数和众数分别是( ) A .75,70B .70,70C .80,80D .75,804.某校篮球队10名队员的年龄情况如下,则篮球队队员年龄的众数和中位数分别是( )A .15,15B .14,15C .14,14.5D .15,14.55.甲、乙两班举行电脑汉字输入比赛,参赛学生每分输入汉字的个数统计结果如下表:某同学分析上表后得到如下结论: ①甲、乙两班学生平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分输入汉字个数150≥为优秀) ③甲班成绩的波动比乙班大. 上述结论中正确的是( ) A .①②③B .①②C .①③D .②③6.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为()A.8.5,9 B.8.5,8 C.8,8 D.8,97.某校10名学生参加某项比赛成绩统计如图所示。

对于这10名学生的参赛成绩,下列说法中错误的是()A.众数是90 B.中位数是90C.平均数是90 D.参赛学生最高成绩与最低成绩之差是15 8.小明、小华两名射箭运动员在某次测试中各射箭10次,两人的平均成绩均为7.5环,如图做出了表示平均数的直线和10次射箭成绩的折线图.S1,S2分别表示小明、小华两名运动员这次测试成绩的方差,则有()A.S1<S2B.S1>S2C.S1=S2D.S1≥S29.为参加全市中学生足球赛.某中学从全校学生中选拔22名足球运动员组建校足球队,这22名运动员的年龄(岁)如下表所示,该足球队队员的平均年龄是()年龄(岁)12131415人数71032A.12岁B.13岁C.14岁D.15岁10.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的()A.平均数B.方差C.众数D.中位数11.为了帮助我市一名贫困学生,某校组织捐款,现从全校所有学生的捐款数额中随机抽取10名学生的捐款数统计如下表:捐款金额/元20305090人数2431A.10名学生是总体的一个样本B.中位数是40C.众数是90D.方差是40012.某班体育委员记录了第一小组七位同学定点投篮(每人投10次)的情况,投进篮筐的个数为6,9,5,3,4,8,4,这组数据的众数是()A.3 B.4 C.5 D.8二、填空题13.已知样本x1,x2,x3,…,x n的方差是1,那么样本2x1+3,2x2+3,2x3+3,…,2x n+3的方差是___________.14.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图6-Z-2所示,那么三人中成绩最稳定的是________.15.甲、乙两人参加某网站的招聘测试,测试由网页制作和语言两个项目组成,他们各自的成绩(百分制)如下表所示:应聘者网页制作语言甲8070乙7080该网站根据成绩在两人之间录用了甲,则本次招聘测试中权重较大的是_____项目.16.小明用S2=110[(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2]计算一组数据的方差,那么x1+x2+x3+…+x10=______.17.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是2S甲、2S乙,且22S S甲乙,则队员身高比较整齐的球队是_____.18.一组数据:3、5、8、x、6,若这组数据的极差为6,则x的值为__________.19.已知数据x1,x2,…,x n的方差是2,则3x1﹣2,3x2﹣2,…,3x n﹣2的方差为_____.20.已知5个数据的平均数是7,另外还有3个数据的平均数是k,则这 8个数据的平均数是_______(用关于 k 的代数式表示).参考答案三、解答题21.如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D 作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD的面积是.22.为了让同学们了解自己的体育水平,初二1班的体育刘老师对全班45名学生进行了一次体育模拟测试(得分均为整数),成绩满分为10分,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表平均分方差中位数众数男生287女生7.92 1.998(1)这个班共有男生人,共有女生人;(2)补全初二1班体育模拟测试成绩分析表;(3)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并说明理由.(至少从两个不同的角度说明推断的合理性)23.为宣传6月6日世界海洋日,某校九年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(如图).表1知识竞赛成绩分组统计表组别 分数/分 频数A6070x ≤< aB7080x ≤< 10 C8090x ≤< 14 D90100x ≤<18请根据图表信息解答以下问题:(1)本次调查一共随机抽取了________个参赛学生的成绩,表1中a =________; (2)所抽取的参赛学生的成绩的中位数落在的“组别”是________;(3)请你估计,该校九年级竞赛成绩达到80分以上(含80分)的学生约多少人? 24.八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(单位:分): 甲 78 9 7 10 10 910 10 10乙 10 8 7 9 8 10 10 910 9)甲队成绩的中位数是 分,乙队成绩的众数是 分; (2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4 分 2,则成绩较为整齐的是 队.25.为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下: 收集数据:七年级: 79,85,73,80, 75,76,87, 70, 75,94,75,79,81,71, 75,80,86,59, 83, 77.八年级: 92,74, 87,82,72,81, 94,83,77, 83,80,81,71,81,72,77,82,80,70,41. 整理数据:分析数据:应用数据:(1)由上表填空:a=,b=,c=,d=.(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.26.某中学七、八年级各选10名同学参加“创全国文明城市”知识竞赛,计分10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或9分以上为优秀,这次竞赛后,七、八年级两支代表队成绩分布的条形统计图和成绩分析表如下,其中七年级代表队得6分、10分选手人数分别为a,b.队列平均分中位数方差合格率优秀率七年级 6.7m 3.4190%n八年级7.17.5 1.6980%10%(1)根据图表中的数据,求a,b的值.(2)直接写出表中的m= ,n=.(3)你是八年级学生,请你给出两条支持八年级队成绩好的理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据极差是刻画数据离散程度的一个统计量.它能反映数据的波动范围大小解答.【详解】解:反映一组数据变化范围的是极差; 故选:A . 【点睛】本题考查了极差、方差、众数以及平均数的概念和意义,掌握极差是刻画数据离散程度的一个统计量.它能反映数据的波动范围是解题的关键.2.B解析:B 【分析】根据数据11a +、22a +、33a +、44a +、55a +比数据1a 、2a 、3a 、4a 、5a 的和多15,可得数据11a +、22a +、33a +、44a +、55a +的平均数比a 多3,据此求解即可 【详解】解:a+()()24512345132+4+51+3+-+a a a a a a a a a a ++++++++⎡⎤⎣⎦ ÷5 =a+[1+2+3+4+5] ÷5 =a+15÷5 =a+3 故选:B 【点睛】此题主要考察了算术平均数的含义和求法,解题关键是判断出:数据11a +、22a +、33a +、44a +、55a +比数据1a 、2a 、3a 、4a 、5a 的平均数多3.3.A解析:A 【分析】根据中位数和众数的定义解答即可. 【详解】共40个数据中第20和第21个数分别是70、80, ∴这组数据的中位数是75,这组数据中出现次数最多的是70,所以众数是70, 故选:A. 【点睛】此题考查了中位数和众数的定义,一组数据最中间的一个数或两个数的平均数是这组数据的中位数,出现次数最多的数是这组数据的众数,正确掌握定义是解题的关键.4.D解析:D 【分析】众数就是出现次数最多的数,而中位数就是大小处于中间位置的数,根据定义即可求解. 【详解】在这10名队员的年龄数据里,15岁出现了4次,次数最多,因而众数是15;10名队员的年龄数据里,第5和第6个数据分别为14,15,其平均数141514.52+=,因而中位数是14.5.故选:D.【点睛】本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.5.A解析:A【分析】平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小.【详解】从表中可知,平均字数都是135,①正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,②正确;甲班的方差大于乙班的,又说明甲班的波动情况大,所以③也正确.①②③都正确.故选:A.【点睛】此题考查平均数,中位数,方差的意义.解题关键在于掌握平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.6.C解析:C【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】这组数据中出现次数最多的一个数是8,所以这组数据的众数是8环;22是偶数,按大小顺序排列后中间两个数是8和8,所以这组数据的中位数是8(环).故选:C.【点睛】此题考查众数和中位数.注意掌握中位数和众数的定义是解题关键.7.C解析:C【分析】根据众数、中位数、平均数、极差的定义和统计图中提供的数据分别列出算式,求出答案.【详解】解:∵90出现了5次,出现的次数最多,∴众数是90;故A正确;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;故B正确;∵平均数是(80×1+85×2+90×5+95×2)÷10=89;故C错误;参赛学生最高成绩与最低成绩之差是:95-80=15;故D正确.故选:C.【点睛】此题考查了折线统计图,用到的知识点是众数、中位数、平均数、极差,关键是能从统计图中获得有关数据,求出众数、中位数、平均数、极差.8.A解析:A【分析】各数据与平均值的离散程度越大,稳定性就越小;反之,各数据与其平均值的离散程度越小,稳定性就越好.【详解】根据图形可得,小明、小华两名射箭运动员在某次测试中各射箭10次所得的成绩中,小明的成绩与平均成绩离散程度小,而小华的成绩与平均成绩离散程度大,故S1<S2故选:A.【点睛】此题考查方差和折线统计图,解题关键在于掌握方差是反映一组数据的波动大小的一个量.方差越大,则与平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.9.B解析:B【解析】【分析】直接利用加权平均数的定义计算可得.【详解】解:该足球队队员的平均年龄是127131014315222⨯+⨯+⨯+⨯=13(岁),故选:B.【点睛】本题考查了加权平均数,解题的关键是掌握加权平均数的定义.10.B解析:B【分析】平均数、众数、中位数反映的是数据的集中趋势,方差反映的是数据的离散程度,方差越大,说明这组数据越不稳定,方差越小,说明这组数据越稳定.【详解】解:由于方差能反映数据的稳定性,故需要比较这两名同学5次短跑训练成绩的方差.故选B.【点睛】考核知识点:均数、众数、中位数、方差的意义.11.D解析:D【分析】根据样本、众数、中位数及方差的定义,结合表格分别进行解答,即可得出答案.【详解】A、10名学生的捐款数是总体的一个样本,故本选项错误;B、中位数是30,故本选项错误;C、众数是30,故本选项错误;D、平均数是:(20×2+30×4+50×3+90)÷10=40(元),则方差是:110×[2×(20﹣40)2+4×(30﹣40)2+3×(50﹣40)2+(90﹣40)2]=400,故本选项正确,故选D.【点睛】本题考查了中位数、方差、众数及样本的知识,掌握相关的定义以及求解方法是解题的关键.12.B解析:B【解析】【分析】众数是出现次数最多的数,据此求解即可.【详解】∵数据4出现了2次,最多,∴众数为4,故选:B.【点睛】本题考查了众数的知识,解题的关键是了解有关的定义,属于基础题,难度不大.二、填空题13.4【分析】根据方差的意义分析原数据都乘2则方差是原来的4倍数据都加3方差不变【详解】解:设样本x1x2x3…xn 的平均数为m 则其方差为则样本2x1+32x2+32x3+3…2xn +3的平均数为2m +解析:4【分析】根据方差的意义分析,原数据都乘2,则方差是原来的4倍,数据都加3,方差不变.【详解】解:设样本x 1,x 2,x 3,…,x n 的平均数为m , 则其方差为22221121...1n S x m x m x m n, 则样本2x 1+3,2x 2+3,2x 3+3,…,2x n +3的平均数为2m +3, 其方差为222144S S ,故选:D .【点睛】本题考查方差的计算公式及其运用:一般地设有n 个数据,x 1,x 2,…x n ,若每个数据都放大或缩小相同的倍数后再同加或同减去一个数,其平均数也有相对应的变化,方差则变为这个倍数的平方倍. 14.乙【分析】通过图示波动的幅度即可推出【详解】通过图示可看出一至三次甲乙丙中乙最稳定波动最小四至五次三人基本一样故选乙【点睛】考查数据统计的知识点解析:乙【分析】通过图示波动的幅度即可推出.【详解】通过图示可看出,一至三次甲乙丙中,乙最稳定,波动最小,四至五次三人基本一样,故选乙【点睛】考查数据统计的知识点15.网页制作【分析】根据加权平均数的定义解答即可【详解】解:设网页制作的权重为a 语言的权重为b 则甲的分数为80a+70b 乙的分数为70a+80b 而甲的分数高所以80a+70b >70a+80b 解得a >b 则解析:网页制作【分析】根据加权平均数的定义解答即可.【详解】解:设网页制作的权重为a ,语言的权重为b ,则甲的分数为80a +70b ,乙的分数为70a +80b ,而甲的分数高,所以80a +70b >70a +80b ,解得a >b ,则本次招聘测试中权重较大的是网页制作项目.故答案为:网页制作.【点睛】本题考查了加权平均数的和解一元一次不等式的知识,属于基础题型,熟练掌握加权平均数的定义是关键.16.30【分析】根据计算方差的公式能够确定数据的个数和平均数从而求得所有数据的和【详解】解:∵S2=(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2∴平均数为3共10个数据∴x1+x2+x3+…+x解析:30【分析】根据计算方差的公式能够确定数据的个数和平均数,从而求得所有数据的和.【详解】解:∵S 2=110[(x 1﹣3)2+(x 2﹣3)2+…+(x 10﹣3)2], ∴平均数为3,共10个数据,∴x 1+x 2+x 3+…+x 10=10×3=30.故答案为30.【点睛】 本题考查了方差的知识,牢记方差公式是解答本题的关键,难度不大.17.乙【分析】根据方差的意义可作出判断方差是用来衡量一组数据波动大小的量方差越小表明这组数据分布比较集中各数据偏离平均数越小即波动越小数据越稳定【详解】解:∵∴队员身高比较整齐的球队是乙故答案为乙【点睛 解析:乙【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵22S S 甲乙,∴队员身高比较整齐的球队是乙,故答案为乙.【点睛】本题考查方差.解题关键在于知道方差是用来衡量一组数据波动大小的量18.2或9【解析】【分析】根据极差的定义先分两种情况进行讨论当x 最大时或最小时分别进行求解即可【详解】∵数据358x6的极差是6∴当x 最大时:x ﹣3=6解得:x=9;当x 最小时8﹣x=6解得:x=2∴x解析:2或 9【解析】【分析】根据极差的定义先分两种情况进行讨论,当x 最大时或最小时分别进行求解即可.【详解】∵数据3、5、8、x、6的极差是6,∴当x最大时:x﹣3=6,解得:x=9;当x最小时,8﹣x=6,解得:x=2,∴x的值为2或9.故答案为:2或9.【点睛】本题考查了极差,掌握极差的定义是解题的关键;求极差的方法是用一组数据中的最大值减去最小值.19.18【解析】分析:根据数据都加上一个数(或减去一个数)时方差不变;数据都乘以同一个数时方差乘以这个数的平方即可得出答案详解:∵数据x1x2…xn的方差是2∴3x13x2…3xn的方差是32×2=18解析:18【解析】分析:根据数据都加上一个数(或减去一个数)时,方差不变;数据都乘以同一个数时,方差乘以这个数的平方即可得出答案.详解:∵数据x1,x2,…,x n的方差是2,∴3x1,3x2,…,3x n的方差是32×2=18,∴3x1-2,3x2-2,…,3x n-2的方差为18;故答案为:18.点睛:此题考查了方差,当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变;当数据都乘以同一个数,方差乘以这个数的平方.20.【解析】【详解】根据平均数的概念和公式可知5个数据的和为5×7=353个数据的和为3k因此这8个数的和为35+3k因此其平均数为(35+3k)÷8即故答案为:解析:35+3 8k【解析】【详解】根据平均数的概念和公式,可知5个数据的和为5×7=35,3个数据的和为3k,因此这8个数的和为35+3k,因此其平均数为(35+3k)÷8,即35+3 8k.故答案为:35+3 8k.三、解答题21.(1)证明见解析;(2)4.【解析】【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【详解】(1)∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD是菱形,∴AC=2OC=4,BD=2OD=2,∴菱形ABCD的面积为:12AC•BD=12×4×2=4,故答案为4.【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.22.(1)20,25;(2)7.9,8;(3)女生队表现更突出,理由见解析【分析】(1)由条形图可得男生总人数,总人数减去男生人数可得女生人数;(2)根据平均数和众数定义可得.(3)可从平均数、方差、众数和中位数的意义求解可得.【详解】解:(1)这个班共有男生1+2+6+3+5+3=20(人),共有女生45﹣20=25(人),故答案为:20、25;(2)男生的平均分为120×(5+6×2+7×6+8×3+9×5+10×3)=7.9(分),女生的众数为8分,补全表格如下:理由为:女生队的平均数较高,表示女生队测试成绩较好;女生队的方差小,表示女生队测试成绩比较集中,整体水平较好;女生队的众数较高,女生队的众数为8,中位数也为8,而男生队众数为7低于中位数8,表示女生队的测试成绩高分较多.【点睛】本题主要考查加权平均数、利用众数、方差、平均数、众数作出决策.注意方差越小,说明数据越稳定.23.(1)50; 8;(2)C 组;(3)320人【分析】(1)利用统计表和扇形统计图中D 组的信息可得样本容量,从而得出表1中A 对应的人数;(2)成绩已经按照从小到大的顺序排列,找出最中间的2人,即第25和第26位,取二者的平均值即可;(3)先求出80分以上的比例,然后乘总人数可得.【详解】解:(1)本次调查一共随机抽取学生:1836%50÷=(人),8a =(2)∵抽样了50人,则最中间的为第25和第26位的平均值第25位落在C 组,第26位落在C 组∴中位数落在C 组(3)该校九年级竞赛成绩达到80分以上(含80分)的学生有141850032050+⨯=(人)【点睛】本题考查调查与统计,解题关键是结合残缺不全的统计表和扇形统计图,得出样本容量. 24.(1)9.5,10;(2)9分,1分2;(3)乙【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;(2)先求出乙队的平均成绩,再根据方差公式进行计算;(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.【详解】(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)乙队的平均成绩是:()104827939110⨯+⨯++⨯=⨯(分), 则方差是:()()()()22224109211089793991⎡⎤⨯-+⨯-+-+⨯-=⎣⎦⨯(分2) ; (3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.【点睛】本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n 个数据x 1,x 2,…x n 的平均数为x ,则方差S 2=()()()()22221231n x x x x x x x x n ⎡⎤-+-+-++-⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大. 25.(1)11,10,78,81;(2)90人;(3)八年级学生对经典文化知识掌握的总体水平较好,理由是八年级学生成绩的中位数较高【分析】(1)根据已知数据及中位数和众数的概念求解即可.(2)利用样本估计总体思想求解可得.(3)答案不唯一,合理即可.【详解】(1)a=11,b=10,c=78,d=81(2)312009040⨯=(人) 答:估计七八年级90分以上的学生共90人(3)八年级学生对经典文化知识掌握的总体水平较好,理由:八年级学生成绩的中位数较高【点睛】本题考查了概率统计的问题,掌握中位数和众数的概念、利用样本估计总体的方法是解题的关键.26.(1)51a b =⎧⎨=⎩;(2)6m = 20%n =;(3)详见解析. 【分析】(1)根据七年级代表队的总人数为10人以及七年级的成绩的平均分为6.7,列方程组可求出a 与b 的值;(2)根据(1)a 与b 的值,确定出m 与n 的值即可;(3)从中位数,平均数,方差等角度考虑,给出两条支持八年级队成绩好的理由即可.【详解】解:(1)由题意,得 101111 6.73167181911010a b a b +=----⎧⎪=⨯++⨯+⨯+⨯+⎨⎪⎩,即:661040a b a b +=⎧⎨+=⎩,解得:51a b =⎧⎨=⎩. (2)七年级成绩为3,6,6,6,6,6,7,8,9,10,中位数为6,即m=6; 优秀率为111=105+=20%,即n=20%; (3)答案不唯一.如:支持八年级队成绩好的理由有: ①八年级队的平均分比七年级队高,说明总成绩八年级好;②八年级队中位数是7.5,而七年级队中位数是6,说明八年级队半数以上的学生比七年级队半数以上成绩好【点睛】此题考查了条形统计图,以及中位数,平均数,以及方差,弄清概念是解题的关键.。

新人教版初中数学八年级数学下册第五单元《数据的分析》测试题(含答案解析)(4)

新人教版初中数学八年级数学下册第五单元《数据的分析》测试题(含答案解析)(4)

一、选择题1.为评估一种农作物的种植效果,选了8块地作试验田,这8块地的亩产量(单位:kg )分别为1x ,2x ,…,8x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A .1x ,2x ,…,8x 的平均数B .1x ,2x ,…,8x 的方差C .1x ,2x ,…,8x 的中位数D .1x ,2x ,…,8x 的众数2.八年级某班五个合作学习小组人数如下:5,7,6,x ,7.已知这组数据的平均数是6,则x 的值为( ) A .7B .6C .5D .43.小王在清点本班为偏远贫困地区的捐款时发现,全班同学捐款的钞票情况如下:100元的3 张,50元的9张,10元的23张,5元的10张.在这些不同面额的钞票中,众数是( )A .10B .23C .50D .1004.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.2环,方差分别是20.56S =甲,20.45S =乙,20.50S =丙,20.60S =丁;则成绩最稳定的是( )A .甲B .乙C .丙D .丁5.将一组数据中的每一个数减去50后,所得新的一组数据的平均数是2,则原来那组数据的平均数是( ) A .50B .52C .48D .26.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是( ) A .甲的成绩比乙的成绩稳定 B .乙的成绩比甲的成绩稳定 C .甲、乙两人的成绩一样稳定D .无法确定甲、乙的成绩谁更稳定7.为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是( )①每人乘坐地铁的月均花费最集中的区域在80~100元范围内; ②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A.①②④B.①③④C.③④D.①②8.一组数据:3,2,5,3,7,5,x,它们的众数为5,则x ()A.2 B.3 C.5 D.79.某地区汉字听写大赛中,10名学生得分情况如下表:那么这10名学生所得分数的中位数和众数分别是()A.85和85 B.85.5和85 C.85和82.5 D.85.5和8010.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.50分B.82分C.84分D.86分11.某公司全体职工的月工资如下:的普通员工最关注的数据是()A.中位数和众数B.平均数和众数C.平均数和中位数D.平均数和极差12.为了帮助我市一名贫困学生,某校组织捐款,现从全校所有学生的捐款数额中随机抽取10名学生的捐款数统计如下表:A.10名学生是总体的一个样本B.中位数是40C.众数是90D.方差是400二、填空题13.已知点(x1,y1),(x2,y2),(x3,y3)都在函数y=-2x+7的图象上,若数据x1,x2,x3的方差为5,则另一组数据y1,y2,y3的方差为_________.14.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是2S甲、2S乙,且22S S甲乙,则队员身高比较整齐的球队是_____.15.已知一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是_____.16.已知一组数据为:5,3,3,6,3则这组数据的方差是______.17.一组数据2、3、5、6、x的平均数正好也是这组数据的中位数,那么正整数x为_____.18.如图所示是某校中学部篮球兴趣小组年龄结构条形统计图,该小组年龄最小为13岁,最大为17岁,根据统计图所提供的数据,该小组组员年龄的中位数为__________岁.19.在一次射击训练中,甲、乙两人各射击 10 次,两人 10 次射击成绩的平均数均是 8.9 环,方差分别是 S 甲2=1.7,S 乙2=1.2,则关于甲、乙两人在这次射击训练中成绩稳定是___________.(填“甲”或“乙”)20.已知一组数据:3,3,4,5,5,则它的方差为____________三、解答题21.为了倡导“节约用水,从我做起”的活动,某市政府决定对市直机关500户家庭的用水情况作一次调查,调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨).并将调查结果制成了如图所示的条形统计图.(1)这100个样本数据的平均数是、众数是和中位数是;(2)根据样本数据,估计该市直机关500户家庭中月平均用水量不超过12吨的约有多少户?22.“绿水青山就是金山银山”,北京市民积极参与义务植树活动.小武同学为了了解自己小区300户家庭在2018年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵):1 123 2 3 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6(1)对以上数据进行整理、描述和分析: ①绘制如下的统计图,请补充完整;②求这30户家庭2018年4月份义务植树数量的平均数是和中位数分别是多少? (2)“互联网+全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有多少户?23.为增强学生垃圾分类意识,推动垃圾分类进校园.某初中学校组织全校1200名学生参加了“垃圾分类知识竞赛”,为了解学生的答题情况,学校考虑采用简单随机抽样的方法抽取部分学生的成绩进行调查分析. (1)学校设计了以下三种抽样调查方案:方案一:从初一、初二、初三年级中指定部分学生成绩作为样本进行调查分析; 方案二:从初一、初二年级中随机抽取部分男生成绩及在初三年级中随机抽取部分女生成绩进行调查分析;方案三:从三个年级全体学生中随机抽取部分学生成绩进行调查分析.其中抽取的样本具有代表性的方案是__________.(填“方案一”、“方案二”或“方案三”) (2)学校根据样本数据,绘制成下表(90分及以上为“优秀”,60分及以上为“及格”): 样本容量 平均分 及格率 优秀率 最高分 最低分 10093.5100%70%10080分数段统计(学生成绩记为x ) 分数段 080x ≤<8085x ≤<8590x ≤<9095x ≤<95100x ≤≤频数5253040请结合表中信息解答下列问题:①估计该校1200名学生竞赛成绩的中位数落在哪个分数段内; ②估计该校1200名学生中达到“优秀”的学生总人数.24.学校为了让同学们走向操场、积极参加体育锻炼,启动了“学生阳光体育运动”,张明和李亮在体育运动中报名参加了百米训练小组.在近几次百米训练中,教练对他们两人的测试成绩进行了统计和分析,请根据图表中的信息解答以下问题:平均数中位数方差张明13.30.004李亮13.30.02(1)张明第2次的成绩为:秒;(2)张明成绩的平均数为:;李亮成绩的中位数为:;(3)现在从张明和李亮中选择一名成绩优秀的去参加比赛,若你是他们的教练,应该选择谁?请说明理由.25.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲a77 1.2乙7b8 4.2(1)写出表格中a,b的值;(2)从方差的角度看,若选派其中一名参赛,你认为应选哪名队员?并说明理.26.某班级从甲、乙两位同学中选派一人参加知识竞赛,老师对他们的五次模拟成绩(单位:分)进行了整理,并计算出甲成绩的平均数是80分,甲、乙成绩的方差分别是320,40,但绘制的统计图表尚不完整.甲、乙两人模拟成绩统计表第一次第二次第三次第四次第五次甲成绩901009050a乙成绩8070809080甲、乙两人模拟成绩折线图根据以上信息,请你解答下列问题:(1)a(2)请完成图中表示甲成绩变化情况的折线;(3)求乙成绩的平均数;(4)从平均数和方差的角度分析,谁将被选中.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据方差的意义即可判断.【详解】解:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.故选:B.【点睛】本题考查方差,平均数,中位数,众数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.C解析:C 【分析】根据平均数的计算公式列出算式,再进行计算即可得出x 的值. 【详解】解:∵5,7,6,x ,7的平均数是6,∴15(5+7+6+x +7)=6, 解得:x =5; 故选:C . 【点睛】本题考查了算术平均数的知识,解题的关键是根据算术平均数求出数据总和.3.A解析:A 【分析】根据众数就是一组数据中,出现次数最多的数,即可得出答案. 【详解】∵100元的有3 张,50元的有9张,10元的有23张,5元的有10张,其中10元的最多,∴众数是10元. 故答案为A . 【点睛】本题考查众数的概念.,一组数据中出现次数做多的数叫做众数.4.B解析:B 【分析】直接利用方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,进而分析即可. 【详解】解:∵20.56S =甲,20.45S =乙,20.50S 丙=,20.60S =丁, ∴2S 乙<2S 丙<2S 甲<2S 丁,∴成绩最稳定的是乙. 故选B . 【点睛】此题主要考查了方差,正确理解方差的意义是解题关键.5.B解析:B 【详解】解:由题意知,新的一组数据的平均数=1n[(1x﹣50)+(2x﹣50+…+(n x﹣50)]=1 n [(12x x++…+nx)﹣50n]=2,∴1n (12x x++…+nx)﹣50=2,∴1n (12x x++…+nx)=52,即原来的一组数据的平均数为52.故选B.6.B解析:B【分析】根据方差的意义求解可得.【详解】∵乙的成绩方差<甲成绩的方差,∴乙的成绩比甲的成绩稳定,故选B.【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.7.C解析:C【分析】根据频数分布直方图中的数据,求得众数,平均数,中位数,即可得出结论.【详解】解:①根据频数分布直方图,可得众数为60−80元范围,故每人乘坐地铁的月均花费最集中的区域在60−80元范围内,故①不正确;②每人乘坐地铁的月均花费的平均数=876001000=87.6=87.6元,所以每人乘坐地铁的月均花费的平均数范围是80~100元,故②错误;③每人乘坐地铁的月均花费的中位数约为80元,在60~100元范围内,故③正确;④为了让市民享受到更多的优惠,若使50%左右的人获得折扣优惠,则乘坐地铁的月均花费达到80元以上的人可以享受折扣,故④正确.故选:C【点睛】本题主要考查了频数分布直方图,平均数以及中位数的应用,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.8.C解析:C【分析】根据众数的定义(一组数据中出现次数最多的数叫众数),直接写出x的值即可得到答案.【详解】解:∵一组数据:3,2,5,3,7,5,x,它们的众数为5,∴5出现的次数最多,x=,故5故选C.【点睛】本题主要考查众数的基本概念,熟练掌握众数的基本概念是解题的关键,一组数据中出现次数最多的数据叫做众数.9.A解析:A【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.【详解】把这组数据从小到大排列,处于中间位置的两个数都是85,那么由中位数的定义可知,这组数据的中位数是85;在这一组数据中85出现的次数最多,则众数是85;故选:A.【点睛】此题考查众数与中位数的意义.解题关键在于掌握众数是一组数据中出现次数最多的数据;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.10.D解析:D【分析】计算出各项学习成绩的分数再相加即是数学成绩.【详解】⨯=分研究性学习成绩为:8040%32⨯=分期末卷面成绩为:9060%54数学成绩为;325486+=分故选:D【点睛】本题考查了加权平均数的相关定义,解题的关键是根据加权平均数的相关定义计算. 11.A解析:A【分析】根据中位数、众数、平均数及极差的意义分别判断后即可得到正确的选项.【详解】∵数据的极差为16800,较大,∴平均数不能反映数据的集中趋势,∴普通员工最关注的数据是中位数及众数,故选A.【点睛】本题考查了统计量的选择的知识,解题的关键是了解有关统计量的意义,难度不大.12.D解析:D【分析】根据样本、众数、中位数及方差的定义,结合表格分别进行解答,即可得出答案.【详解】A、10名学生的捐款数是总体的一个样本,故本选项错误;B、中位数是30,故本选项错误;C、众数是30,故本选项错误;D、平均数是:(20×2+30×4+50×3+90)÷10=40(元),则方差是:110×[2×(20﹣40)2+4×(30﹣40)2+3×(50﹣40)2+(90﹣40)2]=400,故本选项正确,故选D.【点睛】本题考查了中位数、方差、众数及样本的知识,掌握相关的定义以及求解方法是解题的关键.二、填空题13.20【解析】【分析】把x1x2x3分别代入y=-2x+7得出y1y2y3设这组数据x1x2x3的平均数为由方差S2=5则另一组新数据-2x1+7-2x2+7-2x3+7的平均数为-2+7方差为S′2解析:20.【解析】【分析】把x 1、x 2、x 3分别代入y=-2x+7,得出y 1、y 2、y 3,设这组数据x 1,x 2,x 3的平均数为x ,由方差S 2=5,则另一组新数据-2x 1+7,-2x 2+7,-2x 3+7的平均数为-2x +7,方差为S′2,代入公式S 2=()()()222121n x x x x x x n ⎡⎤-+-+⋯+-⎣⎦计算即可. 【详解】 设这组数据x 1,x 2,x 3的平均数为x ,则另一组新数据-2x 1+7,-2x 2+7,-2x 3+7的平均数为-2x +7,∵S 2=13[(x 1-x )2+(x 2-x )2+(x 3-x )2]=5, ∴方差为S′2=13 [(-2x 1+7+2x -7)2+(-2x 2+7+2x -7)2+(-2x 3+7+2x -7)2] =13[4(x 1-x )2+4(x 2-x )2+4(x 3-x )2] =4S 2=4×5=20,故答案为:20.【点睛】本题说明了当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.14.乙【分析】根据方差的意义可作出判断方差是用来衡量一组数据波动大小的量方差越小表明这组数据分布比较集中各数据偏离平均数越小即波动越小数据越稳定【详解】解:∵∴队员身高比较整齐的球队是乙故答案为乙【点睛 解析:乙【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵22S S >甲乙,∴队员身高比较整齐的球队是乙,故答案为乙.【点睛】本题考查方差.解题关键在于知道方差是用来衡量一组数据波动大小的量15.4【解析】【分析】平均数的计算方法是求出所有数据的和然后除以数据的总个数先求数据x1x2x3x4x5的和然后再用平均数的定义求新数据的平均数【详解】一组数据x1x2x3x4x5的平均数是2有15(x解析:4【解析】【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.先求数据x 1,x 2,x 3,x 4,x 5的和,然后再用平均数的定义求新数据的平均数.【详解】一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,有(x 1+x 2+x 3+x 4+x 5)=2,那么另一组数据3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数是(3x 1-2+3x 2-2+3x 3-2+3x 4-2+3x 5-2)=4.故答案是:4.【点睛】 考查的是样本平均数的求法及运用,解题关键是记熟公式:. 16.【解析】【分析】先求出平均数再根据方差的公式计算即可【详解】这组数据的平均数是:则这组数据的方差是;故答案为【点睛】此题考查了方差:一般地设n 个数据的平均数为则方差它反映了一组数据的波动大小方差越大 解析:1.6【解析】【分析】先求出平均数,再根据方差的公式计算即可.【详解】这组数据的平均数是:()5336354++++÷=, 则这组数据的方差是(22221S [(54)3(34)64) 1.65⎤=-+⨯-+-=⎦; 故答案为1.6.【点睛】此题考查了方差:一般地设n 个数据,1x ,2x ,n x ⋯的平均数为x ,则方差(222212n 1S [(x x)(x x)x x)n⎤=-+-+⋯+-⎦,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 17.-149【分析】根据平均数的计算公式先表示出这组数据的平均数再根据中位数的定义进行讨论即可得出答案【详解】∵数据2356x 的平均数是=∴当x=-1时这组数据的平均数是3中位数也是3;当x=4时这组数解析:-1、4、9【分析】根据平均数的计算公式先表示出这组数据的平均数,再根据中位数的定义进行讨论,即可【详解】∵数据2、3、5、6、x的平均数是23565x++++=165x+,∴当x=-1时,这组数据的平均数是3,中位数也是3;当x=4时,这组数据的平均数是4,中位数也是4;当x=9时,这组数据的平均数是5,中位数也是5;∴x=-1,4或9;故答案为-1,4或9.【点睛】此题考查了中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.18.155【解析】【分析】将该小组年龄按照从小到大顺序排列找出中位数即可【详解】根据题意排列得:131314141415151515161616161617171717则该小组组员年龄的中位数为(15+解析:15.5【解析】【分析】将该小组年龄按照从小到大顺序排列,找出中位数即可.【详解】根据题意排列得:13,13,14,14,14,15,15,15,15,16,16,16,16,16,17,17,17,17,则该小组组员年龄的中位数为12(15+16)=15.5岁,故答案为15.5【点睛】此题考查了条形统计图,以及中位数,弄清中位数的计算方法是解本题的关键.19.乙【分析】根据方差的定义方差越小数据越稳定即可求解【详解】因为S 甲2=17>S乙2=12方差小的为乙所以关于甲乙两人在这次射击训练中成绩稳定是乙故答案为乙【点睛】本题考查了方差的意义方差是用来衡量一解析:乙【分析】根据方差的定义,方差越小数据越稳定即可求解.【详解】因为S甲2=1.7>S乙2=1.2,方差小的为乙,所以关于甲、乙两人在这次射击训练中成绩稳定是乙.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.20.【解析】根据题意先求出这组数据的平均数是:(3+3+4+5+5)÷5=4再根据方差公式求出这组数据的方差为:×(3–4)2+(3–4)2+(4–4)2+(5–4)2+(5–4)2=故答案为解析:4 5【解析】根据题意先求出这组数据的平均数是:(3+3+4+5+5)÷5=4,再根据方差公式求出这组数据的方差为:15×[(3–4)2+(3–4)2+(4–4)2+(5–4)2+(5–4)2]=45.故答案为45.三、解答题21.(1)11.6吨,11吨,11吨;(2)约有350户.【分析】(1)根据平均数的计算公式、众数与中位数的定义即可得;(2)先求出月平均用水量不超过12吨的户数占比,再乘以500即可得.【详解】(1)这100个样本数据的平均数是1020114012101320141011.6100⨯+⨯+⨯+⨯+⨯=(吨),因为11吨出现的次数最多,所以众数是11吨,由中位数的定义得:将这100个样本数据按从小到大进行排序后,第50个和第51个数据的平均数即为中位数,则中位数是1111112+=(吨),故答案为:11.6吨,11吨,11吨;(2)月平均用水量不超过12吨的户数占比为204010100%70% 100++⨯=,则70%500350⨯=(户),答:500户家庭中月平均用水量不超过12吨的约有350户.【点睛】本题考查了平均数的计算公式、众数与中位数的定义、用样本估计总体,熟练掌握数据分析的相关知识是解题关键.22.(1)①补图见解析;②这30户家庭2018年4月份义务植树数量的平均数是3.4棵,中位数是3棵;(2)估计该小区采用这种形式的家庭有70户.【分析】(1)①由已知数据知3棵的有12人、4棵的有8人,据此补全图形可得;②根据平均数和众数的定义求解可得;(2)用总户数乘以样本中采用了网上预约义务植树这种方式的户数所占比例可得.【详解】(1)①由已知数据知3棵的有12人、4棵的有8人,补全图形如下:②这30户家庭2018年4月份义务植树数量的平均数是1223312485461 3.430⨯+⨯+⨯+⨯+⨯+⨯=(棵) 中位数:从小到大排列,中位数应为第15位和第16位的数的平均值:3332+=(棵) 答:这30户家庭2018年4月份义务植树数量的平均数是3.4棵,中位数是3棵. (2)估计该小区采用这种形式的家庭有300×730=70户, 答:估计该小区采用这种形式的家庭有70户.【点睛】 本题主要考查了频数分布直方图,中位数、平均数的定义及样本估计总体思想的运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.(1)方案三;(2)①该校1200名学生竞赛成绩的中位数落在9095x ≤<分数段内;②该校1200名学生中达到“优秀”的学生总人数为840人【分析】(1)抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的.(2)①根据中位数的定义,即可求出这次竞赛成绩的中位数所落的分数段;②用优秀率乘以该校共有的学生数,即可求出答案.【详解】解:(1)要调查学生的答题情况,需要考虑样本具有广泛性与代表性,就是抽取的样本必须是随机的,则抽取的样本具有代表性的方案是方案三.答案是:方案三;(2)①∵由表可知样本共有100名学生,∴这次竞赛成绩的中位数是第50和51个数的平均数,∴这次竞赛成绩的中位数落在落在9095x≤<分数段内;∴该校1200名学生竞赛成绩的中位数落在9095x≤<分数段内;②由题意得:120070%840⨯=(人).∴该校1200名学生中达到“优秀”的学生总人数为840人.【点睛】解决此题,需要能从统计表中获取必要的信息,根据题意列出算式是本题的关键,用到的知识点是抽样的可靠性,中位数的定义,用样本估计总体等.24.(1)13.4;(2)13.3秒,13.3秒;(3)选择张明,理由见解析.【分析】(1)根据统计图给出的数据可直接得出答案;(2)利用平均数的计算公式可得出张明成绩的平均数;先将李亮的成绩按照从小到大排列,然后即可得到这组数据的中位数;(3)在平均数、中位数相同的情况下,再根据方差越小数据越稳定,即可得出答案.【详解】解:(1)根据统计图可知,张明第2次的成绩为13.4秒,故答案为:13.4;(2)张明成绩的平均数为:13.313.413.313.213.35++++=13.3(秒);李亮的成绩是:13.2,13.4,13.1,13.5,13.3,把这些数从小到大排列为:13.1,13.2,13.3,13.4,13.5,则李亮成绩的中位数是:13.3秒;故答案为:13.3秒,13.3秒;(3)选择张明参加比赛,因为张明和李亮成绩的平均数、中位数都相同,但张明成绩的方差小于李亮成绩的方差,张明成绩比李亮成绩稳定.【点睛】本题考查了平均数,中位数,方差的意义.平均数表示一组数据的平均程度;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.25.(1)7,7.5;(2)甲,理由略.【分析】(1)利用加权平均数的计算公式、中位数的概念解答即可;(2)根据方差的性质判断即可.【详解】解:∵甲队员的射击成绩为:5,6,6,7,7,7,7,8,8,9,∴甲队员的射击成绩平均数为:a=(5+6×2+7×4+8×2+9)÷10=7∵乙队员的射击成绩为:3,6,4,8,7,8,7,8,10,9,从小数到大数依次排列为:3,4,6,7,7,8,8,8,9,10,∴乙队员射击成绩的中位数为:b=7.5∴a=7, b=7.5(2)从方差的角度看,选派甲队员去参赛,理由是:从表中可知:S 甲2=1.2,S 乙2=4.2,∴S 甲2<S 乙2∴甲队员的射击成绩较稳定,∴选甲队员去参赛【点睛】本题考查的是加权平均数、中位数、方差的计算,掌握加权平均数的计算公式、方差的计算公式是解题的关键.26.(1)70;(2)详见解析;(3)80;(4)乙将被选中,理由详见解析【分析】(1)根据平均数公式即可求得a 的值;(2)根据(1)计算的结果即可作出折线图;(3)利用平均数公式即可秋求解;(4)首先比较平均数,选择平均数大的,若相同,则比较方差,选择方差小,比较稳定的.【详解】解:(1)根据题意得:901009050805a ++++=,解得:a=70. (2)完成图中表示甲成绩变化情况的折线如图:(3)()乙1=8070809080=805x ++++, (4)甲乙成绩的平均数相同,乙的方差小于甲的方差,乙比甲稳定,所以乙将被选中.【点睛】本题考查了折线图的意义和平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数.。

新人教版初中数学八年级数学下册第五单元《数据的分析》测试题(包含答案解析)(5)

新人教版初中数学八年级数学下册第五单元《数据的分析》测试题(包含答案解析)(5)

一、选择题1.初三体育素质测试,某小组5名同学成绩如下所示,有两个数据遮盖,如图:A.35 2 B.36 4 C.35 3 D.36 32.某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,8,9,16,12,7,10,这组数据的中位数和众数分别是()A.10,12 B.12,11 C.11,12 D.12,123.将一组数据中的每一个数减去50后,所得新的一组数据的平均数是2,则原来那组数据的平均数是()A.50 B.52 C.48 D.24.一组数据:1、2、3、4、1,这组数据的众数与中位数分别为()A.1、3 B.2、2.5 C.1、2 D.2、25.如果将所给定的数据组中的每个数都减去一个非零常数,那么该数组的()A.平均数改变,方差不变B.平均数改变,方差改变C.平均数不变,方差改变D.平均数不变,方差不变6.甲、乙、丙、丁四位同学五次数学测验成绩统计如右表所示,如果从这四位同学中,选出一位同学参加数学竞赛,那么应选___________去.A.甲B.乙C.丙D.丁7.下图是2019年5月17日至31日某市的空气质量指数趋势图.(说明:空气质量指数为0-50、51-100、101-150分别表示空气质量为优、良、轻度污染)有如下结论:①在此次统计中,空气质量为优的天数少于轻度污染的天数;②在此次统计中,空气质量为优良的天数占45;③20,21,22三日的空气质量指数的方差小于26,27,28三日的空气质量指数的方差.上述结论中,所有正确结论的序号是()A.①B.①③C.②③D.①②③8.为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是()①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A.①②④B.①③④C.③④D.①②9.某校八年级有八个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是()A.将八个班级各自的平均成绩之和除以8,就得到全年级学生的平均成绩B.全年级学生的平均成绩一定在这八个班级各自的平均成绩的最小值与最大值之间C.这八个班级各自的平均成绩的中位数就是全年级学生的平均成绩D.这八个班级各自的平均成绩的众数不可能是全年级学生的平均成绩10.随着智能手机的普及,抢微信红包成为了春节期间人们最喜欢的活动之一.某中学八年级六班班长对全班50名学生在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是()A.20,20 B.30,20 C.30,30 D.20,3011.某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82.下列关于这组数据的描述不正确的是()A.众数是108 B.中位数是105C.平均数是101 D.方差是9312.某公司全体职工的月工资如下:月工资(元)18000120008000600040002500200015001200人数1(总经理)2(副总经理)34102022126的普通员工最关注的数据是()A.中位数和众数B.平均数和众数C.平均数和中位数D.平均数和极差二、填空题13.某市某一周的PM2.5(大气中直径小于等于2.5微米的颗粒物,也称可入肺颗粒物指数)如表,则该周PM2.5指数的众数为________.14.若一组数据3、4、5、x、6的平均数是5,则这组数据的方差为_____15.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数是_______,中位数是___________.16.为了增强青少年的防毒拒毒意识,学校举办了一次“禁毒教育”演讲比赛,其中某位选手的演讲内容、语言表达、演讲技巧这三项得分分别为90分,80分,85分,若依次按50%,30%,20%的比例确定成绩,则该选手的最后得分是__________分.17.已知点(x1,y1),(x2,y2),(x3,y3)都在函数y=-2x+7的图象上,若数据x1,x2,x3的方差为5,则另一组数据y1,y2,y3的方差为_________.18.一组数据1,0,2,1的方差S2=_____.19.一组数据1、2、3、4、5的方差为S12,另一组数据6、7、8、9、10的方差为S22,那么S12_______________ S22(填“>”、“=”或“<”).20.已知5个数据的平均数是7,另外还有3个数据的平均数是k,则这 8个数据的平均数是_______(用关于 k 的代数式表示).参考答案三、解答题21.为了了解某学校八年级学生每周平均体育锻炼时间的情况,随机抽查了该年级的部分学生,对其每周锻炼时间进行统计,根据统计数据绘制成图1和图2两个不完整的统计图.请你根据统计图提供的信息,回答下列问题:(1)本次共抽取了学生人,并请将图1条形统计图补充完整;(2)这组数据的中位数是,求出这组数据的平均数;(3)若八年级有学生1800人,请你估计体育锻炼时间为3小时的学生有多少人?22.某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:每人销售件数1650510250210150120人数113532(1)求这15位营销人员该月销售量的平均数、中位数和众数;(2)假设销售负责人把每位营销员的月销售额定为310件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由.23.某初中要调查学校学生(总数 1000 人)双休日课外阅读情况,随机调查了一部分学生,调查得到的数据分别制成频数直方图(如图 1)和扇形统计图(如图 2).(1)请补全上述统计图(直接填在图中);(2)试确定这个样本的中位数和众数;(3)请估计该学校 1000 名学生双休日课外阅读时间不少于 4 小时的人数.24.为了解学生的课外阅读情况,李老师随机调查了一部分学生,得到了他们上周双休日课外阅读时间(记为t,单位:h)的一组样本数据,其部分条形图和扇形图如下:(1)请补全条形图和扇形图;(2)试确定这组样本数据的中位数和众数;(3)估计全班学生上周双休日的平均课外阅读时间.25.某篮球队在一次联赛中共进行了10场比赛,已知这10场比赛的平均得分为48分,且前9场比赛的得分依次为:57,51,45,51,44,46,45,42,48.(1)求第10场比赛的得分;(2)直接写出这10场比赛的中位数,众数和方差.26.某中学七、八年级各选10名同学参加“创全国文明城市”知识竞赛,计分10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或9分以上为优秀,这次竞赛后,七、八年级两支代表队成绩分布的条形统计图和成绩分析表如下,其中七年级代表队得6分、10分选手人数分别为a,b.队列平均分中位数方差合格率优秀率七年级 6.7m3.41 90% n八年级7.1 7.5 1.6980%10%(1)根据图表中的数据,求a ,b 的值. (2)直接写出表中的m = ,n = .(3)你是八年级学生,请你给出两条支持八年级队成绩好的理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据平均数的计算公式先求出编号3的得分,再根据方差公式进行计算即可得出答案. 【详解】 解:这组数据的平均数是37,∴编号3的得分是:375(38343740)36⨯-+++=;方差是:222221[(3837)(3437)(3637)(3737)(4037)]45-+-+-+-+-=;故选:B . 【点睛】本题考查平均数和方差的定义,一般地设n 个数据,1x ,2x ,n x ⋯的平均数为x ,则方差2222121[()()()]n S x x x x x x n=-+-+⋯+-,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.2.C解析:C 【分析】先把原数据按由小到大排列,然后根据中位数和众数的定义求解.【详解】原数据按由小到大排列为:7,8,9,10,12,12,14,16,所以这组数据的中位数=12(10+12)=11,众数为12.故选:C.【点睛】此题考查众数,中位数的定义,解题关键在于掌握一组数据中出现次数最多的数据叫做众数.3.B解析:B【详解】解:由题意知,新的一组数据的平均数=1n[(1x﹣50)+(2x﹣50+…+(n x﹣50)]=1 n [(12x x++…+nx)﹣50n]=2,∴1n (12x x++…+nx)﹣50=2,∴1n (12x x++…+nx)=52,即原来的一组数据的平均数为52.故选B.4.C解析:C【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】数据1出现了2次,次数最多,所以众数是1;数据按从小到大排列:1,1,2,3,4,所以中位数是2.故选C.【点睛】本题考查了确定一组数据的中位数和众数的能力.要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.5.A解析:A试题分析:根据平均数、方差的计算公式即可判断.由题意得该数组的平均数改变,方差不变,故选A.考点:本题考查的是平均数,方差点评:数学公式的计算与应用是初中数学学习中的一个基本能力,此类问题往往考查学生对数学公式的理解能力,难度不大.6.B解析:B【分析】本题首先可通过四位同学的平均分比较,择高选取;继而根据方差的比较,择低选取求解本题.【详解】通过四位同学平均分的比较,乙、丙同学平均数均为90,高于甲、丁同学,故排除甲、丁;乙、丙同学平均数相同,但乙同学方差更小,说明其发挥更为稳定,故选择乙同学.故选:B.【点睛】本题考查平均数以及方差,平均数表示其平均能力的高低;方差表示数据波动的大小,即稳定性高低,数值越小,稳定性越强,考查对应知识点时严格按照定义解题即可.7.C解析:C【分析】根据折线统计图的数据,逐一分析即可.【详解】解:①中:当空气质量指数为0-50时表示优,数出折线图中在这个范围内的天数有5天;当空气质量指数为101-150是表示轻度污染,数出折线图中在这个范围内的天数有3天,故空气质量优的天数大于轻度污染的天数,故①错误;②中:空气质量指数在0-100范围内为优良,其天数共有12天,故空气质量为优良的天数所占比例为:124=155,故②正确;③中:20,21,22三日的空气质量指数波动范围小于26,27,28三日的空气质量指数波动范围,故20,21,22三日的空气质量指数的方差小于26,27,28三日的空气质量指数的方差,故③正确.∴正确的有:②③.故答案为:C.【点睛】本题是复式折线统计图,要通过坐标轴以及图例等读懂本图,根据图中所示的数量解决问题.8.C【分析】根据频数分布直方图中的数据,求得众数,平均数,中位数,即可得出结论.【详解】解:①根据频数分布直方图,可得众数为60−80元范围,故每人乘坐地铁的月均花费最集中的区域在60−80元范围内,故①不正确;②每人乘坐地铁的月均花费的平均数=876001000=87.6=87.6元,所以每人乘坐地铁的月均花费的平均数范围是80~100元,故②错误;③每人乘坐地铁的月均花费的中位数约为80元,在60~100元范围内,故③正确;④为了让市民享受到更多的优惠,若使50%左右的人获得折扣优惠,则乘坐地铁的月均花费达到80元以上的人可以享受折扣,故④正确.故选:C【点睛】本题主要考查了频数分布直方图,平均数以及中位数的应用,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.B解析:B【分析】A、由于这八个班的人数不一定相等,故全年级学生的平均成绩应等于所有学生成绩的和除以学生人数;B、由于全年级学生的平均成绩等于所有学生成绩的和除以学生人数,故全年级学生的平均成绩一定在这八个平均成绩的最小值与最大值之间;C、由于这八个班的人数不一定相等,故这10个平均成绩的中位数不一定是全年级学生的平均成绩;D、众数是一组数据中出现次数最多的数,能反映数据的集中程度,平均数也能反映数据的集中程度,是有可能相等的.【详解】A、全年级学生的平均成绩应等于所有学生成绩的和除以学生人数,而这八个班的人数不一定相等,故错误;B、由于全年级学生的平均成绩等于所有学生成绩的和除以学生人数,故全年级学生的平均成绩一定在这八个平均成绩的最小值与最大值之间,故正确;C、中位数不一定与平均数相等,故错误;D、众数与平均数有可能相等,故错误.故选B.【点睛】本题考查了平均数、中位数、众数的关系,它们有可能相等,也可能不相等.10.C解析:C 【解析】 【分析】根据众数和中位数的定义,出现次数最多的那个数就是众数,把一组数据按照大小顺序排列,中间那个数或中间两个数的平均数叫中位数. 【详解】解:30元的人数为20人,最多,则众数为30, 中间两个数分别为30和30,则中位数是30, 故选:C . 【点睛】本题考查了条形统计图、众数和中位数,这是基础知识要熟练掌握.11.D解析:D 【分析】把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110,求出众数、中位数、平均数和方差,即可得出结论. 【详解】解:把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110, ∴众数是108,中位数为1021081052+=,平均数为82961021081081101016+++++=,方差为()()()()()()222222182101961011021011081011081011101016⎡⎤-+-+-+-+-+-⎣⎦ 94.393≈≠;故选D . 【点睛】考核知识点:众数、中位数、平均数和方差;理解定义,记住公式是关键.12.A解析:A 【分析】根据中位数、众数、平均数及极差的意义分别判断后即可得到正确的选项. 【详解】∵数据的极差为16800,较大, ∴平均数不能反映数据的集中趋势, ∴普通员工最关注的数据是中位数及众数, 故选A . 【点睛】本题考查了统计量的选择的知识,解题的关键是了解有关统计量的意义,难度不大.二、填空题13.150【分析】先求出PM25指数为150的天数再根据众数的定义以及性质求出众数即可【详解】∵PM25指数为150的天数∴该周PM25指数的众数为150故答案为:150【点睛】本题考查了众数的问题掌握解析:150【分析】先求出PM2.5指数为150的天数,再根据众数的定义以及性质求出众数即可.【详解】∵PM2.5指数为150的天数72113=---=∴该周PM2.5指数的众数为150故答案为:150.【点睛】本题考查了众数的问题,掌握众数的定义以及性质是解题的关键.14.2【分析】先根据平均数的定义求出x然后运用方程公式求解即可【详解】解:根据题意得(3+4+5+x+6)=5×5解得:x=7则这组数据为34576的平均数为5所以这组数据的为s2=(3﹣5)2+(4﹣解析:2【分析】先根据平均数的定义求出x,然后运用方程公式求解即可.【详解】解:根据题意得(3+4+5+x+6)=5×5,解得:x=7,则这组数据为3,4,5,7,6的平均数为5,所以这组数据的为s2=15[(3﹣5)2+(4﹣5)2+(5﹣5)2+(7﹣5)2+(6﹣5)2]=2.故答案为:2.【点睛】本题考查了平均数的定义和方差公式,解答本题的关键是理解平均数的定义和掌握求方差的方法.15.15岁15岁【分析】由图得到男子足球队的年龄及对应的人数再根据平均数中位数的概念求解【详解】∵由图可得:13岁的有2人14岁的有6人15岁的有8人16岁的有3人17岁的有2人18岁的有1人∴平均数为解析:15岁 15岁【分析】由图得到男子足球队的年龄及对应的人数,再根据平均数、中位数的概念求解.【详解】∵由图可得:13岁的有2人,14岁的有6人,15岁的有8人,16岁的有3人,17岁的有2人,18岁的有1人,∴平均数为13214615816317218115268321⨯+⨯+⨯+⨯+⨯+⨯=+++++; ∵足球队共有队员2+6+8+3+2+1=22人,∴中位数是11名和第12名的平均年龄,即15岁,故答案是:15岁,15岁.【点睛】 本题考查了求一组数据的加权平均数和中位数.解题关键是求中位数时一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.16.86【分析】根据加权平均数的计算公式列出算式再进行计算即可得出答案【详解】解:根据题意得:90×50+80×30+85×20=45+24+17=86(分)答:该选手的最后得分是86分故答案为86【点解析:86【分析】根据加权平均数的计算公式列出算式,再进行计算即可得出答案.【详解】解:根据题意得:90×50%+80×30%+85×20%=45+24+17=86(分).答:该选手的最后得分是86分.故答案为86.【点睛】本题考查了加权平均数的求法.本题易出现的错误是求90,80,85这三个数的平均数,对平均数的理解不正确.17.20【解析】【分析】把x1x2x3分别代入y=-2x+7得出y1y2y3设这组数据x1x2x3的平均数为由方差S2=5则另一组新数据-2x1+7-2x2+7-2x3+7的平均数为-2+7方差为S′2解析:20.【解析】【分析】把x 1、x 2、x 3分别代入y=-2x+7,得出y 1、y 2、y 3,设这组数据x 1,x 2,x 3的平均数为x ,由方差S 2=5,则另一组新数据-2x 1+7,-2x 2+7,-2x 3+7的平均数为-2x +7,方差为S′2,代入公式S 2=()()()222121n x x x x x x n ⎡⎤-+-+⋯+-⎣⎦计算即可. 【详解】设这组数据x 1,x 2,x 3的平均数为x ,则另一组新数据-2x 1+7,-2x 2+7,-2x 3+7的平均数为-2x +7,∵S 2=13[(x 1-x )2+(x 2-x )2+(x 3-x )2]=5, ∴方差为S′2=13 [(-2x 1+7+2x -7)2+(-2x 2+7+2x -7)2+(-2x 3+7+2x -7)2] =13[4(x 1-x )2+4(x 2-x )2+4(x 3-x )2] =4S 2=4×5=20,故答案为:20.【点睛】本题说明了当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.18.05【分析】利用方差的计算公式计算即可【详解】解:则故答案为05【点睛】本题考查的是方差的计算掌握方差的计算公式是解题的关键解析:0.5【分析】利用方差的计算公式计算即可.【详解】 解:1x (1021)14=+++=, 则222221(11)(01)(21)(11)0.54S ⎡⎤=-+-+-+-=⎣⎦, 故答案为0.5.【点睛】 本题考查的是方差的计算,掌握方差的计算公式()()()2222121n S x x x x x x n ⎡⎤=-+-+⋯+-⎣⎦是解题的关键. 19.=【解析】分析:根据方差公式分别计算出这两组数据的方差比较即可解答详解:数据12345的平均数为3方差S12=;数据678910的平均数为8方差S22=;∴S12=S22故答案为=点睛::本题考查了解析:=【解析】分析:根据方差公式分别计算出这两组数据的方差,比较即可解答.详解:数据1、2、3、4、5的平均数为3,方差S 12=2222211(13)(23)(33)(43)(53)10255⎡⎤-+-+-+-+-=⨯=⎣⎦ ; 数据6、7、8、9、10的平均数为8,方差S 22=2222211(68)(78)(88)(98)(108)10255⎡⎤-+-+-+-+-=⨯=⎣⎦ ; ∴S 12=S 22.故答案为=. 点睛::本题考查了方差、平均数等知识,解题的关键是利用方差公式计算出这两组数据的方差.20.【解析】【详解】根据平均数的概念和公式可知5个数据的和为5×7=353个数据的和为3k 因此这8个数的和为35+3k 因此其平均数为(35+3k )÷8即故答案为: 解析:35+38k 【解析】【详解】根据平均数的概念和公式,可知5个数据的和为5×7=35,3个数据的和为3k ,因此这8个数的和为35+3k ,因此其平均数为(35+3k )÷8,即35+38k . 故答案为:35+38k . 三、解答题21.(1)60;(2)中位数是3小时,平均数是2.75小时;(3)600.【分析】(1)根据统计图求出2小时人数所占百分比,再根据2小时的人数可以求得本次共抽取了学生多少人,阅读3小时的学生有多少人,从而可以将条形统计图补充完整;(2)根据统计图中的数据可以求得众数和平均数;(3)根据统计图中的数据可以求得课外阅读时间为3小时的学生有多少人.【详解】由扇形统计图知,2小时人数所占的百分比为90360︒⨯︒100%=25%, ∴本次共抽取的学生人数为15÷25%=60(人), 则3小时的人数为60﹣(10+15+10+5)=20(人),补全条形图如下:故答案为60;(2)这组数据的中位数是332+=3(小时),平均数为1102153204105560⨯+⨯+⨯+⨯+⨯=2.75(小时). 故答案为中位数是3小时.平均数为2.75小时.(3)估计体育锻炼时间为3小时的学生有18002060⨯=600(人). 【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(1)310, 210, 210;(2)不合理,理由见解析.【分析】(1)找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.平均数是指在一组数据中所有数据之和再除以数据的个数.(2)根据表中数据和平均数、中位数和众数的意义回答.【详解】解:(1)平均数是:1650510250321051503120231015++⨯+⨯+⨯+⨯=(件), 表中的数据是按从大到小的顺序排列的,处于中间位置的是210,因而中位数是210(件),210出现了5次最多,所以众数是210;(2)不合理.因为15人中有13人的销售额不到310件,310件虽是所给一组数据的平均数,它却不能很好地反映销售人员的一般水平.销售额定为210件合适些,因为210件既是中位数,又是众数,是大部分人能达到的定额.【点睛】此题考查了中位数,众数,平均数,它们都是反映数据集中趋势的指标,掌握平均数、中位数和众数的意义是解题的关键.23.(1)画图见解析;(2)中位数是3小时,众数是4小时;(3)400人.【分析】(1)根据阅读5小时以上频数为6,所占百分比为12%,求出数据的总数,再用数据总数减去其余各组频数得到阅读3小时以上频数,然后补全频数分布直方图,分别求得阅读0小时和4小时的人数所占百分比,补全扇形图;(2)利用各组频数和总数之间的关系确定中位数和众数;(3)用1000乘以每周课外阅读时间不小于4小时的学生所占百分比即可.【详解】解:(1)总人数:6÷12%= 50 (人),阅读3小时以上人数:50-4-6-8-14-6= 12 (人),阅读3小时以上人数的百分比为12÷50= 24% ,阅读0小时以上人数的百分比为4÷50= 8% .图如下:(2)中位数是3小时,众数是4小时;(3) 1000⨯(28% + 12%)= 1000⨯40%= 400(人)答:该学校1000名学生双休日课外阅读时间不少于4小时的人数为400人.【点睛】此题考查数据的收集,主要有中位数,众数,扇形图和直方图的画法及表达的意义.24.(1)详见解析;(2)中位数是3(h),众数是4(h);(3)全班学生上周双休日的平均课外阅读时间为3.36h.【分析】(1)由条形统计图知:读1小时的人数为3人,在扇形统计图中占的比例为12%,则总调查人数可求出.这样可分别求出读2小时的人数,读3小时的人数,以及读4小时的人数占的比例,再计算其在扇形统计图中的圆心角.最后求出读5小时的人数占的比例和读5小时的人数;(2)根据中位数和众数的定义解答.(3)根据平均数的定义计算即可.【详解】解:(1)由条形统计图知,读1小时的人数为3人,在扇形统计图中占的比例为12%, ∴总调查人数=3÷12%=25人,∴读2小时的人数=25×16%=4人,读3小时的人数=25×24%=6人,读4小时的人数占的比例=7÷25=28%,在扇形统计图中的圆心角=360°×28%=100.8°,读5小时的人数占的比例=1﹣28%﹣24%﹣16%﹣12%﹣8%=12%,读5小时的人数=25×12%=3人.(2)中位数是3(h ),众数是4(h );(3)1×12%+2×16%+3×24%+4×28%+5×12%+6×8%=3.36(h ).估计全班学生上周双休日的平均课外阅读时间为3.36h .【点睛】本题考查了条形统计图和扇形统计图以及从统计图中获取信息的能力.解题时要掌握平均数、中位数、众数的概念和求法.25.(1)第10场比赛的得分为51分;(2)这10场比赛得分的中位数为47分,众数为51分,方差18.2.【分析】(1)根据平均数的定义先求出总数,再分别减去前9个数即可;(2)根据中位数、众数的定义分别求出最中间两个数的平均数和出现次数最多数,再根据方差的计算公式代入计算即可.【详解】(1)∵10场比赛的平均得分为48分,∴第10场比赛的得分=48×10-57-51-45-51-44-46-45-42-48=51(分),(2)把这10个数从小到大排列为;42、44、45、45、46、48、51、51、51、57,最中间两个数的平均数是(46+48)÷2=47,则这10场比赛得分的中位数为47分,∵51出现了3次,出现次数最多,所以众数为51分,方差22222221(4248)(4448)2(4548)(4648)(4848)3(5148)(5748)18.210⎡⎤=-+-+⨯-+-+-+⨯-+-=⎣⎦. 【点睛】此题考查了平均数、众数与中位数和方差.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数;方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,牢记方差的公式是求解方差的关键.26.(1)51a b =⎧⎨=⎩;(2)6m = 20%n =;(3)详见解析. 【分析】(1)根据七年级代表队的总人数为10人以及七年级的成绩的平均分为6.7,列方程组可求出a 与b 的值;(2)根据(1)a 与b 的值,确定出m 与n 的值即可;(3)从中位数,平均数,方差等角度考虑,给出两条支持八年级队成绩好的理由即可.【详解】解:(1)由题意,得 101111 6.73167181911010a b a b +=----⎧⎪=⨯++⨯+⨯+⨯+⎨⎪⎩,即:661040a b a b +=⎧⎨+=⎩,解得:51a b =⎧⎨=⎩. (2)七年级成绩为3,6,6,6,6,6,7,8,9,10,中位数为6,即m=6; 优秀率为111=105+=20%,即n=20%; (3)答案不唯一.如:支持八年级队成绩好的理由有: ①八年级队的平均分比七年级队高,说明总成绩八年级好;②八年级队中位数是7.5,而七年级队中位数是6,说明八年级队半数以上的学生比七年级队半数以上成绩好【点睛】此题考查了条形统计图,以及中位数,平均数,以及方差,弄清概念是解题的关键.。

最新人教版初中数学八年级数学下册第五单元《数据的分析》检测卷(含答案解析)(2)

最新人教版初中数学八年级数学下册第五单元《数据的分析》检测卷(含答案解析)(2)

一、选择题1.若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x的值为().A.1 B.6C.1或6 D.5或62.某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,8,9,16,12,7,10,这组数据的中位数和众数分别是()A.10,12 B.12,11 C.11,12 D.12,123.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环)9.149.159.149.15方差 6.6 6.8 6.7 6.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁4.某校有21名同学们参加某比赛,预赛成绩各不同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的( ) A.最高分B.中位数C.极差D.平均数5.下图是2019年5月17日至31日某市的空气质量指数趋势图.(说明:空气质量指数为0-50、51-100、101-150分别表示空气质量为优、良、轻度污染)有如下结论:①在此次统计中,空气质量为优的天数少于轻度污染的天数;②在此次统计中,空气质量为优良的天数占45;③20,21,22三日的空气质量指数的方差小于26,27,28三日的空气质量指数的方差.上述结论中,所有正确结论的序号是()A.①B.①③C.②③D.①②③6.通过统计甲、乙、丙、丁四名同学某学期的四次数学测试成绩,得到甲、乙、丙、丁三明同学四次数学测试成绩的方差分别为S甲2=17,S乙2=36,S丙2=14,丁同学四次数学测试成绩(单位:分).如下表:第一次第二次第三次第四次丁同学 80 80 90 90则这四名同学四次数学测试成绩最稳定的是()A.甲B.乙C.丙D.丁7.甲、乙两人各射击次,甲所中的环数是,,,,,,且甲所中的环数的平均数是,众数是;乙所中的环数的平均数是,方差是4.根据以上数据,对甲,乙射击成绩的正确判断是()A.甲射击成绩比乙稳定B.乙射击成绩比甲稳定C.甲,乙射击成绩稳定性相同D.甲、乙射击成绩稳定性无法比较8.为参加全市中学生足球赛.某中学从全校学生中选拔22名足球运动员组建校足球队,这22名运动员的年龄(岁)如下表所示,该足球队队员的平均年龄是()年龄(岁)12131415人数71032A.12岁B.13岁C.14岁D.15岁9.随着智能手机的普及,抢微信红包成为了春节期间人们最喜欢的活动之一.某中学八年级六班班长对全班50名学生在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是()A.20,20 B.30,20 C.30,30 D.20,3010.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是()A.甲、乙两队身高一样整齐B.甲队身高更整齐C.乙队身高更整齐D.无法确定甲、乙两队身高谁更整齐11.测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时出现了一处错误:将最高成绩写得更高了,则计算结果不受影响的是()A.中位数B.平均数C.方差D.极差12.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是()A.甲队员成绩的平均数比乙队员的大B.乙队员成绩的平均数比甲队员的大C.甲队员成绩的中位数比乙队员的大D.甲队员成绩的方差比乙队员的大二、填空题13.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数是_______,中位数是___________.14.小明用S2=110[(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2]计算一组数据的方差,那么x1+x2+x3+…+x10=______.15.已知一个样本的方差s2=113[(x1﹣8)2+(x2﹣8)2+…+(x13﹣8)2],那么这个样本的平均数是_____,样本中数据的个数是_____.16.若5个正整数从小到大排序,其中中位数是4,如果这组数据的唯一众数是5,当这5个正整数的和为最大值时,这组数据的方差为______.17.一组数2、a、4、6、8的平均数是5,这组数的中位数是______.18.设甲组数据:6,6,6,6,的方差为2s甲,乙组数据:1,1,2的方差为2s乙,则2s甲与2s乙的大小关系是________.19.某组数据按从小到大的顺序如下:2、4、8、x、10、14,已知这组数据的中位数是9,则这组数据的众数是_____.20.小明五次数学测验的平均成绩是85,中位数为86,众数是89,则最低两次测验的成绩之和为________.三、解答题21.8年级某老师对一、二班学生阅读水平进行测试,并将成绩进行了统计,绘制了如下图表(得分为整数,满分为10分,成绩大于或等于6分为合格,成绩大于或等于9分为优秀).平均分方差中位数众数合格率优秀率一班7.2 2.117692.5%20%二班 6.85 4.288885%10%根据图表信息,回答问题:(1)用方差推断,班的成绩波动较大;用优秀率和合格率推断,班的阅读水平更好些;(2)甲同学用平均分推断,一班阅读水平更好些;乙同学用中位数或众数推断,二班阅读水平更好些.你认为谁的推断比较科学合理,更客观些.为什么?22.为选拔优秀选手参加瑶海区第八届德育文化艺术节“诵经典”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示(1)根据图示填写下表班级平均数(分)中位数(分)众数(分)九(1)8585九(2)80(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差,并说明哪个班五名选手的成绩较稳定.23.某政府部门进行公务员招聘考试,其中三人中录取一人,他们的成绩如下: 人 测试成绩 题目 甲 乙 丙 文化课知识 74 87 69 面试 58 74 70 平时表现874365(1)按照平均成绩甲、乙、丙谁应被录取?(2)若按照文化课知识、面试、平时表现的成绩已4:3:1的比例录取,甲、乙、丙谁应被录取?24.某区正在积极创建国家模范卫生城市,学校为了普及学生卫生健康知识,提高学生创卫意识,举办了创卫知识竞赛,以下是从初一、初二两个年级随机抽取20名同学的测试成绩进行调查分析,成绩如下:初一:75 88 93 65 78 94 89 68 95 50 89 88 89 89 77 95 87 88 92 91 初二:74 96 96 89 97 74 69 76 72 78 99 72 97 85 98 74 89 73 98 74 (1)整理、描述数据: 成绩x 5059x ≤≤6069x ≤≤7079x ≤≤8089x ≤≤ 90100x ≤≤初一(频数) 1 2 3 m6 初二(频数)1937(说明:成绩90分及以上为优秀,80~90分为良好,60~80分为合格,60分以下不合格) 分析数据:平均数 中位数 众数 初一84a89初二8481.5b请根据上述的数据,填空:m=______;a=______;b=______;(2)得出结论:你认为哪个年级掌握创卫知识水平较好并说明理由.(至少从两个不同的角度说明推断的合理性).25.学校开展的“书香校园”活动受到同学们的广泛关注,为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计图表.学生借阅图书的次数统计表:借阅图书的次0次1次2次3次4次及以上数人数713a103请你根据统计图表中的信息,解答下列问题:(1)a=,b=;(2)该调查统计数据的中位数是,众数是;(3)若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书4次及以上的人数.26.八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(单位:分):甲789710109101010乙10879810109109)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4 分2,则成绩较为整齐的是队.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】根据数据x 1,x 2,…x n 与数据x 1+a ,x 2+a ,…x n +a 的方差相同这个结论即可解决问题. 解:∵一组数据2,2,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等, ∴这组数据可能是2,3,4,5,6或1,2,3,4,5, ∴x=1或6, 故选C.“点睛”本题考查方差、平均数等知识,解题的关键领域结论:数据x 1,x 2,…x n 与数据x 1+a ,x 2+a ,…x n +a 的方差相同解决问题,属于中考常考题型.2.C解析:C 【分析】先把原数据按由小到大排列,然后根据中位数和众数的定义求解. 【详解】原数据按由小到大排列为:7,8,9,10,12,12,14,16, 所以这组数据的中位数=12(10+12)=11, 众数为12. 故选:C . 【点睛】此题考查众数,中位数的定义,解题关键在于掌握一组数据中出现次数最多的数据叫做众数.3.D解析:D 【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【详解】∵==x x x x >乙丁甲丙, ∴从乙和丁中选择一人参加比赛,∵22S S >乙丁,∴选择丁参赛, 故选D .【点睛】本题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.4.B解析:B【解析】共有21名学生参加预赛,取前11名,小颖知道了自己的成绩,我们把所有同学的成绩按大小顺序排列,第11名的成绩是这组数据的中位数,所以小颖知道这组数据的中位数,才能知道自己是否进入决赛.故选B.5.C解析:C【分析】根据折线统计图的数据,逐一分析即可.【详解】解:①中:当空气质量指数为0-50时表示优,数出折线图中在这个范围内的天数有5天;当空气质量指数为101-150是表示轻度污染,数出折线图中在这个范围内的天数有3天,故空气质量优的天数大于轻度污染的天数,故①错误;②中:空气质量指数在0-100范围内为优良,其天数共有12天,故空气质量为优良的天数所占比例为:124=155,故②正确;③中:20,21,22三日的空气质量指数波动范围小于26,27,28三日的空气质量指数波动范围,故20,21,22三日的空气质量指数的方差小于26,27,28三日的空气质量指数的方差,故③正确.∴正确的有:②③.故答案为:C.【点睛】本题是复式折线统计图,要通过坐标轴以及图例等读懂本图,根据图中所示的数量解决问题.6.C解析:C【分析】求得丁同学的方差后与前三个同学的方差比较,方差最小的成绩最稳定.【详解】丁同学的平均成绩为:14⨯(80+80+90+90)=85;方差为S丁214=[2×(80﹣85)2+2×(90﹣85)2]=25,所以四个人中丙的方差最小,成绩最稳定.故选C.【点睛】本题考查了方差的意义及方差的计算公式,解题的关键是牢记方差的公式,难度不大.7.B解析:B【解析】【分析】要判断甲,乙射击成绩的稳定性就是要比较两人成绩的方差的大小,关键是求甲的方差.甲的这组数中的众数是8就说明a,b,c中至少有两个是8,而平均数是6,则可以得到a,b,c三个数其中一个是2,另两个数是8,求得则甲的方差,再进行比较得出结果.【详解】∵这组数中的众数是8,∴a,b,c中至少有两个是8,∵平均数是6,∴a,b,c三个数其中一个是2,∴ (4+1+1+4+4+16)=5,∵5>4,∴乙射击成绩比甲稳定.故选:B.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.B解析:B【解析】【分析】直接利用加权平均数的定义计算可得.【详解】解:该足球队队员的平均年龄是127131014315222⨯+⨯+⨯+⨯=13(岁),故选:B.【点睛】本题考查了加权平均数,解题的关键是掌握加权平均数的定义.9.C解析:C【解析】【分析】根据众数和中位数的定义,出现次数最多的那个数就是众数,把一组数据按照大小顺序排列,中间那个数或中间两个数的平均数叫中位数.【详解】解:30元的人数为20人,最多,则众数为30,中间两个数分别为30和30,则中位数是30,故选:C.【点睛】本题考查了条形统计图、众数和中位数,这是基础知识要熟练掌握.10.B解析:B【解析】【分析】根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S2甲=1.7,S2乙=2.4,∴S2甲<S2乙,∴甲队成员身高更整齐;故选B.【点睛】此题考查方差,掌握波动越小,数据越稳定是解题关键11.A解析:A【分析】根据中位数的定义解答可得.【详解】解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不受极端值影响,所以将最高成绩写得更高了,计算结果不受影响的是中位数,故选A.【点睛】本题主要考查方差、极差、中位数和平均数,解题的关键是掌握中位数的定义.12.D解析:D【解析】【分析】根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案.【详解】甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882=8,甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8,乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环), 甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4; 乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2, 综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差, 故选D . 【点睛】本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.二、填空题13.15岁15岁【分析】由图得到男子足球队的年龄及对应的人数再根据平均数中位数的概念求解【详解】∵由图可得:13岁的有2人14岁的有6人15岁的有8人16岁的有3人17岁的有2人18岁的有1人∴平均数为解析:15岁 15岁 【分析】由图得到男子足球队的年龄及对应的人数,再根据平均数、中位数的概念求解. 【详解】∵由图可得:13岁的有2人,14岁的有6人,15岁的有8人,16岁的有3人,17岁的有2人,18岁的有1人,∴平均数为13214615816317218115268321⨯+⨯+⨯+⨯+⨯+⨯=+++++;∵足球队共有队员2+6+8+3+2+1=22人,∴中位数是11名和第12名的平均年龄,即15岁, 故答案是:15岁,15岁. 【点睛】本题考查了求一组数据的加权平均数和中位数.解题关键是求中位数时一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.14.30【分析】根据计算方差的公式能够确定数据的个数和平均数从而求得所有数据的和【详解】解:∵S2=(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2∴平均数为3共10个数据∴x1+x2+x3+…+x解析:30 【分析】根据计算方差的公式能够确定数据的个数和平均数,从而求得所有数据的和. 【详解】解:∵S 2=110[(x 1﹣3)2+(x 2﹣3)2+…+(x 10﹣3)2], ∴平均数为3,共10个数据, ∴x 1+x 2+x 3+…+x 10=10×3=30. 故答案为30. 【点睛】本题考查了方差的知识,牢记方差公式是解答本题的关键,难度不大.15.813【解析】【分析】样本方差其中n 是这个样本的容量是样本的平均数根据方差公式直接求解【详解】因为一个样本的方差s2=(x1﹣8)2+(x2﹣8)2+…+(x13﹣8)2所以本题样本的平均数是8样本解析:8, 13. 【解析】 【分析】样本方差()()()2222121n S x x x x x x n ⎡⎤=-+-+⋯+-⎣⎦,其中n 是这个样本的容量, x 是样本的平均数.根据方差公式直接求解.【详解】因为一个样本的方差s 2=113[(x 1﹣8)2+(x 2﹣8)2+…+(x 13﹣8)2],所以本题样本的平均数是8,样本数据的个数是13. 故填8,13. 【点睛】一般地设n 个数据,x 1、x 2、…x n 的平均数为x ,则方差()()()2222121n S x x x x x x n ⎡⎤=-+-+⋯+-⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16.136【解析】【分析】根据中位数和众数的意义先求出后三位数由和为最大值求出前两个数然后求方差即可【详解】解:因为五个正整数从小到大排列后其中中位数是4这组数据的唯一众数是5所以这5个数据分别是xy4解析:1.36 【解析】 【分析】根据中位数和众数的意义先求出后三位数,由和为最大值求出前两个数,然后求方差即可. 【详解】解:因为五个正整数从小到大排列后,其中中位数是4,这组数据的唯一众数是5. 所以这5个数据分别是x,y,4,5,5,且x y 4<<,当这5个整数的和最大时,整数x,y 取最大值,此时x 2y 3==,, 所以这组数据的平均数()1192345555x =++++=,22222211919191919S 23455555555⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+-⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦=1.36 【点睛】此题考查了中位数、众数的概念,牢记方差公式是解题关键.17.5【解析】【分析】由平均数可求解a 的值再根据中位数的定义即可求解【详解】解:由平均数可得a=5×5-2-4-6-8=5则该组数由小至大排序为:24568则中位数为5故答案为:5【点睛】本题考查了平均解析:5 【解析】 【分析】由平均数可求解a 的值,再根据中位数的定义即可求解. 【详解】解:由平均数可得,a=5×5-2-4-6-8=5,则该组数由小至大排序为:2、4、5、6、8,则中位数为5, 故答案为:5. 【点睛】本题考查了平均数和中位数的概念.18.与【分析】根据方差的意义进行判断【详解】解:因为甲组的数据都相等没有波动而乙组数有波动所以s 甲2<s 乙2故答案为s 甲2<s 乙2【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量方差越大则平解析:2s 甲与2s <乙 【分析】根据方差的意义进行判断. 【详解】解:因为甲组的数据都相等,没有波动,而乙组数有波动, 所以s 甲2<s 乙2. 故答案为s 甲2<s 乙2. 【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.19.10【解析】分析:根据中位数为9可求出x 的值继而可判断出众数详解:由题意得:(8+x )÷2=9解得:x=10则这组数据中出现次数最多的是10故众数为10故答案为10点睛:本题考查了中位数及众数的知识解析:10 【解析】分析:根据中位数为9,可求出x 的值,继而可判断出众数.详解:由题意得:(8+x )÷2=9,解得:x =10,则这组数据中出现次数最多的是10,故众数为10.故答案为10.点睛:本题考查了中位数及众数的知识,属于基础题,掌握中位数及众数的定义是关键.20.161【解析】分析:知道平均数可以求出5次成绩之和又知道中位数和众数就能求出最低两次成绩详解:由五次数学测验的平均成绩是85分∴5次数学测验的总成绩是425分∵中位数是86分众数是89分∴最低两次测解析:161【解析】分析:知道平均数可以求出5次成绩之和,又知道中位数和众数,就能求出最低两次成绩.详解:由五次数学测验的平均成绩是85分,∴5次数学测验的总成绩是425分,∵中位数是86分,众数是89分,∴最低两次测试成绩为425-86-2×89=161,故答案为:161.点睛:本题主要考查平均数和众数等知识点.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.三、解答题21.(1)二,一;(2)乙同学的推断比较科学合理,理由见解析.【分析】(1)根据方差的大小即可判断出波动的大小;结合合格率和优秀率则要先数值大的,由此即可得答案;(2)结合条形统计图,根据平均分、中位数、众数的优缺点进行解答即可.【详解】(1)一班的方差为2.11,二班的方差为4.28,用方差推断,二班的成绩波动较大;一班的合格率为92.5% ,优秀率为20%,二班的合格率为85%,优秀率为10%,一班的合格率与优秀率均比二班的大,因此用优秀率和合格率推断,一班的阅读水平更好些,故答案为二;一;(2)乙同学的推断比较科学合理.理由:虽然二班成绩的平均分比一班低,但从条形图中可以看出,二班有3名学生的成绩是1分,它在该组数据中是一个极端值,平均数受极端值影响较大,而中位数或众数不易受极端值的影响,所以,乙同学的推断更客观些.【点睛】本题考查了数据的收集整理与描述,涉及了平均数,方差,众数和中位数等知识,熟练掌握相关知识以及各自的优缺点是解题的关键.22.(1)(3)九(1)班五名选手的成绩较稳定. 【分析】(1)观察图分别写出九(1)班和九(2)班5名选手的复赛成绩,然后根据中位数的定义和平均数的求法以及众数的定义求解即可; (2)在平均数相同的情况下,中位数高的成绩较好; (3)根据方差公式计算即可:()()()2222121x x x n n S x x x ⎡⎤=--++-⎢⎥⎣+⎦(可简单记忆为“等于差方的平均数”). 【详解】解:(1)由图可知九(1)班5名选手的复赛成绩为:75、80、85、85、100, ∴九(1)的中位数为85,把九(2)的成绩按从小到大的顺序排列为:70、75、80、100、100, ∴九(2)的平均数为(70+75+80+100+100)÷5=85, 九(2)班的众数是100;(3)215S =一班[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,21=5S 二班[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160.∵22S S 一班二班,∴九(1)班五名选手的成绩较稳定.【点睛】本题考查了中位数、众数以及平均数的求法,同时也考查了方差公式,解题的关键是牢记定义并能熟练运用公式.23.(1)甲的平均数=73,乙的平均数=68 丙的平均数=68∴甲被录取; (2)甲的成绩=69.625,乙的成绩=76.625,丙的成绩=68.875,∴乙被录取. 【分析】(1)根据算术平均数的计算方法分别求出三人的平均分,然后作出判断即可; (2)根据加权平均数的计算方法分别求出三人的平均分,然后作出判断即可.【详解】解:(1)甲:11(745887)2197333⨯++=⨯=, 乙:11(877443)2046833⨯++=⨯=, 丙:11(697065)2046833⨯++=⨯=, ∵73分最高, ∴应该录取甲;(2)甲:11(744583871)55769.62588⨯⨯+⨯+⨯=⨯=, 乙:11(874743431)61376.62588⨯⨯+⨯+⨯=⨯=, 丙:11(694703651)55168.87588⨯⨯+⨯+⨯=⨯=, ∵76.625分最高, ∴应该录取乙. 【点睛】本题考查的是加权平均数的求法与算术平均数的求法,是基础题,需熟练掌握. 24.(1)8,88.5,74;(2)初一的水平较好,理由见解析. 【分析】(1)根据所给数据可得出m 的值,根据中位数和众数的定义可得a ,b 的值; (2)从中位数和众数的角度分析可知初一的水平较好. 【详解】解:(1)由初一的成绩可知,m =8,将初一的成绩按从低到高排列,第10、11名的成绩分别为:88,89, 故初一的中位数a =888988.52; 初二的成绩中74分的人数最多,故初二的众数b =74, 故答案为:8,88.5,74; (2)初一的水平较好,理由:因为初一和初二的平均数都是84分,但是初一的中位数是88.5分,众数是89分,而初二的中位数是81.5分,众数是74分,即初一年级学生成绩的中位数和众数明显高于初二年级的学生成绩的中位数和众数,故初一的水平较好. 【点睛】本题考查了频数分布表、中位数和众数的意义,掌握中位数和众数的求法是解题的关键. 25.(1)17,20a b ==;(2)中位数是2次,众数是2次;(3)120人 【分析】(1)根据借阅1次的人数及百分比求出样本总人数,减去其他的人数即可得到a ,用借阅3次的人数除以总人数乘以100%即可得到3次的百分比,由此得到b ; (2)根据中位数及众数的定义解答;(3)根据样本中4次及以上的百分比乘以2000解答. 【详解】(1)调查的总人数是1326%50÷=(人), ∴a=50-7-13-10-3=17,10%100%20%50b =⨯=, 故答案为:17,20; (2)50个数据中中间两个数据都是2次,故中位数是2次, 数据出现次数最多的是2次,故众数是2次, 故答案为:2次,2次; (3)3100%200050⨯⨯=120(人), ∴该校学生在一周内借阅图书4次及以上的人数是120人. 【点睛】此题考查统计数据的计算,正确掌握样本总数的计算方法,中位数的定义,众数的定义,利用样本的百分比求总体的方法是解题的关键. 26.(1)9.5,10;(2)9分,1分2;(3)乙 【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;(2)先求出乙队的平均成绩,再根据方差公式进行计算;(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案. 【详解】(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分; 故答案为:9.5,10; (2)乙队的平均成绩是:()104827939110⨯+⨯++⨯=⨯(分), 则方差是:()()()()22224109211089793991⎡⎤⨯-+⨯-+-+⨯-=⎣⎦⨯(分2) ;(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1, ∴成绩较为整齐的是乙队; 故答案为:乙. 【点睛】本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n 个数据x 1,x 2,…x n 的平均数为x ,则方差S 2=()()()()22221231n x x x x x x x x n ⎡⎤-+-+-++-⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大.。

最新人教版初中数学八年级数学下册第五单元《数据的分析》检测(含答案解析)(2)

最新人教版初中数学八年级数学下册第五单元《数据的分析》检测(含答案解析)(2)

一、选择题1.已知5个数1a 、2a 、3a 、4a 、5a 的平均数是a ,则数据11a +、22a +、33a +、44a +、55a +的平均数为( )A .aB .3a +C .56a D .15a +2.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是( ) A .众数是5 B .中位数是5C .平均数是6D .方差是3.63.若一组数据2,3,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为( ). A .1 B .6 C .1或6 D .5或6 4.若一组数据2468x ,,,,的方差比另一组数据5791113,,,,的方差大,则 x 的值可以为( ) A .12B .10C .2D .05.某校有21名同学们参加某比赛,预赛成绩各不同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的( ) A .最高分B .中位数C .极差D .平均数6.在我县“我的中国梦”演讲比赛中,有7名同学参加了比赛,他们最终决赛的成绩各不相同.其中一名学生想要知道自己是否进入前3名,不仅要知道自己的分数,还得知道这7名学生成绩的( ) A .众数B .方差C .平均数D .中位数7.下面说法正确的个数有( )(1)二元一次方程组的两个方程的所有解,叫做二元一次方程组的解; (2)如果a b >,则ac bc >;(3)三角形的外角等于与它不相邻的两个内角的和; (4)多边形内角和等于360︒; (5)一组数据1,2,3,4,5的众数是0 A .0个B .1个C .2个D .3个8.为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是( )①每人乘坐地铁的月均花费最集中的区域在80~100元范围内; ②每人乘坐地铁的月均花费的平均数范围是40~60元范围内; ③每人乘坐地铁的月均花费的中位数在60~100元范围内; ④乘坐地铁的月均花费达到80元以上的人可以享受折扣. A .①②④ B .①③④ C .③④ D .①② 9.一组数据,6、4、a 、3、2的平均数是5,这组数据的方差为( )A .8B .5C .6D .310.某校10名学生参加某项比赛成绩统计如图所示。

人教版初中数学八年级数学下册第五单元《数据的分析》测试题(包含答案解析)(2)

人教版初中数学八年级数学下册第五单元《数据的分析》测试题(包含答案解析)(2)

一、选择题1.已知5个数1a 、2a 、3a 、4a 、5a 的平均数是a ,则数据11a +、22a +、33a +、44a +、55a +的平均数为( )A .aB .3a +C .56a D .15a +2.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是( ) A .众数是5B .中位数是5C .平均数是6D .方差是3.63.小王在清点本班为偏远贫困地区的捐款时发现,全班同学捐款的钞票情况如下:100元的3 张,50元的9张,10元的23张,5元的10张.在这些不同面额的钞票中,众数是( )A .10B .23C .50D .1004.某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是( ) A .88.5B .86.5C .90D .90.55.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲 乙 丙 丁 平均数(环) 9.14 9.15 9.14 9.15 方差6.66.86.76.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( ) A .甲 B .乙 C .丙 D .丁 6.一组数据:1、2、3、4、1,这组数据的众数与中位数分别为( )A .1、3B .2、2.5C .1、2D .2、27.甲、乙、丙、丁四位同学五次数学测验成绩统计如右表所示,如果从这四位同学中,选出一位同学参加数学竞赛,那么应选___________去.甲 乙 丙 丁 平均分 85 90 90 85 方差50425042A .甲B .乙C .丙D .丁8.样本数据4,m ,5,n ,9的平均数是6,众数是9,则这组数据的中位数是( )A.3 B.4 C.5 D.99.某班七个兴趣小组人数如下:5,6,6,x,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是( )A.6 B.6.5 C.7 D.810.有一组数据:1,1,1,1,m.若这组数据的方差是0,则m为()A.4-B.1-C.0 D.111.某校八年级(1)班全体学生进行了第一次体育中考模拟测试,成绩统计如下表:成绩(分) 24 25 26 27 28 29 30人数(人) 65 5 8 7 7 4根据上表中的信息判断,下列结论中错误的是( )A.该班一共有42名同学B.该班学生这次考试成绩的众数是8C.该班学生这次考试成绩的平均数是27D.该班学生这次考试成绩的中位数是27分12.甲、乙两位射击运动员参加射击训练,各射击20次,成绩如下表所示:设甲、乙两位运动员射击成绩的方差分别为S 2甲和S2乙,则下列说法正确的是( )A.S2甲<S2乙B.S 2甲=S2乙C.S 2甲>S2乙D.无法比较S 2甲和S2乙的大小二、填空题13.据统计,某车间10名员工的日平均生产零件个数为8个,方差为2.5个2,引入新技术后,每名员工每天都比原先多生产1个零件,则现在日平均生产零件个数为______个,方差为______个2.14.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图6-Z-2所示,那么三人中成绩最稳定的是________.15.有一组数据:1,3,5,3,若再添加一个数,所得的新一组数据与原数据的中位数,众数,平均数都没有发生变化,则添加的数为____.16.随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某单位使用共享单车的情况,该单位有200名员工,某研究小组随机采访10位员工,得到这10位员工一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9. (1)这组数据的中位数是 ,众数是(2)试用平均数估计该单位员工一周内使用共享单车的总次数.17.某校对开展贫困地区学生捐书活动,某班40名学生捐助数量(本)绘制了折线统计图,在这40名学生捐助数量中,中位数是_____,众数是_____.18.现有甲、乙两个合唱队队员的平均身高均为170cm ,方差分别是2S 甲,2S 乙,且22S S <甲乙,则两个队的队员的身高较整齐的是______.19.已知数据x 1,x 2,…,x n 的方差是2,则3x 1﹣2,3x 2﹣2,…,3x n ﹣2的方差为_____. 20.某班一次数学竞赛考试成绩如下表所示,已知全班共有38人,且众数为60分,中位数为70分,则x 2-2y=_________. 成绩(分) 30 40 50 60 70 80 90 100 人数235x6y34三、解答题21.为了强化暑期安全,在放暑假前夕,某校德育处利用班会课对全校师生进行了一次名为“暑期学生防溺水”的主题教育活动.活动结束后为了解全校各班学生对防溺水知识的掌握程度,德育处对他们进行了相关的知识测试.现从初一、初二两个年级各随机抽取了15名学生的测试成绩,得分用x 表示,共分成4组::6070A x ≤<,:7080B x ≤<,:8090C x ≤<,:90100D x ≤≤,对得分进行整理分析,给出了下面部分信息: 初一的测试成绩在C 组中的数据为:81,85,88.初二的测试成绩:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.成绩统计表如下:学部平均数中位数最高分众数初一88a9898初二8886100ba=(2)通过以上数据分析,你认为______(填“初一”或“初二”)学生对暑期防溺水知识的掌握更好?请写出一条理由:________.(3)若初一、初二共有800名学生,请估计此次测试成绩达到90分及以上的学生约有多少人?22.本学期初,某校为迎接中华人民共和国建国七十周年,开展了以“不忘初心,缅怀革命先烈,奋斗新时代”为主题的读书活动.校德育处对本校七年级学生四月份“阅读该主题相关书籍的读书量”(下面简称:“读书量”)进行了随机抽样调查,并对所有随机抽取学生的“读书量”(单位:本)进行了统计,如图所示:根据以上信息,解答下列问题:(1)补全上面两幅统计图;(2)本次所抽取学生四月份“读书量”的中位数为本;(3)求本次所抽取学生四月份“读书量”的平均数;(4)已知该校七年级有1200名学生,请你估计该校七年级学生中,四月份“读书量”为5本的学生人数.23.嘉淇同学利用业余时间进行射击训练,一共射击 7 次,经过统计,制成如图所示的折线统计图.(1)这组成绩的众数是;中位数是;(2)求这组成绩的方差;24.甲、乙两人在相同条件下各立定跳远5次,距离如下(单位:cm):甲:225,230,240,230,225;乙:220,235,225,240,230.(1)计算这两组数据的方差;(2)谁的跳远技术较稳定?为什么?25.某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:每人销售件数1650510250210150120人数113532(1)求这15位营销人员该月销售量的平均数、中位数和众数;(2)假设销售负责人把每位营销员的月销售额定为310件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由.26.某校需要选出一名同学去参加温州市“生活中的数学说题”比赛,现有5名候选人参加该校举办的模拟说题比赛,挑选出成绩最高者参加说题比赛.已知5名候选人模拟说题比赛成绩情况如表所示.某校5名候选人模拟说题比赛成绩情况(1)5名候选人模拟说题比赛成绩的中位数是;(2)由于C、E两名候选人成绩并列第一;所以学校决定根据两人平时成绩、任课老师打分、模拟说题比赛成绩按2:3:5的比例最后确定成绩,最终谁将参加说题比赛.已知C、E两名候选人平时成绩、任课老师打分情况如表所示.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据数据11a +、22a +、33a +、44a +、55a +比数据1a 、2a 、3a 、4a 、5a 的和多15,可得数据11a +、22a +、33a +、44a +、55a +的平均数比a 多3,据此求解即可 【详解】解:a+()()24512345132+4+51+3+-+a a a a a a a a a a ++++++++⎡⎤⎣⎦ ÷5 =a+[1+2+3+4+5] ÷5 =a+15÷5 =a+3 故选:B 【点睛】此题主要考察了算术平均数的含义和求法,解题关键是判断出:数据11a +、22a +、33a +、44a +、55a +比数据1a 、2a 、3a 、4a 、5a 的平均数多3.2.D解析:D 【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可. 【详解】A 、数据中5出现2次,所以众数为5,此选项正确;B 、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C 、平均数为(7+5+3+5+10)÷5=6,此选项正确;D 、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选D . 【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.3.A解析:A 【分析】根据众数就是一组数据中,出现次数最多的数,即可得出答案. 【详解】∵100元的有3 张,50元的有9张,10元的有23张,5元的有10张,其中10元的最多,∴众数是10元. 故答案为A . 【点睛】本题考查众数的概念.,一组数据中出现次数做多的数叫做众数.4.A解析:A 【分析】根据加权平均数的计算公式,用95分,90分,85分别乘以它们的百分比,再求和即可. 【详解】根据题意得:95×20%+90×30%+85×50%=88.5(分), 即小彤这学期的体育成绩为88.5分. 故选A . 【点睛】本题考查了加权平均数的计算,熟练掌握公式是解题关键.5.D解析:D 【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【详解】∵==x x x x >乙丁甲丙, ∴从乙和丁中选择一人参加比赛,∵22S S >乙丁,∴选择丁参赛, 故选D .【点睛】本题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.6.C解析:C 【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 【详解】数据1出现了2次,次数最多,所以众数是1; 数据按从小到大排列:1,1,2,3,4,所以中位数是2. 故选C . 【点睛】本题考查了确定一组数据的中位数和众数的能力.要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.B解析:B 【分析】本题首先可通过四位同学的平均分比较,择高选取;继而根据方差的比较,择低选取求解本题. 【详解】通过四位同学平均分的比较,乙、丙同学平均数均为90,高于甲、丁同学,故排除甲、丁;乙、丙同学平均数相同,但乙同学方差更小,说明其发挥更为稳定,故选择乙同学. 故选:B . 【点睛】本题考查平均数以及方差,平均数表示其平均能力的高低;方差表示数据波动的大小,即稳定性高低,数值越小,稳定性越强,考查对应知识点时严格按照定义解题即可.8.C解析:C 【分析】先判断出m ,n 中至少有一个是9,再用平均数求出12m n +=,即可求出这两个数,由中位数的定义排序后求中位数即可. 【详解】解:∵一组数据4,m ,5,n ,9的众数为9, ∴m ,n 中至少有一个是9,∵一组数据4,m ,5,n ,9的平均数为6,45965m n ++++=∴12m n +=∴m ,n 中一个是9,另一个是3 ∴这组数按从小到大排列为:3,4,5,9,9. ∴这组数的中位数为:5. 故选:C.【点睛】本题考查了众数、平均数和中位数的知识.能结合平均数和众数的定义对这组数据正确分析是解决此题的关键.9.C解析:C 【分析】根据平均数求出x 的值,再利用中位数定义即可得出答案. 【详解】∵5,6,6,x ,7,8,9,这组数据的平均数是7, ∴()775667898x =⨯-+++++=, ∴这组数据从小到大排列为:5,6,6,7,8,8,9 ∵这组数据最中间的数为7, ∴这组数据的中位数是7. 故选C . 【点睛】此题主要考查了中位数,根据平均数正确得出x 的值是解题关键.10.D解析:D 【分析】方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差. 【详解】 依题意可得, 平均数:45mx∴224441555mmm解得m=1, 故选D . 【点睛】本题考查了方差,熟练运用方差公式是解题的关键.11.B解析:B 【解析】 【分析】根据众数,中位数,平均数的定义解答. 【详解】解:该班共有6+5+5+8+7+7+4=42(人),成绩27分的有8人,人数最多,众数为27;该班学生这次考试成绩的平均数是=142(24×6+25×5+26×5+27×8+28×7+29×7+30×4)=27,该班学生这次考试成绩的中位数是第21名和第22名成绩的平均数为27分,错误的为B,故选:B.【点睛】本题考查的是众数,中位数,平均数,熟练掌握众数,中位数,平均数的定义是解题的关键.12.C解析:C【解析】【分析】先计算两组数据的平均数,再计算它们的方差,选择正确的答案即可.【详解】甲的平均数为:120×5×(7+8+9+10)=172乙的平均数为:120×(4×7+6×8+6×9+4×10)=172S甲2=120×{5×[(7-172)2+(8-172)2+(9-172)2+(10-172)2]}=14×[94+14+14+94]=54;S乙2=120×[4×[(7-172)2+6×(8-172)2+6×(9-172)2+4×(10-172)2]=120×[9+64+64+9]=21 20;∵54>2120∴S甲2>S乙2故选C.【点睛】此题主要考查了平均数及方差的知识.方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.二、填空题13.925【分析】根据平均数与方差的定义计算即可得答案【详解】∵每名员工每天都比原先多生产1个零件∴现在日平均生产零件个数为=9设原先每人日生产零件的个数为:x1x2x3……x10∴原先的方差为=25∴解析:9 2.5【分析】根据平均数与方差的定义计算即可得答案.【详解】∵每名员工每天都比原先多生产1个零件,∴现在日平均生产零件个数为8101010⨯+=9, 设原先每人日生产零件的个数为:x 1、x 2、x 3、……x 10,∴原先的方差为22212101(8)(8)(8)10x x x ⎡⎤-+-+-⎣⎦…+=2.5, ∴现在的方差为22212101(19)(19)(19)10x x x ⎡⎤+-++-++-⎣⎦…+=22212101(8)(8)(8)10x x x ⎡⎤-+-+-⎣⎦…+=2.5, 故答案为:9,2.5【点睛】本题考查平均数与方差,熟练掌握定义与计算公式是解题关键.14.乙【分析】通过图示波动的幅度即可推出【详解】通过图示可看出一至三次甲乙丙中乙最稳定波动最小四至五次三人基本一样故选乙【点睛】考查数据统计的知识点解析:乙【分析】通过图示波动的幅度即可推出.【详解】通过图示可看出,一至三次甲乙丙中,乙最稳定,波动最小,四至五次三人基本一样,故选乙【点睛】考查数据统计的知识点15.3【分析】依据定义和公式分别计算新旧两组数据的平均数中位数众数求解即可【详解】原数据的1335的平均数为=3中位数为=3众数为3;添加的数为3后新数据13335的平均数为=3中位数为3众数为3;故答解析:3.【分析】依据定义和公式分别计算新旧两组数据的平均数、中位数、众数求解即可.【详解】原数据的1、3、3、5的平均数为13354+++=3,中位数为332+=3,众数为3;添加的数为3后,新数据1、3、3、3、5的平均数为133355++++=3,中位数为3,众数为3;故答案为:3.【点睛】此题考查众数、中位数、平均数,熟练掌握相关概念和公式是解题的关键.16.(1)1617;(2)这10位居民一周内使用共享单车的平均次数是14次【分析】(1)将数据按照大小顺序重新排列计算出中间两个数的平均数即是中位数出现次数最多的即为众数;(2)根据平均数的概念将所有数解析:(1)16,17;(2)这10位居民一周内使用共享单车的平均次数是14次【分析】(1)将数据按照大小顺序重新排列,计算出中间两个数的平均数即是中位数,出现次数最多的即为众数;(2)根据平均数的概念,将所有数的和除以10即可;【详解】解:(1)按照大小顺序重新排列后,第5、第6个数分别是15和17,所以中位数是(15+17)÷2=16,17出现3次最多,所以众数是17,故答案是16,17;(2)110×(0+7+9+12+15+17×3+20+26)=14,答:这10位居民一周内使用共享单车的平均次数是14次;【点睛】本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.17.2323【解析】【分析】根据中位数和众数的定义求解即可【详解】解:由折线统计图可知阅读20本的有4人21本的有8人23本的有20人24本的有8人共40人∴其中位数是第2021个数据的平均数即=23众解析:23 23【解析】【分析】根据中位数和众数的定义求解即可.【详解】解:由折线统计图可知,阅读20本的有4人,21本的有8人,23本的有20人,24本的有8人,共40人,∴其中位数是第20、21个数据的平均数,即23232+=23,众数为23, 故答案为23、23.【点睛】本题考查了折线统计图及中位数、众数的知识,关键是掌握寻找中位数的方法,一定不要忘记将所有数据从小到大依此排列再计算. 18.甲【解析】【分析】根据方差小的身高稳定判断即可【详解】现有甲乙两个合唱队队员的平均身高均为170cm 方差分别是且则两个队的队员的身高较整齐的是甲故答案为:甲【点睛】此题考查了方差方差是用来衡量一组数解析:甲【解析】【分析】根据方差小的身高稳定判断即可.【详解】现有甲、乙两个合唱队队员的平均身高均为170cm ,方差分别是2S 甲,2S 乙,且22S S <甲乙,则两个队的队员的身高较整齐的是甲,故答案为:甲【点睛】此题考查了方差,方差是用来衡量一组数据波动大小的量.19.18【解析】分析:根据数据都加上一个数(或减去一个数)时方差不变;数据都乘以同一个数时方差乘以这个数的平方即可得出答案详解:∵数据x1x2…xn 的方差是2∴3x13x2…3xn 的方差是32×2=18解析:18【解析】分析:根据数据都加上一个数(或减去一个数)时,方差不变;数据都乘以同一个数时,方差乘以这个数的平方即可得出答案.详解:∵数据x 1,x 2,…,x n 的方差是2,∴3x 1,3x 2,…,3x n 的方差是32×2=18,∴3x 1-2,3x 2-2,…,3x n -2的方差为18;故答案为:18.点睛:此题考查了方差,当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变;当数据都乘以同一个数,方差乘以这个数的平方.20.50【分析】由于全班共有38人则x+y=38-(2+3+5+6+3+4)=15结合众数为50分中位数为60分分情况讨论即可确定xy 之值从而求出x2-2y 之值【详解】∵全班共有38人∴x+y=38-(解析:50【分析】由于全班共有38人,则x+y=38-(2+3+5+6+3+4)=15,结合众数为50分,中位数为60分,分情况讨论即可确定x 、y 之值,从而求出x 2-2y 之值.【详解】∵全班共有38人,∴x+y=38-(2+3+5+6+3+4)=15,又∵众数为60分,∴x≥8,当x=8时,y=7,中位数是第19,20两个数的都为70分,则中位数为70分,符合题意; 当x=9时,y=6,中位数是第19,20两个数的平均数,则中位数为(60+70)÷2=65分,不符合题意;同理当x=10,11,12,13,14,15时,中位数都不等于70分,不符合题意.则x=8,y=7.则x 2-2y=64-14=50.故答案为50.【点睛】此题主要考查了中位数和众数的应用,关键是根据众数的人数和中位数的数值进行分类讨论x 、y 的取值.三、解答题21.(1)85,100;(2)初二,在平均数相同时,初二的众数(中位数)更大;(3)320人.【分析】(1)根据条形图排序中位数在C 组数据为81,85,88.根据中位数定义知中位数位于(15+1)÷2=8位置,第8个数据为85,将初二的测试成绩重复最多是3次的100即可; (2)由平均数相同,从众数和中位数看,初二众数100,中位数86都比初一大即可得出结论;(3)求出初一初二 90分以上占样本的百分比,此次测试成绩达到90分及以上的学生约:总数×样本中90分以上的百分比即可.【详解】解:(1)A 与B 组共有6个,D 组有6个为此中位数落在C 组,而C 组数据为81,85,88.根据中位数定义知中位数在(15+1)÷2=8位置上,第8个数据为85,中位数为85,85a ,观察初二的测试成绩,重复次数最多是3次的100, 为此初二的测试成绩的众数为100, 100b =;(2)初二,从众数和中位数看,初二众数100,中位数86都比初一大,在平均数相同时,初二的众数(中位数)更大;说明初二的大部分学生的测试成绩优于初一;(3)初一:90100D x ≤≤,由6人,初二90分以上有6人,初一初二 90分以上占样本的百分比为66100%=40% 30+⨯,此次测试成绩达到90分及以上的学生约:80040%320⨯=,答:此次测试成绩达到90分及以上的学生约有320人.【点睛】本题考查中位数,众数,平均数,利用中位数和众数进行决策,利用样本的百分含量估计总体的数量,掌握中位数,众数,平均数,利用中位数和众数进行决策,利用样本的百分含量估计总体的数量是解题关键.22.(1)见解析;(2)3;(3)3本;(4)120人【分析】(1)先用读2本的人数除以其所占百分比求出抽取的总人数,进而可求出读4本书的人数与读3本的人数所占百分比,进而可补全统计图;(2)根据中位数的定义解答即可;(3)根据加权平均数的定义求解即可;(4)用扇形统计图中读5本书的人数所占百分比×1200即得结果.【详解】解:(1)所抽取学生总数=18÷30%=60人,60×20%=12人,21÷60=35%;补全两幅统计图如图所示:(2)本次所抽取学生四月份“读书量”的中位数为3本;故答案为:3;(3)3118221312465360⨯+⨯+⨯+⨯+⨯=(本);答:本次所抽取学生四月份“读书量”的平均数为3本;(4)10%×1200=120(人);答:估计该校七年级学生中,四月份“读书量”为5本的学生人数为120人.【点睛】本题考查了条形统计图、扇形统计图、中位数、加权平均数以及利用样本估计总体等知识,属于常考题型,正确理解题意、熟练掌握上述知识是解题的关键.23.(1)10,9(2)87【分析】 (1)根据众数的定义:一组数据中出现次数最多的数和中位数的定义:按照顺序排列的一组数据中居于中间位置的数,结合统计图得到答案;(2)先求出这组数的平均数,再求出这组成绩的方差.【详解】解:(1)由折线统计图可知第1次:10环;第2次:7环;第3次:10环;第4次:10环;第5次:9环;第6次:8环;第7次:9环10出现的次数最多,所以众数为10;这7次成绩从小到大排列为:7,8,9,9,10,10,10,故中位数为9.(2)这组成绩的平均数为:()1107101098997++++++=, 这组成绩的方差为:()()()()2222181093992897977⎡⎤-⨯+-⨯+-+-=⎣⎦ 【点睛】本题考查了折线统计图,中位数,众数及方差.掌握中位数,众数及方差的定义是解题的关键.24.(1)30;50(2)甲稳定;见解析.【分析】(1)根据平均数的计算公式先求出甲和乙的平均数,再代入方差公式()()()2221221=.....n S x x x x x x n ⎡⎤-+-++-⎢⎥⎣⎦,进行计算即可得出答案; (2)根据方差的意义,方差越小数据越稳定,即可得出答案.【详解】 解:(1)甲的平均数是:()1225+230+240+230+225=2305cm ⨯, 乙的平均数是:()1220+235+240+230+225=2305cm ⨯, 甲的方差是:()()()()()22222221=225230230230240230230230225230305S cm ⎡⎤⨯-+-+-+-+-=⎣⎦, 乙的方差是:()()()()()22222221=220230235230240230230230225230505S cm ⎡⎤⨯-+-+-+-+-=⎣⎦;(2)由(1)知,S 甲2<S 乙2,∴甲的跳远技术较稳定.【点睛】本题主要考查平均数与方差,熟练掌握方差及平均数的运算公式是解题的关键.25.(1)310, 210, 210;(2)不合理,理由见解析.【分析】(1)找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.平均数是指在一组数据中所有数据之和再除以数据的个数.(2)根据表中数据和平均数、中位数和众数的意义回答.【详解】解:(1)平均数是:1650510250321051503120231015++⨯+⨯+⨯+⨯=(件),表中的数据是按从大到小的顺序排列的,处于中间位置的是210,因而中位数是210(件),210出现了5次最多,所以众数是210;(2)不合理.因为15人中有13人的销售额不到310件,310件虽是所给一组数据的平均数,它却不能很好地反映销售人员的一般水平.销售额定为210件合适些,因为210件既是中位数,又是众数,是大部分人能达到的定额.【点睛】此题考查了中位数,众数,平均数,它们都是反映数据集中趋势的指标,掌握平均数、中位数和众数的意义是解题的关键.26.(1)85;(2)最终候选人E将参加说题比赛【分析】(1)根据中位数的定义直接进行解答即可;(2)根据算术平均数的计算公式先求出C、E两名候选人的平均成绩,再进行比较,即可得出答案.【详解】解:(1)把这些数从小到大排列为:75,83,85,90,90,则名候选人模拟说题比赛成绩的中位数是85分;故答案为:85;(2)∵C的平均成绩是:952803905235⨯+⨯+⨯++=88(分),E的平均成绩是:852903905235⨯+⨯+⨯++=89(分),∴88<89,∴最终候选人E将参加说题比赛.【点睛】本题考查中位数、平均数,加权平均数等知识,解题的关键是理解平均数的定义.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.某商场统计五个月来两种型号洗衣机的销售情况,制成了条形统计图,则在五个月中,下列说法正确的是()A.甲销售量比乙销售量稳定B.乙销售量比甲销售量稳定C.甲销售量与乙销售量一样稳定D.无法比较两种洗衣机销售量稳定性2.在我县“我的中国梦”演讲比赛中,有7名同学参加了比赛,他们最终决赛的成绩各不相同.其中一名学生想要知道自己是否进入前3名,不仅要知道自己的分数,还得知道这7名学生成绩的()A.众数B.方差C.平均数D.中位数3.为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是()①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A.①②④B.①③④C.③④D.①②4.某校10名学生参加某项比赛成绩统计如图所示。

对于这10名学生的参赛成绩,下列说法中错误的是()A .众数是90B .中位数是90C .平均数是90D .参赛学生最高成绩与最低成绩之差是155.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s 2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( ) A .平均分不变,方差变大 B .平均分不变,方差变小 C .平均分和方差都不变D .平均分和方差都改变6.通过统计甲、乙、丙、丁四名同学某学期的四次数学测试成绩,得到甲、乙、丙、丁三明同学四次数学测试成绩的方差分别为S 甲2=17,S 乙2=36,S 丙2=14,丁同学四次数学测试成绩(单位:分).如下表: 第一次 第二次 第三次 第四次 丁同学80809090则这四名同学四次数学测试成绩最稳定的是( ) A .甲B .乙C .丙D .丁7.随着时代的进步,人们对 2.5PM (空气中直径小于等于2.5微米的颗粒)的关注日益密切.某市一天中 2.5PM 的值1y (3/ug m )随时间t (h )的变化如图所示,设2y 表示0时到t 时 2.5PM 的值的极差(即0时到t 时 2.5PM 的最大值与最小值的差),则2y 与t的函数关系大致是( )A .B .C.D.8.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择( )A.甲B.乙C.丙D.丁9.随着智能手机的普及,抢微信红包成为了春节期间人们最喜欢的活动之一.某中学八年级六班班长对全班50名学生在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是()A.20,20 B.30,20 C.30,30 D.20,3010.某公司全体职工的月工资如下:月工资(元)18000120008000600040002500200015001200人数1(总经理)2(副总经理)34102022126的普通员工最关注的数据是()A.中位数和众数B.平均数和众数C.平均数和中位数D.平均数和极差11.某校八年级(1)班全体学生进行了第一次体育中考模拟测试,成绩统计如下表:成绩(分) 24 25 26 27 28 29 30根据上表中的信息判断,下列结论中错误的是( )A.该班一共有42名同学B.该班学生这次考试成绩的众数是8C.该班学生这次考试成绩的平均数是27D.该班学生这次考试成绩的中位数是27分12.某班体育委员记录了第一小组七位同学定点投篮(每人投10次)的情况,投进篮筐的个数为6,9,5,3,4,8,4,这组数据的众数是()A.3 B.4 C.5 D.8二、填空题13.已知一组数据:3,3,x,5,5的平均数是4,则这组数据的方差是___________. 14.烹饪大赛的菜品的评价按味道、外形、色泽三个方面进行评价(评价的满分均为100分),三个方面的重要性之比依次为7:2:1.某位厨师的菜所得的分数依次为92分、88分、80分,那么这位厨师的最后得分是_______________.15.甲、乙两人参加某网站的招聘测试,测试由网页制作和语言两个项目组成,他们各自的成绩(百分制)如下表所示:该网站根据成绩在两人之间录用了甲,则本次招聘测试中权重较大的是_____项目.16.若一组数据1,2,a,3,5的平均数是3,则这组数据的标准差是______.17.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是2S甲、2S乙,且22S S甲乙,则队员身高比较整齐的球队是_____.18.已知一个样本的方差s2=113[(x1﹣8)2+(x2﹣8)2+…+(x13﹣8)2],那么这个样本的平均数是_____,样本中数据的个数是_____.19.一组数2、a、4、6、8的平均数是5,这组数的中位数是______.20.某班七个兴趣小组人数分别为4,5,6,x,6,7,7,已知这组数据的平均数是6,则这组数据的众数是______.三、解答题21.甲、乙两名同学本学期的五次数学测试成绩如下(单位:分):甲8683908086乙7882848992中位数平均数方差甲▲85▲乙848524.822.某校学生会向全校2400名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图1和图2,请根据相关信息,解答系列问题:(1)本次接受随机抽样调查的学生人数为人,图1中m的值是;(2)求本次调查获取的样本数据的平均数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.23.某校八年级有800名学生,在一次跳绳模拟测试中,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为______,扇形统计图中m的值为______.(2)本次调查获取的样本数据的众数是_____(分),中位数是_____(分).(3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?24.随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注.某校计划将这种学习方式应用到教育教学中,从各年级共1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备情况进行了调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为人,图①中m的值为.(2)求本次调查获取的样本数据的众数、中位数;(3)根据样本数据,估计该校学生家庭中;拥有3台移动设备的学生人数.25.某中学七、八年级各选10名同学参加“创全国文明城市”知识竞赛,计分10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或9分以上为优秀,这次竞赛后,七、八年级两支代表队成绩分布的条形统计图和成绩分析表如下,其中七年级代表队得6分、10分选手人数分别为a,b.队列平均分中位数方差合格率优秀率七年级 6.7m 3.4190%n八年级7.17.5 1.6980%10%(1)根据图表中的数据,求a,b的值.(2)直接写出表中的m= ,n=.(3)你是八年级学生,请你给出两条支持八年级队成绩好的理由.26.为响应我市创建“全国文明城市”的号召,我区某校举办了一次“秀美巴中,绿色家园”主题演讲比赛,满分10分,得分均为整数,成绩大于等于6分为合格,大于等于9分为优秀,这次演讲比赛中甲、乙两组学生(各10名学生)成绩分布的条形统计图如下图:(1)补充完成下列的成绩统计分析表: 组别 平均分中位数众数方差合格率优秀率甲 6.7 6 3.41 90% 20% 乙7.1 7.51.6980%10%可知,小王是________组的学生;(填“甲”或“乙”)(3)结合两个小组的成绩分析,你觉得哪个组的成绩更好一些?说说你的理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据方差的定义,方差越小数据越稳定,即可得出答案. 【详解】解:甲每月平均销售量是:1(13411)25++++=(百台), 乙每月平均销售量是:1(23221)25++++=(百台), 则甲的方差是:22213(12)(32)(42) 1.65⎡⎤⨯-+-+-=⎣⎦ 乙的方差是:22213(22)(32)(12)0.45⎡⎤⨯-+-+-=⎣⎦ ∵1.6>0.4,∴乙销售量比甲销售量稳定; 故选:B . 【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.2.D解析:D【分析】由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析.【详解】由于总共有7个人,且他们的成绩各不相同,第3的成绩是中位数,要判断是否进入前3名,故应知道中位数的多少.故选:D.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.3.C解析:C【分析】根据频数分布直方图中的数据,求得众数,平均数,中位数,即可得出结论.【详解】解:①根据频数分布直方图,可得众数为60−80元范围,故每人乘坐地铁的月均花费最集中的区域在60−80元范围内,故①不正确;②每人乘坐地铁的月均花费的平均数=876001000=87.6=87.6元,所以每人乘坐地铁的月均花费的平均数范围是80~100元,故②错误;③每人乘坐地铁的月均花费的中位数约为80元,在60~100元范围内,故③正确;④为了让市民享受到更多的优惠,若使50%左右的人获得折扣优惠,则乘坐地铁的月均花费达到80元以上的人可以享受折扣,故④正确.故选:C【点睛】本题主要考查了频数分布直方图,平均数以及中位数的应用,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.C解析:C【分析】根据众数、中位数、平均数、极差的定义和统计图中提供的数据分别列出算式,求出答案.【详解】解:∵90出现了5次,出现的次数最多,∴众数是90;故A正确;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;故B正确;∵平均数是(80×1+85×2+90×5+95×2)÷10=89;故C错误;参赛学生最高成绩与最低成绩之差是:95-80=15;故D正确.故选:C.【点睛】此题考查了折线统计图,用到的知识点是众数、中位数、平均数、极差,关键是能从统计图中获得有关数据,求出众数、中位数、平均数、极差.5.B解析:B【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.6.C解析:C【分析】求得丁同学的方差后与前三个同学的方差比较,方差最小的成绩最稳定.【详解】丁同学的平均成绩为:14⨯(80+80+90+90)=85;方差为S丁214=[2×(80﹣85)2+2×(90﹣85)2]=25,所以四个人中丙的方差最小,成绩最稳定.故选C.【点睛】本题考查了方差的意义及方差的计算公式,解题的关键是牢记方差的公式,难度不大.7.B解析:B 【分析】根据极差的定义,分别从0t =、010t <≤、1020t <≤及2024t <≤时,极差2y 随t 的变化而变化的情况,从而得出答案. 【详解】当0t =时,极差285850y =-=,当010t <≤时,极差2y 随t 的增大而增大,最大值为43; 当1020t <≤时,极差2y 随t 的增大保持43不变; 当2024t <≤时,极差2y 随t 的增大而增大,最大值为98; 故选B . 【点睛】本题主要考查极差,解题的关键是掌握极差的定义及函数图象定义与画法.8.C解析:C 【解析】 【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,选出方差最小,而且平均数较大的同学参加数学比赛. 【详解】 ∵3.6<7.4<8.1,∴甲和丙的最近几次数学考试成绩的方差最小,发挥稳定, ∵95>92,∴丙同学最近几次数学考试成绩的平均数高,∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择丙. 故选C . 【点睛】此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.9.C解析:C 【解析】 【分析】根据众数和中位数的定义,出现次数最多的那个数就是众数,把一组数据按照大小顺序排列,中间那个数或中间两个数的平均数叫中位数.【详解】解:30元的人数为20人,最多,则众数为30,中间两个数分别为30和30,则中位数是30,故选:C.【点睛】本题考查了条形统计图、众数和中位数,这是基础知识要熟练掌握.10.A解析:A【分析】根据中位数、众数、平均数及极差的意义分别判断后即可得到正确的选项.【详解】∵数据的极差为16800,较大,∴平均数不能反映数据的集中趋势,∴普通员工最关注的数据是中位数及众数,故选A.【点睛】本题考查了统计量的选择的知识,解题的关键是了解有关统计量的意义,难度不大.11.B解析:B【解析】【分析】根据众数,中位数,平均数的定义解答.【详解】解:该班共有6+5+5+8+7+7+4=42(人),成绩27分的有8人,人数最多,众数为27;该班学生这次考试成绩的平均数是=142(24×6+25×5+26×5+27×8+28×7+29×7+30×4)=27,该班学生这次考试成绩的中位数是第21名和第22名成绩的平均数为27分,错误的为B,故选:B.【点睛】本题考查的是众数,中位数,平均数,熟练掌握众数,中位数,平均数的定义是解题的关键.12.B解析:B【解析】【分析】众数是出现次数最多的数,据此求解即可.【详解】∵数据4出现了2次,最多,∴众数为4,故选:B .【点睛】本题考查了众数的知识,解题的关键是了解有关的定义,属于基础题,难度不大.二、填空题13.【分析】先由平均数的定义求得x 的值再根据方差的公式计算方差【详解】根据题意得:3+3+x+5+5=4×5解得:x=4则这组数据的方差为×2(3-4)2+(4-4)2+2(5-4)2=08故答案是:0解析:0.8【分析】先由平均数的定义求得x 的值,再根据方差的公式计算方差.【详解】根据题意得:3+3+x+5+5=4×5,解得:x=4, 则这组数据的方差为15×[2(3-4)2+(4-4)2+2(5-4)2]=0.8, 故答案是:0.8.【点睛】 考查了求一组数的方差,解题关键是熟记方差计算公式:()()()2222121n S x x x x x x n ⎡⎤=-+-+⋯+-⎣⎦. 14.90分【分析】根据加权平均数的计算方法即可得出答案【详解】解:这位厨师的最后得分为:(分)故答案为:90分【点睛】本题考查了加权平均数的计算掌握计算加权平均数的方法是解题的关键解析:90分【分析】根据加权平均数的计算方法即可得出答案.【详解】 解:这位厨师的最后得分为:927+882+801=907+2+1⨯⨯⨯(分). 故答案为:90分.【点睛】本题考查了加权平均数的计算,掌握计算加权平均数的方法是解题的关键. 15.网页制作【分析】根据加权平均数的定义解答即可【详解】解:设网页制作的权重为a 语言的权重为b 则甲的分数为80a+70b 乙的分数为70a+80b 而甲的分数高所以80a+70b >70a+80b 解得a >b 则解析:网页制作【分析】根据加权平均数的定义解答即可.【详解】解:设网页制作的权重为a ,语言的权重为b ,则甲的分数为80a +70b ,乙的分数为70a +80b ,而甲的分数高,所以80a +70b >70a +80b ,解得a >b ,则本次招聘测试中权重较大的是网页制作项目.故答案为:网页制作.【点睛】本题考查了加权平均数的和解一元一次不等式的知识,属于基础题型,熟练掌握加权平均数的定义是关键.16.【分析】根据题意可得×(1+3+2+5+a)=3解这个方程就可以求出a 的值;根据标准差的计算公式即可求出样本标准差【详解】根据题意由平均数的定义得×(1+3+2+5+a)=3解得a=4所以方差为:S【分析】 根据题意可得15×(1+3+2+5+a)=3,解这个方程就可以求出a 的值;根据标准差的计算公式即可求出样本标准差.【详解】 根据题意 由平均数的定义得15×(1+3+2+5+a)=3, 解得,a=4.所以方差为:S 2=()()()()()2222213-1+3-3+3-2+3-5+3-4=5⎡⎤⨯⎣⎦2,.【点睛】此题考查平均数的概念,解题关键在于掌握计算公式.17.乙【分析】根据方差的意义可作出判断方差是用来衡量一组数据波动大小的量方差越小表明这组数据分布比较集中各数据偏离平均数越小即波动越小数据越稳定【详解】解:∵∴队员身高比较整齐的球队是乙故答案为乙【点睛 解析:乙【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵22S S >甲乙,∴队员身高比较整齐的球队是乙,故答案为乙.【点睛】本题考查方差.解题关键在于知道方差是用来衡量一组数据波动大小的量18.813【解析】【分析】样本方差其中n 是这个样本的容量是样本的平均数根据方差公式直接求解【详解】因为一个样本的方差s2=(x1﹣8)2+(x2﹣8)2+…+(x13﹣8)2所以本题样本的平均数是8样本解析:8, 13.【解析】【分析】 样本方差()()()2222121n S x x x x x x n ⎡⎤=-+-+⋯+-⎣⎦,其中n 是这个样本的容量, x 是样本的平均数.根据方差公式直接求解.【详解】因为一个样本的方差s 2=113[(x 1﹣8)2+(x 2﹣8)2+…+(x 13﹣8)2], 所以本题样本的平均数是8,样本数据的个数是13.故填8,13.【点睛】一般地设n 个数据,x 1、x 2、…x n 的平均数为x ,则方差()()()2222121n S x x x x x x n ⎡⎤=-+-+⋯+-⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.19.5【解析】【分析】由平均数可求解a 的值再根据中位数的定义即可求解【详解】解:由平均数可得a=5×5-2-4-6-8=5则该组数由小至大排序为:24568则中位数为5故答案为:5【点睛】本题考查了平均解析:5【解析】【分析】由平均数可求解a 的值,再根据中位数的定义即可求解.【详解】解:由平均数可得,a=5×5-2-4-6-8=5,则该组数由小至大排序为:2、4、5、6、8,则中位数为5,故答案为:5.【点睛】本题考查了平均数和中位数的概念.20.7【解析】【分析】根据平均数的计算公式先求出x 的值再根据众数的定义求解即可【详解】根据题意知解得:则这组数据为4566777所以这组数据的众数为7故答案为:7【点睛】此题考查众数与平均数众数是一组数解析:7【解析】【分析】根据平均数的计算公式先求出x 的值,再根据众数的定义求解即可.【详解】 根据题意知4562x 7267++⨯++⨯=, 解得:x 7=,则这组数据为4,5,6,6,7,7,7,所以这组数据的众数为7,故答案为:7.【点睛】此题考查众数与平均数,众数是一组数据中出现次数最多的数;平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.三、解答题21.(1)86,11.2;(2)见解析【分析】(1)根据中位数的定义和方差的公式进行解答即可求解;(2)从中位数和方差的意义进行分析即可求解.【详解】(1)把甲同学5次测试成绩按从小到大的顺序排列如下,80,83,86,86,90, 则中位数即为86, 甲同学成绩的方差:()()()()()22222186858385+9085+8085+86855⎡⎤⨯-+----⎣⎦()()22222112+5+5+15⎡⎤=⨯+--⎣⎦ ()114+25+25+15=⨯+ 1565=⨯ 11.2=(2)数据的集中趋势:①从中位数看,甲的中位数略大于乙的中位数,说明甲的数学成绩略好于乙;数据的离散程度:②从方差看,甲的方差小于乙的方差,且两人的平均成绩相同,说明甲的成绩比乙更稳定;数据的变化趋势:③从两人成绩的变化趋势看,乙的成绩在逐渐上升,说明乙的成绩进步较大.【点睛】本题考查中位数的定义、方差的计算公式及意义,解题的关键是熟练掌握求一组数据的中位数和方差的方法公式.22.(1)50,32;(2)16,15;(3)768.【分析】(1)根据题意由5元的人数及其所占百分比可得抽样调查的学生人数,用10元人数除以抽样调查的学生人数可得m 的值;(2)由题意根据统计图可以分别得到本次调查获取的样本数据的平均数和中位数;(3)由题意根据全校总人数捐款金额为10元的学生人数所占乘以抽样调查的学生人数的比例,即可估计该校本次活动捐款金额为10元的学生人数.【详解】解:(1)本次接受随机抽样调查的学生人数为4÷8%=50人, ∵16100%32%50⨯=, 32m ∴=.故答案为:50;32.(2)本次调查获取的样本数据的平均数是:451610121510208301650⨯+⨯+⨯+⨯+⨯=(元); 本次调查获取的样本数据的中位数是:15元.(3)估计该校本次活动捐款金额为10元的学生人数为2400×32%=768人.【点睛】本题考查条形统计图和扇形统计图、用样本估计总体、平均数、中位数,解题的关键是明确题意,找出所求问题需要的条件.23.(1)50;28;(2)12,11;(3)八年级模拟体测中得12分的学生约有256人.【分析】(1)根据得8分的学生人数和所占的百分比可以求得本次调查的人数,然后根据扇形统计图中的数据可以求得m 的值;(2)根据统计图中的数据可以求得本次调查获取的样本数据的众数和中位数;(3)根据统计图中的数据可以计算出我校九年级模拟模拟体测中得12分的学生约有多少人.【详解】:(1)本次抽取到的学生人数为:4÷8%=50,m%=1-8%-10%-22%-32%=28%,故答案为:50,28;(2)本次调查获取的样本数据的众数是12分,中位数是11分;(3)800×32%=256人;答:八年级模拟体测中得12分的学生约有256人;【点睛】此题考查扇形统计图、条形统计图、用样本估计总体、中位数、众数,解题的关键是明确题意,利用数形结合的思想解答.24.(1)50,32;(2)众数为4;中位数是3;(3)420【分析】(1)根据2台的人数和所占百分比可求出调查的学生总人数,用4台的人数除以总人数可得m 的值;(2)根据众数和中位数的定义求解;(3)用1500乘以拥有3台移动设备的学生人数所占的百分比即可.【详解】解:(1)本次接受随机抽样调查的学生人数为:10÷20%=50(人),16%100%32%50m , ∴m =32,故答案为:50,32; (2)∵这组样本数据中,4出现了16次,出现次数最多,∴这组数据的众数为4;∵将这组数据从小到大排列,其中处于中间的两个数均为3,且332+=3, ∴这组数据的中位数是3;(3)1500×28%=420(人),答:估计该校学生家庭中;拥有3台移动设备的学生人数约为420人.【点睛】本题考查了条形统计图和扇形统计图的综合运用,众数和中位数的定义以及样本估计总体,能够从不同的统计图中获取有用信息是解题的关键. 25.(1)51a b =⎧⎨=⎩;(2)6m = 20%n =;(3)详见解析. 【分析】(1)根据七年级代表队的总人数为10人以及七年级的成绩的平均分为6.7,列方程组可求出a 与b 的值;(2)根据(1)a 与b 的值,确定出m 与n 的值即可;(3)从中位数,平均数,方差等角度考虑,给出两条支持八年级队成绩好的理由即可. 【详解】解:(1)由题意,得101111 6.73167181911010a b a b +=----⎧⎪=⨯++⨯+⨯+⨯+⎨⎪⎩,即:661040a ba b+=⎧⎨+=⎩,解得:51ab=⎧⎨=⎩.(2)七年级成绩为3,6,6,6,6,6,7,8,9,10,中位数为6,即m=6;优秀率为111=105+=20%,即n=20%;(3)答案不唯一.如:支持八年级队成绩好的理由有:①八年级队的平均分比七年级队高,说明总成绩八年级好;②八年级队中位数是7.5,而七年级队中位数是6,说明八年级队半数以上的学生比七年级队半数以上成绩好【点睛】此题考查了条形统计图,以及中位数,平均数,以及方差,弄清概念是解题的关键.26.(1)6;8;(2)甲;(3)乙组的成绩更好一些.【分析】(1)先根据条形统计图得出甲、乙两组各学生的成绩,再根据中位数、众数的定义即可求得;(2)根据中位数即可判断,小明的成绩大于中位数;(3)可以从平均分、中位数、众数、方差四个方面综合分析.【详解】解:(1)∵甲组的成绩为:3,6,6,6,6,6,7,8,9,10.∴甲组中位数为6,∵乙组的成绩为:5,5,6,7,7,8,8,8,8,9.∴乙组众数为8,故答案为:6;8.(2)∵小明的成绩为7分属中游略偏上,甲组的中位数是6,乙组的中位数为7.5,∴小明在甲组.故答案为:甲.(3)因为乙组成绩的平均分、中位数、众数均比甲高,而乙组成绩的方差又比甲组小,所以乙组的成绩比甲组更稳定,因此综合分析乙组的成绩更好一些.【点睛】本题考查平均分、中位数、众数、方差等概念,正确掌握这些概念是解题的关键.。

相关文档
最新文档